refactor referencing
This commit is contained in:
parent
d803b2308a
commit
d9da44ac74
@ -5,12 +5,13 @@ $out_dir = '../out';
|
|||||||
# Set lualatex as the default engine
|
# Set lualatex as the default engine
|
||||||
$pdf_mode = 1; # Enable PDF generation mode
|
$pdf_mode = 1; # Enable PDF generation mode
|
||||||
# $pdflatex = 'lualatex --interaction=nonstopmode --shell-escape'
|
# $pdflatex = 'lualatex --interaction=nonstopmode --shell-escape'
|
||||||
$lualatex = 'lualatex %O --interaction=nonstopmode --shell-escape %S'
|
$lualatex = 'lualatex %O --interaction=nonstopmode --shell-escape %S';
|
||||||
|
|
||||||
# Additional options for compilation
|
# Additional options for compilation
|
||||||
# '-verbose',
|
# '-verbose',
|
||||||
# '-file-line-error',
|
# '-file-line-error',
|
||||||
|
|
||||||
|
ensure_path('TEXINPUTS', './pkg');
|
||||||
# Quickfix-like filtering (warnings to ignore)
|
# Quickfix-like filtering (warnings to ignore)
|
||||||
# @warnings_to_filter = (
|
# @warnings_to_filter = (
|
||||||
# qr/Underfull \\hbox/,
|
# qr/Underfull \\hbox/,
|
||||||
|
@ -24,7 +24,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{activity}
|
\begin{formula}{activity}
|
||||||
\desc{Activity}{relative activity}{\QtyRef{chemical_potential}, \QtyRef{standard_chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}}
|
\desc{Activity}{relative activity}{\QtyRef{chemical_potential}, \fRef{::standard_chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}}
|
||||||
\desc[german]{Aktivität}{Relative Aktivität}{}
|
\desc[german]{Aktivität}{Relative Aktivität}{}
|
||||||
\quantity{a}{}{s}
|
\quantity{a}{}{s}
|
||||||
\eq{a_i = \Exp{\frac{\mu_i-\mu_i^\theta}{RT}}}
|
\eq{a_i = \Exp{\frac{\mu_i-\mu_i^\theta}{RT}}}
|
||||||
@ -147,13 +147,13 @@
|
|||||||
|
|
||||||
|
|
||||||
\begin{formula}{nernst_equation}
|
\begin{formula}{nernst_equation}
|
||||||
\desc{Nernst equation}{Electrode potential for a half-cell reaction}{\QtyRef{electrode_potential}, $E^\theta$ \secEqRef{standard_cell_potential}, \ConstRef{universal_gas}, \ConstRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \QtyRef{activity}, \QtyRef{stoichiometric_coefficient}}
|
\desc{Nernst equation}{Electrode potential for a half-cell reaction}{\QtyRef{electrode_potential}, $E^\theta$ \fRef{::standard_cell_potential}, \ConstRef{universal_gas}, \ConstRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \QtyRef{activity}, \QtyRef{stoichiometric_coefficient}}
|
||||||
\desc[german]{Nernst-Gleichung}{Elektrodenpotential für eine Halbzellenreaktion}{}
|
\desc[german]{Nernst-Gleichung}{Elektrodenpotential für eine Halbzellenreaktion}{}
|
||||||
\eq{E = E^\theta + \frac{RT}{zF} \Ln{\frac{ \left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{oxidized}}{\left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{reduced}}}}
|
\eq{E = E^\theta + \frac{RT}{zF} \Ln{\frac{ \left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{oxidized}}{\left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{reduced}}}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{cell_efficiency}
|
\begin{formula}{cell_efficiency}
|
||||||
\desc{Thermodynamic cell efficiency}{}{$P$ \fqEqRef{ed:el:power}}
|
\desc{Thermodynamic cell efficiency}{}{$P$ \fRef{ed:el:power}}
|
||||||
\desc[german]{Thermodynamische Zelleffizienz}{}{}
|
\desc[german]{Thermodynamische Zelleffizienz}{}{}
|
||||||
\eq{
|
\eq{
|
||||||
\eta_\text{cell} &= \frac{P_\text{obtained}}{P_\text{maximum}} = \frac{E_\text{cell}}{E_\text{cell,rev}} & & \text{\gt{galvanic}} \\
|
\eta_\text{cell} &= \frac{P_\text{obtained}}{P_\text{maximum}} = \frac{E_\text{cell}}{E_\text{cell,rev}} & & \text{\gt{galvanic}} \\
|
||||||
@ -312,8 +312,8 @@
|
|||||||
\ger{Massentransport}
|
\ger{Massentransport}
|
||||||
]{mass}
|
]{mass}
|
||||||
\begin{formula}{concentration_overpotential}
|
\begin{formula}{concentration_overpotential}
|
||||||
\desc{Concentration overpotential}{Due to concentration gradient near the electrode, the ions need to \hyperref[f:ch:el:ion_cond:diffusion]{diffuse} to the electrode before reacting}{\ConstRef{universal_gas}, \QtyRef{temperature}, $\c_{0/\txS}$ ion concentration in the electrolyte / at the double layer, $z$ \qtyRef{charge_number}, \ConstRef{faraday}}
|
\desc{Concentration overpotential}{Due to concentration gradient near the electrode, the ions need to \fRef[diffuse]{ch:el:ion_cond:diffusion} to the electrode before reacting}{\ConstRef{universal_gas}, \QtyRef{temperature}, $\c_{0/\txS}$ ion concentration in the electrolyte / at the double layer, $z$ \qtyRef{charge_number}, \ConstRef{faraday}}
|
||||||
\desc[german]{Konzentrationsüberspannung}{Durch einen Konzentrationsgradienten an der Elektrode müssen Ionen erst zur Elektrode \hyperref[f:ch:el:ion_cond:diffusion]{diffundieren}, bevor sie reagieren können}{}
|
\desc[german]{Konzentrationsüberspannung}{Durch einen Konzentrationsgradienten an der Elektrode müssen Ionen erst zur Elektrode \fRef[diffundieren]{ch:el:ion_cond:diffusion}, bevor sie reagieren können}{}
|
||||||
\eq{
|
\eq{
|
||||||
\eta_\text{conc,anodic} &= -\frac{RT}{\alpha \,zF} \ln \left(\frac{c_\text{red}^0}{c_\text{red}^\txS}\right) \\
|
\eta_\text{conc,anodic} &= -\frac{RT}{\alpha \,zF} \ln \left(\frac{c_\text{red}^0}{c_\text{red}^\txS}\right) \\
|
||||||
\eta_\text{conc,cathodic} &= -\frac{RT}{(1-\alpha) zF} \ln \left(\frac{c_\text{ox}^0}{c_\text{ox}^\txS}\right)
|
\eta_\text{conc,cathodic} &= -\frac{RT}{(1-\alpha) zF} \ln \left(\frac{c_\text{ox}^0}{c_\text{ox}^\txS}\right)
|
||||||
@ -321,7 +321,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{diffusion_overpotential}
|
\begin{formula}{diffusion_overpotential}
|
||||||
\desc{Diffusion overpotential}{Due to mass transport limitations}{$j_\infty$ \secEqRef{limiting_current}, $j_\text{meas}$ measured \qtyRef{current_density}, \ConstRef{universal_gas}, \QtyRef{temperature}, $n$ \qtyRef{charge_number}, \ConstRef{faraday}}
|
\desc{Diffusion overpotential}{Due to mass transport limitations}{$j_\infty$ \fRef{::limiting_current}, $j_\text{meas}$ measured \qtyRef{current_density}, \ConstRef{universal_gas}, \QtyRef{temperature}, $n$ \qtyRef{charge_number}, \ConstRef{faraday}}
|
||||||
\desc[german]{Diffusionsüberspannung}{Durch Limit des Massentransports}{}
|
\desc[german]{Diffusionsüberspannung}{Durch Limit des Massentransports}{}
|
||||||
% \eq{\eta_\text{diff} = \frac{RT}{nF} \ln \left( \frac{\cfrac{c^\txs_\text{ox}}{c^0_\text{ox}}}{\cfrac{c^\txs_\text{red}}{c^0_\text{red}}} \right)}
|
% \eq{\eta_\text{diff} = \frac{RT}{nF} \ln \left( \frac{\cfrac{c^\txs_\text{ox}}{c^0_\text{ox}}}{\cfrac{c^\txs_\text{red}}{c^0_\text{red}}} \right)}
|
||||||
\eq{\eta_\text{diff} = \frac{RT}{nF} \Ln{\frac{j_\infty}{j_\infty - j_\text{meas}}}}
|
\eq{\eta_\text{diff} = \frac{RT}{nF} \Ln{\frac{j_\infty}{j_\infty - j_\text{meas}}}}
|
||||||
@ -424,7 +424,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{limiting_current}
|
\begin{formula}{limiting_current}
|
||||||
\desc{(Limiting) current density}{}{$n$ \QtyRef{charge_number}, \ConstRef{faraday}, $c^0$ \GT{c_bulk}, $D$ \qtyRef{diffusion_coefficient}, $\delta_\text{diff}$ \secEqRef{diffusion_layer_thickness}}
|
\desc{(Limiting) current density}{}{$n$ \QtyRef{charge_number}, \ConstRef{faraday}, $c^0$ \GT{c_bulk}, $D$ \qtyRef{diffusion_coefficient}, $\delta_\text{diff}$ \fRef{::diffusion_layer_thickness}}
|
||||||
% \desc[german]{Limitierender Strom}{}{}
|
% \desc[german]{Limitierender Strom}{}{}
|
||||||
\eq{
|
\eq{
|
||||||
\abs{j} &= nFD \frac{c^0-c^\txS}{\delta_\text{diff}}
|
\abs{j} &= nFD \frac{c^0-c^\txS}{\delta_\text{diff}}
|
||||||
@ -434,14 +434,14 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{relation?}
|
\begin{formula}{relation?}
|
||||||
\desc{Current - concentration relation}{}{$c^0$ \GT{c_bulk}, $c^\txS$ \GT{c_surface}, $j$ \secEqRef{limiting_current}}
|
\desc{Current - concentration relation}{}{$c^0$ \GT{c_bulk}, $c^\txS$ \GT{c_surface}, $j$ \fRef{::limiting_current}}
|
||||||
\desc[german]{Strom - Konzentrationsbeziehung}{}{}
|
\desc[german]{Strom - Konzentrationsbeziehung}{}{}
|
||||||
\eq{\frac{j}{j_\infty} = 1 - \frac{c^\txS}{c^0}}
|
\eq{\frac{j}{j_\infty} = 1 - \frac{c^\txS}{c^0}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{kinetic_current}
|
\begin{formula}{kinetic_current}
|
||||||
\desc{Kinetic current density}{}{$j_\text{meas}$ measured \qtyRef{current_density}, $j_\infty$ \secEqRef{limiting_current}}
|
\desc{Kinetic current density}{}{$j_\text{meas}$ measured \qtyRef{current_density}, $j_\infty$ \fRef{::limiting_current}}
|
||||||
\desc[german]{Kinetische Stromdichte}{}{$j_\text{meas}$ gemessene \qtyRef{current_density}, $j_\infty$ \secEqRef{limiting_current}}
|
\desc[german]{Kinetische Stromdichte}{}{$j_\text{meas}$ gemessene \qtyRef{current_density}, $j_\infty$ \fRef{::limiting_current}}
|
||||||
\eq{j_\text{kin} = \frac{j_\text{meas} j_\infty}{j_\infty - j_\text{meas}}}
|
\eq{j_\text{kin} = \frac{j_\text{meas} j_\infty}{j_\infty - j_\text{meas}}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -452,10 +452,10 @@
|
|||||||
|
|
||||||
\begin{formula}{butler_volmer}
|
\begin{formula}{butler_volmer}
|
||||||
\desc{Butler-Volmer equation}{Reaction kinetics near the equilibrium potentential}
|
\desc{Butler-Volmer equation}{Reaction kinetics near the equilibrium potentential}
|
||||||
{$j$ \qtyRef{current_density}, $j_0$ exchange current density, $\eta$ \fqEqRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txC/\txA}$ cathodic/anodic charge transfer coefficient, $\text{rf}$ \secEqRef{roughness_factor}}
|
{$j$ \qtyRef{current_density}, $j_0$ exchange current density, $\eta$ \fRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txC/\txA}$ cathodic/anodic charge transfer coefficient, $\text{rf}$ \fRef{::roughness_factor}}
|
||||||
%Current through an electrode iof a unimolecular redox reaction with both anodic and cathodic reaction occuring on the same electrode
|
%Current through an electrode iof a unimolecular redox reaction with both anodic and cathodic reaction occuring on the same electrode
|
||||||
\desc[german]{Butler-Volmer-Gleichung}{Reaktionskinetik in der Nähe des Gleichgewichtspotentials}
|
\desc[german]{Butler-Volmer-Gleichung}{Reaktionskinetik in der Nähe des Gleichgewichtspotentials}
|
||||||
{$j$ \qtyRef{current_density}, $j_0$ Austauschstromdichte, $\eta$ \fqEqRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txC/\txA}$ Ladungstransferkoeffizient an der Kathode/Anode, $\text{rf}$ \secEqRef{roughness_factor}}
|
{$j$ \qtyRef{current_density}, $j_0$ Austauschstromdichte, $\eta$ \fRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txC/\txA}$ Ladungstransferkoeffizient an der Kathode/Anode, $\text{rf}$ \fRef{::roughness_factor}}
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
j = j_0 \,\rfactor\, \left[ \Exp{\frac{(1-a_\txC) z F \eta}{RT}} - \Exp{-\frac{\alpha_\txC z F \eta}{RT}}\right]
|
j = j_0 \,\rfactor\, \left[ \Exp{\frac{(1-a_\txC) z F \eta}{RT}} - \Exp{-\frac{\alpha_\txC z F \eta}{RT}}\right]
|
||||||
\intertext{\GT{with}}
|
\intertext{\GT{with}}
|
||||||
@ -512,7 +512,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{rhe}
|
\begin{formula}{rhe}
|
||||||
\desc{Reversible hydrogen electrode (RHE)}{RHE Potential does not change with the pH value}{$E^0\equiv \SI{0}{\volt}$, \QtyRef{activity}, \QtyRef{pressure}, \GT{see} \fqEqRef{ch:el:cell:nernst_equation}}
|
\desc{Reversible hydrogen electrode (RHE)}{RHE Potential does not change with the pH value}{$E^0\equiv \SI{0}{\volt}$, \QtyRef{activity}, \QtyRef{pressure}, \GT{see} \fRef{ch:el:cell:nernst_equation}}
|
||||||
\desc[german]{Reversible Wasserstoffelektrode (RHE)}{Potential ändert sich nicht mit dem pH-Wert}{}
|
\desc[german]{Reversible Wasserstoffelektrode (RHE)}{Potential ändert sich nicht mit dem pH-Wert}{}
|
||||||
\eq{
|
\eq{
|
||||||
E_\text{RHE} &= E^0 + \frac{RT}{F} \Ln{\frac{a_{\ce{H^+}}}{p_{\ce{H2}}}}
|
E_\text{RHE} &= E^0 + \frac{RT}{F} \Ln{\frac{a_{\ce{H^+}}}{p_{\ce{H2}}}}
|
||||||
@ -638,7 +638,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{limiting_current}
|
\begin{formula}{limiting_current}
|
||||||
\desc{Limiting current density}{for a \abbrRef{rde}}{$n$ \QtyRef{charge_number}, \ConstRef{faraday}, $c^0$ \GT{c_bulk}, $D$ \qtyRef{diffusion_coefficient}, $\delta_\text{diff}$ \secEqRef{diffusion_layer_thickness}, $\nu$ \qtyRef{kinematic_viscosity}, \QtyRef{angular_frequency}}
|
\desc{Limiting current density}{for a \abbrRef{rde}}{$n$ \QtyRef{charge_number}, \ConstRef{faraday}, $c^0$ \GT{c_bulk}, $D$ \qtyRef{diffusion_coefficient}, $\delta_\text{diff}$ \fRef{::diffusion_layer_thickness}, $\nu$ \qtyRef{kinematic_viscosity}, \QtyRef{angular_frequency}}
|
||||||
% \desc[german]{Limitierender Strom}{}{}
|
% \desc[german]{Limitierender Strom}{}{}
|
||||||
\eq{j_\infty = nFD \frac{c^0}{\delta_\text{diff}} = \frac{1}{1.61} nFD^{\frac{2}{3}} v^{\frac{-1}{6}} c^0 \sqrt{\omega}}
|
\eq{j_\infty = nFD \frac{c^0}{\delta_\text{diff}} = \frac{1}{1.61} nFD^{\frac{2}{3}} v^{\frac{-1}{6}} c^0 \sqrt{\omega}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
@ -63,8 +63,8 @@
|
|||||||
\ger{Boltzmann-Transport}
|
\ger{Boltzmann-Transport}
|
||||||
]{boltzmann}
|
]{boltzmann}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{Semiclassical description using a probability distribution (\fqEqRef{stat:todo:fermi_dirac}) to describe the particles.}
|
\eng{Semiclassical description using a probability distribution (\fRef{stat:todo:fermi_dirac}) to describe the particles.}
|
||||||
\ger{Semiklassische Beschreibung, benutzt eine Wahrscheinlichkeitsverteilung (\fqEqRef{stat:todo:fermi_dirac}).}
|
\ger{Semiklassische Beschreibung, benutzt eine Wahrscheinlichkeitsverteilung (\fRef{stat:todo:fermi_dirac}).}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
\begin{formula}{boltzmann_transport}
|
\begin{formula}{boltzmann_transport}
|
||||||
\desc{Boltzmann Transport equation}{for charge transport}{$f$ \ref{stat:todo:fermi-dirac}}
|
\desc{Boltzmann Transport equation}{for charge transport}{$f$ \ref{stat:todo:fermi-dirac}}
|
||||||
|
@ -11,8 +11,8 @@
|
|||||||
\eq{D(E) = \frac{1}{V}\sum_{i=1}^{N} \delta(E-E(\vec{k_i}))}
|
\eq{D(E) = \frac{1}{V}\sum_{i=1}^{N} \delta(E-E(\vec{k_i}))}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{dos_parabolic}
|
\begin{formula}{dos_parabolic}
|
||||||
\desc{Density of states for parabolic dispersion}{Applies to \fqSecRef{cm:egas}}{}
|
\desc{Density of states for parabolic dispersion}{Applies to \fRef{cm:egas}}{}
|
||||||
\desc[german]{Zustandsdichte für parabolische Dispersion}{Bei \fqSecRef{cm:egas}}{}
|
\desc[german]{Zustandsdichte für parabolische Dispersion}{Bei \fRef{cm:egas}}{}
|
||||||
\eq{
|
\eq{
|
||||||
D_1(E) &= \frac{1}{2\sqrt{c_k(E-E_0)}} && (\text{1D}) \\
|
D_1(E) &= \frac{1}{2\sqrt{c_k(E-E_0)}} && (\text{1D}) \\
|
||||||
D_2(E) &= \frac{\pi}{2c_k} && (\text{2D}) \\
|
D_2(E) &= \frac{\pi}{2c_k} && (\text{2D}) \\
|
||||||
@ -65,8 +65,8 @@
|
|||||||
\ger{Debye-Modell}
|
\ger{Debye-Modell}
|
||||||
]{debye}
|
]{debye}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{Atoms behave like coupled \hyperref[sec:qm:hosc]{quantum harmonic oscillators}. The finite sample size leads to periodic boundary conditio. The finite sample size leads to periodic boundary conditions for the vibrations.}
|
\eng{Atoms behave like coupled \fRef[quantum harmonic oscillators]{sec:qm:hosc}. The finite sample size leads to periodic boundary conditio. The finite sample size leads to periodic boundary conditions for the vibrations.}
|
||||||
\ger{Atome verhalten sich wie gekoppelte \hyperref[sec:qm:hosc]{quantenmechanische harmonische Oszillatoren}. Die endliche Ausdehnung des Körpers führt zu periodischen Randbedingungen. }
|
\ger{Atome verhalten sich wie gekoppelte \fRef[quantenmechanische harmonische Oszillatoren]{sec:qm:hosc}. Die endliche Ausdehnung des Körpers führt zu periodischen Randbedingungen. }
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
|
|
||||||
|
|
||||||
|
@ -135,8 +135,8 @@
|
|||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{bcc}
|
\begin{formula}{bcc}
|
||||||
\desc{Body centered cubic (BCC)}{Reciprocal: \fqEqRef{cm:bravais:fcc}}{\QtyRef{lattice_constant}}
|
\desc{Body centered cubic (BCC)}{Reciprocal: \fRef{::fcc}}{\QtyRef{lattice_constant}}
|
||||||
\desc[german]{Kubisch raumzentriert (BCC)}{Reziprok: \fqEqRef{cm:bravais:fcc}}{}
|
\desc[german]{Kubisch raumzentriert (BCC)}{Reziprok: \fRef{::fcc}}{}
|
||||||
\eq{
|
\eq{
|
||||||
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix},\,
|
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix},\,
|
||||||
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix},\,
|
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix},\,
|
||||||
@ -145,8 +145,8 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{fcc}
|
\begin{formula}{fcc}
|
||||||
\desc{Face centered cubic (FCC)}{Reciprocal: \fqEqRef{cm:bravais:bcc}}{\QtyRef{lattice_constant}}
|
\desc{Face centered cubic (FCC)}{Reciprocal: \fRef{::bcc}}{\QtyRef{lattice_constant}}
|
||||||
\desc[german]{Kubisch flächenzentriert (FCC)}{Reziprok: \fqEqRef{cm:bravais:bcc}}{}
|
\desc[german]{Kubisch flächenzentriert (FCC)}{Reziprok: \fRef{::bcc}}{}
|
||||||
\eq{
|
\eq{
|
||||||
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix},\,
|
\vec{a}_{1}=\frac{a}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix},\,
|
||||||
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix},\,
|
\vec{a}_{2}=\frac{a}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix},\,
|
||||||
@ -158,8 +158,8 @@
|
|||||||
\desc{Diamond lattice}{}{}
|
\desc{Diamond lattice}{}{}
|
||||||
\desc[german]{Diamantstruktur}{}{}
|
\desc[german]{Diamantstruktur}{}{}
|
||||||
\ttxt{
|
\ttxt{
|
||||||
\eng{\fqEqRef{cm:bravais:fcc} with basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
|
\eng{\fRef{:::fcc} with basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
|
||||||
\ger{\fqEqRef{cm:bravais:fcc} mit Basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
|
\ger{\fRef{:::fcc} mit Basis $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{zincblende}
|
\begin{formula}{zincblende}
|
||||||
@ -167,8 +167,8 @@
|
|||||||
\desc[german]{Zinkblende-Struktur}{}{}
|
\desc[german]{Zinkblende-Struktur}{}{}
|
||||||
\ttxt{
|
\ttxt{
|
||||||
\includegraphics[width=0.5\textwidth]{img/cm_zincblende.png}
|
\includegraphics[width=0.5\textwidth]{img/cm_zincblende.png}
|
||||||
\eng{Like \fqEqRef{cm:bravais:diamond} but with different species on each basis}
|
\eng{Like \fRef{:::diamond} but with different species on each basis}
|
||||||
\ger{Wie \fqEqRef{cm:bravais:diamond} aber mit unterschiedlichen Spezies auf den Basen}
|
\ger{Wie \fRef{:::diamond} aber mit unterschiedlichen Spezies auf den Basen}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{wurtzite}
|
\begin{formula}{wurtzite}
|
||||||
@ -176,7 +176,7 @@
|
|||||||
\desc[german]{Wurtzite-Struktur}{hP4}{}
|
\desc[german]{Wurtzite-Struktur}{hP4}{}
|
||||||
\ttxt{
|
\ttxt{
|
||||||
\includegraphics[width=0.5\textwidth]{img/cm_wurtzite.png}
|
\includegraphics[width=0.5\textwidth]{img/cm_wurtzite.png}
|
||||||
Placeholder
|
\TODO{Placeholder}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
@ -1,10 +1,8 @@
|
|||||||
\def\L{\text{L}}
|
\def\txL{\text{L}}
|
||||||
\def\gl{\text{GL}}
|
\def\gl{\text{GL}}
|
||||||
\def\GL{Ginzburg-Landau }
|
\def\GL{Ginzburg-Landau }
|
||||||
\def\Tcrit{T_\text{c}}
|
\def\Tcrit{T_\text{c}}
|
||||||
\def\Bcrit{B_\text{c}}
|
\def\Bcth{B_\text{c}}
|
||||||
\def\ssc{\text{s}}
|
|
||||||
\def\ssn{\text{n}}
|
|
||||||
|
|
||||||
\Section[
|
\Section[
|
||||||
\eng{Superconductivity}
|
\eng{Superconductivity}
|
||||||
@ -13,78 +11,116 @@
|
|||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{
|
\eng{
|
||||||
Materials for which the electric resistance jumps to 0 under a critical temperature $\Tcrit$.
