initial commit

This commit is contained in:
Matthias@Dell 2024-05-18 20:32:21 +02:00
commit ac406b43a6
3 changed files with 416 additions and 0 deletions

154
src/main.tex Executable file
View File

@ -0,0 +1,154 @@
\documentclass[11pt, a4paper]{article}
% \usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
\usepackage{mathtools}
\usepackage{braket}
\usepackage{graphicx}
\usepackage{etoolbox}
\usepackage{substr}
\usepackage{xcolor}
\usepackage{float}
\usepackage[hidelinks]{hyperref}
\usepackage{subcaption}
\hypersetup{colorlinks = true, % Colours links instead of ugly boxes
urlcolor = blue, % Colour for external hyperlinks
linkcolor = cyan, % Colour of internal links
citecolor = red % Colour of citations
}
% \usepackage[version=4,arrows=pgf-filled]{mhchem}
\usepackage{siunitx}
\sisetup{output-decimal-marker = {,}}
\sisetup{separate-uncertainty}
\sisetup{per-mode = power}
\sisetup{exponent-product=\ensuremath{\cdot}}
\DeclarePairedDelimiter\abs{\lvert}{\rvert}
\usepackage{translations}
\title{Formelsammlung}
\author{Matthias Quintern}
\date{\today}
\begin{document}
\maketitle
% \thispagestyle{empty}
% \tableofcontents
% \newpage
% \setcounter{page}{1}
% \nuwcommand{\eq}[4][desc]{
% \vspace*{0.1cm}
% \begin{minipage}{0.3\textwidth}
% \raggedright
% .#2 \\
% \ifstrequal{#1}{desc}{}{
% {\color{gray}#1}
% }
% \end{minipage}
% \begin{minipage}{0.7\textwidth}
% \begin{align}
% \label{eq:#4}
% #3
% \end{align}
% \end{minipage}
% \newline
% }
\newcommand{\insertEquation}[2]{
\vspace*{0.1cm}
\begin{minipage}{0.3\textwidth}
\IfTranslation{\languagename}{#1}{
\raggedright
\GetTranslation{#1}
}{}
\IfTranslation{\languagename}{#1_desc}{
\\ {\color{gray} \GetTranslation{#1_desc}}
}{}
\end{minipage}
\begin{minipage}{0.7\textwidth}
\begin{align}
\label{eq:#1}
#2
\end{align}
\IfTranslation{\languagename}{#1_defs}{
{\color{gray} \GetTranslation{#1_defs}}
}{}
\end{minipage}
\newline
}
\newcommand{\insertAlignedAt}[3]{ % eq name, #cols, eq
\vspace*{0.1cm}
\begin{minipage}{0.3\textwidth}
\IfTranslation{\languagename}{#1}{
\raggedright
\GetTranslation{#1}
}{}
\IfTranslation{\languagename}{#1_desc}{
\\ {\color{gray} \GetTranslation{#1_desc}}
}{}
\end{minipage}
\begin{minipage}{0.7\textwidth}
\begin{alignat}{#2}
% dont place label when one is provided
\IfSubStringinString{label}{#3}{}{
\label{eq:#1}
}
#3
\end{alignat}
\IfTranslation{\languagename}{#1_defs}{
{\color{gray} \GetTranslation{#1_defs}}
}{}
\end{minipage}
\newline
}
\newenvironment{formula}[1]{
\newcommand{\desc}[4][english]{
% language, name, description, definitions
\definetranslation{##1}{#1}{##2}
\ifblank{##3}{}{\definetranslation{##1}{#1_desc}{##3}}
\ifblank{##4}{}{\definetranslation{##1}{#1_defs}{##4}}
}
\newcommand{\eq}[1]{
\insertEquation{#1}{##1}
}
\newcommand{\eqAlignedAt}[2]{
\insertAlignedAt{#1}{##1}{##2}
}
}{}
\newcommand{\GT}{\GetTranslation}
\newcommand{\dt}{\definetranslation}
\newcommand{\ger}{\definetranslation{german}}
\newcommand{\eng}{\definetranslation{english}}
% \newcommand{\eqd}[5][desc]{
% \vspace*{0.1cm}
% \begin{minipage}{0.3\textwidth}
% \raggedright
% .#2 \\
% \ifstrequal{#1}{desc}{}{
% {\color{gray}#1}
% }
% \end{minipage}
% \begin{minipage}{0.7\textwidth}
% \begin{align}
% \label{eq:#5}
% #3
% \end{align}
% {\color{gray}with: #4}
% \end{minipage}
% \newline
% }
\input{trigonometry.tex}
\input{quantum_mechanics.tex}
%\newpage
% \bibliographystyle{plain}
% \bibliography{ref}
\end{document}

