diff --git a/Makefile b/Makefile index b298f63..7d0ec3f 100644 --- a/Makefile +++ b/Makefile @@ -13,7 +13,7 @@ BIBER = biber LATEX_OPTS := -output-directory=$(OUT_DIR) -interaction=nonstopmode -shell-escape -.PHONY: default release clean +.PHONY: default release clean scripts default: english release: german english @@ -28,6 +28,13 @@ german: -cd $(SRC_DIR) && latexmk -lualatex -g main.tex mv $(OUT_DIR)/$(MAIN_PDF) $(OUT_DIR)/$(shell date -I)_de_Formelsammlung.pdf +SCRIPT_DIR = scripts +PY_SCRIPTS = $(wildcard $(SCRIPT_DIR)/*.py) +PY_SCRIPTS_REL = $(notdir $(PY_SCRIPTS)) +scripts: + -#cd $(SCRIPT_DIR) && for file in $(find -type f -name '*.py'); do echo "Running $$file"; python3 "$$file"; done + cd $(SCRIPT_DIR) && $(foreach script,$(PY_SCRIPTS_REL),echo "Running $(script)"; python3 $(script);) + # Clean auxiliary and output files clean: rm -r $(OUT_DIR) diff --git a/readme.md b/readme.md index 8dd2e62..ffa240e 100644 --- a/readme.md +++ b/readme.md @@ -44,6 +44,8 @@ The `:...:` will be defined as `\fqname` (fully q - figure: `fig` - parts, (sub)sections: `sec` +Use `misc` as (sub(sub))section for anything that can not be categorized within its (sub)section/part. + ### Files and directories Separate parts in different source files named `.tex`. If a part should be split up in multiple source files itself, use a diff --git a/scripts/ch_elchem.py b/scripts/ch_elchem.py new file mode 100644 index 0000000..6e9ff5d --- /dev/null +++ b/scripts/ch_elchem.py @@ -0,0 +1,47 @@ +#!/usr/bin env python3 +from formulasheet import * +from scipy.constants import gas_constant, Avogadro, elementary_charge + +Faraday = Avogadro * elementary_charge + +@np.vectorize +def fbutler_volmer_left(ac, z, eta, T): + return np.exp((1-ac)*z*Faraday*eta/(gas_constant*T)) + +@np.vectorize +def fbutler_volmer_right(ac, z, eta, T): + return -np.exp(-ac*z*Faraday*eta/(gas_constant*T)) + +def fbutler_volmer(ac, z, eta, T): + return fbutler_volmer_left(ac, z, eta, T) + fbutler_volmer_right(ac, z, eta, T) + +def butler_volmer(): + fig, ax = plt.subplots(figsize=size_half_third) + ax.set_xlabel("$\\eta$") + ax.set_ylabel("$i/i_0$") + etas = np.linspace(-0.1, 0.1, 400) + T = 300 + z = 1.0 + # other a + alpha2, alpha3 = 0.2, 0.8 + i2 = fbutler_volmer(0.2, z, etas, T) + i3 = fbutler_volmer(0.8, z, etas, T) + ax.plot(etas, i2, color="blue", linestyle="dashed", label=f"$\\alpha={alpha2}$") + ax.plot(etas, i3, color="green", linestyle="dashed", label=f"$\\alpha={alpha3}$") + # 0.5 + ac = 0.5 + irel_left = fbutler_volmer_left(ac, z, etas, T) + irel_right = fbutler_volmer_right(ac, z, etas, T) + ax.plot(etas, irel_left, color="gray") + ax.plot(etas, irel_right, color="gray") + ax.plot(etas, irel_right + irel_left, color="black", label=f"$\\alpha=0.5$") + ax.grid() + ax.legend() + ylim = 6 + ax.set_ylim(-ylim, ylim) + return fig + +if __name__ == '__main__': + export(butler_volmer(), "ch_butler_volmer") + + diff --git a/scripts/cm_phonons.py b/scripts/cm_phonons.py new file mode 100644 index 0000000..7219a63 --- /dev/null +++ b/scripts/cm_phonons.py @@ -0,0 +1,64 @@ +#!/usr/bin env python3 +from formulasheet import * + +def fone_atom_basis(q, a, M, C1, C2): + return np.sqrt(4*C1/M * (np.sin(q*a/2)**2 + C2/C1 * np.sin(q*a)**2)) + +def one_atom_basis(): + a = 1. + C1 = 0.25 + C2 = 0 + M = 1. + qs = np.linspace(-2*np.pi/a, 2*np.pi/a, 300) + omega = fone_atom_basis(qs, a, M, C1, C2) + fig, ax = plt.subplots(figsize=size_half_third) + ax.set_xlabel(r"$q$") + ax.set_xticks([i * np.pi/a for i in range(-2, 3)]) + ax.set_xticklabels([f"${i}\\pi/a$" if i != 0 else "0" for i in range(-2, 3)]) + ax.set_ylabel(r"$\omega$ in $\left[4C_1/M\right]$") + yunit = np.sqrt(4*C1/M) + ax.set_ylim(0, yunit+0.1) + ax.set_yticks([0,yunit]) + ax.set_yticklabels(["0","1"]) + ax.plot(qs, omega) + ax.text(-1.8*np.pi/a, 0.8, "NN\n$C_2=0$", ha='center') + ax.text(0, 