Compare commits
1 Commits
2025-01-10
...
main
Author | SHA1 | Date | |
---|---|---|---|
c12067684a |
12
Makefile
12
Makefile
@ -3,8 +3,8 @@
|
|||||||
# Paths and filenames
|
# Paths and filenames
|
||||||
SRC_DIR = src
|
SRC_DIR = src
|
||||||
OUT_DIR = out
|
OUT_DIR = out
|
||||||
MAIN_TEX = $(SRC_DIR)/main.tex
|
MAIN_TEX = main.tex # in SRC_DIR
|
||||||
MAIN_PDF = $(OUT_DIR)/main.pdf
|
MAIN_PDF = main.pdf # in OUT_DIR
|
||||||
|
|
||||||
# LaTeX and Biber commands
|
# LaTeX and Biber commands
|
||||||
|
|
||||||
@ -19,14 +19,14 @@ default: english
|
|||||||
release: german english
|
release: german english
|
||||||
# Default target
|
# Default target
|
||||||
english:
|
english:
|
||||||
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[english]{babel}/' $(MAIN_TEX)
|
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[english]{babel}/' $(SRC_DIR)/$(MAIN_TEX)
|
||||||
-cd $(SRC_DIR) && latexmk -lualatex -g main.tex
|
-cd $(SRC_DIR) && latexmk -lualatex -g main.tex
|
||||||
mv $(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_en_formula_collection.pdf
|
mv $(OUT_DIR)/$(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_en_Formulary.pdf
|
||||||
|
|
||||||
german:
|
german:
|
||||||
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[german]{babel}/' $(MAIN_TEX)
|
sed -r -i 's/usepackage\[[^]]+\]\{babel\}/usepackage[german]{babel}/' $(SRC_DIR)/$(MAIN_TEX)
|
||||||
-cd $(SRC_DIR) && latexmk -lualatex -g main.tex
|
-cd $(SRC_DIR) && latexmk -lualatex -g main.tex
|
||||||
mv $(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_de_formelsammlung.pdf
|
mv $(OUT_DIR)/$(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_de_Formelsammlung.pdf
|
||||||
|
|
||||||
# Clean auxiliary and output files
|
# Clean auxiliary and output files
|
||||||
clean:
|
clean:
|
||||||
|
111
readme.md
Normal file
111
readme.md
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
# Formulary
|
||||||
|
This is supposed to be a compact, searchable collection of the most important stuff I learned during my physics studides,
|
||||||
|
because it would be a shame if I forget it all!
|
||||||
|
|
||||||
|
## Building the PDF
|
||||||
|
### Dependencies
|
||||||
|
Any recent **TeX Live** distribution should work. You need:
|
||||||
|
- `LuaLaTeX` compiler
|
||||||
|
- several packages from ICAN
|
||||||
|
- `latexmk` to build it
|
||||||
|
|
||||||
|
### With GNU make
|
||||||
|
1. In the project directory (where this `readme` is), run `make german` or `make english`.
|
||||||
|
2. Rendered document will be `out/<date>_<formulary>.pdf`
|
||||||
|
|
||||||
|
### With Latexmk
|
||||||
|
1. Choose the language: In `main.tex`, set the language in `\usepackage[english]{babel}` to either `english` or `german`
|
||||||
|
2. In the `src` directory, run `latexmk -lualatex main.tex`
|
||||||
|
3. Rendered document will be `out/main.pdf`
|
||||||
|
|
||||||
|
### With LuaLatex
|
||||||
|
1. Choose the language: In `main.tex`, set the language in `\usepackage[english]{babel}` to either `english` or `german`
|
||||||
|
2. Create the `.aux` directory
|
||||||
|
3. In the `src` directory, run
|
||||||
|
- `lualatex -output-directory="../.aux" --interaction=nonstopmode --shell-escape "main.tex"` **3 times**
|
||||||
|
4. Rendered document will be `.aux/main.pdf`
|
||||||
|
|
||||||
|
# LaTeX Guideline
|
||||||
|
Here is some info to help myself remember why I did things the way I did.
|
||||||
|
|
||||||
|
In general, most content should be written with macros, so that the behaviour can be changed later.
|
||||||
|
|
||||||
|
## Structure
|
||||||
|
All translation keys and LaTeX labels should use a structured approach:
|
||||||
|
`<key type>:<partname>:<section name>:<subsection name>:<...>:<name>`
|
||||||
|
|
||||||
|
The `<partname>:...:<lowest section name>` will be defined as `\fqname` (fully qualified name) when using the `\Part`, `\Section`, ... commands.
