qtys, constants
This commit is contained in:
parent
2c2da27752
commit
82556282f3
131
src/computational.tex
Normal file
131
src/computational.tex
Normal file
@ -0,0 +1,131 @@
|
||||
\Part[
|
||||
\eng{Computational Physics}
|
||||
\ger{Computergestützte Physik}
|
||||
]{comp}
|
||||
\Section[
|
||||
\eng{Many-body physics}
|
||||
\ger{Vielteilchenphysik}
|
||||
]{mb}
|
||||
\TODO{TODO}
|
||||
\Subsection[
|
||||
\eng{Importance sampling}
|
||||
\ger{Importance sampling / Stichprobenentnahme nach Wichtigkeit}
|
||||
]{importance_sampling}
|
||||
\TODO{Monte Carlo}
|
||||
|
||||
\Subsection[
|
||||
\eng{Matrix product states}
|
||||
\ger{Matrix Produktzustände}
|
||||
]{mps}
|
||||
|
||||
\Section[
|
||||
\eng{Misc}
|
||||
\ger{Verschiedenes}
|
||||
]{misc}
|
||||
\begin{formula}{mean_field}
|
||||
\desc{Mean field approximation}{Replaces 2-particle operator by 1-particle operator}{Example for Coulumb interaction between many electrons}
|
||||
\desc[german]{Molekularfeldnäherung}{Ersetzt 2-Teilchen Operator durch 1-Teilchen Operator}{Beispiel für Coulumb Wechselwirkung zwischen Elektronen}
|
||||
\eq{
|
||||
\frac{1}{2}\sum_{i\neq j} \frac{e^2}{\abs{\vec{r}_i - \vec{r}_j}} \approx \sum_{i} V_\text{eff}(\vec{r}_i)
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Tight-binding}
|
||||
\ger{Tight-binding}
|
||||
]{tb}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Density functional theory (DFT)}
|
||||
\ger{Dichtefunktionaltheorie (DFT)}
|
||||
]{dft}
|
||||
\Subsection[
|
||||
\eng{Hartree-Fock}
|
||||
\ger{Hartree-Fock}
|
||||
]{hf}
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item \fqEqRef{comp:misc:mean_field} theory
|
||||
\item Self-interaction free: Self interaction is cancelled out by the Fock-term
|
||||
\end{itemize}
|
||||
}
|
||||
\end{ttext}
|
||||
\begin{formula}{equation}
|
||||
\desc{Hartree-Fock equation}{}{
|
||||
$\varphi_\xi$ single particle wavefunction of $\xi$th orbital,
|
||||
$\hat{T}$ kinetic electron energy,
|
||||
$\hat{V}_{\text{en}}$ electron-nucleus attraction,
|
||||
$\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential},
|
||||
}
|
||||
\desc[german]{Hartree-Fock Gleichung}{}{
|
||||
$\varphi_\xi$ ein-Teilchen Wellenfunktion des $\xi$-ten Orbitals,
|
||||
$\hat{T}$ kinetische Energie der Elektronen,
|
||||
$\hat{V}_{\text{en}}$ Electron-Kern Anziehung,
|
||||
$\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential}
|
||||
}
|
||||
\eq{
|
||||
\left(\hat{T} + \hat{V}_{\text{en}} + \hat{V}_{\text{HF}}^\xi\right)\varphi_\xi(x) = \epsilon_\xi \varphi_\xi(x)
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{potential}
|
||||
\desc{Hartree-Fock potential}{}{}
|
||||
\desc[german]{Hartree Fock Potential}{}{}
|
||||
\eq{
|
||||
V_{\text{HF}}^\xi(\vecr) =
|
||||
\sum_{\vartheta} \int \d x'
|
||||
\frac{e^2}{\abs{\vecr - \vecr'}}
|
||||
\left(
|
||||
\underbrace{\abs{\varphi_\xi(x')}^2}_{\text{Hartree-Term}}
|
||||
- \underbrace{\frac{\varphi_{\vartheta}^*(x') \varphi_{\xi}(x') \varphi_{\vartheta}(x)}{\varphi_\xi(x)}}_{\text{Fock-Term}}
|
||||
\right)
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{scf}
|
||||
\desc{Self-consistend field}{}{}
|
||||
% \desc[german]{}{}{}
|
||||
\ttxt{
|
||||
\eng{
|
||||
\begin{enumerate}
|
||||
\item Initial guess for $\psi$
|
||||
\item Solve SG for each particle
|
||||
\item Make new guess for $\psi$
|
||||
\end{enumerate}
|
||||
}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Kohn-Sham}
|
||||
\ger{Kohn-Sham}
|
||||
]{ks}
|
||||
\TODO{TODO}
|
||||
|
||||
\Subsection[
|
||||
\eng{Born-Oppenheimer Approximation}
|
||||
\ger{Born-Oppenheimer Näherung}
|
||||
]{bo}
|
||||
\TODO{TODO}
|
||||
|
||||
\Subsection[
|
||||
\eng{Molecular Dynamics}
|
||||
\ger{Molekulardynamik}
|
||||
]{md}
|
||||
\begin{ttext}
|
||||
\eng{Statistical method}
|
||||
|
||||
\end{ttext}
|
||||
|
||||
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Gradient descent}
|
||||
\ger{Gradientenverfahren}
|
||||
]{gd}
|
||||
\TODO{TODO}
|
||||
|
||||
|
||||
|
@ -166,53 +166,6 @@ family of plane that are equivalent due to crystal symmetry
|
||||
\eq{\mu = \frac{q \tau}{m}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Drude model}
|
||||
\ger{Drude-Modell}
|
||||
]{drude}
|
||||
\begin{ttext}
|
||||
\eng{Classical model describing the transport properties of electrons in materials (metals):
|
||||
The material is assumed to be an ion lattice and with freely moving electrons (electron gas). The electrons are
|
||||
accelerated by an electric field and decelerated through collisions with the lattice ions.
|
||||
The model disregards the Fermi-Dirac partition of the conducting electrons.
|
||||
}
|
||||
\ger{Ein klassisches Model zur Beschreibung der Transporteigenschaften von Elektronen in (v.a.) Metallen:
|
||||
Der Festkörper wird als Ionenkristall mit frei beweglichen Elektronen (Elektronengas).
|
||||
Die Elektronen werden durch ein Elektrisches Feld $E$ beschleunigt und durch Stöße mit den Gitterionen gebremst.
|
||||
Das Modell vernachlässigt die Fermi-Dirac Verteilung der Leitungselektronen.
|
||||
}
|
||||
\end{ttext}
|
||||
\begin{formula}{motion}
|
||||
\desc{Equation of motion}{}{$v$ electron speed, $\vec{v}_\text{D}$ drift velocity, $\tau$ mean free time between collisions}
|
||||
\desc[german]{Bewegungsgleichung}{}{$v$ Elektronengeschwindigkeit, $\vec{v}_\text{D}$ Driftgeschwindigkeit, $\tau$ Stoßzeit}
|
||||
\eq{\masse \odv{\vec{v}}{t} + \frac{\masse}{\tau} \vec{v}_\text{D} = -e \vec{E}}
|
||||
\end{formula}
|
||||
\begin{formula}{current_density}
|
||||
\desc{Current density}{Ohm's law}{$n$ charge particle density}
|
||||
\desc[german]{Stromdichte}{Ohmsches Gesetz}{$n$ Ladungsträgerdichte}
|
||||
\eq{\vec{j} = -ne\vec{v}_\text{D} = ne\mu \vec{E}}
|
||||
\end{formula}
|
||||
\begin{formula}{conductivity}
|
||||
\desc{Drude-conductivity}{}{}
|
||||
\desc[german]{Drude-Leitfähigkeit}{}{}
|
||||
\eq{\sigma = \frac{\vec{j}}{\vec{E}} = \frac{e^2 \tau n}{\masse} = n e \mu}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Sommerfeld model}
|
||||
\ger{Sommerfeld-Modell}
|
||||
]{sommerfeld}
|
||||
\begin{ttext}
|
||||
\eng{Assumes a gas of free fermions underlying the pauli-exclusion principle. Only electrons in an energy range of $\kB T$ around the Fermi energy $\EFermi$ participate in scattering processes.}
|
||||
\ger{Annahme eines freien Fermionengases, welches dem Pauli-Prinzip unterliegt. Nur Elektronen in einem Energiebereich von $\kB T$ um die Fermi Energe $\EFermi$ nehmen an Streuprozessen teil.}
|
||||
\end{ttext}
|
||||
\begin{formula}{current_density}
|
||||
\desc{Current density}{}{}
|
||||
\desc[german]{Stromdichte}{}{}
|
||||
\eq{\vec{j} = -en\braket{v} = -e n \frac{\hbar}{\masse}\braket{\vec{k}} = -e \frac{1}{V} \sum_{\vec{k},\sigma} \frac{\hbar \vec{k}}{\masse}}
|
||||
\end{formula}
|
||||
\TODO{The formula for the conductivity is the same as in the drude model?}
|
||||
|
||||
\Subsection[
|
||||
\eng{2D electron gas}
|
||||
\ger{2D Elektronengas}
|
||||
@ -256,177 +209,9 @@ family of plane that are equivalent due to crystal symmetry
|
||||
|
||||
\TODO{TODO}
|
||||
|
||||
\Section[
|
||||
\eng{Semiconductors}
|
||||
\ger{Halbleiter}
|
||||
]{semic}
|
||||
\begin{formula}{charge_density_eq}
|
||||
\desc{Equilibrium charge densitites}{}{}
|
||||
\desc[german]{Ladungsträgerdichte im Equilibrium}{}{}
|
||||
\eq{
|
||||
n_0 &\approx N_\text{c}(T) e^{-\frac{E_\text{c} - \EFermi}{\kB T}} \\
|
||||
p_0 &\approx N_\text{v}(T) e^{-\frac{\EFermi - E_\text{v}}{\kB T}}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{charge_density_intrinsic}
|
||||
\desc{Intrinsic charge density}{}{}
|
||||
\desc[german]{Intrinsische Ladungsträgerdichte}{}{}
|
||||
\eq{
|
||||
n_\text{i} \approx \sqrt{n_0 p_0} = \sqrt{N_\text{c}(T) N_\text{v}(T)} e^{-\frac{E_\text{gap}}{2\kB T}}
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Measurement techniques}
|
||||
\ger{Messtechniken}
|
||||
]{meas}
|
||||
\Subsection[
|
||||
\eng{ARPES}
|
||||
\ger{ARPES}
|
||||
]{arpes}
|
||||
what?