0.8, "1. BZ", ha='center') + ax.vlines([-np.pi/a, np.pi/a], ymin=-2, ymax=2, color="black") + ax.grid() + return fig + +def ftwo_atom_basis_acoustic(q, a, M1, M2, C): + return np.sqrt(C*(1/M1+1/M2) - C * np.sqrt((1/M1+1/M2)**2 - 4/(M1*M2) * np.sin(q*a/2)**2)) + +def ftwo_atom_basis_optical(q, a, M1, M2, C): + return np.sqrt(C*(1/M1+1/M2) + C * np.sqrt((1/M1+1/M2)**2 - 4/(M1*M2) * np.sin(q*a/2)**2)) + +def two_atom_basis(): + a = 1. + C = 0.25 + M1 = 1. + M2 = 0.7 + qs = np.linspace(-2*np.pi/a, 2*np.pi/a, 300) + omega_a = ftwo_atom_basis_acoustic(qs, a, M1, M2, C) + omega_o = ftwo_atom_basis_optical(qs, a, M1, M2, C) + fig, ax = plt.subplots(figsize=size_half_third) + ax.plot(qs, omega_a, label="acoustic") + ax.plot(qs, omega_o, label="optical") + ax.text(0, 0.8, "1. BZ", ha='center') + ax.vlines([-np.pi/a, np.pi/a], ymin=-2, ymax=2, color="black") + ax.set_ylim(-0.03, 1.03) + ax.set_ylabel(r"$\omega$ in $\left[\sqrt{2C\mu^{-1}}\right]$") + yunit = np.sqrt(2*C*(1/M1+1/M2)) + ax.set_ylim(0, yunit+0.1) + ax.set_yticks([0,yunit]) + ax.set_yticklabels(["0","1"]) + ax.set_xlabel(r"$q$") + ax.set_xticks([i * np.pi/a for i in range(-2, 3)]) + ax.set_xticklabels([f"${i}\\pi/a$" if i != 0 else "0" for i in range(-2, 3)]) + ax.legend() + ax.grid() + + return fig +if __name__ == '__main__': + export(one_atom_basis(), "cm_phonon_dispersion_one_atom_basis") + export(two_atom_basis(), "cm_phonon_dispersion_two_atom_basis") diff --git a/scripts/crystal_lattices-Copy1.ipynb b/scripts/crystal_lattices-Copy1.ipynb deleted file mode 100644 index 208cf8f..0000000 --- a/scripts/crystal_lattices-Copy1.ipynb +++ /dev/null @@ -1,189 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "eaed683c-c6f1-45e4-aaee-ae4e57209f5f", - "metadata": {}, - "outputs": [], - "source": [ - "import scipy as scp\n", - "from scipy.spatial import Voronoi, voronoi_plot_2d\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "efd84ecd-9fb3-4d2f-9f7a-47cd1ff09eea", - "metadata": {}, - "outputs": [], - "source": [ - "class Lattice:\n", - " def __init__(self, *vecs):\n", - " # if the vecs were put in an iterable\n", - " if len(vecs) == 1:\n", - " vecs = vecs[0]\n", - " if len(vecs) == 3:\n", - " pass\n", - " elif len(vecs) == 2:\n", - " pass\n", - " else: raise ValueError(\"Vecs must contain either 2 or 3 vectors\")\n", - " self.dim = len(vecs)\n", - " self.vecs = list(vecs)\n", - " for i, v in enumerate(self.vecs):\n", - " if type(v) != np.ndarray:\n", - " self.vecs[i] = np.array(v)\n", - " if self.vecs[i].shape != (self.dim,):\n", - " raise ValueError(f\"Got {self.dim} vectors, therefore all vectors must be {self.dim} dimensional but vector {i+1} has shape {self.vecs[i].shape}\")\n", - " self.vecs = np.array(self.vecs)\n", - " self.vec_lengths = np.array([np.linalg.norm(v) for v in self.vecs])\n", - " self.center = np.zeros(self.dim)\n", - "\n", - " def get_point(self, *ns):\n", - " if len(ns) != len(self.vecs): raise ValueError(f\"Requires one index for each lattice vector {len(self.vecs)}, but got only {ns}\")\n", - " point = self.center.copy()\n", - " for i, n in enumerate(ns):\n", - " point += n * self.vecs[i]\n", - " return point\n", - "\n", - " \n", - " def get_points_around_center(self, n):\n", - " import itertools\n", - " ns = [i for i in range(-i, i+1)]\n", - " for n in itertools.product(*[])\n", - " for i in range(self.dim):\n", - " \n", - " \n", - " for i in range(-n, n+1):\n", - " for j " - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "2855d08e-70d8-4ef7-ba19-2c06316caf15", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "1.7320508075688774 [0.70710678 1.58113883 0.70710678 0.70710678 1.58113883 