|
||||||
|
|
||||||
|
`<key type>` is:
|
||||||
|
|
||||||
|
- formula: `f`
|
||||||
|
- equation: `eq`
|
||||||
|
- table: `tab`
|
||||||
|
- figure: `fig`
|
||||||
|
- parts, (sub)sections: `sec`
|
||||||
|
|
||||||
|
### Files and directories
|
||||||
|
Separate parts in different source files named `<partname>.tex`.
|
||||||
|
If a part should be split up in multiple source files itself, use a
|
||||||
|
subdirectory named `<partname>` containing `<partname>.tex` and other source files for sections.
|
||||||
|
This way, the `fqname` of a section or formula partially matches the path of the source file it is in.
|
||||||
|
|
||||||
|
## `formula` environment
|
||||||
|
The main way to display something is the formula environment:
|
||||||
|
```tex
|
||||||
|
\begin{formula}{<key>}
|
||||||
|
\desc{English name}{English description}{$q$ is some variable, $s$ \qtyRef{some_quantity}}
|
||||||
|
\desc[german]{Deutscher Name}{Deutsche Beschreibung}{$q$ ist eine Variable, $s$ \qtyRef{some_quantity}}
|
||||||
|
<content>
|
||||||
|
\end{formula}
|
||||||
|
```
|
||||||
|
Each formula automatically gets a `f:<section names...>:<key>` label.
|
||||||
|
For the content, several macros are available:
|
||||||
|
- `\eq{<equation>}` a wrapper for the `align` environment
|
||||||
|
- `\fig[width]{<path>}`
|
||||||
|
- `\quantity{<symbol>}{<units>}{<vector, scalar, extensive etc.>}` for physical quantites
|
||||||
|
- `\constant{<symbol>}{ <values> }` for constants, where `<values>` may contain one or more `\val{value}{unit}` commands.
|
||||||
|
|
||||||
|
### References
|
||||||
|
**Use references where ever possible.**
|
||||||
|
In equations, reference or explain every variable. Several referencing commands are available for easy referencing:
|
||||||
|
- `\fqSecRef{<fqname of section>}` prints the translated title of the section
|
||||||
|
- `\fqEqRef{<fqname of formula>}` prints the translated title of the formula (first argument of `\desc`)
|
||||||
|
- `\qtyRef{<key>}` prints the translated name of the quantity
|
||||||
|
- `\QtyRef{<key>}` prints the symbol and the translated name of the quantity
|
||||||
|
- `\constRef{<key>}` prints the translated name of the constant
|
||||||
|
- `\ConstRef{<key>}` prints the symbol and the translated name of the constant
|
||||||
|
- `\elRef{<symbol>}` prints the symbol of the chemical element
|
||||||
|
- `\ElRef{<symbol>}` prints the name of the chemical element
|
||||||
|
|
||||||
|
|
||||||
|
## Multilanguage
|
||||||
|
All text should be defined as a translation (`translations` package, see `util/translation.tex`).
|
||||||
|
Use `\dt` or `\DT` or the the shorthand language commands `\eng`, `\Eng` etc. to define translations.
|
||||||
|
These commands also be write the translations to an auxiliary file, which is read after the document begins.
|
||||||
|
This means (on subsequent compilations) that the translation can be resolved before they are defined.
|
||||||
|
Use the `gt` or `GT` macros to retrieve translations.
|
||||||
|
The english translation of any key must be defined, because it will also be used as fallback.
|
||||||
|
|
||||||
|
Lower case macros are relative to the current `fqname`, while upper case macros are absolute.
