Compare commits
No commits in common. "main" and "2025-01-10" have entirely different histories.
main
...
2025-01-10
12
Makefile
12
Makefile
@ -3,8 +3,8 @@
|
||||
# Paths and filenames
|
||||
SRC_DIR = src
|
||||
OUT_DIR = out
|
||||
MAIN_TEX = main.tex # in SRC_DIR
|
||||
MAIN_PDF = main.pdf # in OUT_DIR
|
||||
MAIN_TEX = $(SRC_DIR)/main.tex
|
||||
MAIN_PDF = $(OUT_DIR)/main.pdf
|
||||
|
||||
# LaTeX and Biber commands
|
||||
|
||||
@ -19,14 +19,14 @@ default: english
|
||||
release: german english
|
||||
# Default target
|
||||
english:
|
||||
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[english]{babel}/' $(SRC_DIR)/$(MAIN_TEX)
|
||||
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[english]{babel}/' $(MAIN_TEX)
|
||||
-cd $(SRC_DIR) && latexmk -lualatex -g main.tex
|
||||
mv $(OUT_DIR)/$(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_en_Formulary.pdf
|
||||
mv $(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_en_formula_collection.pdf
|
||||
|
||||
german:
|
||||
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[german]{babel}/' $(SRC_DIR)/$(MAIN_TEX)
|
||||
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[german]{babel}/' $(MAIN_TEX)
|
||||
-cd $(SRC_DIR) && latexmk -lualatex -g main.tex
|
||||
mv $(OUT_DIR)/$(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_de_Formelsammlung.pdf
|
||||
mv $(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_de_formelsammlung.pdf
|
||||
|
||||
# Clean auxiliary and output files
|
||||
clean:
|
||||
|
111
readme.md
111
readme.md
@ -1,111 +0,0 @@
|
||||
# Formulary
|
||||
This is supposed to be a compact, searchable collection of the most important stuff I learned during my physics studides,
|
||||
because it would be a shame if I forget it all!
|
||||
|
||||
## Building the PDF
|
||||
### Dependencies
|
||||
Any recent **TeX Live** distribution should work. You need:
|
||||
- `LuaLaTeX` compiler
|
||||
- several packages from ICAN
|
||||
- `latexmk` to build it
|
||||
|
||||
### With GNU make
|
||||
1. In the project directory (where this `readme` is), run `make german` or `make english`.
|
||||
2. Rendered document will be `out/<date>_<formulary>.pdf`
|
||||
|
||||
### With Latexmk
|
||||
1. Choose the language: In `main.tex`, set the language in `\usepackage[english]{babel}` to either `english` or `german`
|
||||
2. In the `src` directory, run `latexmk -lualatex main.tex`
|
||||
3. Rendered document will be `out/main.pdf`
|
||||
|
||||
### With LuaLatex
|
||||
1. Choose the language: In `main.tex`, set the language in `\usepackage[english]{babel}` to either `english` or `german`
|
||||
2. Create the `.aux` directory
|
||||
3. In the `src` directory, run
|
||||
- `lualatex -output-directory="../.aux" --interaction=nonstopmode --shell-escape "main.tex"` **3 times**
|
||||
4. Rendered document will be `.aux/main.pdf`
|
||||
|
||||
# LaTeX Guideline
|
||||
Here is some info to help myself remember why I did things the way I did.
|
||||
|
||||
In general, most content should be written with macros, so that the behaviour can be changed later.
|
||||
|
||||
## Structure
|
||||
All translation keys and LaTeX labels should use a structured approach:
|
||||
`<key type>:<partname>:<section name>:<subsection name>:<...>:<name>`
|
||||
|
||||
The `<partname>:...:<lowest section name>` will be defined as `\fqname` (fully qualified name) when using the `\Part`, `\Section`, ... commands.
|
||||
|
||||
`<key type>` is:
|
||||
|
||||
- formula: `f`
|
||||
- equation: `eq`
|
||||
- table: `tab`
|
||||
- figure: `fig`
|
||||
- parts, (sub)sections: `sec`
|
||||
|
||||
### Files and directories
|
||||
Separate parts in different source files named `<partname>.tex`.
|
||||
If a part should be split up in multiple source files itself, use a
|
||||
subdirectory named `<partname>` containing `<partname>.tex` and other source files for sections.
|
||||
This way, the `fqname` of a section or formula partially matches the path of the source file it is in.
