initial commit
This commit is contained in:
commit
ac406b43a6
154
src/main.tex
Executable file
154
src/main.tex
Executable file
@ -0,0 +1,154 @@
|
|||||||
|
\documentclass[11pt, a4paper]{article}
|
||||||
|
% \usepackage[utf8]{inputenc}
|
||||||
|
\usepackage[english]{babel}
|
||||||
|
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
|
||||||
|
\usepackage{mathtools}
|
||||||
|
\usepackage{braket}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{etoolbox}
|
||||||
|
\usepackage{substr}
|
||||||
|
\usepackage{xcolor}
|
||||||
|
\usepackage{float}
|
||||||
|
\usepackage[hidelinks]{hyperref}
|
||||||
|
\usepackage{subcaption}
|
||||||
|
\hypersetup{colorlinks = true, % Colours links instead of ugly boxes
|
||||||
|
urlcolor = blue, % Colour for external hyperlinks
|
||||||
|
linkcolor = cyan, % Colour of internal links
|
||||||
|
citecolor = red % Colour of citations
|
||||||
|
}
|
||||||
|
% \usepackage[version=4,arrows=pgf-filled]{mhchem}
|
||||||
|
\usepackage{siunitx}
|
||||||
|
\sisetup{output-decimal-marker = {,}}
|
||||||
|
\sisetup{separate-uncertainty}
|
||||||
|
\sisetup{per-mode = power}
|
||||||
|
\sisetup{exponent-product=\ensuremath{\cdot}}
|
||||||
|
|
||||||
|
\DeclarePairedDelimiter\abs{\lvert}{\rvert}
|
||||||
|
|
||||||
|
\usepackage{translations}
|
||||||
|
|
||||||
|
\title{Formelsammlung}
|
||||||
|
\author{Matthias Quintern}
|
||||||
|
\date{\today}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\maketitle
|
||||||
|
% \thispagestyle{empty}
|
||||||
|
% \tableofcontents
|
||||||
|
% \newpage
|
||||||
|
% \setcounter{page}{1}
|
||||||
|
|
||||||
|
% \nuwcommand{\eq}[4][desc]{
|
||||||
|
% \vspace*{0.1cm}
|
||||||
|
% \begin{minipage}{0.3\textwidth}
|
||||||
|
% \raggedright
|
||||||
|
% .#2 \\
|
||||||
|
% \ifstrequal{#1}{desc}{}{
|
||||||
|
% {\color{gray}#1}
|
||||||
|
% }
|
||||||
|
% \end{minipage}
|
||||||
|
% \begin{minipage}{0.7\textwidth}
|
||||||
|
% \begin{align}
|
||||||
|
% \label{eq:#4}
|
||||||
|
% #3
|
||||||
|
% \end{align}
|
||||||
|
% \end{minipage}
|
||||||
|
% \newline
|
||||||
|
% }
|
||||||
|
\newcommand{\insertEquation}[2]{
|
||||||
|
\vspace*{0.1cm}
|
||||||
|
\begin{minipage}{0.3\textwidth}
|
||||||
|
\IfTranslation{\languagename}{#1}{
|
||||||
|
\raggedright
|
||||||
|
\GetTranslation{#1}
|
||||||
|
}{}
|
||||||
|
\IfTranslation{\languagename}{#1_desc}{
|
||||||
|
\\ {\color{gray} \GetTranslation{#1_desc}}
|
||||||
|
}{}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{minipage}{0.7\textwidth}
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:#1}
|
||||||
|
#2
|
||||||
|
\end{align}
|
||||||
|
\IfTranslation{\languagename}{#1_defs}{
|
||||||
|
{\color{gray} \GetTranslation{#1_defs}}
|
||||||
|
}{}
|
||||||
|
\end{minipage}
|
||||||
|
\newline
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\insertAlignedAt}[3]{ % eq name, #cols, eq
|
||||||
|
\vspace*{0.1cm}
|
||||||
|
\begin{minipage}{0.3\textwidth}
|
||||||
|
\IfTranslation{\languagename}{#1}{
|
||||||
|
\raggedright
|
||||||
|
\GetTranslation{#1}
|
||||||
|
}{}
|
||||||
|
\IfTranslation{\languagename}{#1_desc}{
|
||||||
|
\\ {\color{gray} \GetTranslation{#1_desc}}
|
||||||
|
}{}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{minipage}{0.7\textwidth}
|
||||||
|
