\Section[ \eng{Crystals} \ger{Kristalle} ]{crystal} \Subsection[ \eng{Bravais lattice} \ger{Bravais-Gitter} ]{bravais} \Eng[lattice_system]{Lattice system} \Ger[lattice_system]{Gittersystem} \Eng[crystal_family]{Crystal system} \Ger[crystal_family]{Kristall-system} \Eng[point_group]{Point group} \Ger[point_group]{Punktgruppe} \eng[bravais_lattices]{Bravais lattices} \ger[bravais_lattices]{Bravais Gitter} \newcommand\bvimg[1]{\begin{center}\includegraphics[width=0.1\textwidth]{img_static/bravais/#1.pdf}\end{center}} \renewcommand\tabularxcolumn[1]{m{#1}} \newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X} \begin{bigformula}{2d} \desc{2D}{In 2D, there are 5 different Bravais lattices}{} \desc[german]{2D}{In 2D gibt es 5 verschiedene Bravais-Gitter}{} \begin{adjustbox}{width=\textwidth} \begin{tabularx}{\textwidth}{||Z|c|Z|Z||} \hline \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{2}{c||}{5 \gt{bravais_lattices}} \\ \cline{3-4} & & \GT{primitive} (p) & \GT{centered} (c) \\ \hline \GT{monoclinic} (m) & $\text{C}_\text{2}$ & \bvimg{mp} & \\ \hline \GT{orthorhombic} (o) & $\text{D}_\text{2}$ & \bvimg{op} & \bvimg{oc} \\ \hline \GT{tetragonal} (t) & $\text{D}_\text{4}$ & \bvimg{tp} & \\ \hline \GT{hexagonal} (h) & $\text{D}_\text{6}$ & \bvimg{hp} & \\ \hline \end{tabularx} \end{adjustbox} \end{bigformula} \begin{bigformula}{3d} \desc{3D}{In 3D, there are 14 different Bravais lattices}{} \desc[german]{3D}{In 3D gibt es 14 verschiedene Bravais-Gitter}{} % \newcolumntype{g}{>{\columncolor[]{0.8}}} \begin{adjustbox}{width=\textwidth} \begin{tabularx}{\textwidth}{||Z|Z|c|Z|Z|Z|Z||} \hline \multirow{2}{*}{\GT{crystal_family}} & \multirow{2}{*}{\GT{lattice_system}} & \multirow{2}{*}{\GT{point_group}} & \multicolumn{4}{c||}{14 \gt{bravais_lattices}} \\ \cline{4-7} & & & \GT{primitive} (P) & \GT{base_centered} (S) & \GT{body_centered} (I) & \GT{face_centered} (F) \\ \hline \multicolumn{2}{||c|}{\GT{triclinic} (a)} & $\text{C}_\text{i}$ & \bvimg{tP} & & & \\ \hline \multicolumn{2}{||c|}{\GT{monoclinic} (m)} & $\text{C}_\text{2h}$ & \bvimg{mP} & \bvimg{mS} & & \\ \hline \multicolumn{2}{||c|}{\GT{orthorhombic} (o)} & $\text{D}_\text{2h}$ & \bvimg{oP} & \bvimg{oS} & \bvimg{oI} & \bvimg{oF} \\ \hline \multicolumn{2}{||c|}{\GT{tetragonal} (t)} & $\text{D}_\text{4h}$ & \bvimg{tP} & & \bvimg{tI} & \\ \hline \multirow{2}{*}{\GT{hexagonal} (h)} & \GT{rhombohedral} & $\text{D}_\text{3d}$ & \bvimg{hR} & & & \\ \cline{2-7} & \GT{hexagonal} & $\text{D}_\text{6h}$ & \bvimg{hP} & & & \\ \hline \multicolumn{2}{||c|}{\GT{cubic} (c)} & $\text{O}_\text{h}$ & \bvimg{cP} & & \bvimg{cI} & \bvimg{cF} \\ \hline \end{tabularx} \end{adjustbox} \end{bigformula} \begin{formula}{lattice_constant} \desc{Lattice constant}{Parameter (length or angle) describing the smallest unit cell}{} \desc[german]{Gitterkonstante}{Parameter (Länge oder Winkel) der die Einheitszelle beschreibt}{} \quantity{a}{}{s} \end{formula} \begin{formula}{lattice_vector} \desc{Lattice