|
||||||
|
|
||||||
|
Never make a macro that would have to be changed if a new language was added, eg dont do
|
||||||
|
```tex
|
||||||
|
% 1: key, 2: english version, 3: german version
|
||||||
|
\newcommand{\mycmd}[3]{
|
||||||
|
\dosomestuff{english}{#1}{#2}
|
||||||
|
\dosomestuff{german}{#1}{#3}
|
||||||
|
}
|
||||||
|
|
||||||
|
\mycmd{key}{this is english}{das ist deutsch}
|
||||||
|
```
|
||||||
|
Instead, do
|
||||||
|
```tex
|
||||||
|
% [1]: lang, 2: key, 2: text
|
||||||
|
\newcommand{\mycmd}[3][english]{
|
||||||
|
\dosomestuff{#1}{#2}{#3}
|
||||||
|
}
|
||||||
|
|
||||||
|
\mycmd{key}{this is english}
|
||||||
|
\mycmd[german]{key}{das ist deutsch}
|
||||||
|
```
|
131
src/ed/ed.tex
131
src/ed/ed.tex
@ -6,134 +6,3 @@
|
|||||||
% pure electronic stuff in el
|
% pure electronic stuff in el
|
||||||
% pure magnetic stuff in mag
|
% pure magnetic stuff in mag
|
||||||
% electromagnetic stuff in em
|
% electromagnetic stuff in em
|
||||||
|
|
||||||
% TODO move
|
|
||||||
\Section[
|
|
||||||
\eng{Hall-Effect}
|
|
||||||
\ger{Hall-Effekt}
|
|
||||||
]{hall}
|
|
||||||
|
|
||||||
\begin{formula}{cyclotron}
|
|
||||||
\desc{Cyclontron frequency}{}{}
|
|
||||||
\desc[german]{Zyklotronfrequenz}{}{}
|
|
||||||
\eq{\omega_\text{c} = \frac{e B}{\masse}}
|
|
||||||
\end{formula}
|
|
||||||
\TODO{Move}
|
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Classical Hall-Effect}
|
|
||||||
\ger{Klassischer Hall-Effekt}
|
|
||||||
]{classic}
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.}
|
|
||||||
\ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.}
|
|
||||||
\end{ttext}
|
|
||||||
\begin{formula}{voltage}
|
|
||||||
\desc{Hall voltage}{}{$n$ charge carrier density}
|
|
||||||
\desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte}
|
|
||||||
\eq{U_\text{H} = \frac{I B}{ne d}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{coefficient}
|
|
||||||
\desc{Hall coefficient}{Sometimes $R_\txH$}{}
|
|
||||||
\desc[german]{Hall-Koeffizient}{Manchmal $R_\txH$}{}
|
|
||||||
\eq{A_\text{H} := -\frac{E_y}{j_x B_z} \explOverEq{\GT{metals}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{resistivity}
|
|
||||||
\desc{Resistivity}{}{}
|
|
||||||
\desc[german]{Spezifischer Widerstand}{}{}
|
|
||||||
\eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Integer quantum hall effect}
|
|
||||||
\ger{Ganzahliger Quantenhalleffekt}
|
|
||||||
]{quantum}
|
|
||||||
|
|
||||||
\begin{formula}{conductivity}
|
|
||||||
\desc{Conductivity tensor}{}{}
|
|
||||||
\desc[german]{Leitfähigkeitstensor}{}{}
|
|
||||||
\eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{resistivity_tensor}
|
|
||||||
\desc{Resistivity tensor}{}{}
|
|
||||||
\desc[german]{Spezifischer Widerstands-tensor}{}{}
|
|
||||||
\eq{
|
|
||||||
\rho = \sigma^{-1}
|
|
||||||
% \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{resistivity}
|
|
||||||
\desc{Resistivity}{}{$\nu \in \mathbb{Z}$ filing factor}
|
|
||||||
\desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$ Füllfaktor}
|
|
||||||
\eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
% \begin{formula}{qhe}
|
|
||||||
% \desc{Integer quantum hall effect}{}{}
|
|
||||||
% \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{}
|
|
||||||
% \fig{img/qhe-klitzing.jpeg}
|
|
||||||
% \end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{fqhe}
|
|
||||||
\desc{Fractional quantum hall effect}{}{$\nu$ fraction of two numbers without shared divisors}
|
|
||||||
\desc[german]{Fraktionaler Quantum-Hall-Effekt}{}{$\nu$ Bruch aus Zahlen ohne gemeinsamen Teiler}
|
|
||||||
\eq{\nu = \frac{1}{3},\frac{2}{5},\frac{3}{7},\frac{2}{3}...}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{ttext}
|
|
||||||
\eng{
|
|
||||||
\begin{itemize}