|
Materials for which the electric resistance jumps to 0 under a critical temperature $\Tcrit$.
|
||||||
Below $\Tcrit$ they have perfect conductivity and perfect diamagnetism, up until a critical magnetic field $\Bcrit$.
|
Below $\Tcrit$ they have perfect conductivity and perfect diamagnetism, up until a critical magnetic field $\Bcth$.
|
||||||
\\\textbf{Type I}: Has a single critical magnetic field at which the superconuctor becomes a normal conductor.
|
\\\textbf{Type I}:
|
||||||
\\\textbf{Type II}: Has two critical
|
\\\textbf{Type II}: Has two critical
|
||||||
}
|
}
|
||||||
\ger{
|
\ger{
|
||||||
Materialien, bei denen der elektrische Widerstand beim unterschreiten einer kritischen Temperatur $\Tcrit$ auf 0 springt.
|
Materialien, bei denen der elektrische Widerstand beim unterschreiten einer kritischen Temperatur $\Tcrit$ auf 0 springt.
|
||||||
Sie verhalten sich dann wie ideale Leiter und ideale Diamagnete, bis zu einem kritischen Feld $\Bcrit$.
|
Sie verhalten sich dann wie ideale Leiter und ideale Diamagnete, bis zu einem kritischen Feld $\Bcth$.
|
||||||
|
|
||||||
}
|
}
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{type1}
|
||||||
|
\desc{Type-I superconductor}{}{}
|
||||||
|
\desc[german]{Typ-I Supraleiter}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Has a single critical magnetic field, $\Bcth$.
|
||||||
|
\\$B < \Bcth$: \fRef{:::meissner_effect}
|
||||||
|
\\$B > \Bcth$: Normal conductor
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{type2}
|
||||||
|
\desc{Type-II superconductor}{}{}
|
||||||
|
\desc[german]{Typ-II Supraleiter}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Has a two critical magnetic fields.
|
||||||
|
\\$B < B_\text{c1}$: \fRef{:::meissner_effect}
|
||||||
|
\\$B_\text{c1} < B < B_\text{c2}$: \fRef{:::shubnikov_phase}
|
||||||
|
\\$B > B_\text{c2}$: Normal conductor
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{perfect_conductor}
|
\begin{formula}{perfect_conductor}
|
||||||
\desc{Perfect conductor}{}{}
|
\desc{Perfect conductor}{}{}
|
||||||
\desc[german]{Ideale Leiter}{}{}
|
\desc[german]{Ideale Leiter}{}{}
|
||||||
\ttxt{
|
\ttxt{
|
||||||
\eng{
|
\eng{
|
||||||
In contrast to a superconductor, perfect conductors become diamagnetic only when the external magnetic field is turned on \textbf{after} the material was cooled below the critical temperature.
|
In contrast to a superconductor, perfect conductors become diamagnetic only when the external magnetic field is turned on \textbf{after} the material was cooled below the critical temperature.
|
||||||
(\fqEqRef{ed:fields:mag:induction:lenz})
|
(\fRef{ed:fields:mag:induction:lenz})
|
||||||
}
|
}
|
||||||
\ger{
|
\ger{
|
||||||
Im Gegensatz zu einem Supraleiter werden ideale Leiter nur dann diamagnetisch, wenn das externe magnetische Feld \textbf{nach} dem Abkühlen unter die kritische Temperatur eingeschaltet wird.
|
Im Gegensatz zu einem Supraleiter werden ideale Leiter nur dann diamagnetisch, wenn das externe magnetische Feld \textbf{nach} dem Abkühlen unter die kritische Temperatur eingeschaltet wird.
|
||||||
(\fqEqRef{ed:fields:mag:induction:lenz})
|
(\fRef{ed:fields:mag:induction:lenz})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{meissner_effect}
|
\begin{formula}{meissner_effect}
|
||||||
\desc{Meißner-Ochsenfeld effect}{Perfect diamagnetism}{}
|
\desc{Meißner-Ochsenfeld effect}{Perfect diamagnetism}{$\chi=-1$ \qtyRef{magnetic_susceptibility}}
|
||||||
\desc[german]{Meißner-Ochsenfeld Effekt}{Idealer Diamagnetismus}{}
|
\desc[german]{Meißner-Ochsenfeld Effekt}{Perfekter Diamagnetismus}{}
|
||||||
\ttxt{
|
\ttxt{
|
||||||
\eng{External magnetic field decays exponetially inside the superconductor below a critical temperature and a critical magnetic field.}
|
\eng{External magnetic field decays exponetially inside the superconductor below a critical temperature and a critical magnetic field, path-independant.}
|
||||||
\ger{Externes Magnetfeld fällt im Supraleiter exponentiell unterhalb einer kritischen Temperatur und unterhalb einer kritischen Feldstärke ab.}
|
\ger{Externes Magnetfeld fällt im Supraleiter exponentiell unterhalb einer kritischen Temperatur und unterhalb einer kritischen Feldstärke ab, wegunabhängig.}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{condensation_energy}
|
||||||
|
\desc{Condensation energy}{}{\QtyRef{gibbs_energy}}
|
||||||
|
\desc[german]{Kondensationsenergie}{}{}
|
||||||
|
\eq{
|
||||||
|
\d G &= -S \d T + V \d p - V \vecM \cdot \d\vecB \\
|
||||||
|
G_\text{con} &= G_\txn(B=0,T) - G_\txs(B=0,T) = \frac{V \Bcth^2(T)}{2\mu_0}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{London equations}
|
\eng{London equations}
|
||||||
\ger{London-Gleichungen}
|
\ger{London-Gleichungen}
|
||||||
]{london}
|
]{london}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{
|
\eng{
|
||||||
Quantitative description of the \fqEqRef{cm:sc:meissner_effect}.
|
Quantitative description of the \fRef{cm:sc:meissner_effect}.
|
||||||
}
|
}
|
||||||
\ger{
|
\ger{
|
||||||
Quantitative Beschreibung des \fqEqRef{cm:sc:meissner_effect}s.
|
Quantitative Beschreibung des \fRef{cm:sc:meissner_effect}s.
|
||||||
}
|
}
|
||||||
|
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
% \begin{formula}{coefficient}
|
% \begin{formula}{coefficient}
|
||||||
% \desc{London-coefficient}{}{}
|
% \desc{London-coefficient}{}{}
|
||||||
% \desc[german]{London-Koeffizient}{}{}
|
% \desc[german]{London-Koeffizient}{}{}
|
||||||
% \eq{\Lambda = \frac{m_\ssc}{n_\ssc q_\ssc^2}}
|
% \eq{\txLambda = \frac{m_\txs}{n_\txs q_\txs^2}}
|
||||||
% \end{formula}
|
% \end{formula}
|
||||||
|
\Eng[of_sc_particle]{of the superconducting particle}
|
||||||
|
\Ger[of_sc_particle]{der Supraleitenden Teilchen}
|
||||||
\begin{formula}{first}
|
\begin{formula}{first}
|
||||||
% \vec{j} = \frac{nq\hbar}{m}\Grad S - \frac{nq^2}{m}\vec{A}
|
% \vec{j} = \frac{nq\hbar}{m}\Grad S - \frac{nq^2}{m}\vec{A}
|
||||||
\desc{First London Equation}{}{$\vec{j}$ current density, $n_\ssc$, $m_\ssc$, $q_\ssc$ density, mass and charge of superconduticng particles}
|
\desc{First London Equation}{}{$\vec{j}$ \qtyRef{current_density}, $m_\txs$/$n_\txs$/$q_\txs$ \qtyRef{mass}/\qtyRef{charge_carrier_density}/\qtyRef{charge} \GT{of_sc_particle}, \QtyRef{electric_field}}
|
||||||
\desc[german]{Erste London-Gleichun-}{}{$\vec{j}$ Stromdichte, $n_\ssc$, $m_\ssc$, $q_\ssc$ Dichte, Masse und Ladung der supraleitenden Teilchen}
|
\desc[german]{Erste London-Gleichun-}{}{}
|
||||||
\eq{
|
\eq{
|
||||||
\pdv{\vec{j}_{\ssc}}{t} = \frac{n_\ssc q_\ssc^2}{m_\ssc}\vec{E} {\color{gray}- \Order{\vec{j}_\ssc^2}}
|
\pdv{\vec{j}_{\txs}}{t} = \frac{n_\txs q_\txs^2}{m_\txs}\vec{\E} {\color{gray}- \Order{\vec{j}_\txs^2}}
|
||||||
% \\{\color{gray} = \frac{q}{m}\Grad \left(\frac{1}{2} \TODO{FActor} \vec{j}^2\right)}
|
% \\{\color{gray} = \frac{q}{m}\Grad \left(\frac{1}{2} \TODO{FActor} \vec{j}^2\right)}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{second}
|
\begin{formula}{second}
|
||||||
\desc{Second London Equation}{Describes the \fqEqRef{cm:sc:meissner_effect}}{$\vec{j}$ current density, $n_\ssc$, $m_\ssc$, $q_\ssc$ density, mass and charge of superconduticng particles}
|
\desc{Second London Equation}{Describes the \fRef{cm:sc:meissner_effect}}{$\vec{j}$ \qtyRef{current_density}, $m_\txs$/$n_\txs$/$q_\txs$ \qtyRef{mass}/\qtyRef{charge_carrier_density}/\qtyRef{charge} \GT{of_sc_particle}, \QtyRef{magnetic_field}}
|
||||||
\desc[german]{Zweite London-Gleichung}{Beschreibt den \fqEqRef{cm:sc:meissner_effect}}{$\vec{j}$ Stromdichte, $n_\ssc$, $m_\ssc$, $q_\ssc$ Dichte, Masse und Ladung der supraleitenden Teilchen}
|
\desc[german]{Zweite London-Gleichung}{Beschreibt den \fRef{cm:sc:meissner_effect}}{}
|
||||||
\eq{
|
\eq{
|
||||||
\Rot \vec{j_\ssc} = -\frac{n_\ssc q_\ssc^2}{m_\ssc} \vec{B}
|
\Rot \vec{j_\txs} = -\frac{n_\txs q_\txs^2}{m_\txs} \vec{B}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{penetration_depth}
|
\begin{formula}{penetration_depth}
|
||||||
\desc{London penetration depth}{}{}
|
\desc{London penetration depth}{Depth at which $B$ is $1/\e$ times the value of $B_\text{ext}$}{$m_\txs$/$n_\txs$/$q_\txs$ \qtyRef{mass}/\qtyRef{charge_carrier_density}/\qtyRef{charge} \GT{of_sc_particle}}
|
||||||
\desc[german]{London Eindringtiefe}{}{}
|
\desc[german]{London Eindringtiefe}{Tiefe bei der $B$ das $1/\e$-fache von $B_\text{ext}$ ist}{}
|
||||||
\eq{\lambda_\L = \sqrt{\frac{m_\ssc}{\mu_0 n_\ssc q_\ssc^2}}}
|
\eq{\lambda_\txL = \sqrt{\frac{m_\txs}{\mu_0 n_\txs q_\txs^2}}}
|
||||||
|
\end{formula}
|
||||||
|
\begin{formula}{penetration_depth_temp}
|
||||||
|
\desc{Temperature dependence of \fRef{::penetration_depth}}{}{}
|
||||||
|
\desc[german]{Temperaturabhängigkeit der \fRef{::penetration_depth}}{}{}
|
||||||
|
\eq{\lambda_\txL(T) = \lambda_\txL(0) \frac{1}{\sqrt{1- \left(\frac{T}{T_\txc}\right)^4}}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
@ -97,8 +133,14 @@
|
|||||||
\eng{
|
\eng{
|
||||||
\TODO{TODO}
|
\TODO{TODO}
|
||||||
}
|
}
|
||||||
|
|
||||||
\end{ttext}
|
\end{ttext}
|
||||||
|
|
||||||
|
\begin{formula}{boundary_energy}
|
||||||
|
\desc{Boundary energy}{}{$\Delta E_\text{boundary}$ \TODO{TODO}}
|
||||||
|
\desc[german]{Grenzflächenenergie}{}{}
|
||||||
|
\eq{\Delta E_\text{boundary} = \Delta E_\text{con} - \Delta E_\txB = (\xi_\gl - \lambda) \frac{B_\text{c,th}^2}{2\mu_0}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{coherence_length}
|
\begin{formula}{coherence_length}
|
||||||
\desc{\GL Coherence Length}{}{}
|
\desc{\GL Coherence Length}{}{}
|
||||||
\desc[german]{\GL Kohärenzlänge}{}{}
|
\desc[german]{\GL Kohärenzlänge}{}{}
|
||||||
@ -111,20 +153,21 @@
|
|||||||
\desc{\GL Penetration Depth / Field screening length}{}{}
|
\desc{\GL Penetration Depth / Field screening length}{}{}
|
||||||
\desc[german]{\GL Eindringtiefe}{}{}
|
\desc[german]{\GL Eindringtiefe}{}{}
|
||||||
\eq{
|
\eq{
|
||||||
\lambda_\gl &= \sqrt{\frac{m_\ssc\beta}{\mu_0 \abs{\alpha} q_s^2}} \\
|
\lambda_\gl &= \sqrt{\frac{m_\txs\beta}{\mu_0 \abs{\alpha} q_s^2}} \\
|
||||||
\lambda_\gl(T) &= \lambda_\gl(0) \frac{1}{\sqrt{1-\frac{T}{\Tcrit}}}
|
\lambda_\gl(T) &= \lambda_\gl(0) \frac{1}{\sqrt{1-\frac{T}{\Tcrit}}}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{first}
|
\begin{formula}{first}
|
||||||
\desc{First Ginzburg-Landau Equation}{}{$\xi_\gl$ \fqEqRef{cm:sc:gl:coherence_length}, $\lambda_\gl$ \fqEqRef{cm:sc:gl:penetration_depth}}
|
\desc{First Ginzburg-Landau Equation}{}{$\xi_\gl$ \fRef{cm:sc:gl:coherence_length}, $\lambda_\gl$ \fRef{cm:sc:gl:penetration_depth}}
|
||||||
\desc[german]{Erste Ginzburg-Landau Gleichung}{}{}
|
\desc[german]{Erste Ginzburg-Landau Gleichung}{}{}
|
||||||
\eq{\alpha\Psi + \beta\abs{\Psi}^2 \Psi + \frac{1}{2m} (-i\hbar \Grad + 2e\vec{A})^2\Psi = 0}
|
\eq{\alpha\Psi + \beta\abs{\Psi}^2 \Psi + \frac{1}{2m} (-i\hbar \Grad + 2e\vec{A})^2\Psi = 0}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{second}
|
\begin{formula}{second}
|
||||||
\desc{Second Ginzburg-Landau Equation}{}{}
|
\desc{Second Ginzburg-Landau Equation}{}{}
|
||||||
\desc[german]{Zweite Ginzburg-Landau Gleichung}{}{}
|
\desc[german]{Zweite Ginzburg-Landau Gleichung}{}{}
|
||||||
\eq{\vec{j_\ssc} = \frac{ie\hbar}{m}(\Psi^*\Grad\Psi - \Psi\Grad\Psi^*) - \frac{4e^2}{m}\abs{\Psi}^2 \vec{A}}
|
\eq{\vec{j_\txs} = \frac{ie\hbar}{m}(\Psi^*\Grad\Psi - \Psi\Grad\Psi^*) - \frac{4e^2}{m}\abs{\Psi}^2 \vec{A}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\TODO{proximity effect}
|
\TODO{proximity effect}
|
||||||
|
|
||||||
@ -184,7 +227,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{bogoliubov-valatin}
|
\begin{formula}{bogoliubov-valatin}
|
||||||
\desc{Bogoliubov-Valatin transformation}{Diagonalization of the \fqEqRef{cm:sc:micro:bcs:hamiltonian} to derive excitation energies}{}
|
\desc{Bogoliubov-Valatin transformation}{Diagonalization of the \fRef{cm:sc:micro:bcs:hamiltonian} to derive excitation energies}{}
|
||||||
\desc[german]{Bogoliubov-Valatin transformation}{}{}
|
\desc[german]{Bogoliubov-Valatin transformation}{}{}
|
||||||
\eq{
|
\eq{
|
||||||
\hat{H}_\BCS - N\mu = \sum_\veck \big[\xi_\veck - E_\veck + \Delta_\veck g_\veck^*\big] + \sum_\veck \big[E_\veck a_\veck^\dagger a_\veck + E_\veck \beta_{-\veck}^\dagger \beta_{-\veck}\big]
|
\hat{H}_\BCS - N\mu = \sum_\veck \big[\xi_\veck - E_\veck + \Delta_\veck g_\veck^*\big] + \sum_\veck \big[E_\veck a_\veck^\dagger a_\veck + E_\veck \beta_{-\veck}^\dagger \beta_{-\veck}\big]
|
||||||
@ -196,3 +239,10 @@
|
|||||||
\desc[german]{}{}{}
|
\desc[german]{}{}{}
|
||||||
\eq{\Delta_\veck^* = -\sum_\veck^+\prime V_{\veck,\veck^\prime} \frac{\Delta_{\veck^\prime}}{2E_\veck} \tanh \left(\frac{E_{\veck^\prime}}{2\kB T}\right)}
|
\eq{\Delta_\veck^* = -\sum_\veck^+\prime V_{\veck,\veck^\prime} \frac{\Delta_{\veck^\prime}}{2E_\veck} \tanh \left(\frac{E_{\veck^\prime}}{2\kB T}\right)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{tcrit_temp}
|
||||||
|
\desc{Temperatur dependance of the crictial temperature}{}{}
|
||||||
|
\desc[german]{Temperaturabhängigkeit der kritischen Temperatur}{}{}
|
||||||
|
\eq{ \Bcth(T) = \Bcth(0) \left[1- \left(\frac{t}{T_\txc}\right) \right] }
|
||||||
|
\TODO{empirical relation, relate to BCS}
|
||||||
|
\end{formula}
|
||||||
|
@ -84,6 +84,15 @@
|
|||||||
\ger{\GT{misc}}
|
\ger{\GT{misc}}
|
||||||
]{misc}
|
]{misc}
|
||||||
|
|
||||||
|
\begin{formula}{vdw_material}
|
||||||
|
\desc{Van-der-Waals material}{2D materials}{}
|
||||||
|
\desc[german]{Van-der-Waals Material}{2D Materialien}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Materials consiting of multiple 2D-layers held together by Van-der-Waals forces.
|
||||||
|
}\ger{
|
||||||
|
Aus mehreren 2D-Schichten bestehende Materialien, die durch Van-der-Waals Kräfte zusammengehalten werden.