|
||||
in?
|
||||
how?
|
||||
plot
|
||||
|
||||
\Subsection[
|
||||
\eng{Scanning probe microscopy SPM}
|
||||
\ger{Rastersondenmikroskopie (SPM)}
|
||||
]{spm}
|
||||
\begin{ttext}
|
||||
\eng{Images of surfaces are taken by scanning the specimen with a physical probe.}
|
||||
\ger{Bilder der Oberfläche einer Probe werden erstellt, indem die Probe mit einer Sonde abgetastet wird.}
|
||||
\end{ttext}
|
||||
|
||||
\Eng[name]{Name}
|
||||
\Ger[name]{Name}
|
||||
\Eng[application]{Application}
|
||||
\Ger[application]{Anwendung}
|
||||
|
||||
|
||||
\begin{minipagetable}{amf}
|
||||
\entry{name}{
|
||||
\eng{Atomic force microscopy (AMF)}
|
||||
\ger{Atomare Rasterkraftmikroskopie (AMF)}
|
||||
}
|
||||
\entry{application}{
|
||||
\eng{Surface stuff}
|
||||
\ger{Oberflächenzeug}
|
||||
}
|
||||
\entry{how}{
|
||||
\eng{With needle}
|
||||
\ger{Mit Nadel}
|
||||
}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{img/cm_amf.pdf}
|
||||
\caption{\cite{Bian2021}}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
|
||||
|
||||
\begin{minipagetable}{stm}
|
||||
\entry{name}{
|
||||
\eng{Scanning tunneling microscopy (STM)}
|
||||
\ger{Rastertunnelmikroskop (STM)}
|
||||
}
|
||||
\entry{application}{
|
||||
\eng{Surface stuff}
|
||||
\ger{Oberflächenzeug}
|
||||
}
|
||||
\entry{how}{
|
||||
\eng{With TUnnel}
|
||||
\ger{Mit TUnnel}
|
||||
}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{img/cm_stm.pdf}
|
||||
\caption{\cite{Bian2021}}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
|
||||
\Section[
|
||||
\eng{Fabrication techniques}
|
||||
\ger{Herstellungsmethoden}
|
||||
]{fab}
|
||||
\begin{minipagetable}{cvd}
|
||||
\entry{name}{
|
||||
\eng{Chemical vapor deposition (CVD)}
|
||||
\ger{Chemische Gasphasenabscheidung (CVD)}
|
||||
}
|
||||
\entry{how}{
|
||||
\eng{
|
||||
A substrate is exposed to volatile precursors, which react and/or decompose on the heated substrate surface to produce the desired deposit.
|
||||
By-products are removed by gas flow through the chamber.
|
||||
}
|
||||
\ger{
|
||||
An der erhitzten Oberfläche eines Substrates wird aufgrund einer chemischen Reaktion mit einem Gas eine Feststoffkomponente abgeschieden.
|
||||
Nebenprodukte werden durch den Gasfluss durch die Kammer entfernt.
|
||||
}
|
||||
}
|
||||
\entry{application}{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Polysilicon \ce{Si}
|
||||
\item Silicon dioxide \ce{SiO_2}
|
||||
\item Graphene
|
||||
\item Diamond
|
||||
\end{itemize}
|
||||
}
|
||||
\ger{
|
||||
\begin{itemize}
|
||||
\item Poly-silicon \ce{Si}
|
||||
\item Siliziumdioxid \ce{SiO_2}
|
||||
\item Graphen
|
||||
\item Diamant
|
||||
\end{itemize}
|
||||
}
|
||||
}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/cm_cvd_english.pdf}
|
||||
\end{minipage}
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Epitaxy}
|
||||
\ger{Epitaxie}
|
||||
]{epitaxy}
|
||||
\begin{ttext}
|
||||
\eng{A type of crystal groth in which new layers are formed with well-defined orientations with respect to the crystalline seed layer.}
|
||||
\ger{Eine Art des Kristallwachstums, bei der mindestens eine kristallographische Ordnung der wachsenden Schicht der des Substrates entspricht.}
|
||||
\end{ttext}
|
||||
|
||||
\begin{minipagetable}{mbe}
|
||||
\entry{name}{
|
||||
\eng{Molecular Beam Epitaxy (MBE)}
|
||||
\ger{Molekularstrahlepitaxie (MBE)}
|
||||
}
|
||||
\entry{how}{
|
||||
\eng{In a ultra-high vacuum, the elements are heated until they slowly sublime. The gases then condensate on the substrate surface}
|
||||
\ger{Die Elemente werden in einem Ultrahochvakuum erhitzt, bis sie langsam sublimieren. Die entstandenen Gase kondensieren dann auf der Oberfläche des Substrats}
|
||||
}
|
||||
\entry{application}{
|
||||
\eng{
|
||||
\begin{itemize}
|
||||
\item Gallium arsenide \ce{GaAs}
|
||||
\end{itemize}
|
||||
\TODO{Link to GaAs}
|
||||
}
|
||||
\ger{
|
||||
\begin{itemize}
|
||||
\item Galliumarsenid \ce{GaAs}
|
||||
\end{itemize}
|
||||
}
|
||||
}
|
||||
\end{minipagetable}
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{img/cm_mbe_english.pdf}
|
||||
\end{minipage}
|
||||
\eng{\GT{misc}}
|
||||
\ger{\GT{misc}}
|
||||
]{misc}
|
||||
|
||||
|
10
src/constants.tex
Normal file
10
src/constants.tex
Normal file
@ -0,0 +1,10 @@
|
||||
\Section[
|
||||
\eng{Constants}
|
||||
\ger{Konstanten}
|
||||
]{constants}
|
||||
\begin{constant}{planck}{h}{def}
|
||||
\desc{Planck Constant}{}{}
|
||||
\desc[german]{Plancksches Wirkumsquantum}{}{}
|
||||
\val{6.62607015\cdot 10^{-34}}{\joule\s}
|
||||
\val{4.135667969\dots\cdot 10^{-15}}{\eV\s}
|
||||
\end{constant}
|
@ -1,5 +1,3 @@
|
||||
\def\PhiB{\Phi_\text{B}}
|
||||
\def\PhiE{\Phi_\text{E}}
|
||||
|
||||
\Part[
|
||||
\eng{Electrodynamics}
|
||||
@ -10,7 +8,7 @@
|
||||
\Section[
|
||||
\eng{Maxwell-Equations}
|
||||
\ger{Maxwell-Gleichungen}
|
||||
]{Maxwell}
|
||||
]{Maxwell}
|
||||
\begin{formula}{vacuum}
|
||||
\desc{Vacuum}{microscopic formulation}{}
|
||||
\desc[german]{Vakuum}{Mikroskopische Formulierung}{}
|
||||
@ -32,38 +30,60 @@
|
||||
\Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t}
|
||||
}
|
||||
\end{formula}
|
||||
\TODO{Polarization, Magnetisation}
|
||||
\TODO{Polarization}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Fields}
|
||||
\ger{Felder}
|
||||
]{fields}
|
||||
|
||||
\Subsection[
|
||||
\eng{Electric field}
|
||||
\ger{Elektrisches Feld}
|
||||
]{el}
|
||||
]{el}
|
||||
\begin{formula}{gauss_law}
|
||||
\desc{Gauss's law for electric fields}{Electric flux through a closed surface is proportional to the electric charge}{$S$ closed surface}
|
||||
\desc[german]{Gaußsches Gesetz für elektrische Felder}{Der magnetische Fluss durch eine geschlossene Fläche ist proportional zur elektrischen Ladung}{$S$ geschlossene Fläche}
|
||||
\eq{\PhiE = \iint_S \vec{E}\cdot\d\vec{S} = \frac{Q}{\varepsilon_0}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\Section[
|
||||
\eng{Magnetic field}
|
||||
\ger{Magnetfeld}
|
||||
]{mag}
|
||||
]{mag}
|
||||
\begin{constant}{h_joule}{\hbar}{def}
|
||||
\desc{Planck Constant}{}{}
|
||||
\desc[german]{Plancksches Wirkumsquantum}{}{}
|
||||
\val{6.62607015\cdot 10^{-34}}{\joule\s}
|
||||
\val{4.135667969\dots\cdot 10^{-15}}{\eV\s}
|
||||
\end{constant}
|
||||
|
||||
\Eng[magnetic_flux]{Magnetix flux density}
|
||||
\Ger[magnetic_flux]{Magnetische Flussdichte}
|
||||
|
||||
\begin{quantity}{mag_flux}{\Phi}{\weber=\volt\per\s=\kg\m^2\per\s^2\A}{scalar}
|
||||
\begin{quantity}{magnetic_flux}{\PhiB}{\weber=\volt\per\s=\kg\m^2\per\s^2\A}{scalar}
|
||||
\desc{Magnetic flux}{}
|
||||
\desc[german]{Magnetischer Fluss}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{magnetic_flux_density}{\vec{B}}{\tesla=\volt\s\per\m^2=\newton\per\ampere\m=\kg\per\ampere\s^2}{}