\begin{alignat}{#2}
|
||||||
|
% dont place label when one is provided
|
||||||
|
\IfSubStringinString{label}{#3}{}{
|
||||||
|
\label{eq:#1}
|
||||||
|
}
|
||||||
|
#3
|
||||||
|
\end{alignat}
|
||||||
|
\IfTranslation{\languagename}{#1_defs}{
|
||||||
|
{\color{gray} \GetTranslation{#1_defs}}
|
||||||
|
}{}
|
||||||
|
\end{minipage}
|
||||||
|
\newline
|
||||||
|
}
|
||||||
|
|
||||||
|
\newenvironment{formula}[1]{
|
||||||
|
\newcommand{\desc}[4][english]{
|
||||||
|
% language, name, description, definitions
|
||||||
|
\definetranslation{##1}{#1}{##2}
|
||||||
|
\ifblank{##3}{}{\definetranslation{##1}{#1_desc}{##3}}
|
||||||
|
\ifblank{##4}{}{\definetranslation{##1}{#1_defs}{##4}}
|
||||||
|
}
|
||||||
|
\newcommand{\eq}[1]{
|
||||||
|
\insertEquation{#1}{##1}
|
||||||
|
}
|
||||||
|
\newcommand{\eqAlignedAt}[2]{
|
||||||
|
\insertAlignedAt{#1}{##1}{##2}
|
||||||
|
}
|
||||||
|
}{}
|
||||||
|
|
||||||
|
|
||||||
|
\newcommand{\GT}{\GetTranslation}
|
||||||
|
\newcommand{\dt}{\definetranslation}
|
||||||
|
\newcommand{\ger}{\definetranslation{german}}
|
||||||
|
\newcommand{\eng}{\definetranslation{english}}
|
||||||
|
% \newcommand{\eqd}[5][desc]{
|
||||||
|
% \vspace*{0.1cm}
|
||||||
|
% \begin{minipage}{0.3\textwidth}
|
||||||
|
% \raggedright
|
||||||
|
% .#2 \\
|
||||||
|
% \ifstrequal{#1}{desc}{}{
|
||||||
|
% {\color{gray}#1}
|
||||||
|
% }
|
||||||
|
% \end{minipage}
|
||||||
|
% \begin{minipage}{0.7\textwidth}
|
||||||
|
% \begin{align}
|
||||||
|
% \label{eq:#5}
|
||||||
|
% #3
|
||||||
|
% \end{align}
|
||||||
|
% {\color{gray}with: #4}
|
||||||
|
% \end{minipage}
|
||||||
|
% \newline
|
||||||
|
% }
|
||||||
|
|
||||||
|
\input{trigonometry.tex}
|
||||||
|
|
||||||
|
\input{quantum_mechanics.tex}
|
||||||
|
|
||||||
|
%\newpage
|
||||||
|
% \bibliographystyle{plain}
|
||||||
|
% \bibliography{ref}
|
||||||
|
\end{document}
|
211
src/quantum_mechanics.tex
Normal file
211
src/quantum_mechanics.tex
Normal file
@ -0,0 +1,211 @@
|
|||||||
|
\eng{quantum_mechanics}{Quantum Mechanics}
|
||||||
|
\ger{quantum_mechanics}{Quantenmechanik}
|
||||||
|
|
||||||
|
\eng{operators}{Operators}
|
||||||
|
\ger{operators}{Operatoren}
|
||||||
|
|
||||||
|
\eng{hosc}{Harmonic oscillator}
|
||||||
|
\ger{hosc}{Harmonischer Oszillator}
|
||||||
|
|
||||||
|
\part{\GT{quantum_mechanics}}
|
||||||
|
\section{Basics}
|
||||||
|
\subsection{\GT{operators}}
|
||||||
|
\begin{formula}{dirac_notation}
|
||||||
|
\desc{Dirac notation}{}{}
|
||||||
|
\desc[german]{Dirac-Notation}{}{}
|
||||||
|
\eq{
|
||||||
|
\bra{x} \vspace*{1cm} \text{"Bra" \GT{row_vector}} \\
|
||||||
|
\ket{x} \vspace*{1cm} \text{"Ket" \GT{column_vector}} \\
|
||||||
|
\hat{A}\ket{\beta} = \ket{\alpha} \Rightarrow \bra{\alpha} = \bra{\beta} \hat{A}^\dagger
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{dagger}
|
||||||
|
\desc{Dagger}{}{}
|
||||||
|
\desc[german]{Dagger}{}{}
|
||||||
|
\eq{
|
||||||
|
\hat{A}^\dagger &= (\hat{A}^*)^\mathrm{T} \\
|
||||||
|
(c \hat{A})^\dagger &= c^* \hat{A}^\dagger \\
|
||||||
|
(\hat{A}\hat{B})^\dagger &= \hat{B}^\dagger \hat{A}^\dagger \\
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{adjoint_op}
|
||||||
|
\desc{Adjoint operator}{}{}
|
||||||
|
\desc[german]{Adjungierter operator}{}{}
|
||||||