vector}{}{$n_i \in \Z$} \desc[german]{Gittervektor}{}{} \quantity{\vec{R}}{}{\angstrom} \eq{\vec{R} = n_1 \vec{a_1} + n_2 \vec{a_2} + n_3 \vec{a_3}} \end{formula} \begin{formula}{primitive_unit_cell} \desc{Primitve unit cell}{}{} \desc[german]{Primitive Einheitszelle}{}{} \ttxt{\eng{Unit cell containing exactly one lattice point}\ger{Einheitszelle die genau einen Gitterpunkt enthält}} \end{formula} \Eng[miller-point]{Point} \Ger[miller-point]{Punkt} \Eng[miller-direction]{Direction} \Ger[miller-direction]{Richtung} \Eng[miller-direction-family]{Family of directions} \Ger[miller-direction-family]{Familie von Richtungen} \Eng[miller-plane]{Plane} \Ger[miller-plane]{Ebene} \Eng[miller-plane-family]{Family of planes} \Ger[miller-plane-family]{Familie von Ebenen} \begin{formula}{miller} \desc{Miller indices}{}{ Miller planes: $(hkl)$, $\frac{1}{h}$/$\frac{1}{k}$/$\frac{1}{l}$ give intersection with $x$/$y$/$z$ axes\\ Miller family: planes that are equivalent due to crystal symmetry } \desc[german]{Millersche Indizes}{}{ Miller-Ebenen: $(hkl)$, $\frac{1}{h}$/$\frac{1}{k}$/$\frac{1}{l}$ geben die Schnittpunkte mit den $x$/$y$/$z$-Achsen\\ Miller-Familien: Ebenen, die durch Kristallsymmetrie äquivalent sind } \centering \newFormulaEntry \begin{tabularx}{\textwidth}{clcl} $(h,k,l)$ & \GT{miller-point} & & \\ $hkl$ & \GT{miller-direction} & $\langle hkl \rangle$ & \GT{miller-direction-family} \\ $(hkl)$ & \GT{miller-plane} & $\{hkl\}$ & \GT{miller-plane-family} \end{tabularx} \pgfmathsetmacro{\rectX}{2} \pgfmathsetmacro{\rectZ}{2} \newFormulaEntry \begin{tikzpicture}[3d view={100}{20},perspective={p={(-55,0,0)},q={(0,25,0)},r={(0,0,-30)}}] % <100> direction family \begin{scope} \drawRectCS{1.4*\rectX}{1.4*\rectZ} \setRectPoints{R1}{(0.5*\rectX,0.5*\rectX,0)}{\rectX}{\rectX} \setRectPoints{R2}{(0.5*\rectX,0.5*\rectX,\rectZ)}{\rectX}{\rectX} \drawRectBack{R1} \drawRectConnectionsBack{R1}{R2} \draw[miller dir] (0,0,0) -- ++( \rectX,0,0) node[anchor=east] {$[100]$}; \draw[miller dir] (0,0,0) -- ++(-\rectX,0,0) node[anchor=west] {$[\bar{1}00]$}; \draw[miller dir] (0,0,0) -- ++(0, \rectX,0) node[anchor=south] {$[010]$}; \draw[miller dir] (0,0,0) -- ++(0,-\rectX,0) node[anchor=south] {$[0\bar{1}0]$}; \draw[miller dir] (0,0,0) -- ++(0,0, \rectX) node[anchor=east] {$[001]$}; \draw[miller dir] (0,0,0) -- ++(0,0,-\rectX) node[anchor=west] {$[00\bar{1}]$}; \drawRectFront{R1} \drawRectBack{R2} \drawRectConnectionsFront{R1}{R2} \drawRectFront{R2} \node at (1.5*\rectX,1.5*\rectX, 0) {$\langle100\rangle$}; \end{scope} \pgfmathsetmacro{\rectDistance}{4.5} % {100} plane family \begin{scope}[shift={(0,\rectDistance,0)}] \drawRectCS{1.4*\rectX}{1.4*\rectZ} \setRectPoints{R1}{(0.5*\rectX,0.5*\rectX,0)}{\rectX}{\rectX} \setRectPoints{R2}{(0.5*\rectX,0.5*\rectX,\rectZ)}{\rectX}{\rectX} \drawRectBack{R1} \drawRectConnectionsBack{R1}{R2} \drawRectFront{R1} \drawRectBack{R2} \drawRectConnectionsFront{R1}{R2} \drawRectFront{R2} \fill[miller