211
src/quantum_mechanics.tex Normal file
View File

@ -0,0 +1,211 @@
\eng{quantum_mechanics}{Quantum Mechanics}
\ger{quantum_mechanics}{Quantenmechanik}
\eng{operators}{Operators}
\ger{operators}{Operatoren}
\eng{hosc}{Harmonic oscillator}
\ger{hosc}{Harmonischer Oszillator}
\part{\GT{quantum_mechanics}}
\section{Basics}
\subsection{\GT{operators}}
\begin{formula}{dirac_notation}
\desc{Dirac notation}{}{}
\desc[german]{Dirac-Notation}{}{}
\eq{
\bra{x} \vspace*{1cm} \text{"Bra" \GT{row_vector}} \\
\ket{x} \vspace*{1cm} \text{"Ket" \GT{column_vector}} \\
\hat{A}\ket{\beta} = \ket{\alpha} \Rightarrow \bra{\alpha} = \bra{\beta} \hat{A}^\dagger
}
\end{formula}
\begin{formula}{dagger}
\desc{Dagger}{}{}
\desc[german]{Dagger}{}{}
\eq{
\hat{A}^\dagger &= (\hat{A}^*)^\mathrm{T} \\
(c \hat{A})^\dagger &= c^* \hat{A}^\dagger \\
(\hat{A}\hat{B})^\dagger &= \hat{B}^\dagger \hat{A}^\dagger \\
}
\end{formula}
\begin{formula}{adjoint_op}
\desc{Adjoint operator}{}{}
\desc[german]{Adjungierter operator}{}{}
\eq{\braket{\alpha|\hat{A}^\dagger|\beta} = \braket{\beta|\hat{A}|\alpha}^*}
\end{formula}
\begin{formula}{hermitian_op}
\desc{Hermitian operator}{}{}
\desc[german]{Hermitescher operator}{}{}
\eq{\hat{A} = \hat{A}^\dagger}
\end{formula}
\subsection{\GT{qm_probability}}
\begin{formula}{conservation_of_probability}
\desc{Continuity equation}{}{$\rho$ density of a conserved quantity $q$, $j$ flux density of $q$}
\desc[german]{Kontinuitätsgleichung}{}{$\rho$ Dichte einer Erhaltungsgröße $q$, $j$ Fluß von $q$}
\eq{\frac{\partial\rho(\vec{x}, t)}{\partial t} + \nabla \cdot \vec{j}(\vec{x},t) = 0}
\end{formula}
\begin{formula}{state_probability}
\desc{State probability}{}{}
\desc[german]{Zustandswahrscheinlichkeit}{}{}
\eq{TODO}
\end{formula}
\begin{formula}{dispersion}
\desc{Dispersion}{}{}
\desc[german]{Dispersion}{}{}
\eq{\Delta \hat{A} = \hat{A} - \braket{\hat{A}}}
\end{formula}
\begin{formula}{variance}
\desc{Variance}{}{}
\desc[german]{Varianz}{}{}
\eq{\sigma^2 = \braket{(\Delta \hat{A})^2} = \braket{\hat{A}^2} - \braket{\hat{A}}^2}
\end{formula}
\begin{formula}{generalized_uncertainty}
\desc{Generalized uncertainty principle}{}{}
\desc[german]{Allgemeine Unschärferelation}{}{}
% \eq{\braket{(\Delta \hat{A})^2} \braket{(\Delta \hat{B})^2} \ge \frac{1}{4} \braket{[\hat{A},\hat{B}]}^2}
\eq{
\sigma_A \sigma_B &\ge \frac{1}{4} \braket{[\hat{A},\hat{B}]}^2 \\
\sigma_A \sigma_B &\ge \frac{1}{2} \abs{\braket{[\hat{A},\hat{B}]}}
}
\end{formula}
\subsubsection{\GT{pauli_matrices}}
\begin{formula}{pauli_matrices}
\desc{Pauli matrices}{}{}
\desc[german]{Pauli Matrizen}{}{}
\eqAlignedAt{2}{
\sigma_x &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} &&= \ket{0}\bra{1} + \ket{1}\bra{0} \label{eq:pauli_x} \\
\sigma_y &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} &&= -i \ket{0}\bra{1} + i \ket{1}\bra{0} \label{eq:pauli_y} \\
\sigma_z &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} &&= \ket{0}\bra{0} - \ket{1}\bra{1} \label{eq:pauli_z}
}
\end{formula}
% $\sigma_x$ NOT
% $\sigma_y$ PHASE
% $\sigma_z$ Sign
\subsection{Kommutator}
\begin{formula}{commutator}
\desc{Commutator}{}{}
\desc[german]{Kommutator}{}{}
\eq{[a,b] = ab - ba}
\end{formula}
\begin{formula}{anticommutator}
\desc{Anticommutator}{}{}