|
||||
|
||||
## `formula` environment
|
||||
The main way to display something is the formula environment:
|
||||
```tex
|
||||
\begin{formula}{<key>}
|
||||
\desc{English name}{English description}{$q$ is some variable, $s$ \qtyRef{some_quantity}}
|
||||
\desc[german]{Deutscher Name}{Deutsche Beschreibung}{$q$ ist eine Variable, $s$ \qtyRef{some_quantity}}
|
||||
<content>
|
||||
\end{formula}
|
||||
```
|
||||
Each formula automatically gets a `f:<section names...>:<key>` label.
|
||||
For the content, several macros are available:
|
||||
- `\eq{<equation>}` a wrapper for the `align` environment
|
||||
- `\fig[width]{<path>}`
|
||||
- `\quantity{<symbol>}{<units>}{<vector, scalar, extensive etc.>}` for physical quantites
|
||||
- `\constant{<symbol>}{ <values> }` for constants, where `<values>` may contain one or more `\val{value}{unit}` commands.
|
||||
|
||||
### References
|
||||
**Use references where ever possible.**
|
||||
In equations, reference or explain every variable. Several referencing commands are available for easy referencing:
|
||||
- `\fqSecRef{<fqname of section>}` prints the translated title of the section
|
||||
- `\fqEqRef{<fqname of formula>}` prints the translated title of the formula (first argument of `\desc`)
|
||||
- `\qtyRef{<key>}` prints the translated name of the quantity
|
||||
- `\QtyRef{<key>}` prints the symbol and the translated name of the quantity
|
||||
- `\constRef{<key>}` prints the translated name of the constant
|
||||
- `\ConstRef{<key>}` prints the symbol and the translated name of the constant
|
||||
- `\elRef{<symbol>}` prints the symbol of the chemical element
|
||||
- `\ElRef{<symbol>}` prints the name of the chemical element
|
||||
|
||||
|
||||
## Multilanguage
|
||||
All text should be defined as a translation (`translations` package, see `util/translation.tex`).
|
||||
Use `\dt` or `\DT` or the the shorthand language commands `\eng`, `\Eng` etc. to define translations.
|
||||
These commands also be write the translations to an auxiliary file, which is read after the document begins.
|
||||
This means (on subsequent compilations) that the translation can be resolved before they are defined.
|
||||
Use the `gt` or `GT` macros to retrieve translations.
|
||||
The english translation of any key must be defined, because it will also be used as fallback.
|
||||
|
||||
Lower case macros are relative to the current `fqname`, while upper case macros are absolute.
|
||||
|
||||
Never make a macro that would have to be changed if a new language was added, eg dont do
|
||||
```tex
|
||||
% 1: key, 2: english version, 3: german version
|
||||
\newcommand{\mycmd}[3]{
|
||||
\dosomestuff{english}{#1}{#2}
|
||||
\dosomestuff{german}{#1}{#3}
|
||||
}
|
||||
|
||||
\mycmd{key}{this is english}{das ist deutsch}
|
||||
```
|
||||
Instead, do
|
||||
```tex
|
||||
% [1]: lang, 2: key, 2: text
|
||||
\newcommand{\mycmd}[3][english]{
|
||||
\dosomestuff{#1}{#2}{#3}
|
||||
}
|
||||
|
||||
\mycmd{key}{this is english}
|
||||
\mycmd[german]{key}{das ist deutsch}
|
||||
```
|
131
src/ed/ed.tex
131
src/ed/ed.tex
@ -6,3 +6,134 @@
|
||||
% pure electronic stuff in el
|
||||
% pure magnetic stuff in mag
|
||||
% electromagnetic stuff in em
|
||||
|
||||
% TODO move
|
||||
\Section[
|
||||
\eng{Hall-Effect}
|
||||
\ger{Hall-Effekt}
|
||||
]{hall}
|
||||
|
||||
\begin{formula}{cyclotron}
|
||||
\desc{Cyclontron frequency}{}{}
|
||||
\desc[german]{Zyklotronfrequenz}{}{}
|
||||
\eq{\omega_\text{c} = \frac{e B}{\masse}}
|
||||
\end{formula}
|
||||
\TODO{Move}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Classical Hall-Effect}
|
||||
\ger{Klassischer Hall-Effekt}
|
||||
]{classic}
|
||||
\begin{ttext}
|
||||
\eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.}
|
||||
\ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.}
|
||||
\end{ttext}
|
||||
\begin{formula}{voltage}
|
||||
\desc{Hall voltage}{}{$n$ charge carrier density}
|
||||
\desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte}
|
||||
\eq{U_\text{H} = \frac{I B}{ne d}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{coefficient}
|
||||
\desc{Hall coefficient}{Sometimes $R_\txH$}{}
|
||||
\desc[german]{Hall-Koeffizient}{Manchmal $R_\txH$}{}
|
||||
\eq{A_\text{H} := -\frac{E_y}{j_x B_z} \explOverEq{\GT{metals}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity}
|
||||
\desc{Resistivity}{}{}
|
||||
\desc[german]{Spezifischer Widerstand}{}{}
|
||||
\eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Integer quantum hall effect}
|
||||
\ger{Ganzahliger Quantenhalleffekt}
|
||||
]{quantum}
|
||||
|
||||
\begin{formula}{conductivity}
|
||||
\desc{Conductivity tensor}{}{}
|
||||
\desc[german]{Leitfähigkeitstensor}{}{}
|
||||
\eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity_tensor}
|
||||
\desc{Resistivity tensor}{}{}
|
||||
\desc[german]{Spezifischer Widerstands-tensor}{}{}
|
||||
\eq{
|
||||
\rho = \sigma^{-1}
|
||||
% \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity}
|
||||
\desc{Resistivity}{}{$\nu \in \mathbb{Z}$ filing factor}
|
||||
\desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$ Füllfaktor}
|
||||
\eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}}
|
||||
\end{formula}
|
||||
|
||||
% \begin{formula}{qhe}
|
||||
% \desc{Integer quantum hall effect}{}{}
|
||||
% \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{}
|
||||
% \fig{img/qhe-klitzing.jpeg}
|
||||
% \end{formula}
|
||||
|
||||
\begin{formula}{fqhe}
|
||||
\desc{Fractional quantum hall effect}{}{$\nu$ fraction of two numbers without shared divisors}
|
||||
\desc[german]{Fraktionaler Quantum-Hall-Effekt}{}{$\nu$ Bruch aus Zahlen ohne gemeinsamen Teiler}
|
||||
\eq{\nu = \frac{1}{3},\frac{2}{5},\frac{3}{7},\frac{2}{3}...}
|
||||
\end{formula}
|
||||
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item \textbf{Integer} (QHE): filling factor $\nu$ is an integer
|
||||
\item \textbf{Fractional} (FQHE): filling factor $\nu$ is a fraction
|
||||
\item \textbf{Spin} (QSHE): spin currents instead of charge currents
|
||||
\item \textbf{Anomalous} (QAHE): symmetry breaking by internal effects instead of external magnetic fields
|
||||
\end{itemize}
|
||||
}
|
||||
\ger{
|
||||
\begin{itemize}
|
||||
\item \textbf{Integer} (QHE): Füllfaktor $\nu$ ist ganzzahlig
|
||||
\item \textbf{Fractional} (FQHE): Füllfaktor $\nu$ ist ein Bruch
|
||||
\item \textbf{Spin} (QSHE): Spin Ströme anstatt Ladungsströme
|
||||
\item \textbf{Anomalous} (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld
|
||||
\end{itemize}
|
||||
}
|
||||
\end{ttext}
|
||||
|
||||
|
||||
\TODO{sort}
|
||||
\begin{formula}{impedance_c}
|
||||
\desc{Impedance of a capacitor}{}{}
|
||||
\desc[german]{Impedanz eines Kondesnators}{}{}
|
||||
\eq{Z_{C} = \frac{1}{i\omega C}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{impedance_l}
|
||||
\desc{Impedance of an inductor}{}{}
|
||||
\desc[german]{Impedanz eines Induktors}{}{}
|
||||
\eq{Z_{L} = i\omega L}
|
||||
\end{formula}
|
||||
|
||||
\TODO{impedance addition for parallel / linear}
|
||||
|
||||
\Section[
|
||||
\eng{Dipole-stuff}
|
||||
\ger{Dipol-zeug}
|
||||
]{dipole}
|
||||
|
||||
\begin{formula}{poynting}
|
||||
\desc{Dipole radiation Poynting vector}{}{}
|
||||
\desc[german]{Dipolsrahlung Poynting-Vektor}{}{}
|
||||
\eq{\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right)\frac{\sin^2\theta}{r^2} \vec{r}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{power}
|
||||
\desc{Time-average power}{}{}
|
||||
\desc[german]{Zeitlich mittlere Leistung}{}{}
|
||||
\eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}}