0.70710678]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHkUlEQVR4nO3deVwV9f7H8dc57KLgDogoSkQapLhiZWYmqaWmlpaooFi3rO61bovaYt5+ZlZ2rSzLsnLLpbTSbLMuaV2tLFfUDBeEkCXUgBAVOd/fHyQ3xNwS5nB4Px+PecDMd86cDwzfc97MfGeOzRhjEBEREbGA3eoCREREpOZSEBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCzjbnUBp+NwONi/fz916tTBZrNZXY6IiIicBWMMBQUFNGnSBLv99Mc8nDqI7N+/n5CQEKvLEBERkfOQnp5O06ZNT7uOUweROnXqAKU/iJ+fn8XViJS3a9cuFi5cyMKFC8nIyCAsLIxXX32Vjh07Wl2aiIil8vPzCQkJKXsfPx2bM3/WTH5+Pv7+/uTl5SmIiNNyOBwkJSUxZ84cpk6dSlBQEK+99hre3t4MHDgQX19fq0sUEalS5/L+rcGqIn+R3W6nR48ezJ07l6CgIAA+//xzRowYQWBgIImJiaxZswYnzvwiIpZREBGpBIsXL2bPnj3cf//9JCUl0a1bNzZv3gxAUVGRxdWJiDgPnZoRqWQOh4P169fTqVMnbDYb0dHR+Pn5kZCQwE033XRW51BFRKoTnZoRcSJ2u53OnTtjs9lwOBzcf//9eHp6kpiYSGBgICNGjCA3N9fqMkVELKEgIlKF7HY7cXFxrFq1in379vHwww+zZ88e/P39AZgzZw4//fSTxVWKiFQdnZoRcRKHDx+mefPm5Obm0qVLF+Lj4xkyZAh169a1ujQRkXOiUzMi1VCtWrVIT09n0aJF1K1blzFjxhAaGlo2uNWJ/2cQETlvCiIiTsTb25shQ4bw0UcfkZ6ezltvvYWPjw9HjhwhKiqKBx98kG3btlldpojIBaMgIuKkmjRpwo033ghAYWEh3bt3Z/bs2URGRtKxY0deeuklHSURkWpPQUSkGmjQoAEvvvgi+/fvZ+nSpQQFBbF48WJsNhvGGD799FOKi4utLlNE5JxpsKpINXX8+HHc3d354Ycf6NChA40bNyYuLo74+HjatGljdXkiUoNpsKpIDeDuXvqZle3bt2fTpk3ExcUxf/582rZtS79+/SyuTkTk7CiIiLiANm3a8Nxzz5GRkcHy5csZOnQoAPv27aN///4sW7aMY8eOWVyliEhF7lYXICIXjoeHB3379i2bz8nJITMzk0GDBlG/fn2GDh3KyJEjadeunYVVioj8j46IiLiwjh078t1337Ft2zZGjx7N0qVLeeGFF4DSG6hlZmZaXKGI1HQKIiI1QOvWrZk6dSppaWn8+9//Bko/Ibhp06b06dOHxYsXc+TIEYurFJGaSEFEpAZxd3enXr16AAwYMICZM2eSl5fHLbfcQmBgYNnREhGRqqIgIlJD1a1bl9tvv53//ve/7Ny5k7vvvpvmzZsDsHbtWp588knS09MtrlJEXJ3uIyIiFbzyyivcd999HDlyhB49ehAfH8+AAQPw9fW1ujQRqQZ0HxER+UvuuOMOsrOzmT17NseOHWP48OG8+OKLABQVFenW8iJyweiIiIic0Z49e/Dz86Nhw4aMHz+eJUuWMGLECEaMGEGLFi2sLk9EnIyOiIjIBdWyZUsaNmwIQP/+/enWrRvPPvssLVu25Oqrr2bt2rUWVygi1ZWCiIick5iYGN544w2ysrKYN28eHh4eZbeb/+KLL/jPf/6Dw+GwuEoRqS4qNYhMmTKFjh07UqdOHRo3bsyNN97Izp07K/MpRaSK+Pr6MmzYMFatWkWnTp0AePXVV+nRowctWrTgkUceISUlxeIqRcTZVWoQWb16NXfddRfffPMNq1at4vjx48TGxlJYWFiZTysiFlm8eDH//e9/6dWrFzNmzODiiy/miy++ANAAV5ELJDOviLW7c8nMK7K6lAuiSger/vLLLzRu3JjVq1dz1VVXnXF9DVYVqb6KiopYsWIF/fv3x8vLi7i4OBwOBwkJCVx77bW4ublZXaJItbN4fRrjl23FYcBugykDoxjSsZnVZVXgtINV8/LyAKhfv/4p248ePUp+fn65SUSqJx8fHwYPHoyXlxdQ+rk3W7ZsoVevXjRr1oyHHnqInJwci6sUqT4y84rKQgiAw8CEZcnV/shIlQURYwz33XcfV155JZGRkadcZ8qUKfj7+5dNISEhVVWeiFSysWPHkpyczHfffceAAQOYO3cuNpsNgK+++ooDBw5YXKGIc9ubW1gWQk4oMYbU3MPWFHSBVNmpmbvuuouVK1fy9ddf07Rp01Ouc/ToUY4ePVo2n5+fT0hIiE7NiLigkpIS3NzcKCkpITg4mIMHD9KvXz8SEhK47rrr8PDwsLpEEaeSmVfEFU/9p1wYcbPZ+Hpcd4L8fawr7BSc7tTMPffcw/Lly0lKSvrTEALg5eWFn59fuUlEXNOJMSJubm5s3ryZqVOnsmvXLvr27UvTpk3Jzc21uEIR5xLk78OUgVG4/X4k0c1m48mBkU4XQs5VpR4RMcZwzz338N577/Hll18SHh5+To/XYFWRmmfTpk2sWrWKBx54AGMMQ4YM4fLLL2fo0KE0btzY6vJELJeZV0Rq7mFCG9Zy2hByLu/flRpExowZw9tvv80HH3xARERE2XJ/f398fM78y1MQEanZCgoKSEhIYMWKFRhj6NOnDwkJCfTt27fsJmoi4nycJoicGIh2sjfffJOEhIQzPl5BREQAcnNzWbRoEXPmzGH//v2kpaXh5ubGTz/9RHh4+J++1oiINZwmiPxVCiIicrIDBw7QoEEDfv75Z5o1a0br1q1JSEggLi6OoKAgq8sTEZxwsKqIyIXSoEEDAAIDA/noo4+IjIzkkUceoWnTptx00026g6tINaMgIiLVkru7O7169WLRokVkZWXx8ssv06ZNG2w2G4WFhdx999188803CiYiTk6nZkTE5WzevJm+ffuSnp7OxRdfTEJCAsOHDz/t7QNE5MLRqRkRqdHatGlDamoqn3/+OZ06deKJJ54gLi4OAIfDweHD1ftOlCKuREFERFyS3W6nR48ezJs3j6ysLF577TUA1qxZQ2BgIImJiaxZs0anbkQspiAiIi7Pz8+Piy++GIDw8HD++c9/kpSURLdu3QgLC2PmzJkWVyhScymIiEiNEhwczMSJE9m1axerV6/m6quvprCwEIDU1FTefPNNCgoKLK5SpObQYFURkd+98cYbjB49Gh8fHwYNGkR8fDzdu3fHbtf/bCLnQoNVRUTOw6hRo0hNTWXChAl88803XHvttTz44IMAGksiUkl0RERE5BSMMaxbt44GDRoQERHBrFmzmDNnDgkJCQwePBh/f3+rSxRxWjoiIiLyF9lsNi6//PKyD+wMCwvDz8+PO+64g8DAQG699VbWr19vcZUi1Z+CiIjIWejRowcff/wx6enpTJo0iS1btrBnzx4Atm/fzo4dOyyuUKR60qkZEZHzYIzBGIPdbichIYE5c+bQsWNHEhISuOWWW6hfv77VJYpYRqdmREQqmc1mK7ua5tVXX+Xdd98lMDCQv//97wQFBfHBBx9YXKFI9eBudQEiItWdl5cXgwYNYtCgQWRnZ/P222/TuXNnACZPnszBgweJj4/nsssus7hSEeejIyIiIhdQQEAA9957L4GBgUDpZ9vMmzePNm3aEB0dzfTp0zl48KDFVYo4DwUREZFK9Oijj5KRkcEHH3xAy5YtefDBB0lLSwNgz549HDt2zOIKRaylwaoiIlXo0KFD1KtXDyj9lOCMjAyGDh1KfHw87dq1w2azWVyhyF+nwaoiIk7qRAgBePvttxk1ahTvvPMOHTp0ICoqir1791pYnUjVUxAREbHIpZdeytNPP016ejofffQRMTExNG3aFIB//etfLFmyhCNHjlhcpUjl0qkZEREnc/z4ca655hq++uor6tatyy233EJ8fDydO3fWqRupFnRqRkSkGnN3d2fNmjX8+OOPjBkzhg8//JBu3brx66+/AlBQUGBtgSIXkIKIiIiTioiIYPLkyaSmprJ+/Xrq1avHkSNHCA0NJTY2lgULFnD48GGryxT5SxREREScnJubW7mboT3zzDMcOXKEYcOGERgYyOjRoykuLrawQpHzpyAiIlKNeHt7M2rUKNasWcPu3bu57777+O233/Dw8MAYw/Tp00lNTbW6TJGzpsGqIiIuYvfu3bRp04bCwkKuvvpq4uPjuemmm6hdu7bVpUkNo8GqIiI1UFhYGNnZ2cydOxe73c6oUaPo3LkzJ/7fdOL/O6UGUxAREXEhvr6+DB8+nC+++ILU1FRefvllbDYbqamptGjRgkcffZRdu3adfiOOEtj7FWx9t/Sro6RqipcaSUFERMRFNWvWjG7dupXNx8bG8sILLxAeHs6VV17J/PnzKz5o+3KYHglzboCliaVfp0eWLhepBAoiIiI1QGhoKLNmzSIrK4uFCxdSu3ZtvvzyS6D0viSffvopJVvfgyUjIH9/+QfnZ5YuVxiRSqDBqiIiNZTD4cBut7N48WJuueUWmvi5MzzKTnwbD1o1cjtpbRv4NYGxW8F+cptIeefy/u1eRTWJiIiTsdtLD4oPHjyYFl6/MmfyPcz64RhT/3uMezp5Mv5KTzJ/+8P/qplp1Pv6XVpcNYQjR46wffv2Ctts164dADt37qSwsLBcW2hoKPXr1+eXX34hPT29XFudOnUIDw+npKSEzZs3V9huVFQUHh4e7N69m7y8vHJtwcHBBAQEcOjQoQofGujj40OrVq0A2LhxY4UBu61atcLHx4d9+/Zx4MCBcm0BAQEEBwdTUFBASkpKuTYPDw+ioqIA2Lp1a4X7uISHh1OnTh0yMjLIzs4u19agQQOaN29OUVERO3bsKNdms9mIjo4GYMeOHRQVFZVrb9GiBfXq1SM7O5uMjIxybf7+/oSFhVFcXMzWrVs5WZs2bXBzcyMlJaXC3XlDQkJo1KgRBw8erHD5t6+vLxEREQBs2LChwnZbt26Nt7c3e/fu5dChQwD89ttvFdb7U8aJ5eXlGcDk5eVZXYqIiGvb8o4xE/3MkYfrmHdu9jHv3ORtujW3G6DcFHd9V2OMMSkpKRXa/viWEhMTU6Ft3rx5xhhjZsyYUaEtNjbWGPO/1/2Tp5ycHGOMMX379q3QNm3aNGOMMUuWLKnQFh0dXVaTp6dnhfbk5GRjjDGJiYkV2saNG2eMMSYpKalCW3BwcNl2g4ODK7QnJSUZY4wZN25chbbExERjjDHJyckV2jw9Pcu2Gx0dXaF9yZIlxhhjpk2bVqGtb9++xhhjcnJyTvk7PPFeGhsbW6FtxowZxhhj5s2bV6EtJiamrKZTbTclJcUYY0xcXNyfPufp6NSMiIiUXh0z54ay2Q2ZJbSfVcj8gd60avi/UzH14mbriAg6IvJHf3ZEpFu3bmf1/q0gIiIipZfoTo8sHZiKKQsiP9zuS7sgNzRGRM6FbmgmIiLnxu4Gvab+PmM7qfH3+V5PKYTIBacgIiIipVr3g8FzwS+o/HK/JqXLW/ezpi5xaQoiIiLyP637wdhkuGF66fwN00tPxyiESCVREBERkfLsbhBcOuiU4HY6HSOVSkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCyjICIiIiKWURARERERyyiIiIiIiGUURERERMQyCiIiIiJiGQURERERsYyCiIiIiFim2gSRhIQEnnvuObKzs60uRURERC6QahFEjh49SmFhIePHjyc4OJi+ffvy7rvvUlxcbHVpIiIi8hdUiyDi5eXFO++8Q2ZmJi+88AI5OTncfvvtOBwOAHbv3o0xxuIqRURE5FxViyByQv369RkzZgzffvstO3fuxMvLiwMHDtCqVSsuvfRSpk6dSkZGhtVlioiIyFmqVkHkjxo1agRA3bp1+fDDD2nbti2PP/44zZo1o2/fvmVHS0RERMR5VdsgcoKbmxuxsbG8/fbbZGVl8eqrrxIVFYXdbufYsWP84x//YO3atTp1IyIi4oTcrS7gQvL392f06NFl83v37uX999/nhRdeIDw8nBEjRjBixAiaNWtmYZUiIiJyQrU/InI6ERER7N27ly+++IIuXbowZcoUBgwYAIAxhsOHD1tcoYiISM3m0kEEwG63c8011zBnzhyys7OZP38+ABs3biQgIICRI0eyevVqjSkRERGxgMsHkT+qXbs2rVq1AqBJkyY88MADrFmzhquvvpqwsDCef/55iysUERGpWWpUEPmjwMBAHnvsMXbt2sWaNWvo0aMHv/76KwBZWVm88cYbFBQUWFukiIiIi6vUILJmzRr69u1LkyZNsNlsvP/++5X5dOfFZrPRtWtXXn/9dSZOnAjAl19+yejRowkICGD48OF8/vnnlJSUWFypiIiI66nUIFJYWEibNm2YMWNGZT7NBXfLLbewb98+Hn30UdavX0/Pnj256667AHQZsMgFkplXxNrduWTmFVldiki14mp9p1Iv3+3duze9e/euzKeoNCEhIYwfP55x48bx7bff4uvrC8DixYt54YUXiI+PZ8iQIdStW9faQkWqocXr0xi/bCsOA3YbTBkYxZCOuqxe5Excse841RiRo0ePkp+fX26yms1mIyYmhqioKKB0kGu9evUYM2YMgYGBDBkyhHXr1llcpUj1kZlXVPZCCuAwMGFZssv8dydSWVy17zhVEJkyZQr+/v5lU0hIiNUlVXDVVVexcuVKfv75Z/7v//6P7du3k5ycDMCuXbvKvheRU9ubW1j2QnpCiTGk5uq+PiKn46p9x6mCyPjx48nLyyub0tPTrS7pTwUFBXH//fezZcsWRo0aBcD06dOJioqiQ4cOvPjii+Tm5lpcpYjzadHQF7ut/DI3m43QhrWsKUikmnDVvuNUQcTLyws/P79yk7Oz2Wy4ubkB8Nxzz7Fs2TKaNm3KfffdR5MmTVi4cKHFFYo4lyB/H6YMjMLNVvqK6maz8eTASIL8fSyuTMS5uWrfcanPmrGap6cnAwYMYMCAAeTk5LBw4UJiYmIAeP7559m7dy8JCQm0bdvW2kJFLDakYzOuurgRqbmHCW1Yq9q/kIpUFVfsO5UaRH777Td27dpVNr937142bdpE/fr1Xf6D5xo3bsw//vGPsvljx46xcOFCnn/+eS677DISEhIYPnw4DRs2tLBKEesE+fu4xIuoSFVztb5Tqadmvv/+e6Kjo4mOjgbgvvvuIzo6mscee6wyn9YpPfDAA/z888+sWLGC8PBwxo0bx44dOwDYt28fR48etbhCERGRqlepR0Suvvpq3QDsDzw8PLjhhhu44YYbOHjwIPXq1QNg2LBhbNu2jVtvvZWEhAQ6dOiAzWY7w9ZERESqP6carFqT1K9fvyxszJo1i9tvv53333+fTp06ERkZWXa0RERExJUpiDiBVq1a8dRTT5GWlsYnn3xCx44dad68OQBPP/00ixYtoqioet+wRkRE5FQURJyIm5sb1113HW+99Ra1atXCGMNnn33GrbfeSlBQEH/7299Yt26dTneJiIjLUBBxYjabjc8//5yffvqJe+65h48//pgrr7ySrKwsoPSqJBERkepMQaQaCA8P54knniA1NZXvv/+eoKAgjh8/TkREBD169GDu3LkUFhZaXaaIiMg5UxCpRux2e9ml0A6Hg8mTJ+NwOIiPjycwMJCRI0dy+HD1/swBERGpWRREqilPT08SEhJISkpiz549PPDAA+Tm5uLjU3qTm5deeondu3dbXKWIiMjpKYi4gBYtWvDYY4+xYsUKbDYbmZmZjB8/nosuuoirrrqKN954g/z8fKvLFBERqUBBxAUFBQWRlZXF/Pnz8fLyYvTo