\desc[german]{Antikommmutator}{}{}
\eq{\{a,b\} = ab + ba}
\end{formula}
\begin{formula}{commutation_relations}\
\desc{Commutation relations}{}{}
\desc[german]{Kommutatorrelationen}{}{}
\eq{[a, bc] = \{a, b\}c - b\{a,c\}}
\end{formula}
\begin{formula}{jacobi_identity}
\desc{Jacobi identity}{}{}
\desc[german]{Jakobi-Identität}{}{}
\eq{[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0}
\end{formula}
\begin{formula}{canon_comm_relation}
\desc{Canonical commutation relation}{}{$x$, $p$ canonical conjugates}
\desc[german]{Kanonische Vertauschungsrelationen}{}{$x$, $p$ kanonische konjugierte}
\eq{
[x_i, x_j] &= 0 \\
[p_i, p_j] &= 0 \\
[x_i, p_j] &= i \hbar \delta_{ij}
}
\end{formula}
\subsection{Schrödinger Gleichungen}
\begin{formula}{energy_operator}
\desc{Energy operator}{}{}
\desc[german]{Energieoperator}{}{}
\eq{E = i\hbar \frac{\partial}{\partial t}}
\end{formula}
\begin{formula}{momentum_operator}
\desc{Momentum operator}{}{}
\desc[german]{Impulsoperator}{}{}
\eq{\vec{p} = -i\hbar \vec{\nabla_x}}
\end{formula}
\begin{formula}{space_operator}
\desc{Space operator}{}{}
\desc[german]{Ortsoperator}{}{}
\eq{\vec{x} = i\hbar \vec{\nabla_p}}
\end{formula}
\begin{formula}{stationary_schroedinger_equation}
\desc{Stationary Schrödingerequation}{}{}
\desc[german]{Stationäre Schrödingergleichung}{}{}
\eq{\hat{H}\ket{\psi} = E\ket{\psi}}
\end{formula}
\begin{formula}{schroedinger_equation}
\desc{Schrödinger equation}{}{}
\desc[german]{Schrödingergleichung}{}{}
\eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)}
\end{formula}
The time evolution of the Hamiltonian is given by:\\
% \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time}
% \subsection{Creation and Annihilation operators}
% \eq{Annihilation operator}{\hat{a} = }{c\hat{a}_op_annihilation}
% \eq{Creation operator}{\hat{a}^\dagger = }{c\hat{a}_op_creation}
% \eq{Commutator}{[\hat{a},\hat{a}^\dagger] = 1}{c\hat{a}_op_commutator}
% \eq{}{
% \hat{a} \ket{n} &= \sqrt{n}\ket{n-1} \\
% \hat{a}^\dagger \ket{n} &= \sqrt{n+1}\ket{n+1} \\
% \ket{n} &= \frac{1}{\sqrt{n!}} (\hat{a}^\dagger)^n \ket{0}
% }{ca_op_on_state}
% \eq{Heisenberg}{\frac{dA}{dt}=\frac{\partial A}{\partial t}+\frac{[A,H]}{i\hbar}}{heisenberg}
\section{\GT{hosc}}
\begin{formula}{hosc_hamiltonian}
\desc{Hamiltonian}{}{}
\desc[german]{Hamiltonian}{}{}
\eq{
H&=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2\\
&=\frac{1}{2} \hbar\omega+\omega a^\dagger a
}
\end{formula}
% \begin{align}
% \label{eq:k}
% A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\
% A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\
% HAu_E=(E-\hbar\omega)Au_E \\
% u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\
% u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\
% E_n=( \frac{1}{2} +n)\hbar\omega
% \end{equation}
% \eq[
% ]
\begin{formula}{bloch_waves}
\desc{Bloch waves}{
Solve the stat. SG in periodic potential with period
$\vec{R}$: $V(\vec{r}) = V(\vec{r} + \vec{R})$\\
}{
$\vec{k}$ arbitrary, $u$ periodic function
}
\desc[german]{Blochwellen}{
Lösen stat. SG im periodischen Potential mit Periode
$\vec{R}$: $V(\vec{r}) = V(\vec{r} + \vec{R})$\\
}{
$\vec{k}$ beliebig, $u$ periodische Funktion
}
\eq{\psi_k(\vec{r}) = e^{i \vec{k}\cdot \vec{r}} \cdot u_{\vec{k}}(\vec{r})}
\end{formula}