|
|
||||||
\item \textbf{Integer} (QHE): filling factor $\nu$ is an integer
|
|
||||||
\item \textbf{Fractional} (FQHE): filling factor $\nu$ is a fraction
|
|
||||||
\item \textbf{Spin} (QSHE): spin currents instead of charge currents
|
|
||||||
\item \textbf{Anomalous} (QAHE): symmetry breaking by internal effects instead of external magnetic fields
|
|
||||||
\end{itemize}
|
|
||||||
}
|
|
||||||
\ger{
|
|
||||||
\begin{itemize}
|
|
||||||
\item \textbf{Integer} (QHE): Füllfaktor $\nu$ ist ganzzahlig
|
|
||||||
\item \textbf{Fractional} (FQHE): Füllfaktor $\nu$ ist ein Bruch
|
|
||||||
\item \textbf{Spin} (QSHE): Spin Ströme anstatt Ladungsströme
|
|
||||||
\item \textbf{Anomalous} (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld
|
|
||||||
\end{itemize}
|
|
||||||
}
|
|
||||||
\end{ttext}
|
|
||||||
|
|
||||||
|
|
||||||
\TODO{sort}
|
|
||||||
\begin{formula}{impedance_c}
|
|
||||||
\desc{Impedance of a capacitor}{}{}
|
|
||||||
\desc[german]{Impedanz eines Kondesnators}{}{}
|
|
||||||
\eq{Z_{C} = \frac{1}{i\omega C}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{impedance_l}
|
|
||||||
\desc{Impedance of an inductor}{}{}
|
|
||||||
\desc[german]{Impedanz eines Induktors}{}{}
|
|
||||||
\eq{Z_{L} = i\omega L}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\TODO{impedance addition for parallel / linear}
|
|
||||||
|
|
||||||
\Section[
|
|
||||||
\eng{Dipole-stuff}
|
|
||||||
\ger{Dipol-zeug}
|
|
||||||
]{dipole}
|
|
||||||
|
|
||||||
\begin{formula}{poynting}
|
|
||||||
\desc{Dipole radiation Poynting vector}{}{}
|
|
||||||
\desc[german]{Dipolsrahlung Poynting-Vektor}{}{}
|
|
||||||
\eq{\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right)\frac{\sin^2\theta}{r^2} \vec{r}}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{power}
|
|
||||||
\desc{Time-average power}{}{}
|
|
||||||
\desc[german]{Zeitlich mittlere Leistung}{}{}
|
|
||||||
\eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}}
|
|
||||||
\end{formula}
|
|
||||||
|
131
src/ed/misc.tex
Normal file
131
src/ed/misc.tex
Normal file
@ -0,0 +1,131 @@
|
|||||||
|
% TODO move
|
||||||
|
\Section[
|
||||||
|
\eng{Hall-Effect}
|
||||||
|
\ger{Hall-Effekt}
|
||||||
|
]{hall}
|
||||||
|
|
||||||
|
\begin{formula}{cyclotron}
|
||||||
|
\desc{Cyclontron frequency}{}{}
|
||||||
|
\desc[german]{Zyklotronfrequenz}{}{}
|
||||||
|
\eq{\omega_\text{c} = \frac{e B}{\masse}}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{Move}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Classical Hall-Effect}
|
||||||
|
\ger{Klassischer Hall-Effekt}
|
||||||
|
]{classic}
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{Current flowing in $x$ direction in a conductor ($l \times b \times d$) with a magnetic field $B$ in $z$ direction leads to a hall voltage $U_\text{H}$ in $y$ direction.}
|
||||||
|
\ger{Fließt in einem Leiter ($l \times b \times d$) ein Strom in $x$ Richtung, während der Leiter von einem Magnetfeld $B$ in $z$-Richtung durchdrungen, wird eine Hallspannung $U_\text{H}$ in $y$-Richtung induziert.}
|
||||||
|
\end{ttext}
|
||||||
|
\begin{formula}{voltage}
|
||||||
|
\desc{Hall voltage}{}{$n$ charge carrier density}
|
||||||
|
\desc[german]{Hallspannung}{}{$n$ Ladungsträgerdichte}
|
||||||
|
\eq{U_\text{H} = \frac{I B}{ne d}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{coefficient}
|
||||||
|
\desc{Hall coefficient}{Sometimes $R_\txH$}{}
|
||||||
|
\desc[german]{Hall-Koeffizient}{Manchmal $R_\txH$}{}
|
||||||
|
\eq{A_\text{H} := -\frac{E_y}{j_x B_z} \explOverEq{\GT{metals}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{resistivity}
|
||||||
|
\desc{Resistivity}{}{}
|
||||||
|
\desc[german]{Spezifischer Widerstand}{}{}
|
||||||
|