0Vx22WVlV9voqhsREXEWCiIuqlatWsTFxbFq1Sr27dvHa6+9hs1mIycnh7CwMB5++GF++uknq8sUEZEaTkGkBggJCaFnz54AFBcXc9111/Hyyy8TERFBly5deOONNyyuUEREaioFkRomODiYmTNnkpmZyeLFi6lfvz6ffvopAEePHuXjjz/m+PHjFlcpIiI1RaV+6J04L29vbwYPHszgwYNxOBwAfPHFF1x//fUEBgYyfPhw4uPjufTSSy2uVEREXJmOiAh2e+mfQe/evfn++++5+eabeeONN4iMjGTUqFEWVyciIq5MQUTK2Gw22rdvzwsvvMD+/ftZtmwZgwcPBuC7775j0KBBLF++nOLiYosrFRERV6FTM3JKnp6eDBgwoGz+t99+Y+/evfTv359GjRoRFxdHYmIikZGRFlYpIiLVnY6IyFm55ppr2LBhA5s3b2b48OG8/fbbLFy4EICDBw+Sk5NjcYUiIlIdKYjIObnsssuYNm0aP//8M+PGjQNg5syZNGnShH79+rF06VKOHj1qcZUiIlJdKIjIefHw8KBOnToA3HHHHTz//PNkZWVx00030aRJE+bNm2dxhSIiUh0oiMhf1qBBA+666y6+++47tm3bxm233UbLli0BWLFiBU8//TT79++3uEoREXFGCiJyQbVu3ZqnnnqKK664AoCtW7cyceJEQkJC6N27N4sWLaKoqMjiKkVExFkoiEilmjBhApmZmcycOZP8/HxuvfVW3nnnHaD0Shx9AJ+ISM2mICKVrm7dutx+++3897//5aeffmLQoEEAjBkzhksuuYTJkyeTlpZmcZUiImIFBRGpUuHh4fj6+gKQmJhI586defLJJwkNDeXaa69l69atFlcoIiJVSUFELNOtWzfmzp1LVlYWs2fPpqSkBH9/fwCWLVvGmjVryj4HR0REXJOCiFiuTp06jBw5kqSkJJo1awbA888/T7du3bjooot4/PHH2bNnj8VViohIZVAQEaeUlJTE6tWr6d69O8899xxhYWEkJycDaICriIgLURARp2S327nqqquYPXs2WVlZvPvuu1x66aUA9OjRg+HDh/P555+f/tSNowT2fgVb3y396iipoupFqjlHCWRsKP0+Y4P6jlQqBRFxerVq1WLQoEHYbDYcDgfXXnst3333HT179iQ0NJSHH36YvLy88g/avhymR8KcG2BpYunX6ZGly0Xkz53oOx+OLZ3/cKz6jlQqBRGpVux2OxMmTODHH39k3bp19OnTh0WLFuHt7Q3Ap59+yq/fvA1LRkD+SXdzzc8sXa4XVJFT275cfUeqnLvVBYicD5vNRkxMDDExMTgcDux2O7/99hsDBgzAUXyEGyPcSGjrSc+WbrjZbb8/ygA2+GQcXHI92N2s/BFEnIujBD55iNJ+cjL1Hak8CiJS7dntpQf2ateuza7/LGDBo7fy1uZiei84TDN/G6vja3HwyB8ekJkGK9+E4HbWFCzijDI2wM70stkduSXlvgKQmUa9r9+lxVVDOHLkCNu3b6+wmXbtSvvVzp07KSwsLNcWGhpK/fr1+eWXX0hPTy/XVqdOHcLDwykpKWHz5s0VthsVFYWHhwe7d++ucCo2ODiYgIAADh06xN69e8u1+fj40KpVKwA2btxYYbB7q1at8PHxYd++fRw4cKBcW0BAAMHBwRQUFJCSklKuzcPDg6ioKKD0oyyKi4vLtYeHh1OnTh0yMjLIzs4u19agQQOaN29OUVERO3bsKNdms9mIjo4GYMeOHRU+EqNFixbUq1eP7OxsMjIyyrX5+/sTFhZGcXHxKe/J1KZNG9zc3EhJSaGgoKBcW0hICI0aNeLgwYOkpqaWa/P19SUiIgKADRs2VNhu69at8fb2Zu/evRw6dAgovXP2WTNOLC8vzwAmLy/P6lKkutjyjjET/YzjsTpm/W2+Zuq1XqZbc7uh9F86TZo0ncPk71VxWdz1XY0xxqSkpJzyMSfExMRUaJs3b54xxpgZM2ZUaIuNjTXG/O91/+QpJyfHGGNM3759K7RNmzbNGGPMkiVLKrRFR0eX1eTp6VmhPTk52RhjTGJiYoW2cePGGWOMSUpKqtAWHBxctt3g4OAK7UlJScYYY8aNG1ehLTEx0RhjTHJycoU2T0/Psu1GR0dXaF+yZIkxxphp06ZVaOvbt68xxpicnJxT/g5PvJfGxsZWaJsxY4Yxxph58+ZVaIuJiSmr6VTbTUlJMcYYExcX96fPeTq23zfslPLz8/H39ycvLw8/Pz+ry5HqYO9XpQNTf7chs4T2swqZP9CbVg3/cDj5huk6IiLyRxkb/jdAldIjIcOWHanQd+rFzdYREXRE5I/+7IhIt27dzur9W0FEXIujpHSEf34mYMqCyA+3+9IuyA2wgV8TGLtV57lF/kh9Ry6gc3n/1lUz4lrsbtBr6u8ztpMaf5/v9ZReSEVOpr4jFlEQEdfTuh8Mngt+QeWX+zUpXd66nzV1iTg79R2xgIKIuKbW/WBsculYECj9OnarXkhFzkR9R6qYgoi4Lrvb/wakBrfTIWWRs6W+I1VIQUREREQsoyAiIiIillEQEREREcsoiIiIiIhlFERERETEMgoiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCyjICIiIiKWURARERERyyiIiIiIiGUURERERMQyCiIiIiJiGQURERERsYyCiIiIiFhGQUREREQsoyAiIiIillEQEREREctUSRB5+eWXadGiBd7e3rRv356vvvqqKp5WREREnFylB5HFixczduxYHn74YTZu3EjXrl3p3bs3aWlplf3UVSYzr4i1u3PJzCuyuhSRakP9RuT8uFrfca/sJ3juuedITExk9OjRAEyfPp1PP/2UmTNnMmXKlMp++kq3eH0a45dtxWHAboMpA6MY0rGZ1WWJODX1G5Hz44p9p1KPiBw7dowffviB2NjYcstjY2NZu3ZthfWPHj1Kfn5+ucmZZeYVlf1BADgMTFiW7DIpVaQyqN+InB9X7TuVGkRyc3MpKSkhICCg3PKAgACysrIqrD9lyhT8/f3LppCQkMos7y/bm1tY9gdxQokxpOYetqYgkWpA/Ubk/Lhq36mSwao2m63cvDGmwjKA8ePHk5eXVzalp6dXRXnnrUVDX+wn/RhuNhuhDWtZU5BINaB+I3J+XLXvVGoQadiwIW5ubhWOfuTk5FQ4SgLg5eWFn59fucmZBfn7MGVgFG6/hyo3m40nB0YS5O9jcWUizkv9RuT8uGrfqdTBqp6enrRv355Vq1YxYMCAsuWrVq2if//+lfnUVWZIx2ZcdXEjUnMPE9qwVrX/gxCpCuo3IufHFftOpV81c9999zF8+HA6dOhAly5dmDVrFmlpadxxxx2V/dRVJsjfxyX+GESqkvqNyPlxtb5T6UFkyJAhHDhwgH/9619kZmYSGRnJRx99RPPmzSv7qUVERMTJVXoQARgzZgxjxoypiqcSERGRakSfNSMiIiKWURARERERyyiIiIiIiGUURERERMQyCiIiIiJiGQURERERsYyCiIiIiFhGQUREREQsoyAiIiIillEQEREREcsoiIiIiIhlFERERETEMgoiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCyjICIiIiKWURARERERyyiIiIiIiGUURMR1OUogY0Pp9xkbSudF5MzUd6QKKYiIa9q+HKZHwodjS+c/HFs6v325lVWJOD/1HaliCiLierYvhyUjIH9/+eX5maXL9YIqcmrqO2IBBRFxLY4S+OQhwJyi8fdln4zToWaRk6nviEXcrS7gbGzatInatWuXzderV48WLVpw5MgRtm/fXmH9du3aAbBz504KCwvLtYWGhlK/fn1++eUX0tPTy7XVqVOH8PBwSkpK2Lx5c4XtRkVF4eHhwe7du8nLyyvXFhwcTEBAAIcOHWLv3r3l2nx8fGjVqhUAGzduxJjyHb1Vq1b4+Piwb98+Dhw4UK4tICCA4OBgCgoKSElJKdfm4eFBVFQUAFu3bqW4uLhce3h4OHXq1CEjI4Ps7OxybQ0aNKB58+YUFRWxY8eOcm02m43o6GgAduzYQVFRUbn2Fi1aUK9ePbKzs8nIyCjX5u/vT1hYGMXFxWzdupWTtWnTBjc3N1JSUigoKCjXFhISQqNGjTh48CCpqanl2nx9fYmIiABgw4YNFbbbunVrvL292fv1uxza+b/9uiO3pNxXADLTYOWbENyuwnZEaqyMDfCHvrPip9LXk7wjJ16vDORnwL610KKrBQWKyzJOLC8vz1AaxctNcXFxxhhjUlJSTtl+QkxMTIW2efPmGWOMmTFjRoW22NjY0z5vTk6OMcaYvn37VmibNm2aMcaYJUuWVGiLjo4uq8nT07NCe3JysjHGmMTExApt48aNM8YYk5SUVKEtODi4bLvBwcEV2pOSkowxxowbN65CW2JiojHGmOTk5Aptnp6eZduNjo6u0L5kyRJjjDHTpk2r0Na3b19jjDE5OTmn/B3m5eUZY4yJjY2t0DZjxgxjjDHz5s2r0BYTE1NW06m2m5KSYowxJu76rhXa/L0qrq9Jk6azmzzdMDe1djcrbvUxxY/WMWbLO+fzci41zIn30ROv+adjM+akf8+dSH5+Pv7+/qxevVpHRHRE5OyOiKxZzKEFiWXLd+SWMGzZEeYP9KZVQ7f/PeCG6ToiIvJHGRv+N0D1d+42wxd7S3hrczFbsh0829OLf766iuKmMXh4eFhTp1QLJ96/8/Ly8PPzO+261SKInM0PIgKUnr+eHlk6uA7DhswS2s8q5IfbfWkX5AbYwK8JjN0KdrczbU2k5jip75xsU5aDJkFBNH50B+MmPMxnn31GfHw8Q4cOpVGjRlVfrzi1c3n/1mBVcS12N+g19fcZ20mNv8/3ekohRORkZ+g7bQPdaHzzs2B3o0ePHoSGhvLAAw/QpEkTbrzxRjZu3FjVFYuLUBAR19O6HwyeC35B5Zf7NSld3rqfNXWJOLuz7Ds9e/Zk2bJl7N+/n3//+9/8/PPPZaeG16xZw4YNGyqcghb5Mzo1I67LUcKGlW/Svt9t/LD8NdpdP1JHQkTOhqOk9OqY37KhdgA0v/ys+06fPn34+OOPiYyMJD4+nri4OIKCgs78QHEpOjUjAqUvnCcGpAa3UwgROVt2t9JLdKNuKv16Dn1n+fLlrFy5ktatW/PII4/QtGlTvv7660osVqq7anEfERERqR7c3d3p06cPffr04dChQ7z77rt07NgRgFGjRuHl5UV8fDydO3fGZjt5LIrURDoiIiIilaJevXrcdttteHl5AdCsWTM+/PBDunTpQqtWrZgyZQqHDh2yuEqxmoKIiIhUiccff5zU1FQ+++wzOnTowNSpUzl+/DgA33//PYcPH7a4QrGCgoiIiFQZNzc3evbsyfz588nOzqZRo0YcP36c3r17ExgYyOjRo/n666911U0NoiAiIiKWOHHKxt3dnW+++YZ7772Xzz//nK5duxIeHq7TNjWEgoiIiFguLCyMSZMmsWfPHpKSkoiLi6NevXoYYxg5ciRvvfUWv/32m9VlSiVQEBEREadht9u5+uqrmTRpEgB5eXns27ePkSNHEhgYSHx8PElJSTgcDosrlQtFQURERJxW3bp1+c9//kNqairjxo3jv//9L8OGDSsbQ7J//36LK5S/SkFEREScXvPmzXnkkUdISUnhm2++wc3NjfT0dEJCQrjyyit5/fXXK3wqulQPCiIiIlJt2Gw2QkJCAGjUqBELFiygdu3a/O1vfyMwMJDbbrvN4grlXCmIiIhIteTt7c0tt9zCJ598QlpaGo8//jiNGzcGoLCwkIcffpgdO3ZYXKWciYKIiIhUe8HBwTz00ENMnjwZgG3btjFz5kxat25N586dmTlzpi4HdlIKIiIi4nI6depEZmYm77zzDo0bN+aee+7h5ptvBsDhcJTd0VWspyAiIiIuycvLi5tuuokVK1bw888/M336dADWrFlD06ZN+ec//8mWLVusLVIURERExPUFBgYSGRkJQEhICLfccgtz586lTZs2tGvXjgULFlhcYc2lICIiIjVKWFgY06dPJyMjg/fff5/Q0FDS09MB2LdvH++99x7Hjh2zuMqaw93qAkRERKzg6elJ//796d+/f9myFStWcM8999CgQQOGDh1KfHw87dq1w2azWVipa9MRERERkd/dfffdbN26lZEjR/LOO+/QoUMHJk6caHVZLk1BRERE5A8iIyN55plnSE9PZ+XKlQwZMgSA2bNnc/311/POO+9w5MgRi6t0HQoiIiIip+Du7k6fPn249NJLgdI7uR48eJDBgwcTFBTEnXfeybZt2yyusvpTEBERETkL/fr1Y926dfz444/ceeedfPjhhyQnJwOQkpLCzz//bHGF1ZOCiIiIyDmIiIjgySefJDU1lUGDBgEwceJEmjVrRmxsLAsWLODw4cMWV1l9KIiIiIicBzc3N9zdSy8+feWVV3jttdc4cuQIw4YNIzAwkE8//dTiCqsHXb4rIiLyF/n5+ZGYmEhiYiK7d+8uu1kawLPPPktRUREjRoygefPmFlfqfHRERERE5AIKCwtj0qRJBAYGApCdnc3UqVMJDQ2le/fuzJkzh8LCQourdB4KIiIiIpXomWeeISsrizlz5mC320lISGDXrl0A7N+/H4fDYXGF1lIQERERqWS1a9dmxIgRfPHFF/z888+0adMGYwy9evWiZcuWPPbYY2XhpKap1CAyefJkLr/8cmrVqkXdunUr86lERESqheDg4LLvZ86cSWxsLM8//zzh4eFceeWVNe4y4EoNIseOHePmm2/mzjvvrMynsVxmXhFrd+eSmVdkdSki1Yb6jdR0NpuNK664glmzZpGVlcXbb79NcHAwAQEBQOkg188++4ySkhKLK61clXrVzKRJkwB46623KvNpLLV4fRrjl23FYcBugykDoxjSsZnVZYk4NfUbkfJ8fHy49dZbufXWW4HSf+TnzJlDcnIywcHBDB8+nPj4eC655BKLK73wnGqMyNGjR8nPzy83ObPMvKKyF1MAh4EJy5L1H57IaajfiJyZp6cnW7Zs4dtvv6V///68+uqrtG3btux98dixYxZXeOE4VRCZMmUK/v7+ZVNISIjVJZ3W3tzCshfTE0qMITVXd9QT+TPqNyJnx2az0alTJ1566SUyMzNJSkrCz8+PoqIimjVrxuDBg1m5ciXHjx+3utS/5JyDyOOPP47NZjvt9P33359XMePHjycvL69sSk9PP6/tVJUWDX2x28ovc7PZCG1Yy5qCRKoB9RuRc+fl5UWXLl0AcDgcPPjgg/z444/ccMMNhISE8MADD1TbsSTnHETuvvtuduzYcdopMjLyvIrx8vLCz8+v3OTMgvx9mDIwCjdb6auqm83GkwMjCfL3sbgyEeelfiPy1/j6+nLfffexefNmNmzYwJAhQ/jpp59wc3PDGMPs2bPJzc21usyzds6DVRs2bEjDhg0ro5ZqaUjHZlx1cSNScw8T2rCWXkxFzoL6jchfZ7PZiI6OJjo6umzZzp07ueOOO7jzzju5/vrriY+Pp0+fPnh6elpY6elV6lUzaWlpHDx4kLS0NEpKSti0aRMAF110EbVr167Mp65SQf4+eiEVOUfqNyIX3iWXXML+/ftZuHAhc+bMYcCAAbRv3/68h0xUhUoNIo899hhz5swpmz+R2pKSkrj66qsr86lFRERqpEaNGvH3v/+dv//97yQnJ5ORkQFAamoq/fv3Z8SIEcTFxZV9Fo7VKvWqmbfeegtjTIVJIURERKTyRUZGct111wGlt8iIiIhgwoQJNG3alBtuuIHly5dbXKGTXb4rIiIilSMiIoIlS5aQlZXFjBkzyM3N5b333gOgoKCAb7/9FmPMGbZy4SmIiIiI1CD16tXjjjvu4JtvvmHWrFkAvP/++8TExNCqVSueeuqpstM5VUFBREREpIby8PAAYOjQoXz22We0b9+eSZMmERISwoQJE6qkBgURERGRGs7NzY2ePXuyYMECsrKymDVrFt27dwfgyy+/5LbbbuPrr7+ulFM3CiIiIiJSxt/fn9GjR9OzZ08ADh48yOeff07Xrl25+OKLeeKJJ0hLS7tgz6cgIiIiIn9q4MCB7N69m6SkJK644gqmTp3K22+/DZSGlN9+++0vbV9BRERERE7Lbrdz9dVX89Zbb5GVlcWYMWMAmDp1KoGBgSQkJJCUlITD4Tj3bV/oYkVERMR11a5du+yz4MaMGcO4ceP4+uuvueaaa2jZsiUrV648p+0piIiIiMh5ad68OY888ggpKSl8/fXX9OzZk6CgoHPaRqXe4l1ERERcn81m44orruCKK64AID8//6wfqyMiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCyjICIiIiKWURARERERyyiIiIiIiGUURERERMQyCiIiIiJiGQURcV2OEsjYUPp9xobSeRERcSoKIuKati+H6ZHw4djS+Q/Hls5vX25lVSIichIFEXE925fDkhGQv7/88vzM0uUKIyIiTkNBRFyLowQ+eQgwp2j8fdkn43SaRkTESbhbXcDZ2LRpE7Vr1y6br1evHi1atODIkSNs3769wvrt2rUDYOfOnRQWFpZrCw0NpX79+vzyyy+kp6eXa6tTpw7h4eGUlJSwefPmCtuNiorCw8OD3bt3k5eXV64tODiYgIAADh06xN69e8u1+fj40KpVKwA2btyIMeXfJFu1aoWPjw/79u3jwIED5doCAgIIDg6moKCAlJSUcm0eHh5ERUUBsHXrVoqLi8u1h4eHU6dOHTIyMsjOzi7X1qBBA5o3b05RURE7duwo12az2YiOjgZgx44dFBUVlWtv0aIF9erVIzs7m4yMjHJt/v7+hIWFUVxczNatWzlZmzZtcHNzIyUlhYKCgnJtISEhNGrUiIMHD5KamlquzdfXl4iICAA2bNhQYbutW7fG29ubvV+/y6Gd/9uvW3OOA7D7oIN2QW6AgfwM2LcWWnStsB0REalixonl5eUZSv+NLTfFxcUZY4xJSUk5ZfsJMTExFdrmzZtnjDFmxowZFdpiY2NP+7w5OTnGGGP69u1boW3atGnGGGOWLFlSoS06OrqsJk9PzwrtycnJxhhjEhMTK7SNGzfOGGNMUlJShbbg4OCy7QYHB1doT0pKMsYYM27cuAptiYmJxhhjkpOTK7R5enqWbTc6OrpC+5IlS4wxxkybNq1CW9++fY0xxuTk5Jzyd5iXl2eMMSY2NrZC24wZM4wxxsybN69CW0xMTFlNp9puSkqKMcaYuOu7Vmhzt5d+7dDEbmb09ja5D9Q2Zss75/MnKSIiZ+HE++iJ1/zTsRlz0r/nTiQ/Px9/f39Wr16tIyI6InJ2R0TWLObQgsRybfW9YUOWgzmbi/ko5Tjtg9z45qskTOiVlJSU4O5eLQ4MiohUGyfev/Py8vDz8zvtutUiiJzNDyIClI79mB5ZOjD1FONEcgoNGSUNiX42hR82bqJPnz7ExcURHx9PmzZtqr5eEREXdC7v3xqsKq7F7ga9pv4+Yzup0UZjXzvRo6eD3Y0GDRoQFxfH/Pnzadu2LW3btuXNN9+s4oJFRGo2BRFxPa37weC54BdUfrlfk9LlrfsBpafpnnvuOTIyMli+fDkXXXQRu3fvBiArK4tly5Zx7Nixqq5eRKRG0akZcV2OktKrY37LhtoB0Pzy0iMmZ+HNN99k1KhR1K9fn6FDhxIfH0/79u2x2U4+yiIiIifTqRkRKA0dLbpC1E2lX88yhACMHDmSbdu2MXr0aJYuXUrHjh25//77K7FYEZGaSUFE5E+0bt2aqVOnkpaWxscff8ywYcMAWLx4Mb1792bRokUVrigSEZFzoyAicgbu7u706tWr7JJmPz8/8vLyuPXWWwkKCuJvf/sbW7ZssbhKEZHqSUFE5Bz17t2btWvXsnPnTu6++24+/vhjvvvuOwBSU1NJS0uzuEIRkepDg1VF/iKHw0FJSQkeHh7cfvvtvP7661xzzTUkJCQwYMAAfH19rS5RRKRKabCqSBWy2+14eHgAMG3aNGbPnk1xcTHDhw8nMDCQ999/39oCRUScmI6IiFSSPXv2MG/ePIYPH07Lli15+eWXycnJYcSIEbRs2dLq8kREKo2OiIg4gZYtWzJx4sSy0JGZmcm0adMICwujW7duvPnmmxU+b0dEpKZREBGpIk888QRZWVnMmzcPDw8PEhMT2bhxI1B6J1eHw2FxhSIiVU+nZkQskp6eTnBwMHa7nSuvvJK0tDRGjBhBfHw84eHhVpcnInLedGpGpBoICQnBbi/tgs8++yx9+vRhxowZXHzxxVx++eVln3sjIuLKFEREnEBMTAyvvPIKmZmZLFq0iMDAQIKCSj+078UXX+STTz6hpKTE4ipFRC48nZoRcWIOh4NOnTrxww8/0KRJE4YNG0Z8fDytW7e2ujQRkT+lUzMiLsJut7N+/XrWr1/PwIEDef3114mKiuKXX34BoLi42OIKRUT+GgURESdns9no0KEDL774Ivv37+fLL7+kUaNGHD9+nPDwcAYNGsSKFSsUSkSkWlIQEalGvLy86Nq1KwDHjx9n7Nix7N69m379+tG0aVPuvfdejh49anGVIiJnT0FEpJry9vZm7NixbNq0iY0bNzJ06FC2bNmCp6cnAHPmzCEnJ8fiKkVETk+DVUVcUFpaGhdddBHGGHr37k1CQgLXX389Xl5eVpcmIjWABquK1HDNmjUjMzOT6dOnk5mZyaBBg2jbti1O/H+HiNRQCiIiLqpBgwbcddddrF+/nuTkZKZOnYrNZiM7O5u2bdvyzDPPkJmZaXWZIlLDKYiI1ACXXnop/fr1A+Dw4cO0atWKRx99lKZNm9K7d2+WLl1qcYUiUlMpiIjUMC1atGDhwoVkZWUxc+ZM8vPzWbRoEQBHjhxh3bp1OoUjIlVGg1VFhGPHjuHp6cl7773HwIEDufjii4mPj2f48OGEhIRYXZ6IVDMarCoi5+TEJb/9+/fn888/p3PnzkyePJnmzZszduxYa4sTEZemICIiZex2Oz169GDu3LlkZWUxe/ZsrrnmGgDWr19PYmIia9as0akbEblgFERE5JTq1KnDyJEjywa55uTkkJSURLdu3QgLC2PSpEns3bvX4ipFpLpTEBGRs3L99deza9cuVq9eTffu3Xn22Wd5/fXXAcjLy6OgoMDiCkWkOlIQEZGzZrfbueqqq5g9ezZZWVncf//9AMyYMYPAwEBGjBjBF198gcPhsLhSEakuKi2IpKamkpiYSIsWLfDx8SEsLIyJEydy7NixynpKEalCvr6+1KtXD4ARI0bw8MMP880333DttdcSGhqqe5OIyFmptCDy448/4nA4ePXVV9m2bRv//ve/eeWVV5gwYUJlPaVlMvOKWLs7l8y8IqtLEbFESEgIEyZMYOfOnaxdu5bevXvTuHFjAD755BNmzZrFr7/+am2RIuKUqvQ+Is888wwzZ85kz549Z