|
||||
\desc{Magnetic flux density}{}
|
||||
\desc[german]{Magnetische Flussdichte}{}
|
||||
\end{quantity}
|
||||
\begin{formula}{magnetic_flux_density}
|
||||
\desc{\qtyRef{magnetic_flux_density}}{}{$\vec{H}$ \qtyRef{magnetic_field_density}, $\vec{M}$ \qtyRef{magnetization}, $\mu_0$ \constRef{vacuum_permeability}}
|
||||
\desc[german]{}{}{}
|
||||
\eq{\vec{B} = \mu_0 (\vec{H}+\vec{M})}
|
||||
\end{formula}
|
||||
|
||||
\begin{quantity}{magnetic_permeability}{\mu}{\henry\per\m=\volt\s\per\ampere\m}{scalar}
|
||||
\desc{Magnetic permeability}{}
|
||||
\desc[german]{Magnetisch Permeabilität}{}
|
||||
\end{quantity}
|
||||
\begin{constant}{vacuum_permeability}{\mu_0}{exp}
|
||||
\desc{Magnetic vauum permeability}{}{}
|
||||
\desc[german]{Magnetische Vakuumpermeabilität}{}{}
|
||||
\val{1.25663706127(20)}{\henry\per\m=\newton\per\ampere^2}
|
||||
\end{constant}
|
||||
|
||||
\begin{formula}{magnetic_flux}
|
||||
\desc{Magnetic flux}{}{}
|
||||
\desc{Magnetic flux}{}{$\vec{A}$ \GT{area}}
|
||||
\desc[german]{Magnetischer Fluss}{}{}
|
||||
\eq{\PhiB = \iint_A \vec{B}\cdot\d\vec{A}}
|
||||
\end{formula}
|
||||
@ -74,15 +94,24 @@
|
||||
\eq{\PhiB = \iint_S \vec{B}\cdot\d\vec{S} = 0}
|
||||
\end{formula}
|
||||
|
||||
\begin{quantity}{magnetization}{\vec{M}}{\ampere\per\m}{vector}
|
||||
\desc{Magnetization}{Vector field describing the density of magnetic dipoles}
|
||||
\desc[german]{Magnetisierung}{Vektorfeld, welches die Dichte von magnetischen Dipolen beschreibt.}
|
||||
\end{quantity}
|
||||
\begin{quantity}{magnetic_moment}{\vec{m}}{\ampere\m^2}{vector}
|
||||
\desc{Magnetic moment}{Strength and direction of a magnetic dipole}
|
||||
\desc[german]{Magnetisches Moment}{Stärke und Richtung eines magnetischen Dipols}
|
||||
\end{quantity}
|
||||
|
||||
\begin{formula}{magnetization}
|
||||
\desc{Magnetization}{}{$m$ mag. moment, $V$ volume}
|
||||
\desc[german]{Magnetisierung}{}{$m$ mag. Moment, $V$ Volumen}
|
||||
\desc{\qtyRef{magnetization}}{}{$m$ \qtyRef{magnetic_moment}, $V$ \qtyRef{volume}}
|
||||
\desc[german]{}{}{}
|
||||
\eq{\vec{M} = \odv{\vec{m}}{V} = \chi_\text{m} \cdot \vec{H}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{angular_torque}
|
||||
\desc{Torque}{}{$m$ mag. moment}
|
||||
\desc[german]{Drehmoment}{}{$m$ mag. Moment}
|
||||
\desc{Torque}{}{$m$ \qtyRef{magnetic_moment}}
|
||||
\desc[german]{Drehmoment}{}{}
|
||||
\eq{\vec{\tau} = \vec{m} \times \vec{B}}
|
||||
\end{formula}
|
||||
|
||||
@ -99,7 +128,11 @@
|
||||
\eq{\vec{S} = \vec{E} \times \vec{H}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\begin{formula}{magnetic_permeability}
|
||||
\desc{\qtyRef{magnetic_permeability}}{}{$B$ \qtyRef{magnetic_flux_density}, $H$ \qtyRef{magnetic_field_intensity}}
|
||||
\desc[german]{}{}{}
|
||||
\eq{\mu=\frac{B}{H}}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Induction}
|
||||
@ -124,6 +157,17 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Magnetic materials}
|
||||
\ger{Magnetische Materialien}
|
||||
]{materials}
|
||||
\begin{formula}{paramagnetism}
|
||||
\desc{Paramagnetism}{}{$\mu$ \fqEqRef{ed:mag:permeability}, $\chi$ \fqEqRef{ed:mag:susecptibility}}
|
||||
\desc[german]{Paramagnetismus}{}{}
|
||||
\eq{\mu &> 1 \\ \chi > 0}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Hall-Effect}
|
||||
\ger{Hall-Effekt}
|
||||
@ -152,9 +196,9 @@
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{coefficient}
|
||||
\desc{Hall coefficient}{}{}
|
||||
\desc[german]{Hall-Koeffizient}{}{}
|
||||
\eq{R_\text{H} = -\frac{Eg}{j_x Bg} = \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
||||
\desc{Hall coefficient}{Sometimes $R_\txH$}{}
|
||||
\desc[german]{Hall-Koeffizient}{Manchmal $R_\txH$}{}
|
||||
\eq{A_\text{H} := -\frac{E_y}{j_x B_z} \explOverEq{\GT{metals}} \frac{1}{ne} = \frac{\rho_{xy}}{B_z}}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{resistivity}
|
||||
@ -240,7 +284,7 @@
|
||||
\Section[
|
||||
\eng{Dipole-stuff}
|
||||
\ger{Dipol-zeug}
|
||||
]{dipole}
|
||||
]{dipole}
|
||||
|
||||
\begin{formula}{poynting}
|
||||
\desc{Dipole radiation Poynting vector}{}{}
|
||||
|
142
src/main.tex
Normal file → Executable file
142
src/main.tex
Normal file → Executable file
@ -1,6 +1,6 @@
|
||||
\documentclass[11pt, a4paper]{article}
|
||||
% \usepackage[utf8]{inputenc}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage[german]{babel}
|
||||
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
|
||||
% ENVIRONMENTS etc
|
||||
\usepackage{adjustbox}
|
||||
@ -15,23 +15,19 @@
|
||||
\usepackage{expl3} % switch case and other stuff
|
||||
\usepackage{substr}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{float}
|
||||
% FORMATING
|
||||
\usepackage{float} % float barrier
|
||||
\usepackage{subcaption} % subfigure
|
||||
\usepackage[hidelinks]{hyperref}
|
||||
\usepackage{subcaption}
|
||||
|
||||
\usepackage[shortlabels]{enumitem} % easily change enum symbols to i), a. etc
|
||||
\hypersetup{colorlinks = true, % Colours links instead of ugly boxes
|
||||
urlcolor = blue, % Colour for external hyperlinks
|
||||
linkcolor = cyan, % Colour of internal links
|
||||
citecolor = red % Colour of citations
|
||||
}
|
||||
\usepackage{titlesec} % colored titles
|
||||
\usepackage{array}
|
||||
\newcolumntype{C}{>{$}c<{$}} % math-mode version of "c" column type
|
||||
% \usepackage{sectsty}
|
||||
% TRANSLATION
|
||||
\usepackage{translations}
|
||||
\input{util/translation.tex}
|
||||
|
||||
\usepackage{sectsty}
|
||||
\usepackage{titlesec}
|
||||
\input{util/colorscheme.tex}
|
||||
|
||||
% GRAPHICS
|
||||
\usepackage{tikz} % drawings
|
||||
\usetikzlibrary{decorations.pathmorphing}
|
||||
@ -40,9 +36,7 @@
|
||||
% \usetikzlibrary{external}
|
||||
% \tikzexternalize[prefix=tikz_figures]
|
||||
% \tikzexternalize
|
||||
|
||||
\usepackage{circuitikz}
|
||||
|
||||
% SCIENCE PACKAGES
|
||||
\usepackage{mathtools}
|
||||
\usepackage{MnSymbol} % for >>> \ggg sign
|
||||
@ -57,23 +51,21 @@
|
||||
\sisetup{separate-uncertainty}
|
||||
\sisetup{per-mode = power}
|
||||
\sisetup{exponent-product=\ensuremath{\cdot}}
|
||||
|
||||
|
||||
% DUMB STUFF
|
||||
% \usepackage{emoji}
|
||||
% \newcommand\temoji[1]{\text{\emoji{#1}}}
|
||||
% \def\sigma{\temoji{shark}}
|
||||
% \def\lambda{\temoji{sheep}}
|
||||
% \def\psi{\temoji{pickup-truck}}
|
||||
% \def\pi{\temoji{birthday-cake}}
|
||||
% \def\Pi{\temoji{hospital}}
|
||||
% \def\rho{\temoji{rhino}}
|
||||
% \def\nu{\temoji{unicorn}}
|
||||
% \def\mu{\temoji{mouse}}
|
||||
|
||||
\newcommand{\TODO}[1]{{\color{bright_red}TODO:#1}}
|
||||
\newcommand{\ts}{\textsuperscript}
|
||||
|
||||
% put an explanation above an equal sign
|
||||
% [1]: equality sign (or anything else)
|
||||
% 2: text (not in math mode!)