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\begin{formula}{work_function}
|
\begin{formula}{work_function}
|
||||||
|
@ -3,7 +3,7 @@
|
|||||||
\ger{Halbleiter}
|
\ger{Halbleiter}
|
||||||
]{semic}
|
]{semic}
|
||||||
\begin{formula}{types}
|
\begin{formula}{types}
|
||||||
\desc{Intrinsic/extrinsic}{}{$n,p$ \fqEqRef{cm:semic:charge_density_eq}}
|
\desc{Intrinsic/extrinsic}{}{$n,p$ \fRef{cm:semic:charge_density_eq}}
|
||||||
\desc[german]{Intrinsisch/Extrinsisch}{}{}
|
\desc[german]{Intrinsisch/Extrinsisch}{}{}
|
||||||
\ttxt{
|
\ttxt{
|
||||||
\eng{
|
\eng{
|
||||||
@ -89,7 +89,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{bigformula}{schottky_barrier}
|
\begin{bigformula}{schottky_barrier}
|
||||||
\desc{Schottky barrier}{Rectifying \fqEqRef{cm:sc:junctions:metal-sc}}{}
|
\desc{Schottky barrier}{Rectifying \fRef{cm:sc:junctions:metal-sc}}{}
|
||||||
% \desc[german]{}{}{}
|
% \desc[german]{}{}{}
|
||||||
\centering
|
\centering
|
||||||
\resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_metal_n_sc_separate.tex}}
|
\resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_metal_n_sc_separate.tex}}
|
||||||
@ -145,7 +145,7 @@
|
|||||||
\eng[free_X]{for free Excitons}
|
\eng[free_X]{for free Excitons}
|
||||||
\ger[free_X]{für freie Exzitons}
|
\ger[free_X]{für freie Exzitons}
|
||||||
\begin{formula}{rydberg}
|
\begin{formula}{rydberg}
|
||||||
\desc{Exciton Rydberg energy}{\gt{free_X}}{$R_\txH$ \fqEqRef{qm:h:rydberg_energy}}
|
\desc{Exciton Rydberg energy}{\gt{free_X}}{$R_\txH$ \fRef{qm:h:rydberg_energy}}
|
||||||
\desc[german]{}{}{}
|
\desc[german]{}{}{}
|
||||||
\eq{
|
\eq{
|
||||||
E(n) = - \left(\frac{\mu}{m_0\epsilon_r^2}\right) R_\txH \frac{1}{n^2}
|
E(n) = - \left(\frac{\mu}{m_0\epsilon_r^2}\right) R_\txH \frac{1}{n^2}
|
||||||
|
@ -21,12 +21,12 @@
|
|||||||
\desc[german]{Raman-Spektroskopie}{}{}
|
\desc[german]{Raman-Spektroskopie}{}{}
|
||||||
\begin{minipagetable}{raman}
|
\begin{minipagetable}{raman}
|
||||||
\tentry{application}{
|
\tentry{application}{
|
||||||
\eng{Vibrational modes, Crystal structure, Doping, Band Gaps, Layer thickness in \fqEqRef{cm:misc:vdw_material}}
|
\eng{Vibrational modes, Crystal structure, Doping, Band Gaps, Layer thickness in \fRef{cm:misc:vdw_material}}
|
||||||
\ger{Vibrationsmoden, Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fqEqRef{cm:misc:vdw_material}}
|
\ger{Vibrationsmoden, Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fRef{cm:misc:vdw_material}}
|
||||||
}
|
}
|
||||||
\tentry{how}{
|
\tentry{how}{
|
||||||
\eng{Monochromatic light (\fqEqRef{Laser}) shines on sample, inelastic scattering because of rotation-, vibration-, phonon and spinflip-processes, plot spectrum as shift of the laser light (in \si{\per\cm})}
|
\eng{Monochromatic light (\fRef{Laser}) shines on sample, inelastic scattering because of rotation-, vibration-, phonon and spinflip-processes, plot spectrum as shift of the laser light (in \si{\per\cm})}
|
||||||
\ger{Monochromatisches Licht (\fqEqRef{Laser}) bestrahlt Probe, inelastische Streuung durch Rotations-, Schwingungs-, Phonon und Spin-Flip-Prozesse, plotte Spektrum als Verschiebung gegen das Laser Licht (in \si{\per\cm}) }
|
\ger{Monochromatisches Licht (\fRef{Laser}) bestrahlt Probe, inelastische Streuung durch Rotations-, Schwingungs-, Phonon und Spin-Flip-Prozesse, plotte Spektrum als Verschiebung gegen das Laser Licht (in \si{\per\cm}) }
|
||||||
}
|
}
|
||||||
\end{minipagetable}
|
\end{minipagetable}
|
||||||
\begin{minipage}{0.45\textwidth}
|
\begin{minipage}{0.45\textwidth}
|
||||||
@ -44,12 +44,12 @@
|
|||||||
\desc[german]{Photolumeszenz-Spektroskopie}{}{}
|
\desc[german]{Photolumeszenz-Spektroskopie}{}{}
|
||||||
\begin{minipagetable}{pl}
|
\begin{minipagetable}{pl}
|
||||||
\tentry{application}{
|
\tentry{application}{
|
||||||
\eng{Crystal structure, Doping, Band Gaps, Layer thickness in \fqEqRef{cm:misc:vdw_material}}
|
\eng{Crystal structure, Doping, Band Gaps, Layer thickness in \fRef{cm:misc:vdw_material}}
|
||||||
\ger{Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fqEqRef{cm:misc:vdw_material}}
|
\ger{Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fRef{cm:misc:vdw_material}}
|
||||||
}
|
}
|
||||||
\tentry{how}{
|
\tentry{how}{
|
||||||
\eng{Monochromatic light (\fqEqRef{Laser}) shines on sample, electrons are excited, relax to the conduction band minimum and finally accross the band gap under photon emission}
|
\eng{Monochromatic light (\fRef{Laser}) shines on sample, electrons are excited, relax to the conduction band minimum and finally accross the band gap under photon emission}
|
||||||
\ger{Monochromatisches Licht (\fqEqRef{Laser}) bestrahlt Probe, Elektronen werden angeregt und relaxieren in das Leitungsband-Minimum und schließlich über die Bandlücke unter Photonemission}
|
\ger{Monochromatisches Licht (\fRef{Laser}) bestrahlt Probe, Elektronen werden angeregt und relaxieren in das Leitungsband-Minimum und schließlich über die Bandlücke unter Photonemission}
|
||||||
}
|
}
|
||||||
\end{minipagetable}
|
\end{minipagetable}
|
||||||
\begin{minipage}{0.45\textwidth}
|
\begin{minipage}{0.45\textwidth}
|
||||||
|
@ -3,12 +3,12 @@
|
|||||||
% \ger{}
|
% \ger{}
|
||||||
]{ad}
|
]{ad}
|
||||||
\begin{formula}{hamiltonian}
|
\begin{formula}{hamiltonian}
|
||||||
\desc{Electron Hamiltonian}{}{$\hat{T}$ \fqEqRef{comp:est:kinetic_energy}, $\hat{V}$ \fqEqRef{comp:est:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
\desc{Electron Hamiltonian}{}{$\hat{T}$ \fRef{comp:est:kinetic_energy}, $\hat{V}$ \fRef{comp:est:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
||||||
\desc[german]{Hamiltonian der Elektronen}{}{}
|
\desc[german]{Hamiltonian der Elektronen}{}{}
|
||||||
\eq{\hat{H}_\txe = \hat{T}_\txe + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe}}
|
\eq{\hat{H}_\txe = \hat{T}_\txe + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{ansatz}
|
\begin{formula}{ansatz}
|
||||||
\desc{Wave function ansatz}{}{$\psi_\text{en}^n$ eigenstate $n$ of \fqEqRef{comp:est:hamiltonian}, $\psi_\txe^i$ eigenstate $i$ of \fqEqRef{comp:ad:bo:hamiltonian}, $\vecr,\vecR$ electron/nucleus positions, $\sigma$ electron spin, $c^{ni}$ coefficients}
|
\desc{Wave function ansatz}{}{$\psi_\text{en}^n$ eigenstate $n$ of \fRef{comp:est:hamiltonian}, $\psi_\txe^i$ eigenstate $i$ of \fRef{comp:ad:hamiltonian}, $\vecr,\vecR$ electron/nucleus positions, $\sigma$ electron spin, $c^{ni}$ coefficients}
|
||||||
\desc[german]{Wellenfunktion Ansatz}{}{}
|
\desc[german]{Wellenfunktion Ansatz}{}{}
|
||||||
\eq{\psi_\text{en}^n\big(\{\vecr,\sigma\},\{\vecR\}\big) = \sum_i c^{ni}\big(\{\vecR\}\big)\, \psi_\txe^i\big(\{\vecr,\sigma\},\{\vecR\}\big)}
|
\eq{\psi_\text{en}^n\big(\{\vecr,\sigma\},\{\vecR\}\big) = \sum_i c^{ni}\big(\{\vecR\}\big)\, \psi_\txe^i\big(\{\vecr,\sigma\},\{\vecR\}\big)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
@ -34,30 +34,30 @@
|
|||||||
\ger{Born-Oppenheimer Näherung}
|
\ger{Born-Oppenheimer Näherung}
|
||||||
]{bo}
|
]{bo}
|
||||||
\begin{formula}{adiabatic_approx}
|
\begin{formula}{adiabatic_approx}
|
||||||
\desc{Adiabatic approximation}{Electronic configuration remains the same when atoms move (\absRef{adiabatic_theorem})}{$\Lambda_{ij}$ \fqEqRef{comp:ad:coupling_operator}}
|
\desc{Adiabatic approximation}{Electronic configuration remains the same when atoms move (\absRef{adiabatic_theorem})}{$\Lambda_{ij}$ \fRef{comp:ad:coupling_operator}}
|
||||||
\desc[german]{Adiabatische Näherung}{Elektronenkonfiguration bleibt gleich bei Bewegung der Atome gleichl (\absRef{adiabatic_theorem})}{}
|
\desc[german]{Adiabatische Näherung}{Elektronenkonfiguration bleibt gleich bei Bewegung der Atome gleichl (\absRef{adiabatic_theorem})}{}
|
||||||
\eq{\Lambda_{ij} = 0 \quad \text{\GT{for} } i\neq j}
|
\eq{\Lambda_{ij} = 0 \quad \text{\GT{for} } i\neq j}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{approx}
|
\begin{formula}{approx}
|
||||||
\desc{Born-Oppenheimer approximation}{Electrons are not influenced by the movement of the atoms}{\GT{see} \fqEqRef{comp:ad:equation}, $V_{\txn \leftrightarrow \txn} = \const$ absorbed into $E_\txe^j$}
|
\desc{Born-Oppenheimer approximation}{Electrons are not influenced by the movement of the atoms}{\GT{see} \fRef{comp:ad:equation}, $V_{\txn \leftrightarrow \txn} = \const$ absorbed into $E_\txe^j$}
|
||||||
\desc[german]{Born-Oppenheimer Näherung}{Elektronen werden nicht durch die Bewegung der Atome beeinflusst}{}
|
\desc[german]{Born-Oppenheimer Näherung}{Elektronen werden nicht durch die Bewegung der Atome beeinflusst}{}
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
\Lambda_{ij} = 0
|
\Lambda_{ij} = 0
|
||||||
\shortintertext{\fqEqRef{comp:ad:bo:equation} \Rightarrow}
|
% \shortintertext{\fRef{comp:ad:bo:equation} \Rightarrow}
|
||||||
\left[E_e^i\big(\{\vecR\}\big) + \hat{T}_\txn - E^n\right]c^{ni}\big(\{\vecR\}\big) = 0
|
\left[E_e^i\big(\{\vecR\}\big) + \hat{T}_\txn - E^n\right]c^{ni}\big(\{\vecR\}\big) = 0
|
||||||
\end{gather}
|
\end{gather}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{surface}
|
\begin{formula}{surface}
|
||||||
\desc{Born-Oppenheimer surface}{Potential energy surface (PES)\\ The nuclei follow Newtons equations of motion on the BO surface if the system is in the electronic ground state}{$E_\txe^0, \psi_\txe^0$ lowest eigenvalue/eigenstate of \fqEqRef{comp:ad:bo:hamiltonian}}
|
\desc{Born-Oppenheimer surface}{Potential energy surface (PES)\\ The nuclei follow Newtons equations of motion on the BO surface if the system is in the electronic ground state}{$E_\txe^0, \psi_\txe^0$ lowest eigenvalue/eigenstate of \fRef{comp:ad:hamiltonian}}
|
||||||
\desc[german]{Born-Oppenheimer Potentialhyperfläche}{Die Nukleonen Newtons klassichen Bewegungsgleichungen auf der BO Hyperfläche wenn das System im elektronischen Grundzustand ist}{$E_\txe^0, \psi_\txe^0$ niedrigster Eigenwert/Eigenzustand vom \fqEqRef{comp:ad:bo:hamiltonian}}
|
\desc[german]{Born-Oppenheimer Potentialhyperfläche}{Die Nukleonen Newtons klassichen Bewegungsgleichungen auf der BO Hyperfläche wenn das System im elektronischen Grundzustand ist}{$E_\txe^0, \psi_\txe^0$ niedrigster Eigenwert/Eigenzustand vom \fRef{comp:ad:hamiltonian}}
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
V_\text{BO}\big(\{\vecR\}\big) = E_\txe^0\big(\{\vecR\}\big) \\
|
V_\text{BO}\big(\{\vecR\}\big) = E_\txe^0\big(\{\vecR\}\big) \\
|
||||||
M_I \ddot{\vecR}_I(t) = - \Grad_{\vecR_I} V_\text{BO}\big(\{\vecR(t)\}\big)
|
M_I \ddot{\vecR}_I(t) = - \Grad_{\vecR_I} V_\text{BO}\big(\{\vecR(t)\}\big)
|
||||||
\end{gather}
|
\end{gather}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{ansatz}
|
\begin{formula}{ansatz}
|
||||||
\desc{Ansatz for \secEqRef{approx}}{Product of single electronic and single nuclear state}{}
|
\desc{Ansatz for \fRef{::approx}}{Product of single electronic and single nuclear state}{}
|
||||||
\desc[german]{Ansatz für \secEqRef{approx}}{Produkt aus einem einzelnen elektronischen Zustand und einem Nukleus-Zustand}{}
|
\desc[german]{Ansatz für \fRef{::approx}}{Produkt aus einem einzelnen elektronischen Zustand und einem Nukleus-Zustand}{}
|
||||||
\eq{
|
\eq{
|
||||||
\psi_\text{BO} = c^{n0} \big(\{\vecR\}\big) \,\psi_\txe^0 \big(\{\vecr,\sigma\},\{\vecR\}\big)
|
\psi_\text{BO} = c^{n0} \big(\{\vecR\}\big) \,\psi_\txe^0 \big(\{\vecr,\sigma\},\{\vecR\}\big)
|
||||||
}
|
}
|
||||||
@ -88,10 +88,14 @@
|
|||||||
\begin{formula}{forces}
|
\begin{formula}{forces}
|
||||||
\desc{Forces}{}{}
|
\desc{Forces}{}{}
|
||||||
\desc[german]{Kräfte}{}{}
|
\desc[german]{Kräfte}{}{}
|
||||||
\eq{\vec{F}_I = -\Grad_{\vecR_I} E \explOverEq{\fqEqRef{qm:se:hellmann_feynmann}} -\Braket{\psi(\vecR_I) | \left(\Grad_{\vecR_I} \hat{H}(\vecR_I)\right) | \psi(\vecR) }}
|
\eq{
|
||||||
|
\vec{F}_I = -\Grad_{\vecR_I} E
|
||||||
|
\explOverEq{\fRef{qm:se:hellmann_feynmann}}
|
||||||
|
-\Braket{\psi(\vecR_I) | \left(\Grad_{\vecR_I} \hat{H}(\vecR_I)\right) | \psi(\vecR)}
|
||||||
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{ionic_cycle}
|
\begin{formula}{ionic_cycle}
|
||||||
\desc{Ionic cycle}{\fqEqRef{comp:est:dft:ks:scf} for geometry optimization}{}
|
\desc{Ionic cycle}{\fRef{comp:est:dft:ks:scf} for geometry optimization}{}
|
||||||
\desc[german]{}{}{}
|
\desc[german]{}{}{}
|
||||||
\ttxt{
|
\ttxt{
|
||||||
\eng{
|
\eng{
|
||||||
@ -99,11 +103,11 @@
|
|||||||
\item Initial guess for $n(\vecr)$
|
\item Initial guess for $n(\vecr)$
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
\item Calculate effective potential $V_\text{eff}$
|
\item Calculate effective potential $V_\text{eff}$
|
||||||
\item Solve \fqEqRef{comp:est:dft:ks:equation}
|
\item Solve \fRef{comp:est:dft:ks:equation}
|
||||||
\item Calculate density $n(\vecr)$
|
\item Calculate density $n(\vecr)$
|
||||||
\item Repeat b-d until self consistent
|
\item Repeat b-d until self consistent
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\item Calculate \secEqRef{forces}
|
\item Calculate \fRef{:::forces}
|
||||||
\item If $F\neq0$, get new geometry by interpolating $R$ and restart
|
\item If $F\neq0$, get new geometry by interpolating $R$ and restart
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
}
|
}
|
||||||
@ -146,8 +150,8 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{harmonic_approx}
|
\begin{formula}{harmonic_approx}
|
||||||
\desc{Harmonic approximation}{Hessian matrix, 2nd order Taylor expansion of the \fqEqRef{comp:ad:bo:surface} around every nucleus position $\vecR_I^0$}{$\Phi_{IJ}^{\mu\nu}$ \secEqRef{force_constant_matrix}, $s$ displacement}
|
\desc{Harmonic approximation}{Hessian matrix, 2nd order Taylor expansion of the \fRef{comp:ad:bo:surface} around every nucleus position $\vecR_I^0$}{$\Phi_{IJ}^{\mu\nu}$ \fRef{::force_constant_matrix}, $s$ displacement}
|
||||||
\desc[german]{Harmonische Näherung}{Hesse matrix, Taylor Entwicklung der \fqEqRef{comp:ad:bo:surface} in zweiter Oddnung um Atomposition $\vecR_I^0$}{}
|
\desc[german]{Harmonische Näherung}{Hesse matrix, Taylor Entwicklung der \fRef{comp:ad:bo:surface} in zweiter Oddnung um Atomposition $\vecR_I^0$}{}
|
||||||
\eq{ V^\text{BO}(\{\vecR_I\}) \approx V^\text{BO}(\{\vecR_I^0\}) + \frac{1}{2} \sum_{I,J}^N \sum_{\mu,\nu}^3 s_I^\mu s_J^\nu \Phi_{IJ}^{\mu\nu} }
|
\eq{ V^\text{BO}(\{\vecR_I\}) \approx V^\text{BO}(\{\vecR_I^0\}) + \frac{1}{2} \sum_{I,J}^N \sum_{\mu,\nu}^3 s_I^\mu s_J^\nu \Phi_{IJ}^{\mu\nu} }
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -166,13 +170,13 @@
|
|||||||
\eq{\Phi_{IJ}^{\mu\nu} \approx \frac{\vecF_I^\mu(\vecR_1^0, \dots, \vecR_J^0+\Delta s_J^\nu,\dots, \vecR_N^0)}{\Delta s_J^\nu}}
|
\eq{\Phi_{IJ}^{\mu\nu} \approx \frac{\vecF_I^\mu(\vecR_1^0, \dots, \vecR_J^0+\Delta s_J^\nu,\dots, \vecR_N^0)}{\Delta s_J^\nu}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{dynamical_matrix}
|
\begin{formula}{dynamical_matrix}
|
||||||
\desc{Dynamical matrix}{Mass reduced \absRef[fourier transform]{fourier_transform} of the \fqEqRef{comp:ad:latvib:force_constant_matrix}}{$\vec{L}$ vector from origin to unit cell $n$, $\alpha/\beta$ atom index in th unit cell, $\vecq$ \qtyRef{wave_vector}, $\Phi$ \fqEqRef{comp:ad:latvib:force_constant_matrix}, $M$ \qtyRef{mass}}
|
\desc{Dynamical matrix}{Mass reduced \absRef[fourier transform]{fourier_transform} of the \fRef{comp:ad:latvib:force_constant_matrix}}{$\vec{L}$ vector from origin to unit cell $n$, $\alpha/\beta$ atom index in th unit cell, $\vecq$ \qtyRef{wave_vector}, $\Phi$ \fRef{comp:ad:latvib:force_constant_matrix}, $M$ \qtyRef{mass}}
|
||||||
% \desc[german]{}{}{}
|
% \desc[german]{}{}{}
|
||||||
\eq{D_{\alpha\beta}^{\mu\nu} = \frac{1}{\sqrt{M_\alpha M_\beta}} \sum_{n^\prime} \Phi_{\alpha\beta}^{\mu\nu}(n-n^\prime) \e^{\I \vec{q}(\vec{L}_n - \vec{L}_{n^\prime})}}
|
\eq{D_{\alpha\beta}^{\mu\nu} = \frac{1}{\sqrt{M_\alpha M_\beta}} \sum_{n^\prime} \Phi_{\alpha\beta}^{\mu\nu}(n-n^\prime) \e^{\I \vec{q}(\vec{L}_n - \vec{L}_{n^\prime})}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{eigenvalue_equation}
|
\begin{formula}{eigenvalue_equation}
|
||||||
\desc{Eigenvalue equation}{For a periodic crystal, reduces number of equations from $3N_p\times N$ to $3N_p$. Eigenvalues represent phonon band structure.}{$N_p$ number of atoms per unit cell, $\vecc$ displacement amplitudes, $\vecq$ \qtyRef{wave_vector}, $\mat{D}$ \secEqRef{dynamical_matrix}}
|
\desc{Eigenvalue equation}{For a periodic crystal, reduces number of equations from $3N_p\times N$ to $3N_p$. Eigenvalues represent phonon band structure.}{$N_p$ number of atoms per unit cell, $\vecc$ displacement amplitudes, $\vecq$ \qtyRef{wave_vector}, $\mat{D}$ \fRef{::dynamical_matrix}}
|
||||||
\desc[german]{Eigenwertgleichung}{}{}
|
\desc[german]{Eigenwertgleichung}{}{}
|
||||||
\eq{\omega^2 \vecc(\vecq) = \mat{D}(\vecq) \vecc(\vecq) }
|
\eq{\omega^2 \vecc(\vecq) = \mat{D}(\vecq) \vecc(\vecq) }
|
||||||
\end{formula}
|
\end{formula}
|
||||||
@ -186,7 +190,7 @@
|
|||||||
\desc{Quasi-harmonic approximation}{}{}
|
\desc{Quasi-harmonic approximation}{}{}
|
||||||
\desc[german]{}{}{}
|
\desc[german]{}{}{}
|
||||||
\ttxt{\eng{
|
\ttxt{\eng{
|
||||||
Include thermal expansion by assuming \fqEqRef{comp:ad:bo:surface} is volume dependant.
|
Include thermal expansion by assuming \fRef{comp:ad:bo:surface} is volume dependant.
|
||||||
}}
|
}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -194,7 +198,7 @@
|
|||||||
\desc{Pertubative approaches}{}{}
|
\desc{Pertubative approaches}{}{}
|
||||||
% \desc[german]{Störungs}{}{}
|
% \desc[german]{Störungs}{}{}
|
||||||
\ttxt{\eng{
|
\ttxt{\eng{
|
||||||
Expand \fqEqRef{comp:ad:latvib:force_constant_matrix} to third order.