|
||||
\end{formula}
|
||||
|
131
src/ed/misc.tex
131
src/ed/misc.tex
@ -1,131 +0,0 @@
|
||||
% TODO move
|
||||
\Section[
|
||||
\eng{Hall-Effect}
|
||||
\ger{Hall-Effekt}
|
||||
]{hall}
|
||||
|
||||
\begin{formula}{cyclotron}
|
||||
\desc{Cyclontron frequency}{}{}
|
||||
\desc[german]{Zyklotronfrequenz}{}{}
|
||||
\eq{\omega_\text{c} = \frac{e B}{\masse}}
|
||||
\end{formula}
|
||||
\TODO{Move}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Classical Hall-Effect}
|
||||
\ger{Klassischer Hall-Effekt}
|
||||
]{classic}
|
||||
\begin{ttext}
|
||||
\eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.}
|
||||
\ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.}
|
||||
\end{ttext}
|
||||
\begin{formula}{voltage}
|
||||
\desc{Hall voltage}{}{$n$ charge carrier density}
|
||||
\desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte}
|
||||
\eq{U_\text{H} = \frac{I B}{ne d}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{coefficient}
|
||||
\desc{Hall coefficient}{Sometimes $R_\txH$}{}
|
||||
\desc[german]{Hall-Koeffizient}{Manchmal $R_\txH$}{}
|
||||
\eq{A_\text{H} := -\frac{E_y}{j_x B_z} \explOverEq{\GT{metals}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity}
|
||||
\desc{Resistivity}{}{}
|
||||
\desc[german]{Spezifischer Widerstand}{}{}
|
||||
\eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Integer quantum hall effect}
|
||||
\ger{Ganzahliger Quantenhalleffekt}
|
||||
]{quantum}
|
||||
|
||||
\begin{formula}{conductivity}
|
||||
\desc{Conductivity tensor}{}{}
|
||||
\desc[german]{Leitfähigkeitstensor}{}{}
|
||||
\eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity_tensor}
|
||||
\desc{Resistivity tensor}{}{}
|
||||
\desc[german]{Spezifischer Widerstands-tensor}{}{}
|
||||
\eq{
|
||||
\rho = \sigma^{-1}
|
||||
% \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity}
|
||||
\desc{Resistivity}{}{$\nu \in \mathbb{Z}$ filing factor}
|
||||
\desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$ Füllfaktor}
|
||||
\eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}}
|
||||
\end{formula}
|
||||
|
||||
% \begin{formula}{qhe}
|
||||
% \desc{Integer quantum hall effect}{}{}
|
||||
% \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{}
|
||||
% \fig{img/qhe-klitzing.jpeg}
|
||||
% \end{formula}
|
||||
|
||||
\begin{formula}{fqhe}
|
||||
\desc{Fractional quantum hall effect}{}{$\nu$ fraction of two numbers without shared divisors}
|
||||
\desc[german]{Fraktionaler Quantum-Hall-Effekt}{}{$\nu$ Bruch aus Zahlen ohne gemeinsamen Teiler}
|
||||
\eq{\nu = \frac{1}{3},\frac{2}{5},\frac{3}{7},\frac{2}{3}...}
|
||||
\end{formula}
|
||||
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item \textbf{Integer} (QHE): filling factor $\nu$ is an integer
|
||||
\item \textbf{Fractional} (FQHE): filling factor $\nu$ is a fraction
|
||||
\item \textbf{Spin} (QSHE): spin currents instead of charge currents
|
||||
\item \textbf{Anomalous} (QAHE): symmetry breaking by internal effects instead of external magnetic fields
|
||||
\end{itemize}
|
||||
}
|
||||
\ger{
|
||||
\begin{itemize}
|
||||
\item \textbf{Integer} (QHE): Füllfaktor $\nu$ ist ganzzahlig
|
||||
\item \textbf{Fractional} (FQHE): Füllfaktor $\nu$ ist ein Bruch
|
||||
\item \textbf{Spin} (QSHE): Spin Ströme anstatt Ladungsströme
|
||||
\item \textbf{Anomalous} (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld
|
||||
\end{itemize}
|
||||
}
|
||||
\end{ttext}
|
||||
|
||||
|
||||
\TODO{sort}
|
||||
\begin{formula}{impedance_c}
|
||||
\desc{Impedance of a capacitor}{}{}
|
||||
\desc[german]{Impedanz eines Kondesnators}{}{}
|
||||
\eq{Z_{C} = \frac{1}{i\omega C}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{impedance_l}
|
||||
\desc{Impedance of an inductor}{}{}
|
||||
\desc[german]{Impedanz eines Induktors}{}{}