\eq{\rho_{xx} &= \frac{\masse}{ne^2\tau} \\ \rho_{xy} &= \frac{B}{ne}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsection[
|
||||||
|
\eng{Integer quantum hall effect}
|
||||||
|
\ger{Ganzahliger Quantenhalleffekt}
|
||||||
|
]{quantum}
|
||||||
|
|
||||||
|
\begin{formula}{conductivity}
|
||||||
|
\desc{Conductivity tensor}{}{}
|
||||||
|
\desc[german]{Leitfähigkeitstensor}{}{}
|
||||||
|
\eq{\sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{resistivity_tensor}
|
||||||
|
\desc{Resistivity tensor}{}{}
|
||||||
|
\desc[german]{Spezifischer Widerstands-tensor}{}{}
|
||||||
|
\eq{
|
||||||
|
\rho = \sigma^{-1}
|
||||||
|
% \sigma = \begin{pmatrix} \sigma_{xy} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} }
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{resistivity}
|
||||||
|
\desc{Resistivity}{}{$\nu \in \mathbb{Z}$ filing factor}
|
||||||
|
\desc[german]{Spezifischer Hallwiderstand}{}{$\nu \in \mathbb{Z}$ Füllfaktor}
|
||||||
|
\eq{\rho_{xy} = \frac{2\pi\hbar}{e^2} \frac{1}{\nu}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
% \begin{formula}{qhe}
|
||||||
|
% \desc{Integer quantum hall effect}{}{}
|
||||||
|
% \desc[german]{Ganzahliger Quanten-Hall-Effekt}{}{}
|
||||||
|
% \fig{img/qhe-klitzing.jpeg}
|
||||||
|
% \end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{fqhe}
|
||||||
|
\desc{Fractional quantum hall effect}{}{$\nu$ fraction of two numbers without shared divisors}
|
||||||
|
\desc[german]{Fraktionaler Quantum-Hall-Effekt}{}{$\nu$ Bruch aus Zahlen ohne gemeinsamen Teiler}
|
||||||
|
\eq{\nu = \frac{1}{3},\frac{2}{5},\frac{3}{7},\frac{2}{3}...}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{ttext}
|
||||||
|
\eng{
|
||||||
|
\begin{itemize}
|
||||||
|
\item \textbf{Integer} (QHE): filling factor $\nu$ is an integer
|
||||||
|
\item \textbf{Fractional} (FQHE): filling factor $\nu$ is a fraction
|
||||||
|
\item \textbf{Spin} (QSHE): spin currents instead of charge currents
|
||||||
|
\item \textbf{Anomalous} (QAHE): symmetry breaking by internal effects instead of external magnetic fields
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\ger{
|
||||||
|
\begin{itemize}
|
||||||
|
\item \textbf{Integer} (QHE): Füllfaktor $\nu$ ist ganzzahlig
|
||||||
|
\item \textbf{Fractional} (FQHE): Füllfaktor $\nu$ ist ein Bruch
|
||||||
|
\item \textbf{Spin} (QSHE): Spin Ströme anstatt Ladungsströme
|
||||||
|
\item \textbf{Anomalous} (QAHE): Symmetriebruch durch interne Effekte anstatt druch ein externes Magnetfeld
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\end{ttext}
|
||||||
|
|
||||||
|
|
||||||
|
\TODO{sort}
|
||||||
|
\begin{formula}{impedance_c}
|
||||||
|
\desc{Impedance of a capacitor}{}{}
|
||||||
|
\desc[german]{Impedanz eines Kondesnators}{}{}
|
||||||
|
\eq{Z_{C} = \frac{1}{i\omega C}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{impedance_l}
|
||||||
|
\desc{Impedance of an inductor}{}{}
|
||||||
|
\desc[german]{Impedanz eines Induktors}{}{}
|
||||||
|
\eq{Z_{L} = i\omega L}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\TODO{impedance addition for parallel / linear}
|
||||||
|
|
||||||
|
\Section[
|
||||||
|
\eng{Dipole-stuff}
|
||||||
|
\ger{Dipol-zeug}
|
||||||
|
]{dipole}
|
||||||
|
|
||||||
|
\begin{formula}{poynting}
|
||||||
|
\desc{Dipole radiation Poynting vector}{}{}
|
||||||
|
\desc[german]{Dipolsrahlung Poynting-Vektor}{}{}
|
||||||
|
\eq{\vec{S} = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c}\right)\frac{\sin^2\theta}{r^2} \vec{r}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{power}
|
||||||
|
\desc{Time-average power}{}{}
|
||||||
|
\desc[german]{Zeitlich mittlere Leistung}{}{}
|
||||||
|
\eq{P = \frac{\mu_0\omega^4 p_0^2}{12\pi c}}
|
||||||
|
\end{formula}
|
||||||
|
|
@ -1,7 +1,7 @@
|
|||||||