51
src/trigonometry.tex Normal file
View File

@ -0,0 +1,51 @@
\begin{formula}{exponential_function}
\desc{Exponential function}{}{}
\desc[german]{Exponentialfunktion}{}{}
\eq{\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}}
\end{formula}
\begin{formula}{sine}
\desc{Sine}{}{}
\desc[german]{Sinus}{}{}
\eq{\sin(x) &= \sum_{n=0}^{\infty} \frac{x^{(2n+1)}}{(2n+1)!} \\
&= \frac{e^{ix}-e^{-ix}}{2i}}
\end{formula}
\begin{formula}{cosine}
\desc{Cosine}{}{}
\desc[german]{Kosinus}{}{}
\eq{\cos(x) &= \sum_{n=0}^{\infty} \frac{x^{(2n)}}{(2n)!} \\
&= \frac{e^{ix}+e^{-ix}}{2}}
\end{formula}
\begin{formula}{hyperbolic_sine}
\desc{Hyperbolic sine}{}{}
\desc[german]{Sinus hyperbolicus}{}{}
\eq{\sinh(x) &= -i\sin{ix} \\ &= \frac{e^{x}-e^{-x}}{2}}
\end{formula}
\begin{formula}{hyperbolic_cosine}
\desc{Hyperbolic cosine}{}{}
\desc[german]{Kosinus hyperbolicus}{}{}
\eq{\cosh(x) &= \cos{ix} \\ &= \frac{e^{x}+e^{-x}}{2}}
\end{formula}
\definetranslation{german}{angle_deg}{Grad}
\definetranslation{english}{angle_deg}{Degree}
\definetranslation{german}{angle_rad}{Rad}
\definetranslation{english}{angle_rad}{Radian}
\begin{table}[h]
\centering
% \caption{caption}
\label{tab:sin_cos_table}
\begin{tabular}{c|c|c|c|c|c|c|c|c}
\GetTranslation{angle_deg} && 30° & 45° & 60° & 90° & 120° & 180° & 270° \\ \hline
\GetTranslation{angle_rad} & $0$ & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\sqrt{\pi}}{3}$ & $\frac{\pi}{2}$ & $\frac{2\pi}{3}$ & $\pi$ & $\frac{3\pi}{2}$ \\ \hline
$\sin(x)$ & $0$ & $\frac{1}{2} $ & $\frac{\sqrt{2}}{2}$ & $\frac{\sqrt{3}}{2}$ & $1 $ & $\frac{\sqrt{3}}{2}$ & $ 0$ & $-1 $ \\
$\cos(x)$ & $1$ & $\frac{\sqrt{3}}{2}$ & $\frac{\sqrt{2}}{2}$ & $\frac{1}{2} $ & $0 $ & $\frac{-1}{2} $ & $-1$ & $ 0 $ \\
$\tan(x)$ & $0$ & $\frac{1}{\sqrt{3}}$ & $\frac{1}{\sqrt{2}}$ & $\frac{1}{2} $ & $\infty$ & $-\sqrt{3} $ & $ 0$ & $\infty$ \\
\end{tabular}
\end{table}