|
Expand \fRef{comp:ad:latvib:force_constant_matrix} to third order.
|
||||||
}}
|
}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -244,7 +248,7 @@
|
|||||||
\ttxt{\eng{
|
\ttxt{\eng{
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
\item Calculate electronic ground state of current nucleui configuration $\{\vecR(t)\}$ with \abbrRef{ksdft}
|
\item Calculate electronic ground state of current nucleui configuration $\{\vecR(t)\}$ with \abbrRef{ksdft}
|
||||||
\item \hyperref[f:comp:ad:opt:forces]{Calculate forces} from the \fqEqRef{comp:ad:bo:surface}
|
\item \fRef[Calculate forces]{comp:ad:opt:forces} from the \fRef{comp:ad:bo:surface}
|
||||||
\item Update positions and velocities
|
\item Update positions and velocities
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
@ -375,7 +379,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{vdos} \abbrLabel{VDOS}
|
\begin{formula}{vdos} \abbrLabel{VDOS}
|
||||||
\desc{Vibrational density of states (VDOS)}{}{$S_{v_i}$ velocity \secEqRef{spectral_density} of particle $I$}
|
\desc{Vibrational density of states (VDOS)}{}{$S_{v_i}$ velocity \fRef{::spectral_density} of particle $I$}
|
||||||
\desc[german]{Vibrationszustandsdicht (VDOS)}{}{}
|
\desc[german]{Vibrationszustandsdicht (VDOS)}{}{}
|
||||||
\eq{g(\omega) \sim \sum_{I=1}^N M_I S_{v_I}(\omega)}
|
\eq{g(\omega) \sim \sum_{I=1}^N M_I S_{v_I}(\omega)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
@ -14,7 +14,7 @@
|
|||||||
\eq{\hat{V}_{i \leftrightarrow j} &= -\sum_{k,l} \frac{Z_i Z_j e^2}{\abs{\vecr_k - \vecr_l}}}
|
\eq{\hat{V}_{i \leftrightarrow j} &= -\sum_{k,l} \frac{Z_i Z_j e^2}{\abs{\vecr_k - \vecr_l}}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{hamiltonian}
|
\begin{formula}{hamiltonian}
|
||||||
\desc{Electronic structure Hamiltonian}{}{$\hat{T}$ \fqEqRef{comp:est:kinetic_energy}, $\hat{V}$ \fqEqRef{comp:est:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
\desc{Electronic structure Hamiltonian}{}{$\hat{T}$ \fRef{comp:est:kinetic_energy}, $\hat{V}$ \fRef{comp:est:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}}
|
||||||
\eq{\hat{H} &= \hat{T}_\txe + \hat{T}_\txn + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe} + V_{\txn \leftrightarrow \txn}}
|
\eq{\hat{H} &= \hat{T}_\txe + \hat{T}_\txn + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe} + V_{\txn \leftrightarrow \txn}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{mean_field}
|
\begin{formula}{mean_field}
|
||||||
@ -64,8 +64,8 @@
|
|||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{
|
\eng{
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Assumes wave functions are \fqEqRef{qm:other:slater_det} \Rightarrow Approximation
|
\item Assumes wave functions are \fRef{qm:other:slater_det} \Rightarrow Approximation
|
||||||
\item \fqEqRef{comp:est:mean_field} theory obeying the Pauli principle
|
\item \fRef{comp:est:mean_field} theory obeying the Pauli principle
|
||||||
\item Self-interaction free: Self interaction is cancelled out by the Fock-term
|
\item Self-interaction free: Self interaction is cancelled out by the Fock-term
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
}
|
}
|
||||||
@ -76,14 +76,14 @@
|
|||||||
$\varphi_\xi$ single particle wavefunction of $\xi$th orbital,
|
$\varphi_\xi$ single particle wavefunction of $\xi$th orbital,
|
||||||
$\hat{T}$ kinetic electron energy,
|
$\hat{T}$ kinetic electron energy,
|
||||||
$\hat{V}_{\text{en}}$ electron-nucleus attraction,
|
$\hat{V}_{\text{en}}$ electron-nucleus attraction,
|
||||||
$\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential},
|
$h\hat{V}_{\text{HF}}$ \fRef{comp:est:dft:hf:potential},
|
||||||
$x = \vecr,\sigma$ position and spin
|
$x = \vecr,\sigma$ position and spin
|
||||||
}
|
}
|
||||||
\desc[german]{Hartree-Fock Gleichung}{}{
|
\desc[german]{Hartree-Fock Gleichung}{}{
|
||||||
$\varphi_\xi$ ein-Teilchen Wellenfunktion des $\xi$-ten Orbitals,
|
$\varphi_\xi$ ein-Teilchen Wellenfunktion des $\xi$-ten Orbitals,
|
||||||
$\hat{T}$ kinetische Energie der Elektronen,
|
$\hat{T}$ kinetische Energie der Elektronen,
|
||||||
$\hat{V}_{\text{en}}$ Electron-Kern Anziehung,
|
$\hat{V}_{\text{en}}$ Electron-Kern Anziehung,
|
||||||
$\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential},
|
$\hat{V}_{\text{HF}}$ \fRef{comp:est:dft:hf:potential},
|
||||||
$x = \vecr,\sigma$ Position and Spin
|
$x = \vecr,\sigma$ Position and Spin
|
||||||
}
|
}
|
||||||
\eq{
|
\eq{
|
||||||
@ -158,7 +158,7 @@
|
|||||||
\eq{n(\vecr) = \sum_{i=1}^N \abs{\phi_i(\vecr)}^2}
|
\eq{n(\vecr) = \sum_{i=1}^N \abs{\phi_i(\vecr)}^2}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{functional}
|
\begin{formula}{functional}
|
||||||
\desc{Kohn-Sham functional}{}{$T_\text{KS}$ kinetic enery, $V_\text{ext}$ external potential, $E_\txH$ \hyperref[f:comp:est:dft:hf:potential]{Hartree term}, $E_\text{XC}$ \fqEqRef{comp:est:dft:xc:xc}}
|
\desc{Kohn-Sham functional}{}{$T_\text{KS}$ kinetic enery, $V_\text{ext}$ external potential, $E_\txH$ \fRef[Hartree term]{comp:est:dft:hf:potential}, $E_\text{XC}$ \fRef{comp:est:dft:xc:xc}}
|
||||||
\desc[german]{Kohn-Sham Funktional}{}{}
|
\desc[german]{Kohn-Sham Funktional}{}{}
|
||||||
\eq{E_\text{KS}[n(\vecr)] = T_\text{KS}[n(\vecr)] + V_\text{ext}[n(\vecr)] + E_\text{H}[n(\vecr)] + E_\text{XC}[n(\vecr)] }
|
\eq{E_\text{KS}[n(\vecr)] = T_\text{KS}[n(\vecr)] + V_\text{ext}[n(\vecr)] + E_\text{H}[n(\vecr)] + E_\text{XC}[n(\vecr)] }
|
||||||
\end{formula}
|
\end{formula}
|
||||||
@ -186,7 +186,7 @@
|
|||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
\item Initial guess for $n(\vecr)$
|
\item Initial guess for $n(\vecr)$
|
||||||
\item Calculate effective potential $V_\text{eff}$
|
\item Calculate effective potential $V_\text{eff}$
|
||||||
\item Solve \fqEqRef{comp:est:dft:ks:equation}
|
\item Solve \fRef{comp:est:dft:ks:equation}
|
||||||
\item Calculate density $n(\vecr)$
|
\item Calculate density $n(\vecr)$
|
||||||
\item Repeat 2-4 until self consistent
|
\item Repeat 2-4 until self consistent
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
@ -212,14 +212,14 @@
|
|||||||
}}
|
}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{lda}
|
\begin{formula}{lda}
|
||||||
\desc{Local density approximation (LDA)}{Simplest DFT functionals}{$\epsilon_\txX$ calculated exchange energy from \hyperref[f:comp:qmb:models:heg]{HEG model}, $\epsilon_\txC$ correlation energy calculated with \fqSecRef{comp:qmb:methods:qmonte-carlo}}
|
\desc{Local density approximation (LDA)}{Simplest DFT functionals}{$\epsilon_\txX$ calculated exchange energy from \fRef[HEG model]{comp:qmb:models:heg}, $\epsilon_\txC$ correlation energy calculated with \fRef{comp:qmb:methods:qmonte-carlo}}
|
||||||
\desc[german]{}{}{}
|
\desc[german]{}{}{}
|
||||||
\abbrLabel{LDA}
|
\abbrLabel{LDA}
|
||||||
\eq{E_\text{XC}^\text{LDA}[n(\vecr)] = \int \d^3r\,n(r) \Big[\epsilon_\txX[n(\vecr)] + \epsilon_\txC[n(\vecr)]\Big]}
|
\eq{E_\text{XC}^\text{LDA}[n(\vecr)] = \int \d^3r\,n(r) \Big[\epsilon_\txX[n(\vecr)] + \epsilon_\txC[n(\vecr)]\Big]}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{gga}
|
\begin{formula}{gga}
|
||||||
\desc{Generalized gradient approximation (GGA)}{}{$\epsilon_\txX$ calculated exchange energy from \hyperref[f:comp:qmb:models:heg]{HEG model}, $F_\text{XC}$ function containing exchange-correlation energy dependency on $n$ and $\Grad n$}
|
\desc{Generalized gradient approximation (GGA)}{}{$\epsilon_\txX$ calculated exchange energy from \fRef[HEG model]{comp:qmb:models:heg}, $F_\text{XC}$ function containing exchange-correlation energy dependency on $n$ and $\Grad n$}
|
||||||
\desc[german]{}{}{}
|
\desc[german]{}{}{}
|
||||||
\abbrLabel{GGA}
|
\abbrLabel{GGA}
|
||||||
\eq{E_\text{XC}^\text{GGA}[n(\vecr)] = \int \d^3r\,n(r) \epsilon_\txX[n(\vecr)]\,F_\text{XC}[n(\vecr), \Grad n(\vecr)]}
|
\eq{E_\text{XC}^\text{GGA}[n(\vecr)] = \int \d^3r\,n(r) \epsilon_\txX[n(\vecr)]\,F_\text{XC}[n(\vecr), \Grad n(\vecr)]}
|
||||||
@ -232,7 +232,7 @@
|
|||||||
\desc[german]{Hybride Funktionale}{}{$\alpha$ mixing paramter, $E_\txX$ exchange energy, $E_\txC$ correlation energy}
|
\desc[german]{Hybride Funktionale}{}{$\alpha$ mixing paramter, $E_\txX$ exchange energy, $E_\txC$ correlation energy}
|
||||||
\eq{\alpha E_\txX^\text{HF} + (1-\alpha) E_\txX^\text{GGA} + E_\txC^\text{GGA}}
|
\eq{\alpha E_\txX^\text{HF} + (1-\alpha) E_\txX^\text{GGA} + E_\txC^\text{GGA}}
|
||||||
\ttxt{\eng{
|
\ttxt{\eng{
|
||||||
Include \hyperref[f:comp:dft:hf:potential]{Fock term} (exact exchange) in other functional, like \abbrRef{gga}. Computationally expensive
|
Include \fRef[Fock term]{comp:est:dft:hf:potential} (exact exchange) in other functional, like \abbrRef{gga}. Computationally expensive
|
||||||
}}
|
}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -246,7 +246,7 @@
|
|||||||
\end{gather}
|
\end{gather}
|
||||||
\separateEntries
|
\separateEntries
|
||||||
\ttxt{\eng{
|
\ttxt{\eng{
|
||||||
Use \abbrRef{gga} and \hyperref[comp:est:dft:hf:potential]{Fock} exchange for short ranges (SR) and only \abbrRef{GGA} for long ranges (LR).
|
Use \abbrRef{gga} and \fRef[Fock]{comp:est:dft:hf:potential} exchange for short ranges (SR) and only \abbrRef{GGA} for long ranges (LR).
|
||||||
\abbrRef{GGA} correlation is always used. Useful when dielectric screening reduces long range interactions, saves computational cost.
|
\abbrRef{GGA} correlation is always used. Useful when dielectric screening reduces long range interactions, saves computational cost.
|
||||||
}}
|
}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
@ -255,7 +255,7 @@
|
|||||||
\desc{Comparison of DFT functionals}{}{}
|
\desc{Comparison of DFT functionals}{}{}
|
||||||
\desc[german]{Vergleich von DFT Funktionalen}{}{}
|
\desc[german]{Vergleich von DFT Funktionalen}{}{}
|
||||||
% \begin{tabular}{l|c}
|
% \begin{tabular}{l|c}
|
||||||
% \hyperref[f:comp:est:dft:hf:potential]{Hartree-Fock} & only exchange, no correlation \Rightarrow upper bound of GS energy \\
|
% \fRef[Hartree-Fock]{comp:est:dft:hf:potential} & only exchange, no correlation \Rightarrow upper bound of GS energy \\
|
||||||
% \abbrRef{lda} & understimates e repulsion \Rightarrow Overbinding \\
|
% \abbrRef{lda} & understimates e repulsion \Rightarrow Overbinding \\
|
||||||
% \abbrRef{gga} & underestimate band gap \\
|
% \abbrRef{gga} & underestimate band gap \\
|
||||||
% hybrid & underestimate band gap
|
% hybrid & underestimate band gap
|
||||||
@ -374,7 +374,7 @@
|
|||||||
\ger{Basis-Sets}
|
\ger{Basis-Sets}
|
||||||
]{basis}
|
]{basis}
|
||||||
\begin{formula}{plane_wave}
|
\begin{formula}{plane_wave}
|
||||||
\desc{Plane wave basis}{Plane wave ansatz in \fqEqRef{comp:est:dft:ks:equation}\\Good for periodic structures, allows computation parallelization over a sample points in the \abbrRef{brillouin_zone}}{}
|
\desc{Plane wave basis}{Plane wave ansatz in \fRef{comp:est:dft:ks:equation}\\Good for periodic structures, allows computation parallelization over a sample points in the \abbrRef{brillouin_zone}}{}
|
||||||
\desc[german]{Ebene Wellen als Basis}{}{}
|
\desc[german]{Ebene Wellen als Basis}{}{}
|
||||||
\eq{\sum_{\vecG^\prime} \left[\frac{\hbar^2 \abs{\vecG+\veck}^2}{2m} \delta_{\vecG,\vecG^\prime} + V_\text{eff}(\vecG-\vecG^\prime)\right] c_{i,\veck,\vecG^\prime} = \epsilon_{i,\veck} c_{i,\veck,\vecG}}
|
\eq{\sum_{\vecG^\prime} \left[\frac{\hbar^2 \abs{\vecG+\veck}^2}{2m} \delta_{\vecG,\vecG^\prime} + V_\text{eff}(\vecG-\vecG^\prime)\right] c_{i,\veck,\vecG^\prime} = \epsilon_{i,\veck} c_{i,\veck,\vecG}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
@ -48,8 +48,8 @@
|
|||||||
\ger{Lineare Regression}
|
\ger{Lineare Regression}
|
||||||
]{linear}
|
]{linear}
|
||||||
\begin{formula}{eq}
|
\begin{formula}{eq}
|
||||||
\desc{Linear regression}{Fits the data under the assumption of \hyperref[f:math:pt:distributions:cont:normal]{normally distributed errors}}{$\mat{x}\in\R^{N\times M}$ input data, $\mat{y}\in\R^{N\times L}$ output data, $\mat{b}$ bias, $\vec{\beta}$ weights, $N$ samples, $M$ features, $L$ output variables}
|
\desc{Linear regression}{Fits the data under the assumption of \fRef[normally distributed errors]{math:pt:distributions:cont:normal}}{$\mat{x}\in\R^{N\times M}$ input data, $\mat{y}\in\R^{N\times L}$ output data, $\mat{b}$ bias, $\vec{\beta}$ weights, $N$ samples, $M$ features, $L$ output variables}
|
||||||
\desc[german]{Lineare Regression}{Fitted Daten unter der Annahme \hyperref[f:math:pt:distributions:cont:normal]{normalverteilter Fehler}}{}
|
\desc[german]{Lineare Regression}{Fitted Daten unter der Annahme \fRef[normalverteilter Fehler]{math:pt:distributions:cont:normal}}{}
|
||||||
\eq{\mat{y} = \mat{\epsilon} + \mat{x} \cdot \vec{\beta}}
|
\eq{\mat{y} = \mat{\epsilon} + \mat{x} \cdot \vec{\beta}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{design_matrix}
|
\begin{formula}{design_matrix}
|
||||||
@ -60,13 +60,13 @@
|
|||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{scalar_bias}
|
\begin{formula}{scalar_bias}
|
||||||
\desc{Linear regression with scalar bias}{Using the design matrix, the scalar is absorbed into the weight vector}{$\mat{y}$ output data, $\mat{X}$ \fqEqRef{comp:ml:reg:design_matrix}, $\vec{\beta}$ weights}
|
\desc{Linear regression with scalar bias}{Using the design matrix, the scalar is absorbed into the weight vector}{$\mat{y}$ output data, $\mat{X}$ \fRef{::design_matrix}, $\vec{\beta}$ weights}
|
||||||
\desc[german]{Lineare Regression mit skalarem Bias}{Durch die Designmatrix wird der Bias in den Gewichtsvektor absorbiert}{}
|
\desc[german]{Lineare Regression mit skalarem Bias}{Durch die Designmatrix wird der Bias in den Gewichtsvektor absorbiert}{}
|
||||||
\eq{\mat{y} = \mat{X} \cdot \vec{\beta}}
|
\eq{\mat{y} = \mat{X} \cdot \vec{\beta}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{normal_equation}
|
\begin{formula}{normal_equation}
|
||||||
\desc{Normal equation}{Solves \fqEqRef{comp:ml:reg:linear:scalar_bias} with \fqEqRef{comp:ml:performance:mse}}{$\mat{y}$ output data, $\mat{X}$ \fqEqRef{comp:ml:reg:linear:design_matrix}, $\vec{\beta}$ weights}
|
\desc{Normal equation}{Solves \fRef{comp:ml:reg:linear:scalar_bias} with \fRef{comp:ml:performance:mean_square_error}}{$\mat{y}$ output data, $\mat{X}$ \fRef{::design_matrix}, $\vec{\beta}$ weights}
|
||||||
\desc[german]{Normalengleichung}{Löst \fqEqRef{comp:ml:reg:linear:scalar_bias} mit \fqEqRef{comp:ml:performance:mse}}{}
|
\desc[german]{Normalengleichung}{Löst \fRef{comp:ml:reg:linear:scalar_bias} mit \fRef{comp:ml:performance:mean_square_error}}{}
|
||||||
\eq{\vec{\beta} = \left(\mat{X}^\T \mat{X}\right)^{-1} \mat{X}^T \mat{y}}
|
\eq{\vec{\beta} = \left(\mat{X}^\T \mat{X}\right)^{-1} \mat{X}^T \mat{y}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -112,7 +112,7 @@
|
|||||||
\desc{Bayesian linear regression}{}{}
|
\desc{Bayesian linear regression}{}{}
|
||||||
\desc[german]{Bayes'sche lineare Regression}{}{}
|
\desc[german]{Bayes'sche lineare Regression}{}{}
|
||||||
\ttxt{\eng{
|
\ttxt{\eng{
|
||||||
Assume a \fqEqRef{math:pt:bayesian:prior} distribution over the weights.
|
Assume a \fRef{math:pt:bayesian:prior} distribution over the weights.
|
||||||
Offers uncertainties in addition to the predictions.
|
Offers uncertainties in addition to the predictions.
|
||||||
}}
|
}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
@ -123,16 +123,16 @@
|
|||||||
\ttxt{\eng{
|
\ttxt{\eng{
|
||||||
Applies a L2 norm penalty on the weights.
|
Applies a L2 norm penalty on the weights.
|
||||||
This ensures unimportant features are less regarded and do not encode noise.
|
This ensures unimportant features are less regarded and do not encode noise.
|
||||||
\\Corresponds to assuming a \fqEqRef{math:pt:bayesian:prior} \absRef{multivariate_normal_distribution} with $\vec{\mu} = 0$ and independent components ($\mat{\Sigma}$) for the weights.
|
\\Corresponds to assuming a \fRef{math:pt:bayesian:prior} \absRef{multivariate_normal_distribution} with $\vec{\mu} = 0$ and independent components ($\mat{\Sigma}$) for the weights.
|
||||||
}\ger{
|
}\ger{
|
||||||
Reduziert Gewichte mit der L2-Norm.
|
Reduziert Gewichte mit der L2-Norm.
|
||||||
Dadurch werden unwichtige Features nicht berücksichtigt (kleines Gewicht) und enkodieren nicht Noise.
|
Dadurch werden unwichtige Features nicht berücksichtigt (kleines Gewicht) und enkodieren nicht Noise.
|
||||||
\\Entspricht der Annahme einer \absRef[Normalverteilung]{multivariate_normal_distribution} mit $\vec{\mu}=0$ und unanhängingen Komponenten ($\mat{Sigma}$ diagonaol) der die Gewichte als \fqEqRef{math:pt:bayesian:prior}.
|
\\Entspricht der Annahme einer \absRef[Normalverteilung]{multivariate_normal_distribution} mit $\vec{\mu}=0$ und unanhängingen Komponenten ($\mat{Sigma}$ diagonaol) der die Gewichte als \fRef{math:pt:bayesian:prior}.
|
||||||
}}
|
}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{ridge_weights}
|
\begin{formula}{ridge_weights}
|
||||||
\desc{Optimal weights}{for ridge regression}{$\lambda = \frac{\sigma^2}{\xi^2}$ shrinkage parameter, $\xi$ \absRef{variance} of the gaussian \fqEqRef{math:pt:bayesian:prior}, $\sigma$ \absRef{variance} of the gaussian likelihood of the data}
|
\desc{Optimal weights}{for ridge regression}{$\lambda = \frac{\sigma^2}{\xi^2}$ shrinkage parameter, $\xi$ \absRef{variance} of the gaussian \fRef{math:pt:bayesian:prior}, $\sigma$ \absRef{variance} of the gaussian likelihood of the data}
|
||||||
\desc[german]{Optimale Gewichte}{für Ridge Regression}{}
|
\desc[german]{Optimale Gewichte}{für Ridge Regression}{}
|
||||||
\eq{\vec{\beta} = \left(\mat{X}^\T \mat{X} + \lambda \mathcal{1} \right)^{-1} \mat{X}^\T \vecy}
|
\eq{\vec{\beta} = \left(\mat{X}^\T \mat{X} + \lambda \mathcal{1} \right)^{-1} \mat{X}^\T \vecy}
|
||||||
\TODO{Does this only work for gaussian data?}
|
\TODO{Does this only work for gaussian data?}
|
||||||
@ -143,11 +143,11 @@
|
|||||||
\desc[german]{Lasso Regression}{}{}
|
\desc[german]{Lasso Regression}{}{}
|
||||||
\ttxt{\eng{
|
\ttxt{\eng{
|
||||||
Applies a L1 norm penalty on the weights, which means features can be disregarded entirely.