|
\eq{\braket{\alpha|\hat{A}^\dagger|\beta} = \braket{\beta|\hat{A}|\alpha}^*}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{hermitian_op}
|
||||||
|
\desc{Hermitian operator}{}{}
|
||||||
|
\desc[german]{Hermitescher operator}{}{}
|
||||||
|
\eq{\hat{A} = \hat{A}^\dagger}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\subsection{\GT{qm_probability}}
|
||||||
|
\begin{formula}{conservation_of_probability}
|
||||||
|
\desc{Continuity equation}{}{$\rho$ density of a conserved quantity $q$, $j$ flux density of $q$}
|
||||||
|
\desc[german]{Kontinuitätsgleichung}{}{$\rho$ Dichte einer Erhaltungsgröße $q$, $j$ Fluß von $q$}
|
||||||
|
\eq{\frac{\partial\rho(\vec{x}, t)}{\partial t} + \nabla \cdot \vec{j}(\vec{x},t) = 0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{state_probability}
|
||||||
|
\desc{State probability}{}{}
|
||||||
|
\desc[german]{Zustandswahrscheinlichkeit}{}{}
|
||||||
|
\eq{TODO}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{dispersion}
|
||||||
|
\desc{Dispersion}{}{}
|
||||||
|
\desc[german]{Dispersion}{}{}
|
||||||
|
\eq{\Delta \hat{A} = \hat{A} - \braket{\hat{A}}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{variance}
|
||||||
|
\desc{Variance}{}{}
|
||||||
|
\desc[german]{Varianz}{}{}
|
||||||
|
\eq{\sigma^2 = \braket{(\Delta \hat{A})^2} = \braket{\hat{A}^2} - \braket{\hat{A}}^2}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{generalized_uncertainty}
|
||||||
|
\desc{Generalized uncertainty principle}{}{}
|
||||||
|
\desc[german]{Allgemeine Unschärferelation}{}{}
|
||||||
|
% \eq{\braket{(\Delta \hat{A})^2} \braket{(\Delta \hat{B})^2} \ge \frac{1}{4} \braket{[\hat{A},\hat{B}]}^2}
|
||||||
|
\eq{
|
||||||
|
\sigma_A \sigma_B &\ge \frac{1}{4} \braket{[\hat{A},\hat{B}]}^2 \\
|
||||||
|
\sigma_A \sigma_B &\ge \frac{1}{2} \abs{\braket{[\hat{A},\hat{B}]}}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\subsubsection{\GT{pauli_matrices}}
|
||||||
|
\begin{formula}{pauli_matrices}
|
||||||
|
\desc{Pauli matrices}{}{}
|
||||||
|
\desc[german]{Pauli Matrizen}{}{}
|
||||||
|
\eqAlignedAt{2}{
|
||||||
|
\sigma_x &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} &&= \ket{0}\bra{1} + \ket{1}\bra{0} \label{eq:pauli_x} \\
|
||||||
|
\sigma_y &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} &&= -i \ket{0}\bra{1} + i \ket{1}\bra{0} \label{eq:pauli_y} \\
|
||||||
|
\sigma_z &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} &&= \ket{0}\bra{0} - \ket{1}\bra{1} \label{eq:pauli_z}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
% $\sigma_x$ NOT
|
||||||
|
% $\sigma_y$ PHASE
|
||||||
|
% $\sigma_z$ Sign
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Kommutator}
|
||||||
|
\begin{formula}{commutator}
|
||||||
|
\desc{Commutator}{}{}
|
||||||
|
\desc[german]{Kommutator}{}{}
|
||||||
|
\eq{[a,b] = ab - ba}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{anticommutator}
|
||||||
|
\desc{Anticommutator}{}{}
|
||||||
|
\desc[german]{Antikommmutator}{}{}
|
||||||
|
\eq{\{a,b\} = ab + ba}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{commutation_relations}\
|
||||||
|
\desc{Commutation relations}{}{}
|
||||||
|
\desc[german]{Kommutatorrelationen}{}{}
|
||||||
|
\eq{[a, bc] = \{a, b\}c - b\{a,c\}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{jacobi_identity}