%! TeX program = lualatex
|
%! TeX program = lualatex
|
||||||
% (for vimtex)
|
% (for vimtex)
|
||||||
\documentclass[11pt, a4paper]{article}
|
\documentclass[11pt, a4paper]{article}
|
||||||
% \usepackage[utf8]{inputenc}
|
% SET LANGUAGE HERE
|
||||||
\usepackage[english]{babel}
|
\usepackage[english]{babel}
|
||||||
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
|
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
|
||||||
% ENVIRONMENTS etc
|
% ENVIRONMENTS etc
|
||||||
@ -277,6 +277,7 @@
|
|||||||
\Input{ed/el}
|
\Input{ed/el}
|
||||||
\Input{ed/mag}
|
\Input{ed/mag}
|
||||||
\Input{ed/em}
|
\Input{ed/em}
|
||||||
|
\Input{ed/misc}
|
||||||
|
|
||||||
\Input{quantum_mechanics}
|
\Input{quantum_mechanics}
|
||||||
\Input{atom}
|
\Input{atom}
|
||||||
@ -287,7 +288,7 @@
|
|||||||
\Input{cm/charge_transport}
|
\Input{cm/charge_transport}
|
||||||
\Input{cm/low_temp}
|
\Input{cm/low_temp}
|
||||||
\Input{cm/semiconductors}
|
\Input{cm/semiconductors}
|
||||||
\Input{cm/other}
|
\Input{cm/misc}
|
||||||
\Input{cm/techniques}
|
\Input{cm/techniques}
|
||||||
|
|
||||||
\Input{topo}
|
\Input{topo}
|
||||||
|
@ -11,7 +11,71 @@
|
|||||||
% }
|
% }
|
||||||
% \end{formula}
|
% \end{formula}
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
|
\eng{Fourier analysis}
|
||||||
|
\ger{Fourieranalyse}
|
||||||
|
]{fourier}
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Fourier series}
|
||||||
|
\ger{Fourierreihe}
|
||||||
|
]{series}
|
||||||
|
\begin{formula}{series}
|
||||||
|
\desc{Fourier series}{Complex representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
||||||
|
\desc[german]{Fourierreihe}{Komplexe Darstellung}{}
|
||||||
|
\eq{f(t) = \sum_{k=-\infty}^{\infty} c_k \Exp{\frac{2\pi \I kt}{T}}}
|
||||||
|
\end{formula}
|
||||||
|
\Eng[real]{real}
|
||||||
|
\Ger[real]{reellwertig}
|
||||||
|
\begin{formula}{coefficient-complex}
|
||||||
|
\desc{Fourier coefficients}{Complex representation}{}
|
||||||
|
\desc[german]{Fourierkoeffizienten}{Komplexe Darstellung}{}
|
||||||
|
\eq{
|
||||||
|
c_k &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Exp{-\frac{2\pi \I}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\
|
||||||
|
c_{-k} &= \overline{c_k} \quad \text{\GT{if} $f$ \GT{real}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{series_sincos}
|
||||||
|
\desc{Fourier series}{Sine and cosine representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
||||||
|
\desc[german]{Fourierreihe}{Sinus und Kosinus Darstellung}{}
|
||||||
|
\eq{f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \Cos{\frac{2\pi}{T}kt} + b_k\Sin{\frac{2\pi}{T}kt}\right)}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{coefficient}
|
||||||
|
\desc{Fourier coefficients}{Sine and cosine representation\\If $f$ has point symmetry: $a_{k>0}=0$, if $f$ has axial symmetry: $b_k=0$}{}
|
||||||
|
\desc[german]{Fourierkoeffizienten}{Sinus und Kosinus Darstellung\\Wenn $f$ punktsymmetrisch: $a_{k>0}=0$, wenn $f$ achsensymmetrisch: $b_k=0$}{}
|
||||||
|
\eq{
|
||||||
|
a_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Cos{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\
|
||||||
|
b_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Sin{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge1\\
|
||||||
|
a_k &= c_k + c_{-k} \quad\text{\GT{for}}\,k\ge0\\
|
||||||
|
b_k &= \I(c_k - c_{-k}) \quad\text{\GT{for}}\,k\ge1
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
\TODO{cleanup}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
|
\eng{Fourier transformation}
|
||||||
|
\ger{Fouriertransformation}
|
||||||
|
]{trafo}
|
||||||
|
\begin{formula}{transform}
|
||||||
|
\desc{Fourier transform}{}{$\hat{f}:\R^n \mapsto \C$, $\forall f\in L^1(\R^n)$}
|