|
Applies a L1 norm penalty on the weights, which means features can be disregarded entirely.
|
||||||
\\Corresponds to assuming a \absRef{laplace_distribution} for the weights as \fqEqRef{math:pt:bayesian:prior}.
|
\\Corresponds to assuming a \absRef{laplace_distribution} for the weights as \fRef{math:pt:bayesian:prior}.
|
||||||
}\ger{
|
}\ger{
|
||||||
Reduziert Gewichte mit der L1-Norm.
|
Reduziert Gewichte mit der L1-Norm.
|
||||||
Unwichtige Features werden reduziert und können auch ganz vernachlässigt werden und enkodieren nicht Noise.
|
Unwichtige Features werden reduziert und können auch ganz vernachlässigt werden und enkodieren nicht Noise.
|
||||||
\\Entspricht der Annahme einer \absRef[Laplace-Verteilung]{laplace_distribution} der die Gewichte als \fqEqRef{math:pt:bayesian:prior}.
|
\\Entspricht der Annahme einer \absRef[Laplace-Verteilung]{laplace_distribution} der die Gewichte als \fRef{math:pt:bayesian:prior}.
|
||||||
}}
|
}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -158,7 +158,7 @@
|
|||||||
% \desc[german]{}{}{}
|
% \desc[german]{}{}{}
|
||||||
\ttxt{\eng{
|
\ttxt{\eng{
|
||||||
Gaussian process: A distribtuion over functions that produce jointly gaussian distribution.
|
Gaussian process: A distribtuion over functions that produce jointly gaussian distribution.
|
||||||
Multivariate normal distribution like \secEqRef{bayesian}, except that $\vec{\mu}$ and $\mat{\Sigma}$ are functions.
|
Multivariate normal distribution like \fRef{:::linear_regression}, except that $\vec{\mu}$ and $\mat{\Sigma}$ are functions.
|
||||||
GPR: non-parametric Bayesion regressor, does not assume fixed functional form for the underlying data, instead, the data determines the functional shape,
|
GPR: non-parametric Bayesion regressor, does not assume fixed functional form for the underlying data, instead, the data determines the functional shape,
|
||||||
with predictions governed by the covariance structure defined by the kernel (often \abbrRef{radial_basis_function}).
|
with predictions governed by the covariance structure defined by the kernel (often \abbrRef{radial_basis_function}).
|
||||||
|
|
||||||
@ -168,7 +168,23 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
\TODO{soap}
|
\begin{formula}{soap}
|
||||||
|
\desc{Smooth overlap of atomic atomic positions (SOAP)}{}{}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Goal: symmetric invariance, smoothness, completeness (completeness not achieved)
|
||||||
|
\\Gaussian smeared density expanded in \abbrRef{radial_basis_function} and spherical harmonics.
|
||||||
|
}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{gaussian_approximation_potential}
|
||||||
|
\desc{Gaussian approximation potential}{Bond-order potential}{$V_\text{rep/attr}$ repulsive / attractive potential}
|
||||||
|
% \desc[german]{}{}{}
|
||||||
|
\ttxt{\eng{
|
||||||
|
Models atomic interactions via a \textit{bond-order} term $b$.
|
||||||
|
}}
|
||||||
|
\eq{V_\text{BondOrder}(\vecR_M, \vecR_N) = V_\text{rep}(\vecR_M, \vecR_N) + b_{MNK} V_\text{attr}(\vecR_M, \vecR_N)}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Gradient descent}
|
\eng{Gradient descent}
|
||||||
|
@ -53,6 +53,15 @@
|
|||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{flux_quantum}
|
||||||
|
\desc{Flux quantum}{}{}
|
||||||
|
\desc[german]{Flussquantum}{}{}
|
||||||
|
\constant{\Phi_0}{def}{
|
||||||
|
\val{2.067 833 848 \xE{-15}}{\weber=\volt\s=\kg\m^2\per\s^2\ampere}
|
||||||
|
}
|
||||||
|
\eq{\Phi_0 = \frac{h}{2e}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{atomic_mass_unit}
|
\begin{formula}{atomic_mass_unit}
|
||||||
\desc{Atomic mass unit}{}{}
|
\desc{Atomic mass unit}{}{}
|
||||||
\desc[german]{Atomare Massneinheit}{}{}
|
\desc[german]{Atomare Massneinheit}{}{}
|
||||||
|
@ -45,7 +45,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{electric_susceptibility}
|
\begin{formula}{electric_susceptibility}
|
||||||
\desc{Electric susceptibility}{Describes how polarized a dielectric material becomes when an electric field is applied}{$\epsilon_\txr$ \fqEqRef{ed:el:relative_permittivity}}
|
\desc{Electric susceptibility}{Describes how polarized a dielectric material becomes when an electric field is applied}{$\epsilon_\txr$ \fRef{ed:el:relative_permittivity}}
|
||||||
\desc[german]{Elektrische Suszeptibilität}{Beschreibt wie stark ein dielektrisches Material polarisiert wird, wenn ein elektrisches Feld angelegt wird}{}
|
\desc[german]{Elektrische Suszeptibilität}{Beschreibt wie stark ein dielektrisches Material polarisiert wird, wenn ein elektrisches Feld angelegt wird}{}
|
||||||
\quantity{\chi_\txe}{}{s}
|
\quantity{\chi_\txe}{}{s}
|
||||||
\eq{
|
\eq{
|
||||||
|
@ -37,8 +37,8 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{hamiltonian}
|
\begin{formula}{hamiltonian}
|
||||||
\desc{Hamiltonian of a particle in an electromagnetic field}{In the \fqEqRef{ed:em:gauge:coulomb}}{\QtyRef{mass}, $\hat{p}$ \fqEqRef{qm:se:momentum_operator}, \QtyRef{charge}, \QtyRef{magnetic_vector_potential}, \ConstRef{speed_of_light}}
|
\desc{Hamiltonian of a particle in an electromagnetic field}{In the \fRef{ed:em:gauge:coulomb}}{\QtyRef{mass}, $\hat{p}$ \fRef{qm:se:momentum_operator}, \QtyRef{charge}, \QtyRef{magnetic_vector_potential}, \ConstRef{speed_of_light}}
|
||||||
\desc[german]{Hamiltonian eines Teilchens im elektromagnetischen Feld}{In der \fqEqRef{ed:em:gauge:coulomb}}{}
|
\desc[german]{Hamiltonian eines Teilchens im elektromagnetischen Feld}{In der \fRef{ed:em:gauge:coulomb}}{}
|
||||||
\eq{
|
\eq{
|
||||||
\hat{H} = \frac{1}{2m} \left[\hat{p} \ \frac{e \vec{A}}{c}\right]^2
|
\hat{H} = \frac{1}{2m} \left[\hat{p} \ \frac{e \vec{A}}{c}\right]^2
|
||||||
}
|
}
|
||||||
|
@ -11,8 +11,8 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{magnetic_flux_density}
|
\begin{formula}{magnetic_flux_density}
|
||||||
\desc{Magnetic flux density}{Defined by \fqEqRef{ed:mag:lorentz}}{$\vec{H}$ \qtyRef{magnetic_field_intensity}, $\vec{M}$ \qtyRef{magnetization}, \ConstRef{magnetic_vacuum_permeability}}
|
\desc{Magnetic flux density}{Defined by \fRef{ed:mag:lorentz}}{$\vec{H}$ \qtyRef{magnetic_field_intensity}, $\vec{M}$ \qtyRef{magnetization}, \ConstRef{magnetic_vacuum_permeability}}
|
||||||
\desc[german]{Magnetische Flussdichte}{Definiert über \fqEqRef{ed:mag:lorentz}}{}
|
\desc[german]{Magnetische Flussdichte}{Definiert über \fRef{ed:mag:lorentz}}{}
|
||||||
\quantity{\vec{B}}{\tesla=\volt\s\per\m^2=\newton\per\ampere\m=\kg\per\ampere\s^2}{}
|
\quantity{\vec{B}}{\tesla=\volt\s\per\m^2=\newton\per\ampere\m=\kg\per\ampere\s^2}{}
|
||||||
\eq{\vec{B} = \mu_0 (\vec{H}+\vec{M})}
|
\eq{\vec{B} = \mu_0 (\vec{H}+\vec{M})}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
@ -88,7 +88,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{magnetic_susceptibility}
|
\begin{formula}{magnetic_susceptibility}
|
||||||
\desc{Susceptibility}{}{$\mu_\txr$ \fqEqRef{ed:mag:relative_permeability}}
|
\desc{Susceptibility}{}{$\mu_\txr$ \fRef{ed:mag:relative_permeability}}
|
||||||
\desc[german]{Suszeptibilität}{}{}
|
\desc[german]{Suszeptibilität}{}{}
|
||||||
\eq{\chi_\txm = \pdv{M}{B} = \mu_\txr - 1}
|
\eq{\chi_\txm = \pdv{M}{B} = \mu_\txr - 1}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
@ -101,19 +101,19 @@
|
|||||||
\ger{Magnetische Materialien}
|
\ger{Magnetische Materialien}
|
||||||
]{materials}
|
]{materials}
|
||||||
\begin{formula}{paramagnetism}
|
\begin{formula}{paramagnetism}
|
||||||
\desc{Paramagnetism}{Magnetic field strengthend in the material}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}}
|
\desc{Paramagnetism}{Magnetic field strengthend in the material}{$\mu$ \fRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fRef{ed:mag:magnetic_susceptibility}}
|
||||||
\desc[german]{Paramagnetismus}{Magnetisches Feld wird im Material verstärkt}{}
|
\desc[german]{Paramagnetismus}{Magnetisches Feld wird im Material verstärkt}{}
|
||||||
\eq{\mu_\txr &> 1 \\ \chi_\txm &> 0}
|
\eq{\mu_\txr &> 1 \\ \chi_\txm &> 0}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{diamagnetism}
|
\begin{formula}{diamagnetism}
|
||||||
\desc{Diamagnetism}{Magnetic field expelled from material}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}}
|
\desc{Diamagnetism}{Magnetic field expelled from material}{$\mu$ \fRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fRef{ed:mag:magnetic_susceptibility}}
|
||||||
\desc[german]{Diamagnetismus}{Magnetisches Feld wird aus dem Material gedrängt}{}
|
\desc[german]{Diamagnetismus}{Magnetisches Feld wird aus dem Material gedrängt}{}
|
||||||
\eq{0 < \mu_\txr < 1 \\ -1 < \chi_\txm < 0}
|
\eq{0 < \mu_\txr < 1 \\ -1 < \chi_\txm < 0}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{ferromagnetism}
|
\begin{formula}{ferromagnetism}
|
||||||
\desc{Ferromagnetism}{Magnetic moments align to external magnetic field and stay aligned when the field is turned off (Remanescence)}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}}
|
\desc{Ferromagnetism}{Magnetic moments align to external magnetic field and stay aligned when the field is turned off (Remanescence)}{$\mu$ \fRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fRef{ed:mag:magnetic_susceptibility}}
|
||||||
\desc[german]{Ferromagnetismus}{Magnetische Momente werden am äußeren Feld ausgerichtet und behalten diese ausrichtung auch wenn das Feld abgeschaltet wird (Remanenz)}{}
|
\desc[german]{Ferromagnetismus}{Magnetische Momente werden am äußeren Feld ausgerichtet und behalten diese ausrichtung auch wenn das Feld abgeschaltet wird (Remanenz)}{}
|
||||||
\eq{
|
\eq{
|
||||||
\mu_\txr \gg 1
|
\mu_\txr \gg 1
|
||||||
|
@ -79,7 +79,7 @@
|
|||||||
|
|
||||||
|
|
||||||
\begin{formula}{intensity}
|
\begin{formula}{intensity}
|
||||||
\desc{Electromagnetic radiation intensity}{Surface power density}{$S$ \fqEqRef{ed:poynting}}
|
\desc{Electromagnetic radiation intensity}{Surface power density}{$S$ \fRef{ed:poynting}}
|
||||||
\desc[german]{Elektromagnetische Strahlungsintensität}{Flächenleistungsdichte}{}
|
\desc[german]{Elektromagnetische Strahlungsintensität}{Flächenleistungsdichte}{}
|
||||||
\quantity{I}{\watt\per\m^2=\k\per\s^3}{s}
|
\quantity{I}{\watt\per\m^2=\k\per\s^3}{s}
|
||||||
\eq{I = \abs{\braket{S}_t}}
|
\eq{I = \abs{\braket{S}_t}}
|
||||||
|
26
src/main.tex
26
src/main.tex
@ -20,7 +20,7 @@
|
|||||||
% FORMATING
|
% FORMATING
|
||||||
\usepackage{float} % float barrier
|
\usepackage{float} % float barrier
|
||||||
\usepackage{subcaption} % subfigures
|
\usepackage{subcaption} % subfigures
|
||||||
\usepackage[hidelinks]{hyperref} % hyperrefs for \fqEqRef, \qtyRef, etc
|
\usepackage[hidelinks]{hyperref} % hyperrefs for \fRef, \qtyRef, etc
|
||||||
\usepackage[shortlabels]{enumitem} % easily change enum symbols to i), a. etc
|
\usepackage[shortlabels]{enumitem} % easily change enum symbols to i), a. etc
|
||||||
\setlist{noitemsep} % no vertical space between items
|
\setlist{noitemsep} % no vertical space between items
|
||||||
\setlist[1]{labelindent=\parindent} % < Usually a good idea
|
\setlist[1]{labelindent=\parindent} % < Usually a good idea
|
||||||
@ -87,30 +87,24 @@
|
|||||||
\newcommand{\TODO}[1]{{\color{fg-red}TODO:#1}}
|
\newcommand{\TODO}[1]{{\color{fg-red}TODO:#1}}
|
||||||
\newcommand{\ts}{\textsuperscript}
|
\newcommand{\ts}{\textsuperscript}
|
||||||
|
|
||||||
% Create a text file with relevant labels for vim-completion
|
|
||||||
\newwrite\labelsFile
|
|
||||||
\immediate\openout\labelsFile=\jobname.labels.txt
|
|
||||||
\newcommand\storeLabel[1]{
|
|
||||||
\immediate\write\labelsFile{#1}%
|
|
||||||
}
|
|
||||||
\AtEndDocument{\immediate\closeout\labelsFile}
|
|
||||||
|
|
||||||
\input{circuit.tex}
|
\input{circuit.tex}
|
||||||
\input{util/macros.tex}
|
\input{util/macros.tex}
|
||||||
\input{util/math-macros.tex}
|
\input{util/math-macros.tex}
|
||||||
\input{util/environments.tex} % requires util/translation.tex to be loaded first
|
\input{util/environments.tex} % requires util/translation.tex to be loaded first
|
||||||
\usepackage{pkg/mqlua}
|
\usepackage{mqlua}
|
||||||
\usepackage{pkg/mqfqname}
|
\usepackage{mqfqname}
|
||||||
|
\usepackage{mqref}
|
||||||
% TRANSLATION
|
% TRANSLATION
|
||||||
% \usepackage{translations}
|
% \usepackage{translations}
|
||||||
\usepackage{pkg/mqtranslation}
|
\usepackage{mqtranslation}
|
||||||
\input{util/colorscheme.tex}
|
\input{util/colorscheme.tex}
|
||||||
\input{util/colors.tex} % after colorscheme
|
\input{util/colors.tex} % after colorscheme
|
||||||
|
|
||||||
\usepackage{pkg/mqconstant}
|
\usepackage{mqconstant}
|
||||||
\usepackage{pkg/mqquantity}
|
\usepackage{mqquantity}
|
||||||
\usepackage{pkg/mqformula}
|
\usepackage{mqformula}
|
||||||
\usepackage{pkg/mqperiodictable}
|
\usepackage{mqperiodictable}
|
||||||
|
|
||||||
|
|
||||||
\title{Formelsammlung}
|
\title{Formelsammlung}
|
||||||
@ -127,7 +121,7 @@
|
|||||||
|
|
||||||
\input{util/translations.tex}
|
\input{util/translations.tex}
|
||||||
|
|
||||||
% \InputOnly{comp}
|
% \InputOnly{cm}
|
||||||
|
|
||||||
\Input{math/math}
|
\Input{math/math}
|
||||||
\Input{math/linalg}
|
\Input{math/linalg}
|
||||||
|
@ -170,7 +170,7 @@
|
|||||||
x^{\log(y)} &= y^{\log(x)}
|
x^{\log(y)} &= y^{\log(x)}
|
||||||
}
|
}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{intergral}
|
\begin{formula}{integral}
|
||||||
\desc{Integral of natural logarithm}{}{}
|
\desc{Integral of natural logarithm}{}{}
|
||||||
\desc[german]{Integral des natürluchen Logarithmus}{}{}
|
\desc[german]{Integral des natürluchen Logarithmus}{}{}
|
||||||
\eq{
|
\eq{
|
||||||
@ -253,7 +253,7 @@
|
|||||||
\ger{Liste nützlicher Integrale}
|
\ger{Liste nützlicher Integrale}
|
||||||
]{list}
|
]{list}
|
||||||
% Put links to other integrals here
|
% Put links to other integrals here
|
||||||
\fqEqRef{cal:log:integral}
|
\fRef{math:cal:log:integral}
|
||||||
|
|
||||||
\begin{formula}{arcfunctions}
|
\begin{formula}{arcfunctions}
|
||||||
\desc{Arcsine, arccosine, arctangent}{}{}
|
\desc{Arcsine, arccosine, arctangent}{}{}
|
||||||
|
@ -13,8 +13,8 @@
|
|||||||
|
|
||||||
\begin{formula}{variance}
|
\begin{formula}{variance}
|
||||||
\absLabel
|
\absLabel
|
||||||
\desc{Variance}{Square of the \fqEqRef{math:pt:std-deviation}}{}
|
\desc{Variance}{Square of the \fRef{math:pt:std-deviation}}{}
|
||||||
\desc[german]{Varianz}{Quadrat der\fqEqRef{math:pt:std-deviation}}{}
|
\desc[german]{Varianz}{Quadrat der\fRef{math:pt:std-deviation}}{}
|
||||||
\eq{\sigma^2 = (\Delta \hat{x})^2 = \Braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}}
|
\eq{\sigma^2 = (\Delta \hat{x})^2 = \Braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -172,7 +172,7 @@
|
|||||||
|
|
||||||
\begin{bigformula}{gamma}
|
\begin{bigformula}{gamma}
|
||||||
\absLabel[gamma_distribution]
|
\absLabel[gamma_distribution]
|
||||||
\desc{Gamma Distribution}{with $\lambda$ parameter}{$\Gamma$ \fqEqRef{math:cal:integral:list:gamma}, $\gamma$ \fqEqRef{math:cal:integral:list:lower_incomplete_gamma_function}}
|
\desc{Gamma Distribution}{with $\lambda$ parameter}{$\Gamma$ \fRef{math:cal:integral:list:gamma_function}, $\gamma$ \fRef{math:cal:integral:list:lower_incomplete_gamma_function}}
|
||||||
\desc[german]{Gamma Verteilung}{mit $\lambda$ Parameter}{}
|
\desc[german]{Gamma Verteilung}{mit $\lambda$ Parameter}{}
|
||||||
\begin{minipage}{\distleftwidth}
|
\begin{minipage}{\distleftwidth}
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
@ -191,7 +191,8 @@
|
|||||||
\end{bigformula}
|
\end{bigformula}
|
||||||
|
|
||||||
\begin{bigformula}{beta}
|
\begin{bigformula}{beta}
|
||||||
\desc{Beta Distribution}{}{$\txB$ \fqEqRef{math:cal:integral:list:beta_function} / \fqEqRef{math:cal:integral:list:incomplete_beta_function}}
|
\absLabel[beta_distribution]
|
||||||
|
\desc{Beta Distribution}{}{$\txB$ \fRef{math:cal:integral:list:beta_function} / \fRef{math:cal:integral:list:incomplete_beta_function}}
|
||||||
\desc[german]{Beta Verteilung}{}{}
|
\desc[german]{Beta Verteilung}{}{}
|
||||||
\begin{minipage}{\distleftwidth}
|
\begin{minipage}{\distleftwidth}
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
@ -216,11 +217,12 @@
|
|||||||
\ger{Diskrete Wahrscheinlichkeitsverteilungen}
|
\ger{Diskrete Wahrscheinlichkeitsverteilungen}
|
||||||
]{discrete}
|
]{discrete}
|
||||||
\begin{bigformula}{binomial}
|
\begin{bigformula}{binomial}
|
||||||
|
\absLabel[binomial_distribution]
|
||||||
\desc{Binomial distribution}{}{}
|
\desc{Binomial distribution}{}{}
|
||||||
\desc[german]{Binomialverteilung}{}{}
|
\desc[german]{Binomialverteilung}{}{}
|
||||||
\begin{ttext}
|
\begin{ttext}
|
||||||
\eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \hyperref[sec:pb:distributions:poisson]{poisson distribution}}
|
\eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \absRef[poisson distribution]{poisson_distribution}}
|
||||||
\ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \hyperref[sec:pb:distributions:poisson]{Poissonverteilung}}
|
\ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \absRef[Poissonverteilung]{poisson_distribution}}
|
||||||
\end{ttext}\\
|
\end{ttext}\\
|
||||||
\begin{minipage}{\distleftwidth}
|
\begin{minipage}{\distleftwidth}
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
@ -240,6 +242,7 @@
|
|||||||
\end{bigformula}
|
\end{bigformula}
|
||||||
|
|
||||||
\begin{bigformula}{poisson}
|
\begin{bigformula}{poisson}
|
||||||
|
\absLabel[poisson_distribution]
|
||||||
\desc{Poisson distribution}{}{}
|
\desc{Poisson distribution}{}{}
|
||||||
\desc[german]{Poissonverteilung}{}{}
|
\desc[german]{Poissonverteilung}{}{}
|
||||||
\begin{minipage}{\distleftwidth}
|
\begin{minipage}{\distleftwidth}
|
||||||
@ -296,8 +299,8 @@
|
|||||||
\ger{Fehlerfortpflanzung}
|
\ger{Fehlerfortpflanzung}
|
||||||
]{error}
|
]{error}
|
||||||
\begin{formula}{generalised}
|
\begin{formula}{generalised}
|
||||||
\desc{Generalized error propagation}{}{$V$ \fqEqRef{math:pt:covariance} matrix, $J$ \fqEqRef{math:cal:jacobi-matrix}}
|
\desc{Generalized error propagation}{}{$V$ \fRef{math:pt:covariance} matrix, $J$ \fRef{math:cal:jacobi-matrix}}
|
||||||
\desc[german]{Generalisiertes Fehlerfortpflanzungsgesetz}{$V$ \fqEqRef{math:pt:covariance} Matrix, $J$ \fqEqRef{cal:jacobi-matrix}}{}
|
\desc[german]{Generalisiertes Fehlerfortpflanzungsgesetz}{$V$ \fRef{math:pt:covariance} Matrix, $J$ \fRef{cal:jacobi-matrix}}{}
|
||||||
\eq{V_y = J(x) \cdot V_x \cdot J^{\T} (x)}
|
\eq{V_y = J(x) \cdot V_x \cdot J^{\T} (x)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -308,19 +311,19 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{weight}
|
\begin{formula}{weight}
|
||||||
\desc{Weight}{Variance is a possible choice for a weight}{$\sigma$ \fqEqRef{math:pt:variance}}
|
\desc{Weight}{Variance is a possible choice for a weight}{$\sigma$ \fRef{math:pt:variance}}
|
||||||
\desc[german]{Gewicht}{Varianz ist eine mögliche Wahl für ein Gewicht}{}
|
\desc[german]{Gewicht}{Varianz ist eine mögliche Wahl für ein Gewicht}{}
|
||||||
\eq{w_i = \frac{1}{\sigma_i^2}}
|
\eq{w_i = \frac{1}{\sigma_i^2}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{weighted-mean}
|
\begin{formula}{weighted-mean}
|
||||||
\desc{Weighted mean}{}{$w_i$ \fqEqRef{math:pt:error:weight}}
|
\desc{Weighted mean}{}{$w_i$ \fRef{math:pt:error:weight}}
|
||||||
\desc[german]{Gewichteter Mittelwert}{}{}
|
\desc[german]{Gewichteter Mittelwert}{}{}
|
||||||
\eq{\overline{x} = \frac{\sum_{i} (x_i w_i)}{\sum_i w_i}}
|
\eq{\overline{x} = \frac{\sum_{i} (x_i w_i)}{\sum_i w_i}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{weighted-mean-error}
|
\begin{formula}{weighted-mean-error}
|
||||||
\desc{Variance of weighted mean}{}{$w_i$ \fqEqRef{math:pt:error:weight}}
|
\desc{Variance of weighted mean}{}{$w_i$ \fRef{math:pt:error:weight}}
|
||||||
\desc[german]{Varianz des gewichteten Mittelwertes}{}{}
|
\desc[german]{Varianz des gewichteten Mittelwertes}{}{}
|
||||||
\eq{\sigma^2_{\overline{x}} = \frac{1}{\sum_i w_i}}
|
\eq{\sigma^2_{\overline{x}} = \frac{1}{\sum_i w_i}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
@ -330,18 +333,18 @@
|
|||||||
\ger{Maximum likelihood Methode}
|
\ger{Maximum likelihood Methode}
|
||||||
]{mle}
|
]{mle}
|
||||||
\begin{formula}{likelihood}
|
\begin{formula}{likelihood}
|
||||||
\desc{Likelihood function}{Likelihood of observing $x$ when parameter is $\theta$\\in general not normalized!}{$\rho$ \fqEqRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ depending on parameter $\theta$, $\Theta$ parameter space}
|
\desc{Likelihood function}{Likelihood of observing $x$ when parameter is $\theta$\\in general not normalized!}{$\rho$ \fRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ depending on parameter $\theta$, $\Theta$ parameter space}
|
||||||
\desc[german]{Likelihood Funktion}{"Plausibilität" $x$ zu messen, wenn der Parameter $\theta$ ist\\nicht normalisiert!}{$\rho$ \fqEqRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ hängt ab von Parameter $\theta$, $\Theta$ Parameterraum}
|
\desc[german]{Likelihood Funktion}{"Plausibilität" $x$ zu messen, wenn der Parameter $\theta$ ist\\nicht normalisiert!}{$\rho$ \fRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ hängt ab von Parameter $\theta$, $\Theta$ Parameterraum}
|
||||||
\eq{L:\Theta \rightarrow [0,1], \quad \theta \mapsto \rho(x|\theta)}
|
\eq{L:\Theta \rightarrow [0,1], \quad \theta \mapsto \rho(x|\theta)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{likelihood_independant}
|
\begin{formula}{likelihood_independant}
|
||||||
\desc{Likelihood function}{for independent and identically distributed random variables}{$x_i$ $n$ random variables, $\rho$ \fqEqRef{math:pt:pdf} $x\mapsto f(x|\theta)$ depending on parameter $\theta$}
|
\desc{Likelihood function}{for independent and identically distributed random variables}{$x_i$ $n$ random variables, $\rho$ \fRef{math:pt:pdf} $x\mapsto f(x|\theta)$ depending on parameter $\theta$}
|
||||||
\desc[german]{Likelihood function}{für unabhängig und identisch verteilte Zufallsvariablen}{$x_i$ $n$ Zufallsvariablen$\rho$ \fqEqRef{math:pt:pdf} $x\mapsto f(x|\theta)$ hängt ab von Parameter $\theta$}
|
\desc[german]{Likelihood function}{für unabhängig und identisch verteilte Zufallsvariablen}{$x_i$ $n$ Zufallsvariablen$\rho$ \fRef{math:pt:pdf} $x\mapsto f(x|\theta)$ hängt ab von Parameter $\theta$}
|
||||||
\eq{L(\theta) = \prod_{i=1}^n f(x_i;\theta)}
|
\eq{L(\theta) = \prod_{i=1}^n f(x_i;\theta)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{maximum_likelihood_estimate}
|
\begin{formula}{maximum_likelihood_estimate}
|
||||||
\desc{Maximum likelihood estimate (MLE)}{Paramater for which outcome is most likely}{$L$ \fqEqRef{pt:mle:likelihood}, $\theta$ parameter of a \fqEqRef{math:pt:pdf}}
|
\desc{Maximum likelihood estimate (MLE)}{Paramater for which outcome is most likely}{$L$ \fRef{math:pt:mle:likelihood}, $\theta$ parameter of a \fRef{math:pt:pdf}}
|
||||||
\desc[german]{Maximum likelihood-Schätzung (MLE)}{Paramater, für den das Ergebnis am Wahrscheinlichsten ist}{$L$ \fqEqRef{math:pt:mle:likelihood}, $\theta$ Parameter einer \fqEqRef{math:pt:pdf}}
|
\desc[german]{Maximum likelihood-Schätzung (MLE)}{Paramater, für den das Ergebnis am Wahrscheinlichsten ist}{$L$ \fRef{math:pt:mle:likelihood}, $\theta$ Parameter einer \fRef{math:pt:pdf}}
|
||||||
\eq{\theta_\text{ML} &= \argmax_\theta L(\theta)\\ &= \argmax_\theta \log \big(L(\theta)\big)}
|
\eq{\theta_\text{ML} &= \argmax_\theta L(\theta)\\ &= \argmax_\theta \log \big(L(\theta)\big)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -356,13 +359,13 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{evidence}
|
\begin{formula}{evidence}
|
||||||
\desc{Evidence}{}{$p(\mathcal{D}|\theta)$ \fqEqRef{math:pt:mle:likelihood}, $p(\theta)$ \fqEqRef{math:pt:bayesian:prior}, $\mathcal{D}$ data set}
|
\desc{Evidence}{}{$p(\mathcal{D}|\theta)$ \fRef{math:pt:mle:likelihood}, $p(\theta)$ \fRef{math:pt:bayesian:prior}, $\mathcal{D}$ data set}
|
||||||
% \desc[german]{}{}{}
|
% \desc[german]{}{}{}
|
||||||
\eq{p(\mathcal{D}) = \int\d\theta \,p(\mathcal{D}|\theta)\,p(\theta)}
|
\eq{p(\mathcal{D}) = \int\d\theta \,p(\mathcal{D}|\theta)\,p(\theta)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{theorem}
|
\begin{formula}{theorem}
|
||||||
\desc{Bayes' theorem}{}{$p(\theta|\mathcal{D})$ posterior distribution, $p(\mathcal{D}|\theta)$ \fqEqRef{math:pt:mle:likelihood}, $p(\theta)$ \fqEqRef{math:pt:bayesian:prior}, $p(\mathcal{D})$ \fqEqRef{math:pt:bayesian:evidence}, $\mathcal{D}$ data set}
|
\desc{Bayes' theorem}{}{$p(\theta|\mathcal{D})$ posterior distribution, $p(\mathcal{D}|\theta)$ \fRef{math:pt:mle:likelihood}, $p(\theta)$ \fRef{math:pt:bayesian:prior}, $p(\mathcal{D})$ \fRef{math:pt:bayesian:evidence}, $\mathcal{D}$ data set}
|
||||||
\desc[german]{Satz von Bayes}{}{}
|
\desc[german]{Satz von Bayes}{}{}
|
||||||
\eq{p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)\,p(\theta)}{p(\mathcal{D})}}
|
\eq{p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)\,p(\theta)}{p(\mathcal{D})}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
@ -54,18 +54,16 @@
|
|||||||
% Class defining commands shared by all formula environments
|
% Class defining commands shared by all formula environments
|
||||||
% 1: key
|
% 1: key
|
||||||
\newenvironment{formulainternal}[1]{
|
\newenvironment{formulainternal}[1]{
|
||||||
% TODO refactor, using fqname@enter and leave
|
\mqfqname@enter{#1}
|
||||||
% TODO There is no real need to differentiate between fqnames and sections,
|
|
||||||
% TODO thus change the meaning of f: from formula to fqname and change sec to f
|
|
||||||
% [1]: language
|
% [1]: language
|
||||||
% 2: name
|
% 2: name
|
||||||
% 3: description
|
% 3: description
|
||||||
% 4: definitions/links
|
% 4: definitions/links
|
||||||
\newcommand{\desc}[4][english]{
|
\newcommand{\desc}[4][english]{
|
||||||
% language, name, description, definitions
|
% language, name, description, definitions
|
||||||
\ifblank{##2}{}{\dt[#1]{##1}{##2}}
|
\ifblank{##2}{}{\dt{##1}{##2}}
|
||||||
\ifblank{##3}{}{\dt[#1_desc]{##1}{##3}}
|
\ifblank{##3}{}{\dt[desc]{##1}{##3}}
|
||||||
\ifblank{##4}{}{\dt[#1_defs]{##1}{##4}}
|
\ifblank{##4}{}{\dt[defs]{##1}{##4}}
|
||||||
}
|
}
|
||||||
\directlua{n_formulaEntries = 0}
|
\directlua{n_formulaEntries = 0}
|
||||||
|
|
||||||
@ -73,12 +71,12 @@
|
|||||||
% [1]: label to use
|
% [1]: label to use
|
||||||
% 2: Abbreviation to use for references
|
% 2: Abbreviation to use for references
|
||||||
\newcommand{\abbrLabel}[2][#1]{
|
\newcommand{\abbrLabel}[2][#1]{
|
||||||
\abbrLink[f:\fqname:#1]{##1}{##2}
|
\abbrLink[\fqname]{##1}{##2}
|
||||||
}
|
}
|
||||||
% makes this formula referencable with \absRef{<name>}
|
% makes this formula referencable with \absRef{<name>}
|
||||||
% [1]: label to use
|
% [1]: label to use
|
||||||
\newcommand{\absLabel}[1][#1]{
|
\newcommand{\absLabel}[1][#1]{
|
||||||
\absLink[\fqname:#1]{f:\fqname:#1}{##1}
|
\absLink[\fqname]{\fqname}{##1}
|
||||||
}
|
}
|
||||||
|
|
||||||
\newcommand{\newFormulaEntry}{
|
\newcommand{\newFormulaEntry}{
|
||||||
@ -98,18 +96,6 @@
|
|||||||
##1
|
##1
|
||||||
\end{align}
|
\end{align}
|
||||||
}
|
}
|
||||||
% 1: equation for alignat environment
|
|
||||||
\newcommand{\eqAlignedAt}[2]{
|
|
||||||
\newFormulaEntry
|
|
||||||
\begin{flalign}%
|
|
||||||
\TODO{\text{remove macro}}
|
|
||||||
% dont place label when one is provided
|
|
||||||
% \IfSubStringInString{label}\unexpanded{#3}{}{
|
|
||||||
% \label{eq:#1}
|
|
||||||
% }
|
|
||||||
##1%
|
|
||||||
\end{flalign}
|
|
||||||
}
|
|
||||||
% 1: equation for flalign environment
|
% 1: equation for flalign environment
|
||||||
\newcommand{\eqFLAlign}[2]{
|
\newcommand{\eqFLAlign}[2]{
|
||||||
\newFormulaEntry
|
\newFormulaEntry
|
||||||
@ -127,7 +113,7 @@
|
|||||||
\includegraphics{##1}
|
\includegraphics{##1}
|
||||||
}
|
}
|
||||||
% 1: content for the ttext environment
|
% 1: content for the ttext environment
|
||||||
\newcommand{\ttxt}[2][#1:desc]{
|
\newcommand{\ttxt}[2][text]{
|
||||||
\newFormulaEntry
|
\newFormulaEntry
|
||||||
\begin{ttext}[##1]
|
\begin{ttext}[##1]
|
||||||
##2
|
##2
|
||||||
@ -141,6 +127,9 @@
|
|||||||
\newFormulaEntry
|
\newFormulaEntry
|
||||||
\quantity@print{#1}
|
\quantity@print{#1}
|
||||||
}
|
}
|
||||||
|
\newcommand{\hiddenQuantity}[3]{%
|
||||||
|
\quantity@new[\fqname]{#1}{##1}{##2}{##3}
|
||||||
|
}
|
||||||
|
|
||||||
% must be used only in third argument of "constant" command
|
% must be used only in third argument of "constant" command
|
||||||
% 1: value
|
% 1: value
|
||||||
@ -159,20 +148,21 @@
|
|||||||
\newFormulaEntry
|
\newFormulaEntry
|
||||||
\constant@print{#1}
|
\constant@print{#1}
|
||||||
}
|
}
|
||||||
}{}
|
}{
|
||||||
|
\mqfqname@leave
|
||||||
|
}
|
||||||
|
|
||||||
\newenvironment{formula}[1]{
|
\newenvironment{formula}[1]{
|
||||||
\begin{formulainternal}{#1}
|
\begin{formulainternal}{#1}
|
||||||
|
|
||||||
\begingroup
|
\begingroup
|
||||||
\label{f:\fqname:#1}
|
\mqfqname@label
|
||||||
\storeLabel{\fqname:#1} % write label witout type prefix to aux file
|
|
||||||
\par\noindent\ignorespaces
|
\par\noindent\ignorespaces
|
||||||
% \textcolor{gray}{\hrule}
|
% \textcolor{gray}{\hrule}
|
||||||
% \vspace{0.5\baselineskip}
|
% \vspace{0.5\baselineskip}
|
||||||
\NameWithDescription[\descwidth]{\fqname:#1}{\fqname:#1_desc}
|
\NameWithDescription[\descwidth]{\fqname}{\fqname:desc}
|
||||||
\hfill
|
\hfill
|
||||||
\begin{ContentBoxWithExplanation}{\fqname:#1_defs}
|
\begin{ContentBoxWithExplanation}{\fqname:defs}
|
||||||
}{
|
}{
|
||||||
\end{ContentBoxWithExplanation}
|
\end{ContentBoxWithExplanation}
|
||||||
\endgroup
|
\endgroup
|
||||||
@ -188,33 +178,28 @@
|
|||||||
\newenvironment{bigformula}[1]{
|
\newenvironment{bigformula}[1]{
|
||||||
\begin{formulainternal}{#1}
|
\begin{formulainternal}{#1}
|
||||||
|
|
||||||
\edef\tmpFormulaName{#1}
|
|
||||||
\par\noindent
|
\par\noindent
|
||||||
\begin{minipage}{\textwidth} % using a minipage to now allow line breaks within the bigformula
|
\begin{minipage}{\textwidth} % using a minipage to now allow line breaks within the bigformula
|
||||||
\label{f:\fqname:#1}
|
\mqfqname@label
|
||||||
\storeLabel{\fqname:#1} % write label witout type prefix to aux file
|
|
||||||
\par\noindent\ignorespaces
|
\par\noindent\ignorespaces
|
||||||
% \textcolor{gray}{\hrule}
|
% \textcolor{gray}{\hrule}
|
||||||
% \vspace{0.5\baselineskip}
|
% \vspace{0.5\baselineskip}
|
||||||
\textbf{
|
\textbf{
|
||||||
\IfTranslationExists{\fqname:#1}{%
|
\raggedright
|
||||||
\raggedright
|
\GT{\fqname}
|
||||||
\GT{\fqname:#1}
|
|
||||||
}{\detokenize{#1}}
|
|
||||||
}
|
}
|
||||||
\IfTranslationExists{\fqname:#1_desc}{
|
\IfTranslationExists{\fqname:desc}{
|
||||||
: {\color{fg1} \GT{\fqname:#1_desc}}
|
: {\color{fg1} \GT{\fqname:desc}}
|
||||||
}{}
|
}{}
|
||||||
\hfill
|
\hfill
|
||||||
\par
|
\par
|
||||||
}{
|
}{
|
||||||
\edef\tmpContentDefs{\fqname:\tmpFormulaName_defs}
|
\IfTranslationExists{\fqname:defs}{%
|
||||||
\IfTranslationExists{\tmpContentDefs}{%
|
|
||||||
\smartnewline
|
\smartnewline
|
||||||
\noindent
|
\noindent
|
||||||
\begingroup
|
\begingroup
|
||||||
\color{fg1}
|
\color{fg1}
|
||||||
\GT{\tmpContentDefs}
|
\GT{\fqname:defs}
|
||||||
% \edef\temp{\GT{#1_defs}}
|
% \edef\temp{\GT{#1_defs}}
|
||||||
% \expandafter\StrSubstitute\expandafter{\temp}{:}{\\}
|
% \expandafter\StrSubstitute\expandafter{\temp}{:}{\\}
|
||||||
\endgroup
|
\endgroup
|
||||||
@ -230,7 +215,6 @@
|
|||||||
\newenvironment{hiddenformula}[1]{
|
\newenvironment{hiddenformula}[1]{
|
||||||
\begin{formulainternal}{#1}
|
\begin{formulainternal}{#1}
|
||||||
\renewcommand{\eq}[1]{}
|
\renewcommand{\eq}[1]{}
|
||||||
\renewcommand{\eqAlignedAt}[2]{}
|
|
||||||
\renewcommand{\eqFLAlign}[2]{}
|
\renewcommand{\eqFLAlign}[2]{}
|
||||||
\renewcommand{\fig}[2][1.0]{}
|
\renewcommand{\fig}[2][1.0]{}
|
||||||
\renewcommand{\ttxt}[2][#1:desc]{}
|
\renewcommand{\ttxt}[2][#1:desc]{}
|
||||||
|
@ -3,51 +3,70 @@
|
|||||||
\RequirePackage{etoolbox}
|
\RequirePackage{etoolbox}
|
||||||
|
|
||||||
|
|
||||||
\directlua{
|
\begin{luacode}
|
||||||
sections = sections or {}
|
sections = sections or {}
|
||||||
|
|
||||||
function fqnameEnter(name)
|
function fqnameEnter(name)
|
||||||
table.insert(sections, name)
|
table.insert(sections, name)
|
||||||
% table.sort(sections)
|
-- table.sort(sections)
|
||||||
end
|
end
|
||||||
|
|
||||||
function fqnameLeave()
|
function fqnameLeave()
|
||||||
if table.getn(sections) > 0 then
|
if table.getn(sections) > 0 then
|
||||||
table.remove(sections)
|
table.remove(sections)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
function fqnameGet()
|
function fqnameGet()
|
||||||
return table.concat(sections, ":")
|
return table.concat(sections, ":")
|
||||||
end
|
end
|
||||||
|
|
||||||
function fqnameLeaveOnlyFirstN(n)
|
function fqnameLeaveOnlyFirstN(n)
|
||||||
if n >= 0 then
|
if n >= 0 then
|
||||||
while table.getn(sections) > n do
|
while table.getn(sections) > n do
|
||||||
table.remove(sections)
|
table.remove(sections)
|
||||||
|
end
|
||||||
end
|
end
|
||||||
end
|
|
||||||
end
|
end
|
||||||
}
|
\end{luacode}
|
||||||
|
|
||||||
|
\begin{luacode}
|
||||||
|
function fqnameGetDepth()
|
||||||
|
return table.getn(sections)
|
||||||
|
end
|
||||||
|
|
||||||
|
function fqnameGetN(N)
|
||||||
|
if N == nil or table.getn(sections) < N then
|
||||||
|
luatexbase.module_warning('fqnameGetN', 'N = ' .. N .. ' is larger then the table length')
|
||||||
|
return "?!?"