|
||||
\newcommand{\explUnderEq}[2][=]{%
|
||||
\underset{\substack{\uparrow\\\mathrlap{\text{\hspace{-1em}#2}}}}{#1}}
|
||||
\newcommand{\explOverEq}[2][=]{%
|
||||
\overset{\substack{\mathrlap{\text{\hspace{-1em}#2}}\\\downarrow}}{#1}}
|
||||
|
||||
|
||||
|
||||
|
||||
% "automate" sectioning
|
||||
% start <section>, get heading from translation, set label
|
||||
% fqname is the fully qualified name: the keys of all previous sections joined with a ':'
|
||||
@ -118,37 +110,57 @@
|
||||
|
||||
% Make the translation of #1 a reference to a equation
|
||||
% 1: key
|
||||
\newcommand{\fqEqRef}[1]{
|
||||
\edef\fqeqrefname{\GT{#1}}
|
||||
\hyperref[eq:#1]{\fqeqrefname}
|
||||
\newrobustcmd{\fqEqRef}[1]{%
|
||||
% \edef\fqeqrefname{\GT{#1}}
|
||||
% \hyperref[eq:#1]{\fqeqrefname}
|
||||
\hyperref[eq:#1]{\GT{#1}}%
|
||||
}
|
||||
\newcommand{\qtyRef}[1]{
|
||||
% using temp edef so that underscores in undefined trasnlation keys are printed as characters
|
||||
\edef\qtyrefname{\GT{qty:#1}}
|
||||
\hyperref[qty:#1]{\qtyrefname}
|
||||
\newrobustcmd{\qtyRef}[1]{%
|
||||
\hyperref[qty:#1]{\GT{#1}}%
|
||||
}
|
||||
\newrobustcmd{\constRef}[1]{%
|
||||
\hyperref[const:#1]{\GT{#1}}%
|
||||
}
|
||||
% Make the translation of #1 a reference to a section
|
||||
% 1: key
|
||||
\newcommand{\fqSecRef}[1]{
|
||||
\hyperref[sec:#1]{\GT{#1}}
|
||||
\newrobustcmd{\fqSecRef}[1]{%
|
||||
\hyperref[sec:#1]{\GT{#1}}%
|
||||
}
|
||||
|
||||
% \usepackage{xstring}
|
||||
|
||||
|
||||
\input{circuit.tex}
|
||||
\input{util/macros.tex}
|
||||
\input{util/environments.tex} % requires util/translation.tex to be loaded first
|
||||
|
||||
% some translations
|
||||
\def\inputOnlyFile{\relax}
|
||||
\newcommand\Input[1]{
|
||||
\ifstrequal{\relax}{\inputOnlyFile}{
|
||||
\input{#1}
|
||||
}{
|
||||
\ifstrequal{#1}{\inputOnlyFile}{
|
||||
\input{#1}
|
||||
}{}
|
||||
}
|
||||
}
|
||||
|
||||
% \includeonly{mechanics}
|
||||
% \includeonly{low_temp}
|
||||
|
||||
\title{Formelsammlung}
|
||||
\author{Matthias Quintern}
|
||||
\date{\today}
|
||||
|
||||
\input{util/macros.tex}
|
||||
\input{util/environments.tex}
|
||||
|
||||
% \includeonly{computational}
|
||||
\begin{document}
|
||||
\IfFileExists{\jobname.translations.aux}{%
|
||||
\input{\jobname.translations.aux}
|
||||
}{}
|
||||
|
||||
|
||||
\newwrite\translationsaux
|
||||
\immediate\openout\translationsaux=\jobname.translations.aux
|
||||
\immediate\write\translationsaux{\noexpand\def\noexpand\MYVAR{AUSM AUX}}%
|
||||
\AtEndDocument{\immediate\closeout\translationsaux}
|
||||
|
||||
\maketitle
|
||||
\tableofcontents
|
||||
@ -159,7 +171,7 @@
|
||||
|
||||
% \include{maths/linalg}
|
||||
% \include{maths/geometry}
|
||||
% \include{maths/analysis}
|
||||
\input{maths/analysis.tex}
|
||||
% \include{maths/probability_theory}
|
||||
|
||||
\include{mechanics}
|
||||
@ -168,25 +180,30 @@
|
||||
|
||||
\include{electrodynamics}
|
||||
|
||||
\include{quantum_mechanics}
|
||||
\include{atom}
|
||||
% \include{quantum_mechanics}
|
||||
% \include{atom}
|
||||
|
||||
\include{condensed_matter}
|
||||
\include{low_temp}
|
||||
\input{cm/charge_transport.tex}
|
||||
\input{cm/low_temp.tex}
|
||||
\input{cm/semiconductors.tex}
|
||||
% \include{cm/techniques}
|
||||
|
||||
\include{topo}
|
||||
|
||||
\include{quantum_computing}
|
||||
% \include{quantum_computing}
|
||||
|
||||
\include{computational}
|
||||
|
||||
\include{quantities}
|
||||
\include{constants}
|
||||
|
||||
\newpage
|
||||
% \DT[english]{ttest}{TESTT EN}
|
||||
% \DT[german]{ttest}{TESTT DE}
|
||||
|
||||
\addtranslation{english}{ttest}{JA MOIN}
|
||||
\paragraph{Testing GT, GetTranslation, IfTranslationExists, IfTranslation}
|
||||
\addtranslation{english}{ttest}{This is the english translation of \texttt{ttest}}
|
||||
\noindent
|
||||
GT: ttest = \GT{ttest}\\
|
||||
GetTranslation: ttest = \GetTranslation{ttest}\\
|
||||
@ -194,6 +211,7 @@ Is english? = \IfTranslation{english}{ttest}{yes}{no} \\
|
||||
Is german? = \IfTranslation{german}{ttest}{yes}{no} \\
|
||||
Is defined = \IfTranslationExists{ttest}{yes}{no} \\
|
||||
|
||||
\paragraph{Testing translation keys containing macros}
|
||||
\def\ttest{NAME}
|
||||
% \addtranslation{english}{\ttest:name}{With variable}
|
||||
% \addtranslation{german}{\ttest:name}{Mit Variable}
|
||||
@ -211,17 +229,27 @@ Is defined? = \expandafter\IfTranslationExists\expandafter{\ttest:name}{yes}{no}
|
||||
|
||||
% \DT[qty:test]{english}{HAHA}
|
||||
|
||||
{blablabla \label{test}}
|
||||
\paragraph{Testing hyperrefs}
|
||||
\noindent{This text is labeled with "test" \label{test}}\\
|
||||
\hyperref[test]{This should refer to the line above}\\
|
||||
Link to quantity which is defined after the reference: \qtyRef{test}\\
|
||||
\DT[qty:test]{english}{If you read this, then the translation for qty:test was expandend!}
|
||||
Link to defined quantity: \qtyRef{mass}
|
||||
\begin{equation}
|
||||
\label{qty:test}
|
||||
E = mc^2
|
||||
\end{equation}
|
||||
|
||||
\paragraph{Testing translation keys with token symbols like undescores}
|
||||
\noindent
|
||||
\GT{absolute_undefined_translation_with_underscors}\\
|
||||
\gt{relative_undefined_translation_with_underscors}\\
|
||||
\GT{absolute_undefined_translation_with_&ersand}
|
||||
|
||||
|
||||
|
||||
\hyperref[test]{TEST reference}
|
||||
\qtyRef{test}
|
||||
|
||||
\DT[qty:test]{english}{HAHA}
|
||||
|
||||
|
||||
\qtyRef{mass}
|
||||
\GT{qty:#1}
|
||||
\GT{\qtyname}
|
||||
|
||||
\newpage
|
||||
\Eng[appendix]{Appendix}
|
||||
|
@ -3,6 +3,13 @@
|
||||
\ger{Analysis}
|
||||
]{cal}
|
||||
|
||||
% \begin{formula}{shark}
|
||||
% \desc{Shark-midnight formula}{\emoji{shark}-s}{}
|
||||
% \desc[german]{Shark-Mitternachtformel}{}{}
|
||||
% \eq{
|
||||
% \temoji{seal}_{1,2} = \frac{-\temoji{shark}\pm \sqrt{\temoji{shark}^2-4\temoji{octopus}\temoji{tropical-fish}}}{2\temoji{octopus}}
|
||||
% }
|
||||
% \end{formula}
|
||||
|
||||
\Subsection[
|
||||
\eng{Convolution}
|
||||
@ -15,7 +22,7 @@
|
||||
\begin{formula}{def}
|
||||
\desc{Definition}{}{}
|
||||
\desc[german]{Definition}{}{}
|
||||
\eq{(f*g)(t) = f(t) * g(t) = int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau}
|
||||
\eq{(f*g)(t) = f(t) * g(t) = \int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau}
|
||||
\end{formula}
|
||||
\begin{formula}{notation}
|
||||
\desc{Notation}{}{}
|
||||
@ -134,6 +141,12 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{delta_of_function}
|
||||
\desc{Dirac-Delta of a function}{}{$g(x_0) = 0$}
|
||||
\desc[german]{Dirac-Delta einer Funktion}{}{}
|
||||
\eq{\delta(f(x)) = \frac{\delta(x-x_0)}{\abs{g'(x_0)}}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Section[