|
||||
\eq{Z_{L} = i\omega L}
|
||||
\end{formula}
|
||||
|
||||
\TODO{impedance addition for parallel / linear}
|
||||
|
||||
\Section[
|
||||
\eng{Dipole-stuff}
|
||||
\ger{Dipol-zeug}
|
||||
]{dipole}
|
||||
|
||||
\begin{formula}{poynting}
|
||||
\desc{Dipole radiation Poynting vector}{}{}
|
||||
\desc[german]{Dipolsrahlung Poynting-Vektor}{}{}
|
||||
\eq{\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right)\frac{\sin^2\theta}{r^2} \vec{r}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{power}
|
||||
\desc{Time-average power}{}{}
|
||||
\desc[german]{Zeitlich mittlere Leistung}{}{}
|
||||
\eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}}
|
||||
\end{formula}
|
||||
|
@ -1,7 +1,7 @@
|
||||
%! TeX program = lualatex
|
||||
% (for vimtex)
|
||||
\documentclass[11pt, a4paper]{article}
|
||||
% SET LANGUAGE HERE
|
||||
% \usepackage[utf8]{inputenc}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
|
||||
% ENVIRONMENTS etc
|
||||
@ -277,7 +277,6 @@
|
||||
\Input{ed/el}
|
||||
\Input{ed/mag}
|
||||
\Input{ed/em}
|
||||
\Input{ed/misc}
|
||||
|
||||
\Input{quantum_mechanics}
|
||||
\Input{atom}
|
||||
@ -288,7 +287,7 @@
|
||||
\Input{cm/charge_transport}
|
||||
\Input{cm/low_temp}
|
||||
\Input{cm/semiconductors}
|
||||
\Input{cm/misc}
|
||||
\Input{cm/other}
|
||||
\Input{cm/techniques}
|
||||
|
||||
\Input{topo}
|
||||
|
@ -11,6 +11,50 @@
|
||||
% }
|
||||
% \end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Convolution}
|
||||
\ger{Faltung / Konvolution}
|
||||
]{conv}
|
||||
\begin{ttext}
|
||||
\eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}
|
||||
\ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}
|
||||
\end{ttext}
|
||||
\begin{formula}{def}
|
||||
\desc{Definition}{}{}
|
||||
\desc[german]{Definition}{}{}
|
||||
\eq{(f*g)(t) = f(t) * g(t) = \int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau}
|
||||
\end{formula}
|
||||
\begin{formula}{notation}
|
||||
\desc{Notation}{}{}
|
||||
\desc[german]{Notation}{}{}
|
||||
\eq{
|
||||
f(t) * g(t-t_0) &= (f*g)(t-t_0) \\
|
||||
f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0)
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{commutativity}
|
||||
\desc{Commutativity}{}{}
|
||||
\desc[german]{Kommutativität}{}{}
|
||||
\eq{f * g = g * f}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{associativity}
|
||||
\desc{Associativity}{}{}
|
||||
\desc[german]{Assoziativität]}{}{}
|
||||
\eq{(f*g)*h = f*(g*h)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{distributivity}
|
||||
\desc{Distributivity}{}{}
|
||||
\desc[german]{Distributivität}{}{}
|
||||
\eq{f * (g + h) = f*g + f*h}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{complex_conjugate}
|
||||
\desc{Complex conjugate}{}{}
|
||||
\desc[german]{Komplexe konjugation}{}{}
|
||||
\eq{(f*g)^* = f^* * g^*}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Fourier analysis}
|
||||
@ -54,6 +98,7 @@
|
||||
\TODO{cleanup}
|
||||
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Fourier transformation}
|
||||
\ger{Fouriertransformation}
|
||||
@ -75,52 +120,6 @@
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Convolution}
|
||||
\ger{Faltung / Konvolution}
|
||||
]{conv}
|
||||
\begin{ttext}
|
||||
\eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}
|
||||
\ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}
|
||||
\end{ttext}
|
||||
\begin{formula}{def}
|
||||
\desc{Definition}{}{}
|
||||
\desc[german]{Definition}{}{}
|
||||
\eq{(f*g)(t) = f(t) * g(t) = \int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau}
|
||||
\end{formula}
|
||||
\begin{formula}{notation}
|
||||
\desc{Notation}{}{}
|
||||
\desc[german]{Notation}{}{}
|
||||
\eq{
|
||||
f(t) * g(t-t_0) &= (f*g)(t-t_0) \\
|
||||
f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0)
