\Section{constants} \desc{Constants}{}{} \desc[german]{Konstanten}{}{} \begin{formula}{planck} \desc{Planck Constant}{}{} \desc[german]{Plancksches Wirkumsquantum}{}{} \constant{h}{def}{ \val{6.62607015\cdot 10^{-34}}{\joule\s} \val{4.135667969\dots\xE{-15}}{\eV\s} } \end{formula} \begin{formula}{universal_gas} \desc{Universal gas constant}{Proportionality factor for ideal gases}{\ConstRef{avogadro}, \ConstRef{boltzmann}} \desc[german]{Universelle Gaskonstante}{Proportionalitätskonstante für ideale Gase}{} \constant{R}{def}{ \val{8.31446261815324}{\joule\per\mol\kelvin} \val{\NA \cdot \kB}{} } \end{formula} \begin{formula}{avogadro} \desc{Avogadro constant}{Number of molecules per mole}{} \desc[german]{Avogadro-Konstante}{Anzahl der Moleküle pro mol}{} \constant{\NA}{def}{ \val{6.02214076 \xE{23}}{1\per\mole} } \end{formula} \begin{formula}{boltzmann} \desc{Boltzmann constant}{Temperature-Energy conversion factor}{} \desc[german]{Boltzmann-Konstante}{Temperatur-Energie Umrechnungsfaktor}{} \constant{\kB}{def}{ \val{1.380649 \xE{-23}}{\joule\per\kelvin} } \end{formula} \begin{formula}{faraday} \desc{Faraday constant}{Electric charge of one mol of single-charged ions}{\ConstRef{avogadro}, \ConstRef{charge}} \desc[german]{Faraday-Konstante}{Elektrische Ladungs von einem Mol einfach geladener Ionen}{} \constant{F}{def}{ \val{9.64853321233100184\xE{4}}{\coulomb\per\mol} \val{\NA\,e}{} } \end{formula} \begin{formula}{charge} \desc{Unit charge}{}{} \desc[german]{Elementarladung}{}{} \constant{e}{def}{ \val{1.602176634\xE{-19}}{\coulomb} } \end{formula} \begin{formula}{flux_quantum} \desc{Flux quantum}{}{} \desc[german]{Flussquantum}{}{} \constant{\Phi_0}{def}{ \val{2.067 833 848 \xE{-15}}{\weber=\volt\s=\kg\m^2\per\s^2\ampere} } \eq{\Phi_0 = \frac{h}{2e}} \end{formula} \begin{formula}{atomic_mass_unit} \desc{Atomic mass unit}{}{} \desc[german]{Atomare Massneinheit}{}{} \constant{u}{exp}{ \val{1.66053906892(52)\xE{-27}}{\kg} } \end{formula}