|
||||
\eng{Logarithm}
|
||||
@ -150,12 +163,23 @@
|
||||
x^{\log(y)} &= y^{\log(x)}
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{intergral}
|
||||
\desc{Integral of natural logarithm}{}{}
|
||||
\desc[german]{Integral des natürluchen Logarithmus}{}{}
|
||||
\eq{
|
||||
\int \ln(x) \d x &= x \left(\ln(x) -1\right) \\
|
||||
\int \ln(ax + b) \d x &= \frac{ax+b}{a} \left(\ln(ax + b) -1\right)
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{List of common integrals}
|
||||
\ger{Liste nützlicher Integrale}
|
||||
]{integrals}
|
||||
|
||||
% Put links to other integrals here
|
||||
\fqEqRef{cal:log:integral}
|
||||
|
||||
\begin{formula}{spherical-coordinates}
|
||||
\desc{Spherical coordinates}{}{}
|
||||
\desc[german]{Kugelkoordinaten}{}{}
|
||||
@ -179,3 +203,4 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -47,6 +47,12 @@
|
||||
\eq{F(x) = \int_{-\infty}^x f(t) \d t}
|
||||
\end{formula}
|
||||
|
||||
\begin{formula}{autocorrelation}
|
||||
\desc{Autocorrelation}{Correlation of $f$ to itself at an earlier point in time, $C$ is a covariance function}{}
|
||||
\desc[german]{Autokorrelation}{Korrelation vonn $f$ zu sich selbst zu einem früheren Zeitpunkt. $C$ ist auch die Kovarianzfunktion}{}
|
||||
\eq{C_A(\tau) = \lim_{T \to \infty} \frac{1}{2T}\int_{-T}^{T} f(t+\tau) f(t) \d t) = \braket{f(t+\tau)\cdot f(t)}}
|
||||
\end{formula}
|
||||
|
||||
\Section[
|
||||
\eng{Distributions}
|
||||
\ger{Verteilungen}
|
||||
|
77
src/quantities.tex
Normal file
77
src/quantities.tex
Normal file
@ -0,0 +1,77 @@
|
||||
% if this causes a compilation error, check that none of the units have been redefined
|
||||
|
||||
\Eng[si_base_units]{SI base units}
|
||||
\Ger[si_base_units]{SI Basisgrößen}
|
||||
|
||||
\paragraph{\GT{si_base_units}}
|
||||
|
||||
\begin{quantity}{time}{t}{\second}{}
|
||||
\desc{Time}{}
|
||||
\desc[german]{Zeit}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{Length}{l}{\m}{e}
|
||||
\desc{Length}{}
|
||||
\desc[german]{Länge}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{mass}{m}{\kg}{es}
|
||||
\desc{Mass}{}
|
||||
\desc[german]{Masse}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{temperature}{T}{\kelvin}{is}
|
||||
\desc{Temperature}{}
|
||||
\desc[german]{Temperatur}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{current}{I}{\ampere}{es}
|
||||
\desc{Electric current}{}
|
||||
\desc[german]{Elektrischer Strom}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{amount}{n}{\mol}{es}
|
||||
\desc{Amount of substance}{}
|
||||
\desc[german]{Stoffmenge}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{luminous_intensity}{I_\text{V}}{\candela}{s}
|
||||
\desc{Luminous intensity}{}
|
||||
\desc[german]{Lichtstärke}{}
|
||||
\end{quantity}
|
||||
|
||||
\paragraph{\GT{other}}
|
||||
\begin{quantity}{volume}{V}{\m^d}{}
|
||||
\desc{Volume}{$d$ dimensional Volume}
|
||||
\desc[german]{Volumen}{$d$ dimensionales Volumen}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{force}{\vec{F}}{\newton=\kg\m\per\second^2}{ev}
|
||||
\desc{Force}{}
|
||||
\desc[german]{Kraft}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{spring_constant}{k}{\newton\per\m=\kg\per\second^2}{s}
|
||||
\desc{Spring constant}{}
|
||||
\desc[german]{Federkonstante}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{velocity}{\vec{v}}{\m\per\s}{v}
|
||||
\desc{Velocity}{}
|
||||
\desc[german]{Geschwindigkeit}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{torque}{\tau}{\newton\m=\kg\m^2\per\s^2}{v}
|
||||
\desc{Torque}{}
|
||||
\desc[german]{Drehmoment}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{heat_capacity}{C}{\joule\per\kelvin}{}
|
||||
\desc{Heat capacity}{}
|
||||
\desc[german]{Wärmekapazität}{}
|
||||
\end{quantity}
|
||||
|
||||
\begin{quantity}{charge}{q}{\coulomb=\ampere\s}{}
|
||||
\desc{Charge}{}
|
||||
\desc[german]{Ladung}{}
|
||||
\end{quantity}
|
@ -53,6 +53,43 @@
|
||||
\eq{\hat{A} = \hat{A}^\dagger}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Measurement}
|
||||
\ger{Messung}
|
||||
]{measurement}
|
||||
\begin{ttext}
|
||||
\eng{An observable is a hermition operator acting on $\hat{H}$. The measurement randomly yields one of the eigenvalues of $\hat{O}$ (all real).}
|
||||
\ger{Eine Observable ist ein hermitscher Operator, der auf $\hat{H}$ wirkt. Die Messung ergibt zufällig einen der Eigenwerte von $\hat{O}$, welche alle reell sind.}
|
||||
\end{ttext}
|
||||
\begin{formula}{name}
|
||||
\desc{Measurement probability}{Probability to measure $\psi$ in state $\lambda$}{}
|
||||
\desc[german]{Messwahrscheinlichkeit}{Wahrscheinlichkeit, $\psi$ im Zustand $\lambda$ zu messen}{}
|
||||
\eq{p(\lambda) = \braket{\psi|\hat{P}_\lambda|\psi}}
|
||||
\end{formula}
|
||||
\begin{formula}{state_after}
|
||||
\desc{State after measurement}{}{}
|
||||
\desc[german]{Zustand nach der Messung}{}{}
|
||||
\eq{\ket{\psi}_\text{post} = \frac{1}{\sqrt{p(\lambda)}}\hat{P}_\lambda \ket{\psi}}
|
||||
\end{formula}
|
||||
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Pauli matrices}
|
||||
\ger{Pauli-Matrizen}
|
||||
]{pauli_matrices}
|
||||
\begin{formula}{pauli_matrices}
|
||||
\desc{Pauli matrices}{}{}
|
||||
\desc[german]{Pauli Matrizen}{}{}
|
||||
\eqAlignedAt{2}{
|
||||
\sigma_x &= \sigmaxmatrix &&= \sigmaxbraket \label{eq:pauli_x} \\
|
||||
\sigma_y &= \sigmaymatrix &&= \sigmaybraket \label{eq:pauli_y} \\
|
||||
\sigma_z &= \sigmazmatrix &&= \sigmazbraket \label{eq:pauli_z}
|
||||
}
|
||||
\end{formula}
|
||||
% $\sigma_x$ NOT
|
||||
% $\sigma_y$ PHASE
|
||||
% $\sigma_z$ Sign
|
||||
|
||||
\Subsection[
|
||||
\ger{Wahrscheinlichkeitstheorie}
|
||||
\eng{Probability theory}
|
||||
@ -85,23 +122,6 @@
|
||||
}
|
||||
\end{formula}
|
||||
|
||||
\Subsubsection[
|
||||
\eng{Pauli matrices}
|
||||
\ger{Pauli-Matrizen}
|
||||
]{pauli_matrices}
|
||||
\begin{formula}{pauli_matrices}
|
||||
\desc{Pauli matrices}{}{}
|
||||
\desc[german]{Pauli Matrizen}{}{}
|
||||
\eqAlignedAt{2}{
|
||||
\sigma_x &= \sigmaxmatrix &&= \sigmaxbraket \label{eq:pauli_x} \\
|
||||
\sigma_y &= \sigmaymatrix &&= \sigmaybraket \label{eq:pauli_y} \\
|
||||
\sigma_z &= \sigmazmatrix &&= \sigmazbraket \label{eq:pauli_z}
|
||||
}
|
||||
\end{formula}
|
||||
% $\sigma_x$ NOT
|
||||
% $\sigma_y$ PHASE
|
||||
% $\sigma_z$ Sign
|
||||
|
||||
|
||||
\Subsection[
|
||||
\eng{Commutator}
|
||||
|
@ -27,7 +27,11 @@ Functions that create a hyperlink (and use the translation of the target element
|
||||
|
||||
|
||||
## Multilanguage
|
||||
All text should be defined as a translation (`translations` package, see `util/translation.tex`) and then used using the `gt` or `GT` macros.