|
||||||
|
end
|
||||||
|
s = sections[1]
|
||||||
|
for i = 2, N do
|
||||||
|
s = s .. ":" .. sections[i]
|
||||||
|
end
|
||||||
|
return s
|
||||||
|
end
|
||||||
|
\end{luacode}
|
||||||
|
|
||||||
\newcommand{\mqfqname@update}{%
|
\newcommand{\mqfqname@update}{%
|
||||||
\edef\fqname{\luavar{fqnameGet()}}
|
\edef\fqname{\luavar{fqnameGet()}}
|
||||||
}
|
}
|
||||||
\newcommand{\mqfqname@enter}[1]{%
|
\newcommand{\mqfqname@enter}[1]{%
|
||||||
\directlua{fqnameEnter("\luaescapestring{#1}")}%
|
\directlua{fqnameEnter("\luaescapestring{#1}")}%
|
||||||
\mqfqname@update
|
\mqfqname@update
|
||||||
}
|
}
|
||||||
\newcommand{\mqfqname@leave}{%
|
\newcommand{\mqfqname@leave}{%
|
||||||
\directlua{fqnameLeave()}%
|
\directlua{fqnameLeave()}%
|
||||||
\mqfqname@update
|
\mqfqname@update
|
||||||
}
|
}
|
||||||
|
|
||||||
\newcommand{\mqfqname@leaveOnlyFirstN}[1]{%
|
\newcommand{\mqfqname@leaveOnlyFirstN}[1]{%
|
||||||
\directlua{fqnameLeaveOnlyFirstN(#1)}%
|
\directlua{fqnameLeaveOnlyFirstN(#1)}%
|
||||||
}
|
}
|
||||||
|
|
||||||
% SECTIONING
|
% SECTIONING
|
||||||
% start <section>, get heading from translation, set label
|
% start <section>, get heading from translation, set label
|
||||||
% secFqname is the fully qualified name of sections: the keys of all previous sections joined with a ':'
|
% fqname is the fully qualified name of all sections and formulas, the keys of all previous sections joined with a ':'
|
||||||
% fqname is secFqname:<key> where <key> is the key/id of some environment, like formula
|
% fqname is secFqname:<key> where <key> is the key/id of some environment, like formula
|
||||||
% [1]: code to run after setting \fqname, but before the \part, \section etc
|
% [1]: code to run after setting \fqname, but before the \part, \section etc
|
||||||
% 2: key
|
% 2: key
|
||||||
@ -55,164 +74,36 @@
|
|||||||
\newpage
|
\newpage
|
||||||
\mqfqname@leaveOnlyFirstN{0}
|
\mqfqname@leaveOnlyFirstN{0}
|
||||||
\mqfqname@enter{#2}
|
\mqfqname@enter{#2}
|
||||||
\edef\secFqname{\fqname}
|
|
||||||
#1
|
#1
|
||||||
% this is necessary so that \part/\section... takes the fully expanded string. Otherwise the pdf toc will have just the fqname
|
% this is necessary so that \part/\section... takes the fully expanded string. Otherwise the pdf toc will have just the fqname
|
||||||
\edef\fqnameText{\GT{\fqname}}
|
\edef\fqnameText{\GT{\fqname}}
|
||||||
\part{\fqnameText}
|
\part{\fqnameText}
|
||||||
\label{sec:\fqname}
|
\mqfqname@label
|
||||||
}
|
}
|
||||||
\newcommand{\Section}[2][]{
|
\newcommand{\Section}[2][]{
|
||||||
\mqfqname@leaveOnlyFirstN{1}
|
\mqfqname@leaveOnlyFirstN{1}
|
||||||
\mqfqname@enter{#2}
|
\mqfqname@enter{#2}
|
||||||
\edef\secFqname{\fqname}
|
|
||||||
#1
|
#1
|
||||||
\edef\fqnameText{\GT{\fqname}}
|
\edef\fqnameText{\GT{\fqname}}
|
||||||
\section{\fqnameText}
|
\section{\fqnameText}
|
||||||
\label{sec:\fqname}
|
\mqfqname@label
|
||||||
}
|
}
|
||||||
\newcommand{\Subsection}[2][]{
|
\newcommand{\Subsection}[2][]{
|
||||||
\mqfqname@leaveOnlyFirstN{2}
|
\mqfqname@leaveOnlyFirstN{2}
|
||||||
\mqfqname@enter{#2}
|
\mqfqname@enter{#2}
|
||||||
\edef\secFqname{\fqname}
|
|
||||||
#1
|
#1
|
||||||
\edef\fqnameText{\GT{\fqname}}
|
\edef\fqnameText{\GT{\fqname}}
|
||||||
\subsection{\fqnameText}
|
\subsection{\fqnameText}
|
||||||
\label{sec:\fqname}
|
\mqfqname@label
|
||||||
}
|
}
|
||||||
\newcommand{\Subsubsection}[2][]{
|
\newcommand{\Subsubsection}[2][]{
|
||||||
\mqfqname@leaveOnlyFirstN{3}
|
\mqfqname@leaveOnlyFirstN{3}
|
||||||
\mqfqname@enter{#2}
|
\mqfqname@enter{#2}
|
||||||
\edef\secFqname{\fqname}
|
|
||||||
#1
|
#1
|
||||||
\edef\fqnameText{\GT{\fqname}}
|
\edef\fqnameText{\GT{\fqname}}
|
||||||
\subsubsection{\fqnameText}
|
\subsubsection{\fqnameText}
|
||||||
\label{sec:\fqname}
|
\mqfqname@label
|
||||||
}
|
}
|
||||||
\edef\fqname{NULL}
|
\edef\fqname{NULL}
|
||||||
|
|
||||||
\newcommand\printFqName{\expandafter\detokenize\expandafter{\fqname}}
|
\newcommand\printFqName{\expandafter\detokenize\expandafter{\fqname}}
|
||||||
|
|
||||||
|
|
||||||
\newcommand\luaDoubleFieldValue[3]{%
|
|
||||||
\directlua{
|
|
||||||
if #1 \string~= nil and #1[#2] \string~= nil and #1[#2][#3] \string~= nil then
|
|
||||||
tex.sprint(#1[#2][#3])
|
|
||||||
return
|
|
||||||
end
|
|
||||||
luatexbase.module_warning('luaDoubleFieldValue', 'Invalid indices to `#1`: `#2` and `#3`');
|
|
||||||
tex.sprint("???")
|
|
||||||
}%
|
|
||||||
}
|
|
||||||
% REFERENCES
|
|
||||||
% All xyzRef commands link to the key using the translated name
|
|
||||||
% Uppercase (XyzRef) commands have different link texts, but the same link target
|
|
||||||
% 1: key/fully qualified name (without qty/eq/sec/const/el... prefix)
|
|
||||||
|
|
||||||
% Equations/Formulas
|
|
||||||
% \newrobustcmd{\fqEqRef}[1]{%
|
|
||||||
\newrobustcmd{\fqEqRef}[1]{%
|
|
||||||
% \edef\fqeqrefname{\GT{#1}}
|
|
||||||
% \hyperref[eq:#1]{\fqeqrefname}
|
|
||||||
\hyperref[f:#1]{\GT{#1}}%
|
|
||||||
}
|
|
||||||
% Formula in the current section
|
|
||||||
\newrobustcmd{\secEqRef}[1]{%
|
|
||||||
% \edef\fqeqrefname{\GT{#1}}
|
|
||||||
% \hyperref[eq:#1]{\fqeqrefname}
|
|
||||||
\hyperref[f:\secFqname:#1]{\GT{\secFqname:#1}}%
|
|
||||||
}
|
|
||||||
|
|
||||||
% Section
|
|
||||||
% <name>
|
|
||||||
\newrobustcmd{\fqSecRef}[1]{%
|
|
||||||
\hyperref[sec:#1]{\GT{#1}}%
|
|
||||||
}
|
|
||||||
% Quantities
|
|
||||||
% <symbol>
|
|
||||||
\newrobustcmd{\qtyRef}[1]{%
|
|
||||||
\edef\tempname{\luaDoubleFieldValue{quantities}{"#1"}{"linkto"}}%
|
|
||||||
\hyperref[qty:#1]{\GT{\tempname:#1}}%
|
|
||||||
}
|
|
||||||
% <symbol> <name>
|
|
||||||
\newrobustcmd{\QtyRef}[1]{%
|
|
||||||
$\luaDoubleFieldValue{quantities}{"#1"}{"symbol"}$ \qtyRef{#1}%
|
|
||||||
}
|
|
||||||
% Constants
|
|
||||||
% <name>
|
|
||||||
\newrobustcmd{\constRef}[1]{%
|
|
||||||
\edef\tempname{\luaDoubleFieldValue{constants}{"#1"}{"linkto"}}%
|
|
||||||
\hyperref[const:#1]{\GT{\tempname:#1}}%
|
|
||||||
}
|
|
||||||
% <symbol> <name>
|
|
||||||
\newrobustcmd{\ConstRef}[1]{%
|
|
||||||
$\luaDoubleFieldValue{constants}{"#1"}{"symbol"}$ \constRef{#1}%
|
|
||||||
}
|
|
||||||
% Element from periodic table
|
|
||||||
% <symbol>
|
|
||||||
\newrobustcmd{\elRef}[1]{%
|
|
||||||
\hyperref[el:#1]{{\color{fg0}#1}}%
|
|
||||||
}
|
|
||||||
% <name>
|
|
||||||
\newrobustcmd{\ElRef}[1]{%
|
|
||||||
\hyperref[el:#1]{\GT{el:#1}}%
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% "LABELS"
|
|
||||||
% These currently do not place a label,
|
|
||||||
% instead they provide an alternative way to reference an existing label
|
|
||||||
\directLuaAux{
|
|
||||||
absLabels = absLabels or {}
|
|
||||||
abbrLabels = abbrLabel or {}
|
|
||||||
}
|
|
||||||
% [1]: translation key, if different from target
|
|
||||||
% 2: target (fqname to point to)
|
|
||||||
% 3: key
|
|
||||||
\newcommand{\absLink}[3][\relax]{
|
|
||||||
\directLuaAuxExpand{
|
|
||||||
absLabels["#3"] = {}
|
|
||||||
absLabels["#3"]["fqname"] = [[#2]]
|
|
||||||
absLabels["#3"]["translation"] = [[#1]] or [[#2]]
|
|
||||||
% if [[#1]] == "" then
|
|
||||||
% absLabels["#3"]["translation"] = [[#2]]
|
|
||||||
% else
|
|
||||||
% absLabels["#3"]["translation"] = [[#1]]
|
|
||||||
% end
|
|
||||||
}
|
|
||||||
}
|
|
||||||
% [1]: target (fqname to point to)
|
|
||||||
% 2: key
|
|
||||||
% 3: label (abbreviation)
|
|
||||||
\newcommand{\abbrLink}[3][sec:\fqname]{
|
|
||||||
\directLuaAuxExpand{
|
|
||||||
abbrLabels["#2"] = {}
|
|
||||||
abbrLabels["#2"]["abbr"] = [[#3]]
|
|
||||||
abbrLabels["#2"]["fqname"] = [[#1]]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
% [1]: text
|
|
||||||
% 2: key
|
|
||||||
\newcommand{\absRef}[2][]{%
|
|
||||||
\directlua{
|
|
||||||
if absLabels["#2"] == nil then
|
|
||||||
tex.sprint(string.sanitize(\luastring{#2}) .. "???")
|
|
||||||
else
|
|
||||||
if \luastring{#1} == "" then %-- if [#1] is not given, use translation of key as text, else us given text
|
|
||||||
tex.sprint("\\hyperref[" .. absLabels["#2"]["fqname"] .. "]{\\GT{" .. absLabels["#2"]["translation"] .. "}}")
|
|
||||||
else
|
|
||||||
tex.sprint("\\hyperref[" .. absLabels["#2"]["fqname"] .. "]{\luaescapestring{#1}}")
|
|
||||||
end
|
|
||||||
end
|
|
||||||
}
|
|
||||||
}
|
|
||||||
\newrobustcmd{\abbrRef}[1]{%
|
|
||||||
\directlua{
|
|
||||||
if abbrLabels["#1"] == nil then
|
|
||||||
tex.sprint(string.sanitize(\luastring{#1}) .. "???")
|
|
||||||
else
|
|
||||||
tex.sprint("\\hyperref[" .. abbrLabels["#1"]["fqname"] .. "]{" .. abbrLabels["#1"]["abbr"] .. "}")
|
|
||||||
end
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@ -6,13 +6,17 @@
|
|||||||
\newcommand\luavar[1]{\directlua{tex.sprint(#1)}}
|
\newcommand\luavar[1]{\directlua{tex.sprint(#1)}}
|
||||||
|
|
||||||
\begin{luacode*}
|
\begin{luacode*}
|
||||||
function warning(message)
|
function warning(fname, message)
|
||||||
-- Get the current file name and line number
|
-- Get the current file name and line number
|
||||||
-- local info = debug.getinfo(2, "Sl")
|
-- local info = debug.getinfo(2, "Sl")
|
||||||
-- local file_name = info.source
|
-- local file_name = info.source
|
||||||
-- local line_number = info.currentline
|
-- local line_number = info.currentline
|
||||||
-- tex.error(string.format("Warning %s at %s:%d", message, file_name, line_number))
|
-- tex.error(string.format("Warning %s at %s:%d", message, file_name, line_number))
|
||||||
texio.write("\nWARNING: " .. message .. "\n")
|
if message == nil then
|
||||||
|
texio.write("\nWARNING: " .. fname .. "\n")
|
||||||
|
else
|
||||||
|
texio.write("\nWARNING: in " .. fname .. ":" .. message .. "\n")
|
||||||
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
OUTDIR = os.getenv("TEXMF_OUTPUT_DIRECTORY") or "."
|
OUTDIR = os.getenv("TEXMF_OUTPUT_DIRECTORY") or "."
|
||||||
@ -22,17 +26,15 @@ function fileExists(file)
|
|||||||
if f then f:close() end
|
if f then f:close() end
|
||||||
return f ~= nil
|
return f ~= nil
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
warning("TEST")
|
warning("TEST")
|
||||||
\end{luacode*}
|
\end{luacode*}
|
||||||
|
|
||||||
% units: siunitx units arguments, possibly chained by '='
|
% units: siunitx units arguments, possibly chained by '='
|
||||||
% returns: 1\si{unit1} = 1\si{unit2} = ...
|
% returns: 1\si{unit1} = 1\si{unit2} = ...
|
||||||
\directlua{
|
\begin{luacode*}
|
||||||
function split_and_print_units(units)
|
function split_and_print_units(units)
|
||||||
if units == nil then
|
if units == nil then
|
||||||
tex.print("1")
|
tex.sprint("1")
|
||||||
return
|
return
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -47,20 +49,20 @@ function split_and_print_units(units)
|
|||||||
end
|
end
|
||||||
tex.print(result)
|
tex.print(result)
|
||||||
end
|
end
|
||||||
}
|
\end{luacode*}
|
||||||
|
|
||||||
% STRING UTILITY
|
% STRING UTILITY
|
||||||
\luadirect{
|
\begin{luacode*}
|
||||||
function string.startswith(s, start)
|
function string.startswith(s, start)
|
||||||
return string.sub(s,1,string.len(start)) == start
|
return string.sub(s,1,string.len(start)) == start
|
||||||
end
|
end
|
||||||
|
|
||||||
function string.sanitize(s)
|
function string.sanitize(s)
|
||||||
% -- Use gsub to replace the specified characters with an empty string
|
-- Use gsub to replace the specified characters with an empty string
|
||||||
local result = s:gsub("[_^&]", " ")
|
local result = s:gsub("[_^&]", " ")
|
||||||
return result
|
return result
|
||||||
end
|
end
|
||||||
}
|
\end{luacode*}
|
||||||
% Write directlua command to aux and run it as well
|
% Write directlua command to aux and run it as well
|
||||||
% This one expands the argument in the aux file:
|
% This one expands the argument in the aux file:
|
||||||
\newcommand\directLuaAuxExpand[1]{
|
\newcommand\directLuaAuxExpand[1]{
|
||||||
|
258
src/pkg/mqref.sty
Normal file
258
src/pkg/mqref.sty
Normal file
@ -0,0 +1,258 @@
|
|||||||
|
\ProvidesPackage{mqref}
|
||||||
|
\RequirePackage{mqlua}
|
||||||
|
\RequirePackage{mqfqname}
|
||||||
|
|
||||||
|
\newcommand\luaDoubleFieldValue[3]{%
|
||||||
|
\directlua{
|
||||||
|
if #1 \string~= nil and #1[#2] \string~= nil and #1[#2][#3] \string~= nil then
|
||||||
|
tex.sprint(#1[#2][#3])
|
||||||
|
return
|
||||||
|
end
|
||||||
|
luatexbase.module_warning('luaDoubleFieldValue', 'Invalid indices to `#1`: `#2` and `#3`');
|
||||||
|
tex.sprint("???")
|
||||||
|
}%
|
||||||
|
}
|
||||||
|
|
||||||
|
% LABELS
|
||||||
|
\begin{luacode}
|
||||||
|
-- Contains <label>: <true> for defined labels
|
||||||
|
-- This could later be extended to contain a list of all fqnames that
|
||||||
|
-- reference the label to make a network of references or sth like that
|
||||||
|
labels = labels or {}
|
||||||
|
-- Table of all labels that dont exist but were referenced
|
||||||
|
-- <label>: <fqname where it was referenced>
|
||||||
|
missingLabels = {}
|
||||||
|
-- aux file with labels for completion in vim
|
||||||
|
labelsFilepath = OUTDIR .. "/labels.txt" or "/tmp/labels.txt"
|
||||||
|
labelsLuaFilepath = OUTDIR .. "/labels.lua.txt" or "/tmp/labels.lua.txt"
|
||||||
|
-- aux file for debugging
|
||||||
|
missingLabelsFilepath = OUTDIR .. "/missing-labels.txt" or "/tmp/missing-labels.txt"
|
||||||
|
function labelExists(label)
|
||||||
|
if labels[label] == nil then return false else return true end
|
||||||
|
end
|
||||||
|
function labelSet(label)
|
||||||
|
labels[label] = true
|
||||||
|
end
|
||||||
|
if fileExists(labelsLuaFilepath) then
|
||||||
|
labels = dofile(labelsLuaFilepath) or {}
|
||||||
|
end
|
||||||
|
\end{luacode}
|
||||||
|
|
||||||
|
\begin{luacode*}
|
||||||
|
function serializeKeyValues(tbl)
|
||||||
|
local result = {}
|
||||||
|
-- sort by keys making a new table with keys as values and sorting that
|
||||||
|
for k, v in pairs(tbl) do
|
||||||
|
table.insert(result, k)
|
||||||
|
end
|
||||||
|
table.sort(result)
|
||||||
|
s = ""
|
||||||
|
for i, k in ipairs(result) do
|
||||||
|
s = s .. k .. "\tin\t" .. tbl[k] .. "\n"
|
||||||
|
end
|
||||||
|
return s
|
||||||
|
end
|
||||||
|
|
||||||
|
function dumpTableKeyValues(tableobj, filepath)
|
||||||
|
table.sort(tableobj)
|
||||||
|
local file = io.open(filepath, "w")
|
||||||
|
file:write(serializeKeyValues(tableobj))
|
||||||
|
file:close()
|
||||||
|
end
|
||||||
|
|
||||||
|
function serializeKeys(tbl)
|
||||||
|
local result = {}
|
||||||
|
-- sort by keys making a new table with keys as values and sorting that
|
||||||
|
for k, v in pairs(tbl) do
|
||||||
|
table.insert(result, k)
|
||||||
|
end
|
||||||
|
table.sort(result)
|
||||||
|
return table.concat(result, "\n")
|
||||||
|
end
|
||||||
|
|
||||||
|
function dumpTableKeys(tableobj, filepath)
|
||||||
|
table.sort(tableobj)
|
||||||
|
local file = io.open(filepath, "w")
|
||||||
|
file:write(serializeKeys(tableobj))
|
||||||
|
file:close()
|
||||||
|
end
|
||||||
|
\end{luacode*}
|
||||||
|
|
||||||
|
\AtEndDocument{\directlua{dumpTableKeys(labels, labelsFilepath)}}
|
||||||
|
\AtEndDocument{\directlua{dumpTable(labels, labelsLuaFilepath)}}
|
||||||
|
\AtEndDocument{\directlua{dumpTableKeyValues(missingLabels, missingLabelsFilepath)}}
|
||||||
|
|
||||||
|
% Set a label and write the label to the aux file
|
||||||
|
% [1]
|
||||||
|
\newcommand\mqfqname@label[1][\fqname]{
|
||||||
|
\label{#1}
|
||||||
|
\directlua{labelSet(\luastring{#1})}
|
||||||
|
}
|
||||||
|
|
||||||
|
% REFERENCES
|
||||||
|
% All xyzRef commands link to the key using the translated name
|
||||||
|
% Uppercase (XyzRef) commands have different link texts, but the same link target
|
||||||
|
% 1: key/fully qualified name (without qty/eq/sec/const/el... prefix)
|
||||||
|
|
||||||
|
\begin{luacode*}
|
||||||
|
function hyperref(target, text)
|
||||||
|
local s = ""
|
||||||
|
if labelExists(target) then
|
||||||
|
s = "\\hyperref[" .. target .. "]"
|
||||||
|
else -- mark as missing and referenced in current section
|
||||||
|
missingLabels[target] = fqnameGet()
|
||||||
|
end
|
||||||
|
if text == "" then
|
||||||
|
tex.sprint(s .. "{" .. tlGetFallbackCurrent(target) .. "}")
|
||||||
|
else
|
||||||
|
tex.sprint(s .. "{" .. text .. "}")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
\end{luacode*}
|
||||||
|
|
||||||
|
|
||||||
|
% Equations/Formulas
|
||||||
|
% \newrobustcmd{\fqEqRef}[1]{%
|
||||||
|
\newrobustcmd{\fAbsRef}[2][]{%
|
||||||
|
\directlua{hyperref(\luastring{#2}, \luastring{#1})}%
|
||||||
|
}
|
||||||
|
|
||||||
|
\begin{luacode*}
|
||||||
|
function translateRelativeFqname(target)
|
||||||
|
local relN = 0
|
||||||
|
|
||||||
|
local relTarget = ""
|
||||||
|
warning('translateRelativeFqname', '(target=' .. target .. ') ');
|
||||||
|
for i = 1, #target do
|
||||||
|
local c = target:sub(i,i)
|
||||||
|
if c == ":" then
|
||||||
|
relN = relN + 1
|
||||||
|
else
|
||||||
|
relTarget = target:sub(i,#target)
|
||||||
|
break
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if relN == 0 then
|
||||||
|
return target
|
||||||
|
end
|
||||||
|
|
||||||
|
local N = fqnameGetDepth()
|
||||||
|
local newtarget = fqnameGetN(N - relN + 1) .. ":" .. relTarget
|
||||||
|
warning('translateRelativeFqname', '(relN=' .. relN .. ') ' .. newtarget);
|
||||||
|
return newtarget
|
||||||
|
end
|
||||||
|
\end{luacode*}
|
||||||
|
\newcommand{\fRef}[2][]{
|
||||||
|
\directlua{hyperref(translateRelativeFqname(\luastring{#2}), \luastring{#1})}
|
||||||
|
}
|
||||||
|
% [1]: link text
|
||||||
|
% 2: number of steps to take up
|
||||||
|
% 3: link target relative to the previous fqname section
|
||||||
|
\newcommand{\mqfqname@fRelRef}[3][1]{
|
||||||
|
\directlua{
|
||||||
|
local N = fqnameGetDepth()
|
||||||
|
luatexbase.module_warning('fRelRef', '(N=' .. N .. ') #2');
|
||||||
|
if N > #2 then
|
||||||
|
local upfqname = fqnameGetN(N-#2)
|
||||||
|
hyperref(upfqname .. \luastring{:#3}, \luastring{#1})
|
||||||
|
else
|
||||||
|
luatexbase.module_warning('fUpRef', 'fqname depth (N=' .. N .. ') too low for fUpRef if #1');
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\newcommand{\fThisRef}[2][]{\mqfqname@fRelRef[#1]{0}{#2}}
|
||||||
|
\newcommand{\fUpRef}[2][]{\mqfqname@fRelRef[#1]{1}{#2}}
|
||||||
|
\newcommand{\fUppRef}[2][]{\mqfqname@fRelRef[#1]{2}{#2}}
|
||||||
|
|
||||||
|
% Quantities
|
||||||
|
% <symbol>
|
||||||
|
\newrobustcmd{\qtyRef}[1]{%
|
||||||
|
\edef\tempname{\luaDoubleFieldValue{quantities}{"#1"}{"linkto"}}%
|
||||||
|
\hyperref[qty:#1]{\GT{\tempname:#1}}%
|
||||||
|
}
|
||||||
|
% <symbol> <name>
|
||||||
|
\newrobustcmd{\QtyRef}[1]{%
|
||||||
|
$\luaDoubleFieldValue{quantities}{"#1"}{"symbol"}$ \qtyRef{#1}%
|
||||||
|
}
|
||||||
|
% Constants
|
||||||
|
% <name>
|
||||||
|
\newrobustcmd{\constRef}[1]{%
|
||||||
|
\edef\tempname{\luaDoubleFieldValue{constants}{"#1"}{"linkto"}}%
|
||||||
|
\hyperref[const:#1]{\GT{\tempname:#1}}%
|
||||||
|
}
|
||||||
|
% <symbol> <name>
|
||||||
|
\newrobustcmd{\ConstRef}[1]{%
|
||||||
|
$\luaDoubleFieldValue{constants}{"#1"}{"symbol"}$ \constRef{#1}%
|
||||||
|
}
|
||||||
|
% Element from periodic table
|
||||||
|
% <symbol>
|
||||||
|
\newrobustcmd{\elRef}[1]{%
|
||||||
|
\hyperref[el:#1]{{\color{fg0}#1}}%
|
||||||
|
}
|
||||||
|
% <name>
|
||||||
|
\newrobustcmd{\ElRef}[1]{%
|
||||||
|
\hyperref[el:#1]{\GT{el:#1}}%
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% "LABELS"
|
||||||
|
% These currently do not place a label,
|
||||||
|
% instead they provide an alternative way to reference an existing label
|
||||||
|
\directLuaAux{
|
||||||
|
absLabels = absLabels or {}
|
||||||
|
abbrLabels = abbrLabel or {}
|
||||||
|
}
|
||||||
|
% [1]: translation key, if different from target
|
||||||
|
% 2: target (fqname to point to)
|
||||||
|
% 3: key
|
||||||
|
\newcommand{\absLink}[3][\relax]{
|
||||||
|
\directLuaAuxExpand{
|
||||||
|
absLabels["#3"] = {}
|
||||||
|
absLabels["#3"]["fqname"] = [[#2]]
|
||||||
|
absLabels["#3"]["translation"] = [[#1]] or [[#2]]
|
||||||
|
% if [[#1]] == "" then
|
||||||
|
% absLabels["#3"]["translation"] = [[#2]]
|
||||||
|
% else
|
||||||
|
% absLabels["#3"]["translation"] = [[#1]]
|
||||||
|
% end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
% [1]: target (fqname to point to)
|
||||||
|
% 2: key
|
||||||
|
% 3: label (abbreviation)
|
||||||
|
\newcommand{\abbrLink}[3][sec:\fqname]{
|
||||||
|
\directLuaAuxExpand{
|
||||||
|
abbrLabels["#2"] = {}
|
||||||
|
abbrLabels["#2"]["abbr"] = [[#3]]
|
||||||
|
abbrLabels["#2"]["fqname"] = [[#1]]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\fLabel}
|
||||||
|
|
||||||
|
|
||||||
|
% [1]: text
|
||||||
|
% 2: key
|
||||||
|
\newcommand{\absRef}[2][]{%
|
||||||
|
\directlua{
|
||||||
|
if absLabels["#2"] == nil then
|
||||||
|
tex.sprint(string.sanitize(\luastring{#2}) .. "???")