plane] (R1-C) -- (R1-D) node[anchor=north,midway] {$(100)$} -- (R2-D) -- (R2-C) -- cycle; \fill[miller plane] (R1-A) -- (R1-D) node[anchor=west,midway] {$(010)$} -- (R2-D) -- (R2-A) -- cycle node[anchor=north east] {$(010)$}; \fill[miller plane] (R2-A) -- (R2-B) node[midway,anchor=south] {$(001)$} -- (R2-C) -- (R2-D) -- cycle; \node at (1.5*\rectX,1.5*\rectX, 0) {$\{100\}$}; \end{scope} \end{tikzpicture} % describe how to construct miller planes \end{formula} \begin{formula}{miller-hexagon} \desc{Hexagonal miller indices}{}{} \desc[german]{Hexagonale Millersche Indizes}{}{} \eq{ (hkil) && \tGT{with}\quad i = h + k } \centering \newFormulaEntry \begin{tikzpicture}[3d view={0}{20}] \pgfmathsetmacro{\hexxY}{1.5} \begin{scope} \drawHexagonCS{1}{\hexxY} \setHexagonPoints{H1}{(0,0,0)}{1}{1}{1} \setHexagonPoints{H2}{(0,0,\hexxY)}{1}{1}{1} \drawHexagonBack{H1} \drawHexagonConnectionsBack{H1}{H2} \drawHexagonFront{H1} \drawHexagonBack{H2} \drawHexagonConnectionsFront{H1}{H2} \drawHexagonFront{H2} \end{scope} \pgfmathsetmacro{\hexDistance}{3.5} % 1121 \begin{scope}[shift={(\hexDistance,0,0)}] \drawHexagonCS{1}{\hexxY} \setHexagonPoints{H1}{(0,0,0)}{1}{1}{1} \setHexagonPoints{H2}{(0,0,\hexxY)}{1}{1}{1} \drawHexagonBack{H1} \drawHexagonConnectionsBack{H1}{H2} \fill[miller plane] (H1-A) -- (H2-M) -- (H1-E) -- cycle; \drawHexagonFront{H1} \drawHexagonBack{H2} \drawHexagonConnectionsFront{H1}{H2} \drawHexagonFront{H2} \node[anchor=north] at (xyz cylindrical cs:radius=1.5,angle=270) {$(1211)$}; \end{scope} % 1010 \begin{scope}[shift={(2*\hexDistance,0,0)}] \drawHexagonCS{1}{\hexxY} \setHexagonPoints{H1}{(0,0,0)}{1}{1}{1} \setHexagonPoints{H2}{(0,0,\hexxY)}{1}{1}{1} \drawHexagonBack{H1} \drawHexagonConnectionsBack{H1}{H2} \drawHexagonFront{H1} \drawHexagonBack{H2} \drawHexagonConnectionsFront{H1}{H2} \drawHexagonFront{H2} \fill[miller plane] (H1-F) -- (H2-F) -- (H2-E) -- (H1-E) -- cycle; \node[anchor=north] at (xyz cylindrical cs:radius=1.5,angle=270) {$(1010)$}; \end{scope} \end{tikzpicture} \end{formula} \Subsection[ \eng{Reciprocal lattice} \ger{Reziprokes Gitter} ]{reci} \begin{ttext} \eng{The reciprokal lattice is made up of all the wave vectors $\vec{k}$ that ressemble standing waves with the periodicity of the Bravais lattice.} \ger{Das rezioproke Gitter besteht aus dem dem Satz aller Wellenvektoren $\vec{k}$, die ebene Wellen mit der Periodizität des Bravais-Gitters ergeben.} \end{ttext} \begin{formula}{vectors} \desc{Reciprocal lattice vectors}{}{$a_i$ real-space lattice vectors, $V_c$ volume of the primitive lattice cell} \desc[german]{Reziproke Gittervektoren}{}{$a_i$ Bravais-Gitter Vektoren, $V_c$ Volumen der primitiven Gitterzelle} \eq{ \vec{b_1} &= \frac{2\pi}{V_c} \vec{a_2} \times \vec{a_3} \\ \vec{b_2} &= \frac{2\pi}{V_c} \vec{a_3} \times \vec{a_1} \\ \vec{b_3} &= \frac{2\pi}{V_c} \vec{a_1} \times \vec{a_2} } \end{formula} \begin{formula}{reciprocal_lattice_vector} \desc{Reciprokal attice