|
||||
All text should be defined as a translation (`translations` package, see `util/translation.tex`).
|
||||
Use `\dt` or `\DT` or the the shorthand language commands `\eng`, `\Eng` etc. to define translations.
|
||||
These commands also be write the translations to an auxiliary file, which is read after the document begins.
|
||||
This means (on subsequent compilations) that the translation can be resolved before they are defined.
|
||||
Use the `gt` or `GT` macros to retrieve translations.
|
||||
The english translation of any key must be defined, because it will also be used as fallback.
|
||||
|
||||
Lower case macros are relative to the current `fqname`, while upper case macros are absolute.
|
||||
|
@ -5,12 +5,12 @@
|
||||
|
||||
\begin{ttext}
|
||||
\eng{
|
||||
\textbf{Intensive quantities:} Additive for subsystems (system size dependent): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\
|
||||
\textbf{Extensive quantities:} Independent of system size, ratio of two intensive quantities
|
||||
\textbf{Extensive quantities:} Additive for subsystems (system size dependent): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\
|
||||
\textbf{Intensive quantities:} Independent of system size, ratio of two extensive quantities
|
||||
}
|
||||
\ger{
|
||||
\textbf{Intensive Größen:} Additiv für Subsysteme (Systemgrößenabhänig): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\
|
||||
\textbf{Extensive Größen:} Unabhängig der Systemgröße, Verhältnis zweier intensiver Größen
|
||||
\textbf{Extensive Größen:} Additiv für Subsysteme (Systemgrößenabhänig): $S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$\\
|
||||
\textbf{Intensive Größen:} Unabhängig der Systemgröße, Verhältnis zweier extensiver Größen
|
||||
}
|
||||
\end{ttext}
|
||||
|
||||
@ -660,7 +660,7 @@
|
||||
\eq{
|
||||
pV &= \kB T \ln Z_g \\
|
||||
\shortintertext{\GT{after} \GT{td:real_gas:virial}}
|
||||
&= N \kB T \left[1 \mp \frac{\lambda^3}{2^{5/2} g v} + \Order\left(\left(\frac{\lambda^3}{v}\right)^2\right)\right]
|
||||
&= N \kB T \left[1 \mp \frac{\lambda^3}{2^{5/2} g v} + \Order{\left(\frac{\lambda^3}{v}\right)^2}\right]
|
||||
}
|
||||
\end{formula}
|
||||
\begin{formula}{relevance}
|
||||
|
0
src/svgs/convertToPdf.sh
Executable file → Normal file
0
src/svgs/convertToPdf.sh
Executable file → Normal file
@ -1,4 +1,4 @@
|
||||
% Define Gruvbox colors
|
||||
% Gruvbox colors
|
||||
\definecolor{dark0_hard}{HTML}{1d2021}
|
||||
\definecolor{dark0}{HTML}{282828}
|
||||
\definecolor{dark0_soft}{HTML}{32302f}
|
||||
@ -36,13 +36,13 @@
|
||||
\definecolor{faded_aqua}{HTML}{427b58}
|
||||
\definecolor{faded_orange}{HTML}{af3a03}
|
||||
|
||||
% Use Gruvbox colors for various elements
|
||||
% Dark mode
|
||||
% \pagecolor{light0_hard}
|
||||
% \color{dark0_hard}
|
||||
% \pagecolor{dark0_hard}
|
||||
% \color{light0_hard}
|
||||
|
||||
% Section headings in bright colors
|
||||
% section headings in bright colors, \titleformat from titlesec package
|
||||
\titleformat{\section}
|
||||
{\color{neutral_purple}\normalfont\Large\bfseries}
|
||||
{\color{neutral_purple}\thesection}{1em}{}
|
||||
@ -63,10 +63,9 @@
|
||||
{\color{neutral_purple}\normalfont\normalsize\bfseries}
|
||||
{\color{neutral_purple}\thesubparagraph}{1em}{}
|
||||
|
||||
% Links in neutral colors
|
||||
\hypersetup{
|
||||
colorlinks=true,
|
||||
linkcolor=neutral_red,
|
||||
linkcolor=neutral_purple,
|
||||
citecolor=neutral_green,
|
||||
filecolor=neutral_blue,
|
||||
urlcolor=neutral_orange
|
||||
|
@ -7,7 +7,7 @@
|
||||
\edef\realfqname{\fqname}
|
||||
\edef\fqname{\fqname:#1}
|
||||
}{
|
||||
\expandafter\GT\expandafter{\fqname} \\
|
||||
\expandafter\GT\expandafter{\fqname}% \\
|
||||
\edef\fqname{\realfqname}
|
||||
}
|
||||
|
||||
@ -149,7 +149,7 @@
|
||||
% 4: definitions/links
|
||||
\newcommand{\desc}[4][english]{
|
||||
% language, name, description, definitions
|
||||
\dt[#1]{##1}{##2}
|
||||
\ifblank{##2}{}{\dt[#1]{##1}{##2}}
|
||||
\ifblank{##3}{}{\dt[#1_desc]{##1}{##3}}
|
||||
\ifblank{##4}{}{\dt[#1_defs]{##1}{##4}}
|
||||
}
|
||||
@ -211,13 +211,114 @@
|
||||
tex.print(result)
|
||||
end
|
||||
}
|
||||
|
||||
% 1: key
|
||||
% 2: symbol
|
||||
% 3: value
|
||||
% 4: units
|
||||
% 5: exp or def
|
||||
% \newenvironment{constant}[5]{
|
||||
% % key, symbol, si unit(s), comment (key to global translation)
|
||||
% \newcommand{\desc}[3][english]{
|
||||
% % language, name, description
|
||||
% % \DT[qty:#1]{##1}{##2}
|
||||
% % \ifblank{##3}{}{\DT[qty:#1_desc]{##1}{##3}}
|
||||
% \ifblank{##2}{}{\DT[const:#1]{##1}{##2}}
|
||||
% \ifblank{##3}{}{\DT[const:#1_desc]{##1}{##3}}
|
||||
% }
|
||||
% % TODO put these in long term key - value storage for generating a full table and global referenes \constRef
|
||||
% % for references, there needs to be a label somwhere
|
||||
% \edef\constName{const:#1}
|
||||
% \edef\constDesc{const:#1_desc}
|
||||
% \def\constSymbol{#2}
|
||||
% \edef\constValue{#3}
|
||||
% \def\constUnits{#4}
|
||||
% \edef\constExpOrDef{const:#5}
|
||||
% }
|
||||
% {
|
||||
% \NameLeftContentRight{\constName}{
|
||||
% \begingroup
|
||||
% Symbol: $\constSymbol$
|
||||
% \IfTranslationExists{\constDesc}{
|
||||
% \\Description: \GT{\constDesc}
|
||||
% }{}
|
||||
% \\Value: $\constValue$
|
||||
% \\Unit: $\directlua{split_and_print_units([[\constUnits]])}$
|
||||
% \GT{\constExpOrDef}
|
||||
% \label{\constName}
|
||||
% \endgroup
|
||||
% }
|
||||
% \ignorespacesafterend
|
||||
|
||||
% % for TOC
|
||||
% \refstepcounter{constant}%
|
||||
% % \addquantity{\expandafter\gt\expandafter{\qtyname}}%
|
||||
% % \noindent\textbf{My Environment \themyenv: #1}\par%
|
||||
% }
|
||||
\newcounter{constant}
|
||||
\newenvironment{constant}[3]{
|
||||
% [1]: language
|
||||
% 2: name
|
||||
% 3: description
|
||||
% 4: definitions/links
|
||||
\newcommand{\desc}[4][english]{
|
||||
% language, name, description, definitions
|
||||
\ifblank{##2}{}{\DT[const:#1]{##1}{##2}}
|
||||
\ifblank{##3}{}{\DT[const:#1_desc]{##1}{##3}}