|
||||||
|
else
|
||||||
|
if \luastring{#1} == "" then %-- if [#1] is not given, use translation of key as text, else us given text
|
||||||
|
tex.sprint("\\hyperref[" .. absLabels["#2"]["fqname"] .. "]{\\GT{" .. absLabels["#2"]["translation"] .. "}}")
|
||||||
|
else
|
||||||
|
tex.sprint("\\hyperref[" .. absLabels["#2"]["fqname"] .. "]{\luaescapestring{#1}}")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\newrobustcmd{\abbrRef}[1]{%
|
||||||
|
\directlua{
|
||||||
|
if abbrLabels["#1"] == nil then
|
||||||
|
tex.sprint(string.sanitize(\luastring{#1}) .. "???")
|
||||||
|
else
|
||||||
|
tex.sprint("\\hyperref[" .. abbrLabels["#1"]["fqname"] .. "]{" .. abbrLabels["#1"]["abbr"] .. "}")
|
||||||
|
end
|
||||||
|
}
|
||||||
|
}
|
@ -85,9 +85,9 @@
|
|||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
function dumpTranslations()
|
function dumpTable(tableobj, filepath)
|
||||||
local file = io.open(translationsFilepath, "w")
|
local file = io.open(filepath, "w")
|
||||||
file:write("return " .. serialize(translations) .. "\n")
|
file:write("return " .. serialize(tableobj) .. "\n")
|
||||||
file:close()
|
file:close()
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -97,7 +97,7 @@
|
|||||||
\end{luacode*}
|
\end{luacode*}
|
||||||
|
|
||||||
|
|
||||||
\AtEndDocument{\directlua{dumpTranslations()}}
|
\AtEndDocument{\directlua{dumpTable(translations, translationsFilepath)}}
|
||||||
|
|
||||||
%
|
%
|
||||||
% TRANSLATION COMMANDS
|
% TRANSLATION COMMANDS
|
||||||
|
@ -28,7 +28,7 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{wave_function}
|
\begin{formula}{wave_function}
|
||||||
\desc{Wave function}{}{$R_{nl}(r)$ \fqEqRef{qm:h:radial}, $Y_{lm}$ \fqEqRef{qm:spherical_harmonics}}
|
\desc{Wave function}{}{$R_{nl}(r)$ \fRef{qm:h:radial}, $Y_{lm}$ \fRef{qm:spherical_harmonics}}
|
||||||
\desc[german]{Wellenfunktion}{}{}
|
\desc[german]{Wellenfunktion}{}{}
|
||||||
\eq{\psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta,\phi)}
|
\eq{\psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta,\phi)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
@ -562,7 +562,7 @@
|
|||||||
\eq{H &= \underbrace{\hbar\omega_c \hat{a}^\dagger \hat{a}}_\text{\GT{field}}
|
\eq{H &= \underbrace{\hbar\omega_c \hat{a}^\dagger \hat{a}}_\text{\GT{field}}
|
||||||
+ \underbrace{\hbar\omega_\text{a} \frac{\hat{\sigma}_z}{2}}_\text{\GT{atom}}
|
+ \underbrace{\hbar\omega_\text{a} \frac{\hat{\sigma}_z}{2}}_\text{\GT{atom}}
|
||||||
+ \underbrace{\frac{\hbar\Omega}{2} \hat{E} \hat{S}}_\text{int} \\
|
+ \underbrace{\frac{\hbar\Omega}{2} \hat{E} \hat{S}}_\text{int} \\
|
||||||
\shortintertext{\GT{after} \hyperref[eq:qm:other:RWA]{RWA}:} \\
|
\shortintertext{\GT{after} \fRef[RWA]{qm:other:RWA}:} \\
|
||||||
&= \hbar\omega_c \hat{a}^\dagger \hat{a}
|
&= \hbar\omega_c \hat{a}^\dagger \hat{a}
|
||||||
+ \hbar\omega_\text{a} \hat{\sigma}^\dagger \hat{\sigma}
|
+ \hbar\omega_\text{a} \hat{\sigma}^\dagger \hat{\sigma}
|
||||||
+ \frac{\hbar\Omega}{2} (\hat{a}\hat{\sigma^\dagger} + \hat{a}^\dagger \hat{\sigma})
|
+ \frac{\hbar\Omega}{2} (\hat{a}\hat{\sigma^\dagger} + \hat{a}^\dagger \hat{\sigma})
|
||||||
@ -572,7 +572,7 @@
|
|||||||
\Section[
|
\Section[
|
||||||
\eng{Other}
|
\eng{Other}
|
||||||
\ger{Sonstiges}
|
\ger{Sonstiges}
|
||||||
]{other}
|
]{other}
|
||||||
\begin{formula}{RWA}
|
\begin{formula}{RWA}
|
||||||
\desc{Rotating Wave Approximation (RWS)}{Rapidly oscilating terms are neglected}{$\omega_\text{L}$ light frequency, $\omega_0$ transition frequency}
|
\desc{Rotating Wave Approximation (RWS)}{Rapidly oscilating terms are neglected}{$\omega_\text{L}$ light frequency, $\omega_0$ transition frequency}
|
||||||
\desc[german]{Rotating Wave Approximation / Drehwellennäherung (RWS)}{Schnell oscillierende Terme werden vernachlässigt}{$\omega_\text{L}$ Frequenz des Lichtes, $\omega_0$ Übergangsfrequenz}
|
\desc[german]{Rotating Wave Approximation / Drehwellennäherung (RWS)}{Schnell oscillierende Terme werden vernachlässigt}{$\omega_\text{L}$ Frequenz des Lichtes, $\omega_0$ Übergangsfrequenz}
|
||||||
|
@ -150,6 +150,13 @@
|
|||||||
\quantity{\sigma}{\per\ohm\m}{}
|
\quantity{\sigma}{\per\ohm\m}{}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{wave_vector}
|
||||||
|
\desc{Wavevector}{Vector perpendicular to the wavefront}{}
|
||||||
|
\desc[german]{Wellenvektor}{Vektor senkrecht zur Wellenfront}{}
|
||||||
|
\eq{\abs{k} = \frac{2\pi}{\lambda}}
|
||||||
|
\quantity{\vec{k}}{1\per\m}{v}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
\Subsection[
|
\Subsection[
|
||||||
\eng{Others}
|
\eng{Others}
|
||||||
\ger{Sonstige}
|
\ger{Sonstige}
|
||||||
|
@ -276,8 +276,8 @@
|
|||||||
\ger{Tunable Transmon Qubit}
|
\ger{Tunable Transmon Qubit}
|
||||||
]{tunable}
|
]{tunable}
|
||||||
\begin{formula}{circuit}
|
\begin{formula}{circuit}
|
||||||
\desc{Frequency tunable transmon}{By using a \fqSecRef{qc:scq:elements:squid} instead of a \fqSecRef{qc:scq:elements:josephson_junction}, the qubit is frequency tunable through an external field}{}
|
\desc{Frequency tunable transmon}{By using a \fRef{qc:scq:elements:squid} instead of a \fRef{qc:scq:elements:josephson_junction}, the qubit is frequency tunable through an external field}{}
|
||||||
\desc[german]{}{Durch Nutzung eines \fqSecRef{qc:scq:elements:squid} anstatt eines \fqSecRef{qc:scq:elements:josephson_junction}s, ist die Frequenz des Qubits durch ein externes Magnetfeld einstellbar}{}
|
\desc[german]{}{Durch Nutzung eines \fRef{qc:scq:elements:squid} anstatt eines \fRef{qc:scq:elements:josephson_junction}s, ist die Frequenz des Qubits durch ein externes Magnetfeld einstellbar}{}
|
||||||
\centering
|
\centering
|
||||||
\begin{tikzpicture}
|
\begin{tikzpicture}
|
||||||
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
% \draw (0,0) to[sV=$V_\text{g}$] ++(0,3)
|
||||||
|
@ -432,26 +432,31 @@
|
|||||||
\desc{Internal energy}{}{}
|
\desc{Internal energy}{}{}
|
||||||
\desc[german]{Innere Energie}{}{}
|
\desc[german]{Innere Energie}{}{}
|
||||||
\eq{\d U(S,V,N) = T\d S -p\d V + \mu\d N}
|
\eq{\d U(S,V,N) = T\d S -p\d V + \mu\d N}
|
||||||
|
\hiddenQuantity{U}{\joule}{s}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{free_energy}
|
\begin{formula}{free_energy}
|
||||||
\desc{Free energy / Helmholtz energy }{}{}
|
\desc{Free energy / Helmholtz energy }{}{}
|
||||||
\desc[german]{Freie Energie / Helmholtz Energie}{}{}
|
\desc[german]{Freie Energie / Helmholtz Energie}{}{}
|
||||||
\eq{\d F(T,V,N) = -S\d T -p\d V + \mu\d N}
|
\eq{\d F(T,V,N) = -S\d T -p\d V + \mu\d N}
|
||||||
|
\hiddenQuantity{F}{\joule}{s}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{enthalpy}
|
\begin{formula}{enthalpy}
|
||||||
\desc{Enthalpy}{}{}
|
\desc{Enthalpy}{}{}
|
||||||
\desc[german]{Enthalpie}{}{}
|
\desc[german]{Enthalpie}{}{}
|
||||||
\eq{\d H(S,p,N) = T\d S +V\d p + \mu\d N}
|
\eq{\d H(S,p,N) = T\d S +V\d p + \mu\d N}
|
||||||
|
\hiddenQuantity{H}{\joule}{s}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{gibbs_energy}
|
\begin{formula}{gibbs_energy}
|
||||||
\desc{Free enthalpy / Gibbs energy}{}{}
|
\desc{Free enthalpy / Gibbs energy}{}{}
|
||||||
\desc[german]{Freie Entahlpie / Gibbs-Energie}{}{}
|
\desc[german]{Freie Entahlpie / Gibbs-Energie}{}{}
|
||||||
\eq{\d G(T,p,N) = -S\d T + V\d p + \mu\d N}
|
\eq{\d G(T,p,N) = -S\d T + V\d p + \mu\d N}
|
||||||
|
\hiddenQuantity{G}{\joule}{s}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{grand_canon_pot}
|
\begin{formula}{grand_canon_pot}
|
||||||
\desc{Grand canonical potential}{}{}
|
\desc{Grand canonical potential}{}{}
|
||||||
\desc[german]{Großkanonisches Potential}{}{}
|
\desc[german]{Großkanonisches Potential}{}{}
|
||||||
\eq{\d \Phi(T,V,\mu) = -S\d T -p\d V - N\d\mu}
|
\eq{\d \Phi(T,V,\mu) = -S\d T -p\d V - N\d\mu}
|
||||||
|
\hiddenQuantity{\Phi}{\joule}{s}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\TODO{Maxwell Relationen, TD Quadrat}
|
\TODO{Maxwell Relationen, TD Quadrat}
|
||||||
@ -675,14 +680,14 @@
|
|||||||
\eq{g_s = 2s+1}
|
\eq{g_s = 2s+1}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
\begin{formula}{dos}
|
\begin{formula}{dos}
|
||||||
\desc{Density of states}{}{$g_s$ \fqEqRef{td:id_qgas:spin_degeneracy_factor}}
|
\desc{Density of states}{}{$g_s$ \fRef{td:id_qgas:spin_degeneracy_factor}}
|
||||||
\desc[german]{Zustandsdichte}{}{$g_s$ \fqEqRef{td:id_qgas:spin_degeneracy_factor}}
|
\desc[german]{Zustandsdichte}{}{$g_s$ \fRef{td:id_qgas:spin_degeneracy_factor}}
|
||||||
\eq{g(\epsilon) = g_s \frac{V}{4\pi} \left(\frac{2m}{\hbar^2}\right)^\frac{3}{2} \sqrt{\epsilon}}
|
\eq{g(\epsilon) = g_s \frac{V}{4\pi} \left(\frac{2m}{\hbar^2}\right)^\frac{3}{2} \sqrt{\epsilon}}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{occupation_number_per_e}
|
\begin{formula}{occupation_number_per_e}
|
||||||
\desc{Occupation number per energy}{}{\fqEqRef{td:id_qgas:dos}, \bosfer}
|
\desc{Occupation number per energy}{}{\fRef{td:id_qgas:dos}, \bosfer}
|
||||||
\desc[german]{Besetzungszahl pro Energie}{}{\fqEqRef{td:id_qgas:dos}, \bosfer}
|
\desc[german]{Besetzungszahl pro Energie}{}{\fRef{td:id_qgas:dos}, \bosfer}
|
||||||
\eq{n(\epsilon)\, \d\epsilon &= \frac{g(\epsilon)}{\e^{\beta(\epsilon - \mu)} \mp 1}\,\d\epsilon}
|
\eq{n(\epsilon)\, \d\epsilon &= \frac{g(\epsilon)}{\e^{\beta(\epsilon - \mu)} \mp 1}\,\d\epsilon}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -797,8 +802,8 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{specific_density}
|
\begin{formula}{specific_density}
|
||||||
\desc{Specific density}{}{$f$ \fqEqRef{td:id_qgas:generalized_zeta}, $g$ degeneracy factor, $z$ \fqEqRef{td:id_qgas:fugacity}}
|
\desc{Specific density}{}{$f$ \fRef{td:id_qgas:generalized_zeta}, $g$ degeneracy factor, $z$ \fRef{td:id_qgas:fugacity}}
|
||||||
\desc[german]{Spezifische Dichte}{}{$f$ \fqEqRef{td:id_qgas:generalized_zeta}, $g$ Entartungsfaktor, $z$ \fqEqRef{td:id_qgas:fugacity}}
|
\desc[german]{Spezifische Dichte}{}{$f$ \fRef{td:id_qgas:generalized_zeta}, $g$ Entartungsfaktor, $z$ \fRef{td:id_qgas:fugacity}}
|
||||||
\eq{v = \frac{N}{V} = \frac{g}{\lambda^3}f_{3/2}(z)}
|
\eq{v = \frac{N}{V} = \frac{g}{\lambda^3}f_{3/2}(z)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
@ -826,8 +831,8 @@
|
|||||||
\end{formula}
|
\end{formula}
|
||||||
|
|
||||||
\begin{formula}{heat_cap}
|
\begin{formula}{heat_cap}
|
||||||
\desc{Heat capacity}{\gt{low_temps}}{differs from \fqEqRef{td:TODO:petit_dulong}}
|
\desc{Heat capacity}{\gt{low_temps}}{differs from \fRef{td:TODO:petit_dulong}}
|
||||||
\desc[german]{Wärmecapacity}{\gt{low_temps}}{weicht ab vom \fqEqRef{td:TODO:petit_dulong}}
|
\desc[german]{Wärmecapacity}{\gt{low_temps}}{weicht ab vom \fRef{td:TODO:petit_dulong}}
|
||||||
\fig{img/td_fermi_heat_capacity.pdf}
|
\fig{img/td_fermi_heat_capacity.pdf}
|
||||||
\eq{C_V = \pdv{E}{T}_V = N\kB \frac{\pi}{2} \left(\frac{T}{T_\text{F}}\right)}
|
\eq{C_V = \pdv{E}{T}_V = N\kB \frac{\pi}{2} \left(\frac{T}{T_\text{F}}\right)}
|
||||||
\end{formula}
|
\end{formula}
|
||||||
|
@ -52,7 +52,7 @@ GT: {\textbackslash}ttest:name = \GT{\ttest:name}\\
|
|||||||
|
|
||||||
\paragraph{Testing hyperrefs}
|
\paragraph{Testing hyperrefs}
|
||||||
\noindent{This text is labeled with "test" \label{test}}\\
|
\noindent{This text is labeled with "test" \label{test}}\\
|
||||||
\hyperref[test]{This should refer to the line above}\\
|
\fRef[This should refer to the line above]{test}\\
|
||||||
Link to quantity which is defined after the reference: \qtyRef{test}\\
|
Link to quantity which is defined after the reference: \qtyRef{test}\\
|
||||||
\DT[eq:test]{english}{If you read this, then the translation for eq:test was expandend!}
|
\DT[eq:test]{english}{If you read this, then the translation for eq:test was expandend!}
|
||||||
Link to defined quantity: \qtyRef{mass}
|
Link to defined quantity: \qtyRef{mass}
|
||||||
|
@ -43,12 +43,12 @@
|
|||||||
% add links to some names
|
% add links to some names
|
||||||
\directlua{
|
\directlua{
|
||||||
local cases = {
|
local cases = {
|
||||||
pdf = "f:math:pt:pdf",
|
pdf = "math:pt:pdf",
|
||||||
pmf = "f:math:pt:pmf",
|
pmf = "math:pt:pmf",
|
||||||
cdf = "f:math:pt:cdf",
|
cdf = "math:pt:cdf",
|
||||||
mean = "f:math:pt:mean",
|
mean = "math:pt:mean",
|
||||||
variance = "f:math:pt:variance",
|
variance = "math:pt:variance",
|
||||||
median = "f:math:pt:median",
|
median = "math:pt:median",
|
||||||
}
|
}
|
||||||
if cases["\luaescapestring{##1}"] \string~= nil then
|
if cases["\luaescapestring{##1}"] \string~= nil then
|
||||||
tex.sprint("\\hyperref["..cases["\luaescapestring{##1}"].."]{\\GT{##1}}")
|
tex.sprint("\\hyperref["..cases["\luaescapestring{##1}"].."]{\\GT{##1}}")
|
||||||
|
Loading…
x
Reference in New Issue
Block a user