vector}{}{$n_i \in \Z$} \desc[german]{Reziproker Gittervektor}{}{} \quantity{\vec{G}}{}{\angstrom} \eq{\vec{G}_{{hkl}} = h \vec{b_1} + k \vec{b_2} + l \vec{b_3}} \end{formula} \Subsection[ \eng{Scattering processes} \ger{Streuprozesse} ]{scatter} \begin{formula}{matthiessen} \desc{Matthiessen's rule}{Approximation, only holds if the processes are independent of each other}{\QtyRef{mobility}, \QtyRef{scattering_time}} \desc[german]{Matthiessensche Regel}{Näherung, nur gültig wenn die einzelnen Streuprozesse von einander unabhängig sind}{} \eq{ \frac{1}{\mu} &= \sum_{i = \textrm{\GT{:::scatter}}} \frac{1}{\mu_i} \\ \frac{1}{\tau} &= \sum_{i = \textrm{\GT{:::scatter}}} \frac{1}{\tau_i} } \end{formula} \Subsection[ \eng{Lattices} \ger{Gitter} ]{lat} \begin{formula}{sc} \desc{Simple cubic (SC)}{Reciprocal: Simple cubic}{\QtyRef{lattice_constant}} \desc[german]{Einfach kubisch (SC)}{Reziprok: Einfach kubisch}{} \eq{ \vec{a}_{1}=a \begin{pmatrix} 1\\0\\0 \end{pmatrix},\, \vec{a}_{2}=a \begin{pmatrix} 0\\1\\0 \end{pmatrix},\, \vec{a}_{3}=a \begin{pmatrix} 0\\0\\1 \end{pmatrix} } \end{formula} \begin{formula}{bcc} \desc{Body centered cubic (BCC)}{Reciprocal: \fRef{::fcc}}{\QtyRef{lattice_constant}} \desc[german]{Kubisch raumzentriert (BCC)}{Reziprok: \fRef{::fcc}}{} \eq{ \vec{a}_{1}=\frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix},\, \vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix},\, \vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix} } \end{formula} \begin{formula}{fcc} \desc{Face centered cubic (FCC)}{Reciprocal: \fRef{::bcc}}{\QtyRef{lattice_constant}} \desc[german]{Kubisch flächenzentriert (FCC)}{Reziprok: \fRef{::bcc}}{} \eq{ \vec{a}_{1}=\frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix},\, \vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix},\, \vec{a}_{3}=\frac{a}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix} } \end{formula} \begin{formula}{diamond} \desc{Diamond lattice}{}{} \desc[german]{Diamantstruktur}{}{} \ttxt{ \eng{\fRef{:::fcc} with basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$} \ger{\fRef{:::fcc} mit Basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$} } \end{formula} \begin{formula}{zincblende} \desc{Zincblende lattice}{}{} \desc[german]{Zinkblende-Struktur}{}{} \fsplit{ \centering \includegraphics[width=0.9\textwidth]{img/cm_crystal_zincblende.png} }{ \ttxt{ \eng{Like \fRef{:::diamond} but with different species on each basis} \ger{Wie \fRef{:::diamond} aber mit unterschiedlichen Spezies auf den Basen} } } \end{formula} \begin{formula}{rocksalt} \desc{Rocksalt structure}{\elRef{Na}\elRef{Cl}}{} \desc[german]{Kochsalz-Struktur}{}{} \fsplit{ \centering \includegraphics[width=0.9\textwidth]{img/cm_crystal_NaCl.png} }{ } \end{formula} \begin{formula}{wurtzite} \desc{Wurtzite structure}{hP4}{} \desc[german]{Wurtzite-Struktur}{hP4}{} \fsplit{ \centering \includegraphics[width=0.9\textwidth]{img/cm_crystal_wurtzite.png} }{ } \end{formula}