|
||||
\ifblank{##4}{}{\DT[const:#1_defs]{##1}{##4}}
|
||||
}
|
||||
\directlua{
|
||||
constVals = {}
|
||||
constUnits = {}
|
||||
}
|
||||
% 1: equation for align environment
|
||||
\newcommand{\val}[2]{
|
||||
\directlua{
|
||||
%--table.insert(constVals, "LOL")
|
||||
table.insert(constVals, [[##1]])
|
||||
table.insert(constUnits, [[##2]])
|
||||
%--table.insert(constUnits, "\luaescapestring{##2}")
|
||||
}
|
||||
\def\constValue{##1}
|
||||
\def\constUnit{##2}
|
||||
}
|
||||
\edef\constName{const:#1}
|
||||
\edef\constDesc{const:#1_desc}
|
||||
\def\constSymbol{#2}
|
||||
\edef\constExpOrDef{\GT{const:#3}}
|
||||
}{
|
||||
\NameLeftContentRight{\constName}{
|
||||
\begingroup % for label
|
||||
Symbol: $\constSymbol$
|
||||
\IfTranslationExists{\constDesc}{
|
||||
\\Description: \GT{\constDesc}
|
||||
}{}
|
||||
% TODO manage multiple values
|
||||
% \\Value: $\constValue\,\si{\constUnit}$
|
||||
\\\constExpOrDef:
|
||||
\directlua{
|
||||
%--tex.sprint("Hier steht Luatext" .. ":", #constVals)
|
||||
for i, v in ipairs(constVals) do
|
||||
tex.sprint("\\\\\\hspace*{1cm}${", constVals[i], "}\\,\\si{", constUnits[i], "}$")
|
||||
%--tex.sprint("VALUE ", i, v)
|
||||
end
|
||||
}
|
||||
\label{\constName}
|
||||
\endgroup
|
||||
}
|
||||
\ignorespacesafterend
|
||||
}
|
||||
|
||||
|
||||
|
||||
% 1: key
|
||||
% 2: symbol
|
||||
% 3: units
|
||||
% 4: comment key to translation
|
||||
\newenvironment{quantity}[4]{
|
||||
% key, symbol, si unit(s), comment (key to global translation)
|
||||
\newcommand{\desc}[3][english]{
|
||||
% language, name, description
|
||||
% \DT[qty:#1]{##1}{##2}
|
||||
% \ifblank{##3}{}{\DT[qty:#1_desc]{##1}{##3}}
|
||||
\DT[qty:#1]{##1}{##2}
|
||||
\newcommand{\desc}[3][english]{
|
||||
\ifblank{##2}{}{\DT[qty:#1]{##1}{##2}}
|
||||
\ifblank{##3}{}{\DT[qty:#1_desc]{##1}{##3}}
|
||||
}
|
||||
% TODO put these in long term key - value storage for generating a full table and global referenes \qtyRef
|
||||
@ -227,6 +328,7 @@
|
||||
\def\qtysymbol{#2}
|
||||
\def\qtyunits{#3}
|
||||
\edef\qtycomment{#4}
|
||||
% Unit: $\directlua{split_and_print_units([[\m\per\kg]])}$
|
||||
}
|
||||
{
|
||||
\NameLeftContentRight{\qtyname}{
|
||||
@ -238,7 +340,7 @@
|
||||
\\Unit: $\directlua{split_and_print_units([[\qtyunits]])}$
|
||||
\expandafter\IfTranslationExists\expandafter\qtycomment{
|
||||
\\Comment: \GT\qtycomment
|
||||
}{\\No comment \color{gray}}
|
||||
}{}%{\\No comment \color{gray}}
|
||||
\label{\qtyname}
|
||||
\endgroup
|
||||
}
|
||||
@ -246,12 +348,10 @@
|
||||
|
||||
% for TOC
|
||||
\refstepcounter{quantity}%
|
||||
\addquantity{\expandafter\gt\expandafter{\qtyname}}%
|
||||
% \addquantity{\expandafter\gt\expandafter{\qtyname}}%
|
||||
% \noindent\textbf{My Environment \themyenv: #1}\par%
|
||||
}
|
||||
\newcounter{quantity}
|
||||
\Eng[list_of_quantitites]{List of quantitites}
|
||||
\Ger[list_of_quantitites]{Liste von Größen}
|
||||
\newcommand{\listofquantities}{%
|
||||
\section*{\GT{list_of_quantitites}}%
|
||||
\addcontentsline{toc}{section}{\GT{list_of_quantitites}}%
|
||||
|
@ -1,38 +1,108 @@
|
||||
\def\gooditem{\item[{$\color{neutral_red}\bullet$}]}
|
||||
\def\baditem{\item[{$\color{neutral_green}\bullet$}]}
|
||||
|
||||
% put an explanation above an equal sign
|
||||
% [1]: equality sign (or anything else)
|
||||
% 2: text (not in math mode!)
|
||||
\newcommand{\explUnderEq}[2][=]{%
|
||||
\underset{\substack{\uparrow\\\mathrlap{\text{\hspace{-1em}#2}}}}{#1}}
|
||||
\newcommand{\explOverEq}[2][=]{%
|
||||
\overset{\substack{\mathrlap{\text{\hspace{-1em}#2}}\\\downarrow}}{#1}}
|
||||
|
||||
% COMMON SYMBOLS WITH SUPER/SUBSCRIPTS, VECTOR ARROWS ETC.
|
||||
\def\Grad{\vec{\nabla}}
|
||||
\def\Div{\vec{\nabla} \cdot}
|
||||
\def\Rot{\vec{\nabla} \times}
|
||||
% common vectors
|
||||
\def\vecr{\vec{r}}
|
||||
\def\vecx{\vec{x}}
|
||||
|
||||
\def\kB{k_\text{B}}
|
||||
\def\EFermi{E_\text{F}}
|
||||
|
||||
\def\Evalence{E_\text{v}}
|
||||
\def\Econd{E_\text{c}}
|
||||
\def\Egap{E_\text{gap}}
|
||||
\def\masse{m_\textrm{e}}
|
||||
\def\Four{\mathcal{F}} % Fourier transform
|
||||
\def\Lebesgue{\mathcal{L}} % Lebesgue
|
||||
\def\O{\mathcal{O}}
|
||||
\def\PhiB{\Phi_\text{B}}
|
||||
\def\PhiE{\Phi_\text{E}}
|
||||
|
||||
|
||||
% SYMBOLS
|
||||
\def\R{\mathbb{R}}
|
||||
\def\C{\mathbb{C}}
|
||||
\def\Z{\mathbb{Z}}
|
||||
\def\N{\mathbb{N}}
|
||||
% caligraphic
|
||||
\def\calE{\mathcal{E}}
|
||||
% upright
|
||||
\def\txA{\text{A}}
|
||||
\def\txB{\text{B}}
|
||||
\def\txC{\text{C}}
|
||||
\def\txD{\text{D}}
|
||||
\def\txE{\text{E}}
|
||||
\def\txF{\text{F}}
|
||||
\def\txG{\text{G}}
|
||||
\def\txH{\text{H}}
|
||||
\def\txI{\text{I}}
|
||||
\def\txJ{\text{J}}
|
||||
\def\txK{\text{K}}
|
||||
\def\txL{\text{L}}
|
||||
\def\txM{\text{M}}
|
||||
\def\txN{\text{N}}
|
||||
\def\txO{\text{O}}
|
||||
\def\txP{\text{P}}
|
||||
\def\txQ{\text{Q}}
|
||||
\def\txR{\text{R}}
|
||||
\def\txS{\text{S}}
|
||||
\def\txT{\text{T}}
|
||||
\def\txU{\text{U}}
|
||||
\def\txV{\text{V}}
|
||||
\def\txW{\text{W}}
|
||||
\def\txX{\text{X}}
|
||||
\def\txY{\text{Y}}
|
||||
\def\txZ{\text{Z}}
|
||||
|
||||
\def\Four{\mathcal{F}} % Fourier transform
|
||||
\def\Lebesgue{\mathcal{L}} % Lebesgue
|
||||
\def\Order{\mathcal{O}}
|
||||
|
||||
\def\txa{\text{a}}
|
||||
\def\txb{\text{b}}
|
||||
\def\txc{\text{c}}
|
||||
\def\txd{\text{d}}
|
||||
\def\txe{\text{e}}
|
||||
\def\txf{\text{f}}
|
||||
\def\txg{\text{g}}
|
||||
\def\txh{\text{h}}
|
||||
\def\txi{\text{i}}
|
||||
\def\txj{\text{j}}
|
||||
\def\txk{\text{k}}
|
||||
\def\txl{\text{l}}
|
||||
\def\txm{\text{m}}
|
||||
\def\txn{\text{n}}
|
||||
\def\txo{\text{o}}
|
||||
\def\txp{\text{p}}
|
||||
\def\txq{\text{q}}
|
||||
\def\txr{\text{r}}
|
||||
\def\txs{\text{s}}
|
||||
\def\txt{\text{t}}
|
||||
\def\txu{\text{u}}
|
||||
\def\txv{\text{v}}
|
||||
\def\txw{\text{w}}
|
||||
\def\txx{\text{x}}
|
||||
\def\txy{\text{y}}
|
||||
\def\txz{\text{z}}
|
||||
% complex, may be changed later to idot or upright...