|
||||||
|
\desc{Jacobi identity}{}{}
|
||||||
|
\desc[german]{Jakobi-Identität}{}{}
|
||||||
|
\eq{[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{canon_comm_relation}
|
||||||
|
\desc{Canonical commutation relation}{}{$x$, $p$ canonical conjugates}
|
||||||
|
\desc[german]{Kanonische Vertauschungsrelationen}{}{$x$, $p$ kanonische konjugierte}
|
||||||
|
\eq{
|
||||||
|
[x_i, x_j] &= 0 \\
|
||||||
|
[p_i, p_j] &= 0 \\
|
||||||
|
[x_i, p_j] &= i \hbar \delta_{ij}
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\subsection{Schrödinger Gleichungen}
|
||||||
|
\begin{formula}{energy_operator}
|
||||||
|
\desc{Energy operator}{}{}
|
||||||
|
\desc[german]{Energieoperator}{}{}
|
||||||
|
\eq{E = i\hbar \frac{\partial}{\partial t}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{momentum_operator}
|
||||||
|
\desc{Momentum operator}{}{}
|
||||||
|
\desc[german]{Impulsoperator}{}{}
|
||||||
|
\eq{\vec{p} = -i\hbar \vec{\nabla_x}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{space_operator}
|
||||||
|
\desc{Space operator}{}{}
|
||||||
|
\desc[german]{Ortsoperator}{}{}
|
||||||
|
\eq{\vec{x} = i\hbar \vec{\nabla_p}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{stationary_schroedinger_equation}
|
||||||
|
\desc{Stationary Schrödingerequation}{}{}
|
||||||
|
\desc[german]{Stationäre Schrödingergleichung}{}{}
|
||||||
|
\eq{\hat{H}\ket{\psi} = E\ket{\psi}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{schroedinger_equation}
|
||||||
|
\desc{Schrödinger equation}{}{}
|
||||||
|
\desc[german]{Schrödingergleichung}{}{}
|
||||||
|
\eq{i\hbar\frac{\partial}{\partial t}\psi(x, t) = (- \frac{\hbar^2}{2m} \vec{\nabla}^2 + \vec{V}(x)) \psi(x)}
|
||||||
|
\end{formula}
|
||||||
|
The time evolution of the Hamiltonian is given by:\\
|
||||||
|
% \eq{Time evolution}{\hat{H}\ket{\psi} = E\ket{\psi}}{sg_time}
|
||||||
|
% \subsection{Creation and Annihilation operators}
|
||||||
|
% \eq{Annihilation operator}{\hat{a} = }{c\hat{a}_op_annihilation}
|
||||||
|
% \eq{Creation operator}{\hat{a}^\dagger = }{c\hat{a}_op_creation}
|
||||||
|
% \eq{Commutator}{[\hat{a},\hat{a}^\dagger] = 1}{c\hat{a}_op_commutator}
|
||||||
|
% \eq{}{
|
||||||
|
% \hat{a} \ket{n} &= \sqrt{n}\ket{n-1} \\
|
||||||
|
% \hat{a}^\dagger \ket{n} &= \sqrt{n+1}\ket{n+1} \\
|
||||||
|
% \ket{n} &= \frac{1}{\sqrt{n!}} (\hat{a}^\dagger)^n \ket{0}
|
||||||
|
% }{ca_op_on_state}
|
||||||
|
% \eq{Heisenberg}{\frac{dA}{dt}=\frac{\partial A}{\partial t}+\frac{[A,H]}{i\hbar}}{heisenberg}
|
||||||
|
|
||||||
|
\section{\GT{hosc}}
|
||||||
|
\begin{formula}{hosc_hamiltonian}
|
||||||
|
\desc{Hamiltonian}{}{}
|
||||||
|
\desc[german]{Hamiltonian}{}{}
|
||||||
|
\eq{
|
||||||
|
H&=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2\\
|
||||||
|
&=\frac{1}{2} \hbar\omega+\omega a^\dagger a
|
||||||
|
}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
% \begin{align}
|
||||||
|
% \label{eq:k}
|
||||||
|
% A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\
|
||||||
|
% A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\
|
||||||
|
% HAu_E=(E-\hbar\omega)Au_E \\
|
||||||
|
% u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\
|
||||||
|
% u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\