||||||
|
\desc[german]{Fouriertransformierte}{}{}
|
||||||
|
\eq{\hat{f}(k) \coloneq \frac{1}{\sqrt{2\pi}^n} \int_{\R^n} \e^{-\I kx}f(x)\d x}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\Eng[linear_in]{linear in}
|
||||||
|
\Ger[linear_in]{linear in}
|
||||||
|
\GT{for} $f\in L^1(\R^n)$:
|
||||||
|
\begin{enumerate}[i)]
|
||||||
|
\item $f \mapsto \hat{f}$ \GT{linear_in} $f$
|
||||||
|
\item $g(x) = f(x-h) \qRarrow \hat{g}(k) = \e^{-\I kn}\hat{f}(k)$
|
||||||
|
\item $g(x) = \e^{ih\cdot x}f(x) \qRarrow \hat{g}(k) = \hat{f}(k-h)$
|
||||||
|
\item $g(\lambda) = f\left(\frac{x}{\lambda}\right) \qRarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
|
||||||
|
\Subsubsection[
|
||||||
\eng{Convolution}
|
\eng{Convolution}
|
||||||
\ger{Faltung / Konvolution}
|
\ger{Faltung / Konvolution}
|
||||||
]{conv}
|
]{conv}
|
||||||
@ -56,69 +120,6 @@
|
|||||||
\eq{(f*g)^* = f^* * g^*}
|
\eq{(f*g)^* = f^* * g^*}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\Subsection[
|
|
||||||
\eng{Fourier analysis}
|
|
||||||
\ger{Fourieranalyse}
|
|
||||||
]{fourier}
|
|
||||||
\Subsubsection[
|
|
||||||
\eng{Fourier series}
|
|
||||||
\ger{Fourierreihe}
|
|
||||||
]{series}
|
|
||||||
\begin{formula}{series}
|
|
||||||
\desc{Fourier series}{Complex representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
|
||||||
\desc[german]{Fourierreihe}{Komplexe Darstellung}{}
|
|
||||||
\eq{f(t) = \sum_{k=-\infty}^{\infty} c_k \Exp{\frac{2\pi \I kt}{T}}}
|
|
||||||
\end{formula}
|
|
||||||
\Eng[real]{real}
|
|
||||||
\Ger[real]{reellwertig}
|
|
||||||
\begin{formula}{coefficient-complex}
|
|
||||||
\desc{Fourier coefficients}{Complex representation}{}
|
|
||||||
\desc[german]{Fourierkoeffizienten}{Komplexe Darstellung}{}
|
|
||||||
\eq{
|
|
||||||
c_k &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Exp{-\frac{2\pi \I}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\
|
|
||||||
c_{-k} &= \overline{c_k} \quad \text{\GT{if} $f$ \GT{real}}
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\begin{formula}{series_sincos}
|
|
||||||
\desc{Fourier series}{Sine and cosine representation}{$f\in \Lebesgue^2(\R,\C)$ $T$-\GT{periodic}}
|
|
||||||
\desc[german]{Fourierreihe}{Sinus und Kosinus Darstellung}{}
|
|
||||||
\eq{f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \Cos{\frac{2\pi}{T}kt} + b_k\Sin{\frac{2\pi}{T}kt}\right)}
|
|
||||||
\end{formula}
|
|
||||||
\begin{formula}{coefficient}
|
|
||||||
\desc{Fourier coefficients}{Sine and cosine representation\\If $f$ has point symmetry: $a_{k>0}=0$, if $f$ has axial symmetry: $b_k=0$}{}
|
|
||||||
\desc[german]{Fourierkoeffizienten}{Sinus und Kosinus Darstellung\\Wenn $f$ punktsymmetrisch: $a_{k>0}=0$, wenn $f$ achsensymmetrisch: $b_k=0$}{}
|
|
||||||
\eq{
|
|
||||||
a_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Cos{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge0\\
|
|
||||||
b_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)\,\Sin{-\frac{2\pi}{T}kt}\d t \quad\text{\GT{for}}\,k\ge1\\
|
|
||||||
a_k &= c_k + c_{-k} \quad\text{\GT{for}}\,k\ge0\\
|
|
||||||
b_k &= \I(c_k - c_{-k}) \quad\text{\GT{for}}\,k\ge1
|
|
||||||
}
|
|
||||||
\end{formula}
|
|
||||||
\TODO{cleanup}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\Subsubsection[
|
|
||||||
\eng{Fourier transformation}
|
|
||||||
\ger{Fouriertransformation}
|
|
||||||
]{trafo}
|
|
||||||
\begin{formula}{transform}
|
|
||||||
\desc{Fourier transform}{}{$\hat{f}:\R^n \mapsto \C$, $\forall f\in L^1(\R^n)$}
|
|
||||||
\desc[german]{Fouriertransformierte}{}{}
|
|
||||||
\eq{\hat{f}(k) \coloneq \frac{1}{\sqrt{2\pi}^n} \int_{\R^n} \e^{-\I kx}f(x)\d x}
|
|
||||||
\end{formula}
|
|
||||||
|
|
||||||
\Eng[linear_in]{linear in}
|
|
||||||
\Ger[linear_in]{linear in}