|
||||
\def\I{i}
|
||||
|
||||
% SPACES
|
||||
\def\sdots{\,\dots\,}
|
||||
\def\qdots{\quad\dots\quad}
|
||||
\def\qRarrow{\quad\Rightarrow\quad}
|
||||
|
||||
% DELIMITERS
|
||||
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
|
||||
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
|
||||
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
|
||||
|
||||
% OPERATORS
|
||||
\DeclareMathOperator{\e}{e}
|
||||
\DeclareMathOperator{\T}{T} % transposed
|
||||
\DeclareMathOperator{\sgn}{sgn}
|
||||
@ -44,7 +114,6 @@
|
||||
% diff, for integrals and stuff
|
||||
% \DeclareMathOperator{\dd}{d}
|
||||
\renewcommand*\d{\mathop{}\!\mathrm{d}}
|
||||
|
||||
% functions with paranthesis
|
||||
\newcommand\CmdWithParenthesis[2]{
|
||||
#1\left(#2\right)
|
||||
@ -52,3 +121,4 @@
|
||||
\newcommand\Exp[1]{\CmdWithParenthesis{\exp}{#1}}
|
||||
\newcommand\Sin[1]{\CmdWithParenthesis{\sin}{#1}}
|
||||
\newcommand\Cos[1]{\CmdWithParenthesis{\cos}{#1}}
|
||||
\newcommand\Order[1]{\CmdWithParenthesis{\mathcal{O}}{#1}}
|
||||
|
@ -15,19 +15,29 @@
|
||||
% expandafter required because the translation commands dont expand anything
|
||||
% shortcuts for translations
|
||||
% 1: key
|
||||
\newcommand{\gt}[1]{\expandafter\GetTranslation\expandafter{\fqname:#1}}
|
||||
\newcommand{\GT}[1]{\expandafter\GetTranslation\expandafter{#1}}
|
||||
|
||||
\newcommand{\IfTranslationExists}[1]{
|
||||
% \IfTranslation{english}{#1}%{#2}{#3} % only check english. All translations must be defined for english
|
||||
% \edef\arg{#1}
|
||||
\def\tempiftranslation{\IfTranslation{english}}
|
||||
\expandafter\tempiftranslation\expandafter{#1} % only check english. All translations must be defined for english
|
||||
% {S\color{red}\arg END}
|
||||
% \IfTranslation{english}{\arg} % only check english. All translations must be defined for english
|
||||
\newcommand{\IfTranslationExists}[1]{%
|
||||
% only check english. All translations must be defined for english
|
||||
\def\tempiftranslation{\IfTranslation{english}}%
|
||||
\expandafter\tempiftranslation\expandafter{#1}%
|
||||
}
|
||||
\newcommand{\iftranslation}[3]{
|
||||
\IfTranslationExists{\fqname:#1}{#2}{#3}
|
||||
\newcommand{\iftranslation}[3]{%
|
||||
\IfTranslationExists{\fqname:#1}{#2}{#3}%
|
||||
}
|
||||
|
||||
\newcommand{\gt}[1]{%
|
||||
\iftranslation{#1}{%
|
||||
\expandafter\GetTranslation\expandafter{\fqname:#1}%
|
||||
}{%
|
||||
\fqname:\detokenize{#1}%
|
||||
}%
|
||||
}
|
||||
\newrobustcmd{\GT}[1]{%\expandafter\GetTranslation\expandafter{#1}}
|
||||
\IfTranslationExists{#1}{%
|
||||
\expandafter\GetTranslation\expandafter{#1}%
|
||||
}{%
|
||||
\detokenize{#1}%
|
||||
}%
|
||||
}
|
||||
|
||||
% Define a translation and also make the fallback if it is the english translation
|
||||
@ -35,7 +45,10 @@
|
||||
\newcommand{\addtranslationcustom}[3]{
|
||||
\ifstrequal{#1}{english}{
|
||||
\addtranslationfallback{#2}{#3}
|
||||
\immediate\write\translationsaux{\noexpand\addtranslationfallback{#2}{\detokenize{#3}}}
|
||||
% \immediate\write\translationsaux{\noexpand\addtranslationfallback{#2}{{#3}}}%
|
||||
}{}
|
||||
\immediate\write\translationsaux{\noexpand\addtranslation{#1}{#2}{\detokenize{#3}}}
|
||||
\addtranslation{#1}{#2}{#3}
|
||||
}
|
||||
|
||||
@ -46,9 +59,11 @@
|
||||
% hack because using expandafter on the second arg didnt work
|
||||
\def\tempaddtranslation{\addtranslationcustom{#2}}
|
||||
\ifstrequal{#1}{\fqname}{
|
||||
\expandafter\tempaddtranslation\expandafter{\fqname}{#3}
|
||||
% \expandafter\tempaddtranslation\expandafter{\fqname}{#3}
|
||||
\addtranslationcustom{#2}{#1}{#3}
|
||||
}{
|
||||
\expandafter\tempaddtranslation\expandafter{\fqname:#1}{#3}
|
||||
\addtranslationcustom{#2}{\fqname:#1}{#3}
|
||||
% \expandafter\tempaddtranslation\expandafter{\fqname:#1}{#3}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -59,9 +74,11 @@
|
||||
% hack because using expandafter on the second arg didnt work
|
||||
\def\tempaddtranslation{\addtranslationcustom{#2}}
|
||||
\ifstrequal{#1}{dummy}{
|
||||
\expandafter\tempaddtranslation\expandafter{\fqname}{#3}
|
||||
% \expandafter\tempaddtranslation\expandafter{\fqname}{#3}
|
||||
\addtranslationcustom{#2}{\fqname}{#3}
|
||||
}{
|
||||
\expandafter\tempaddtranslation\expandafter{#1}{#3}
|
||||
% \expandafter\tempaddtranslation\expandafter{#1}{#3}
|
||||
\addtranslationcustom{#2}{#1}{#3}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,9 +1,37 @@
|
||||
% WORDS
|
||||
\Eng[even]{even}
|
||||
\Ger[even]{gerade}
|
||||
|
||||
\Eng[odd]{odd}
|
||||
\Ger[odd]{ungerade}
|
||||
|
||||
% SCIENTIFIC
|
||||
\Eng[angle_deg]{Degree}
|
||||
\Ger[angle_deg]{Grad}
|
||||
|
||||
\Eng[angle_rad]{Radian}
|
||||
\Ger[angle_rad]{Rad}
|
||||
|
||||
\Eng[time]{Time}
|
||||
\Ger[time]{Zeit}
|
||||
|
||||
\Eng[ensemble]{Ensemble}
|
||||
\Ger[ensemble]{Ensemble}
|
||||
|
||||
\Eng[area]{area}
|
||||
\Ger[area]{Fläche}
|
||||
|
||||
% SPECIFIC
|
||||
\Eng[diamond]{Diamond}
|
||||
\Ger[diamond]{Diamant}
|
||||
|
||||
% FORMATING
|
||||
\Eng[list_of_quantitites]{List of quantitites}
|
||||
\Ger[list_of_quantitites]{Liste von Größen}
|
||||
|
||||
\Eng[other]{Others}
|
||||
\Ger[other]{Sonstige}
|
||||
|
||||
\Eng[see_also]{See also}
|
||||
\Ger[see_also]{Siehe auch}
|
||||
|
||||
@ -13,15 +41,8 @@
|
||||
\Eng[and_therefore_also]{and therefore also}
|
||||
\Ger[and_therefore_also]{und damit auch}
|
||||
|
||||
\Eng[time]{Time}
|
||||
\Ger[time]{Zeit}
|
||||
|
||||
\Eng[ensemble]{Ensemble}
|
||||
\Ger[ensemble]{Ensemble}
|
||||
|
||||
\Eng[even]{even}
|
||||
\Ger[even]{gerade}
|
||||
|
||||
\Eng[odd]{odd}
|
||||
\Ger[odd]{ungerade}
|
||||
\Eng[const:exp]{Experimental value}
|
||||
\Ger[const:exp]{Experimenteller Wert}
|
||||
\Eng[const:def]{Defined value}
|
||||
\Ger[const:def]{Definierter Wert}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user