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{commutativity}
|
||||
\desc{Commutativity}{}{}
|
||||
\desc[german]{Kommutativität}{}{}
|
||||
\eq{f * g = g * f}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{associativity}
|
||||
\desc{Associativity}{}{}
|
||||
\desc[german]{Assoziativität]}{}{}
|
||||
\eq{(f*g)*h = f*(g*h)}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{distributivity}
|
||||
\desc{Distributivity}{}{}
|
||||
\desc[german]{Distributivität}{}{}
|
||||
\eq{f * (g + h) = f*g + f*h}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{complex_conjugate}
|
||||
\desc{Complex conjugate}{}{}
|
||||
\desc[german]{Komplexe konjugation}{}{}
|
||||
\eq{(f*g)^* = f^* * g^*}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Misc}
|
||||
\ger{Verschiedenes}
|
||||
@ -148,12 +147,6 @@
|
||||
\eq{\delta(f(x)) = \frac{\delta(x-x_0)}{\abs{g'(x_0)}}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{geometric_series}
|
||||
\desc{Geometric series}{}{$\abs{q}<1$}
|
||||
\desc[german]{Geometrische Reihe}{}{}
|
||||
\eq{\sum_{k=0}^{\infty}q^k = \frac{1}{1-q}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Logarithm}
|
||||
|
58
src/readme.md
Normal file
58
src/readme.md
Normal file
@ -0,0 +1,58 @@
|
||||
# Knowledge Collection
|
||||
This is supposed to be a compact, searchable collection of the most important stuff I had to during my physics studides,
|
||||
because it would be a shame if I forget it all!
|
||||
|
||||
# LaTeX Guideline
|
||||
Here is some info to help myself remember why I did things the way I did.
|
||||
|
||||
In general, most content should be written with macros, so that the behaviour can be changed later.
|
||||
|
||||
## `fqname`
|
||||
All translation keys and LaTeX labels should use a structured approach:
|
||||
`<key type>:<partname>:<section name>:<subsection name>:<...>:<name>`
|
||||
|
||||
The `<partname>:...:<lowest section name>` will be defined as `fqname` (fully qualified name) macro when using the `\Part`, `\Section`, ... macros.
|
||||
|
||||
`<key type>` should be
|
||||
|
||||
- equation: `eq`
|
||||
- table: `tab`
|
||||
- figure: `fig`
|
||||
- parts, (sub)sections: `sec`
|
||||
|
||||
### Reference functions
|
||||
Functions that create a hyperlink (and use the translation of the target element as link name):
|
||||
- `\fqSecRef{}`
|
||||
- `\fqEqRef{}`
|
||||
|
||||
|
||||
## Multilanguage
|
||||
All text should be defined as a translation (`translations` package, see `util/translation.tex`).
|
||||
Use `\dt` or `\DT` or the the shorthand language commands `\eng`, `\Eng` etc. to define translations.
|
||||
These commands also be write the translations to an auxiliary file, which is read after the document begins.
|
||||
This means (on subsequent compilations) that the translation can be resolved before they are defined.
|
||||
Use the `gt` or `GT` macros to retrieve translations.
|
||||
The english translation of any key must be defined, because it will also be used as fallback.
|
||||
|
||||
Lower case macros are relative to the current `fqname`, while upper case macros are absolute.
|
||||
|
||||
Never make a macro that would have to be changed if a new language was added, eg dont do
|
||||
```tex
|
||||
% 1: key, 2: english version, 3: german version
|
||||
\newcommand{\mycmd}[3]{
|
||||
\dosomestuff{english}{#1}{#2}
|
||||
\dosomestuff{german}{#1}{#3}
|
||||
}
|
||||
|
||||
\mycmd{key}{this is english}{das ist deutsch}
|
||||
```
|
||||
Instead, do
|
||||
```tex
|
||||
% [1]: lang, 2: key, 2: text
|
||||
\newcommand{\mycmd}[3][english]{
|
||||
\dosomestuff{#1}{#2}{#3}
|
||||
}
|
||||
|
||||
\mycmd{key}{this is english}
|
||||
\mycmd[german]{key}{das ist deutsch}
|
||||
```
|
Loading…
x
Reference in New Issue
Block a user