|
|
||||||
\GT{for} $f\in L^1(\R^n)$:
|
|
||||||
\begin{enumerate}[i)]
|
|
||||||
\item $f \mapsto \hat{f}$ \GT{linear_in} $f$
|
|
||||||
\item $g(x) = f(x-h) \qRarrow \hat{g}(k) = \e^{-\I kn}\hat{f}(k)$
|
|
||||||
\item $g(x) = \e^{ih\cdot x}f(x) \qRarrow \hat{g}(k) = \hat{f}(k-h)$
|
|
||||||
\item $g(\lambda) = f\left(\frac{x}{\lambda}\right) \qRarrow \hat{g}(k)\lambda^n \hat{f}(\lambda k)$
|
|
||||||
\end{enumerate}
|
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Misc}
|
\eng{Misc}
|
||||||
@ -147,6 +148,12 @@
|
|||||||
\eq{\delta(f(x)) = \frac{\delta(x-x_0)}{\abs{g'(x_0)}}}
|
\eq{\delta(f(x)) = \frac{\delta(x-x_0)}{\abs{g'(x_0)}}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{geometric_series}
|
||||||
|
\desc{Geometric series}{}{$\abs{q}<1$}
|
||||||
|
\desc[german]{Geometrische Reihe}{}{}
|
||||||
|
\eq{\sum_{k=0}^{\infty}q^k = \frac{1}{1-q}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Logarithm}
|
\eng{Logarithm}
|
||||||
|
@ -1,58 +0,0 @@
|
|||||||
# Knowledge Collection
|
|
||||||
This is supposed to be a compact, searchable collection of the most important stuff I had to during my physics studides,
|
|
||||||
because it would be a shame if I forget it all!
|
|
||||||
|
|
||||||
# LaTeX Guideline
|
|
||||||
Here is some info to help myself remember why I did things the way I did.
|
|
||||||
|
|
||||||
In general, most content should be written with macros, so that the behaviour can be changed later.
|
|
||||||
|
|
||||||
## `fqname`
|
|
||||||
All translation keys and LaTeX labels should use a structured approach:
|
|
||||||
`<key type>:<partname>:<section name>:<subsection name>:<...>:<name>`
|
|
||||||
|
|
||||||
The `<partname>:...:<lowest section name>` will be defined as `fqname` (fully qualified name) macro when using the `\Part`, `\Section`, ... macros.
|
|
||||||
|
|
||||||
`<key type>` should be
|
|
||||||
|
|
||||||
- equation: `eq`
|
|
||||||
- table: `tab`
|
|
||||||
- figure: `fig`
|
|
||||||
- parts, (sub)sections: `sec`
|
|
||||||
|
|
||||||
### Reference functions
|
|
||||||
Functions that create a hyperlink (and use the translation of the target element as link name):
|
|
||||||
- `\fqSecRef{}`
|
|
||||||
- `\fqEqRef{}`
|
|
||||||
|
|
||||||
|
|
||||||
## Multilanguage
|
|
||||||
All text should be defined as a translation (`translations` package, see `util/translation.tex`).
|
|
||||||
Use `\dt` or `\DT` or the the shorthand language commands `\eng`, `\Eng` etc. to define translations.
|
|
||||||
These commands also be write the translations to an auxiliary file, which is read after the document begins.
|
|
||||||
This means (on subsequent compilations) that the translation can be resolved before they are defined.
|
|
||||||
Use the `gt` or `GT` macros to retrieve translations.
|
|
||||||
The english translation of any key must be defined, because it will also be used as fallback.
|
|
||||||
|
|
||||||
Lower case macros are relative to the current `fqname`, while upper case macros are absolute.
|
|
||||||
|
|
||||||
Never make a macro that would have to be changed if a new language was added, eg dont do
|
|
||||||
```tex
|
|
||||||
% 1: key, 2: english version, 3: german version
|
|
||||||
\newcommand{\mycmd}[3]{
|
|
||||||
\dosomestuff{english}{#1}{#2}
|
|
||||||
\dosomestuff{german}{#1}{#3}
|
|
||||||
}
|
|
||||||
|
|
||||||
\mycmd{key}{this is english}{das ist deutsch}
|
|
||||||
```
|
|
||||||
Instead, do
|
|
||||||
```tex
|
|
||||||
% [1]: lang, 2: key, 2: text
|
|
||||||
\newcommand{\mycmd}[3][english]{
|
|
||||||
\dosomestuff{#1}{#2}{#3}
|
|
||||||
}
|
|
||||||
|
|
||||||
\mycmd{key}{this is english}
|
|
||||||
\mycmd[german]{key}{das ist deutsch}
|
|
||||||
```
|
|
Loading…
x
Reference in New Issue
Block a user