|
||||||
|
% E_n=( \frac{1}{2} +n)\hbar\omega
|
||||||
|
% \end{equation}
|
||||||
|
|
||||||
|
|
||||||
|
% \eq[
|
||||||
|
% ]
|
||||||
|
\begin{formula}{bloch_waves}
|
||||||
|
\desc{Bloch waves}{
|
||||||
|
Solve the stat. SG in periodic potential with period
|
||||||
|
$\vec{R}$: $V(\vec{r}) = V(\vec{r} + \vec{R})$\\
|
||||||
|
}{
|
||||||
|
$\vec{k}$ arbitrary, $u$ periodic function
|
||||||
|
}
|
||||||
|
\desc[german]{Blochwellen}{
|
||||||
|
Lösen stat. SG im periodischen Potential mit Periode
|
||||||
|
$\vec{R}$: $V(\vec{r}) = V(\vec{r} + \vec{R})$\\
|
||||||
|
}{
|
||||||
|
$\vec{k}$ beliebig, $u$ periodische Funktion
|
||||||
|
}
|
||||||
|
\eq{\psi_k(\vec{r}) = e^{i \vec{k}\cdot \vec{r}} \cdot u_{\vec{k}}(\vec{r})}
|
||||||
|
\end{formula}
|
||||||
|
|
51
src/trigonometry.tex
Normal file
51
src/trigonometry.tex
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
|
||||||
|
\begin{formula}{exponential_function}
|
||||||
|
\desc{Exponential function}{}{}
|
||||||
|
\desc[german]{Exponentialfunktion}{}{}
|
||||||
|
\eq{\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{sine}
|
||||||
|
\desc{Sine}{}{}
|
||||||
|
\desc[german]{Sinus}{}{}
|
||||||
|
\eq{\sin(x) &= \sum_{n=0}^{\infty} \frac{x^{(2n+1)}}{(2n+1)!} \\
|
||||||
|
&= \frac{e^{ix}-e^{-ix}}{2i}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{cosine}
|
||||||
|
\desc{Cosine}{}{}
|
||||||
|
\desc[german]{Kosinus}{}{}
|
||||||
|
\eq{\cos(x) &= \sum_{n=0}^{\infty} \frac{x^{(2n)}}{(2n)!} \\
|
||||||
|
&= \frac{e^{ix}+e^{-ix}}{2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{formula}{hyperbolic_sine}
|
||||||
|
\desc{Hyperbolic sine}{}{}
|
||||||
|
\desc[german]{Sinus hyperbolicus}{}{}
|
||||||
|
\eq{\sinh(x) &= -i\sin{ix} \\ &= \frac{e^{x}-e^{-x}}{2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
\begin{formula}{hyperbolic_cosine}
|
||||||
|
\desc{Hyperbolic cosine}{}{}
|
||||||
|
\desc[german]{Kosinus hyperbolicus}{}{}
|
||||||
|
\eq{\cosh(x) &= \cos{ix} \\ &= \frac{e^{x}+e^{-x}}{2}}
|
||||||
|
\end{formula}
|
||||||
|
|
||||||
|
|
||||||
|
\definetranslation{german}{angle_deg}{Grad}
|
||||||
|
\definetranslation{english}{angle_deg}{Degree}
|
||||||
|
\definetranslation{german}{angle_rad}{Rad}
|
||||||
|
\definetranslation{english}{angle_rad}{Radian}
|
||||||
|
\begin{table}[h]
|
||||||
|
\centering
|
||||||
|
% \caption{caption}
|
||||||
|
\label{tab:sin_cos_table}
|
||||||
|
\begin{tabular}{c|c|c|c|c|c|c|c|c}
|
||||||
|
\GetTranslation{angle_deg} & 0° & 30° & 45° & 60° & 90° & 120° & 180° & 270° \\ \hline
|
||||||
|
\GetTranslation{angle_rad} & $0$ & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\sqrt{\pi}}{3}$ & $\frac{\pi}{2}$ & $\frac{2\pi}{3}$ & $\pi$ & $\frac{3\pi}{2}$ \\ \hline
|
||||||
|
$\sin(x)$ & $0$ & $\frac{1}{2} $ & $\frac{\sqrt{2}}{2}$ & $\frac{\sqrt{3}}{2}$ & $1 $ & $\frac{\sqrt{3}}{2}$ & $ 0$ & $-1 $ \\
|
||||||
|
$\cos(x)$ & $1$ & $\frac{\sqrt{3}}{2}$ & $\frac{\sqrt{2}}{2}$ & $\frac{1}{2} $ & $0 $ & $\frac{-1}{2} $ & $-1$ & $ 0 $ \\
|
||||||
|
$\tan(x)$ & $0$ & $\frac{1}{\sqrt{3}}$ & $\frac{1}{\sqrt{2}}$ & $\frac{1}{2} $ & $\infty$ & $-\sqrt{3} $ & $ 0$ & $\infty$ \\
|
||||||
|
\end{tabular}
|
||||||
|
\end{table}
|
Loading…
Reference in New Issue
Block a user