7V+dbiPyOL1aYxfthWHAbsNpgyMYkjHZlaXJeI0JkyYwNSpU/H09OTGG28kPj6enj174ubmZnVpIlJJnPY+Inl5edSvX/9P248ePUp+fn65yZll5hWVhRAAh4EJy5J1ZETkD5588knS09OZNGkSW7ZsoXfv3ixevBhAp2pFpOqCyO7du3nxxRe54447/nSdKVOm4O/vXzY5+x0d9+YWloWQE0qMITX3sDUFiTipJk2a8OCDD5KcnMz69evp378/AKNHj6ZTp0689NJLHDx40OIqRcQK5xxEHn/8cWw222mn77//vtxj9u/fT69evbj55psZPXr0n257/Pjx5OXllU3p6enn/hNVoRYNfbHbyi9zs9kIbVjLmoJEnJzNZqNDhw74+voCcPPNNxMYGMg//vEPgoKCuOmmm/jpp58srlJEqtI5jxHJzc0lNzf3tOuEhobi7e0NlIaQ7t2707lzZ9566y3s9rPPPtVljMiEZcmUGIObzcaTAyM1RkTkHGVnZ/P2228zb948PvjgA0JCQvjoo49o2rQpl112mdXlicg5Opf370odrJqRkUH37t1p37498+fPP+fBadUhiEDpWJHU3MOENqxFkL+P1eWIuIT27duzYcMG2rZtS0JCAkOHDqVRo0ZWlyUiZ8Epgsj+/fvp1q0bzZo1Y+7cueVCSGBg4Flto7oEERG58IqLi/n444+ZM2cOK1aswBjDtm3buPjii60uTUTO4Fzev90rq4jPPvuMXbt2sWvXLpo2bVquTR+YJSJn4uHhQb9+/ejXrx8HDhxgxYoVhIeHA9CnTx/CwsJISEigXbt22Gy2M2xNRJxVpV01k5CQgDHmlJOIyLlo0KABCQkJ2Gw2jh8/TmRkJEuXLqVDhw5ERUXxzDPPUFhYaHWZInIe9FkzIlKtuLu78/TTT5OWlsZHH31EZGQk06dPx9299ADv119/zZEjRyyuUkTOVpXeWfVcaYyIiJyN4uJiPDw8yMvLo3HjxtSqVYshQ4aQkJBA586ddepGpIo57Z1VRUQqg4eHBwD+/v5s2bKFMWPGsHLlSrp06cJll11GcXGxxRWKyJ9REBERlxIREcHkyZNJTU1l1apVjBo1Cg8PD44dO8agQYNYsGABhw/r7scizkJBRERckpubG9deey333nsvUHrTtNzcXIYNG0ZgYCCJiYl89dVXGkAvYjEFERGpEUJCQli9ejW7d+/mvvvuIykpiX/84x/YbDaMMaSlpVldokiNpMGqIlIjORwOcnJyCAwM5Pvvv6djx45069aNhIQEbrrpJmrXrm11iSLVlgarioicgd1uL7vLc6tWrZg3bx7u7u6MGjWKgIAA7r//fosrFKkZFEREpMbz9fVl2LBhfP7556SmpjJhwgSCg4OB0s/MeuSRR0hJSbG4ShHXpFMzIiKn8emnnzJkyBDy8vK4/PLLiY+PZ/DgwdStW9fq0kSclk7NiIhcINdddx2ZmZksXLgQPz8/7rzzTu655x6g9EZqJSUlFlcoUr0piIiInIGPjw+33HILH3/8Menp6Tz++OMAvPPOOzRr1oyHHnqI7du3W1ukSDWlICIicg6aNGlCWFgYAG3btmXAgAG89tprXHrppXTq1IkPPvjA4gpFqhcFERGR89S6dWtmzJhBZmYm7777LgEBAfz6668AbN26lQ8//FC3lxc5AwUREZG/yMvLi0GDBrFixQri4+MBWLJkCX379qVp06bcd999bNmyxeIqRZyTgoiISCV44okn2LhxI0OHDmX+/Pm0adOGl156yeqyRJyOLt8VEalkxcXFfPzxx0RHRxMSEsL//d//sX79ehISErj++uvx9PS0ukSRC0qX74qIOBEPDw/69etHSEgIAC1btmT//v0MHDiQJk2acM8997Br1y6LqxSxhoKIiEgVGzp0KOvXryc5OZlRo0axdOlSsrKyANiyZQuZmZkWVyhSdXRqRkTEYsePH8fNzQ2bzUb37t1Zs2YN1113HQkJCfTr1w9vb2+rSxQ5Jzo1IyJSjbi7u2Oz2QBYtmwZL7/8Mr/++itDhgwhKCiI9evXW1yhSOXRERERESe1c+dOFixYwPjx4/Hx8eGhhx6ibt26DB8+nKZNm1pdnsif0hEREREXEBERwb/+9S98fHwwxnDw4EGeeOIJmjVrRs+ePVmwYAFFRUVWlynylzj1EZG8vDzq1q1Lenq6joiIiFD6n+YHH3zAggUL+Pbbb9mxYweBgYGkpaUREhJSdopHxEr5+fmEhITw66+/4u/vf9p13auopvNSUFAAUHbJm4iIlBcREWF1CSJ/qqCg4IxBxKmPiDgcDvbv30+dOnWcOuWfSH46cuN8tG+cl/aNc9P+cV7VYd8YYygoKKBJkybY7acfBeLUR0Tsdnu1GpDl5+fntH8UNZ32jfPSvnFu2j/Oy9n3zZmOhJygwaoiIiJiGQURERERsYyCyAXg5eXFxIkT8fLysroUOYn2jfPSvnFu2j/Oy9X2jVMPVhURERHXpiMiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgch4mT57M5ZdfTq1atahbt+5ZPcYYw+OPP06TJk3w8fHh6quvZtu2bZVbaA116NAhhg8fjr+/P/7+/gwfPpxff/31tI9JSEjAZrOVm2JiYqqmYBf28ssv06JFC7y9vWnfvj1fffXVaddfvXo17du3x9vbm5YtW/LKK69UUaU1z7nsmy+//LJC/7DZbPz4449VWHHNsGbNGvr27UuTJk2w2Wy8//77Z3xMde83CiLn4dixY9x8883ceeedZ/2Yp59+mueee44ZM2awfv16AgMD6dmzZ9nn6ciFM3ToUDZt2sQnn3zCJ598wqZNmxg+fPgZH9erVy8yMzPLpo8++qgKqnVdixcvZuzYsTz88MNs3LiRrl270rt3b9LS0k65/t69e+nTpw9du3Zl48aNTJgwgb///e8sXbq0iit3fee6b07YuXNnuT4SHh5eRRXXHIWFhbRp04YZM2ac1fou0W+MnLc333zT+Pv7n3E9h8NhAgMDzVNPPVW27MiRI8bf39+88sorlVhhzbN9+3YDmG+++aZs2bp16wxgfvzxxz99XHx8vOnfv38VVFhzdOrUydxxxx3lll1yySVm3Lhxp1z/wQcfNJdcckm5ZX/7299MTExMpdVYU53rvklKSjKAOXToUBVUJycA5r333jvtOq7Qb3REpArs3buXrKwsYmNjy5Z5eXnRrVs31q5da2FlrmfdunX4+/vTuXPnsmUxMTH4+/uf8Xf95Zdf0rhxYy6++GJuu+02cnJyKrtcl3Xs2DF++OGHcn/zALGxsX+6H9atW1dh/euuu47vv/+e4uLiSqu1pjmffXNCdHQ0QUFB9OjRg6SkpMosU86SK/QbBZEqkJWVBUBAQEC55QEBAWVtcmFkZWXRuHHjCssbN2582t917969WbBgAf/5z3+YNm0a69ev55prruHo0aOVWa7Lys3NpaSk5Jz+5rOysk65/vHjx8nNza20Wmua89k3QUFBzJo1i6VLl7Js2TIiIiLo0aMHa9asqYqS5TRcod849afvVqXHH3+cSZMmnXad9evX06FDh/N+DpvNVm7eGFNhmZza2e4fqPh7hjP/rocMGVL2fWRkJB06dKB58+asXLmSgQMHnmfVcq5/86da/1TL5a87l30TERFBRERE2XyXLl1IT0/n2Wef5aqrrqrUOuXMqnu/URD53d13380tt9xy2nVCQ0PPa9uBgYFAaXINCgoqW56Tk1Mhycqpne3+2bJlC9nZ2RXafvnll3P6XQcFBdG8eXNSUlLOuVaBhg0b4ubmVuE/7NP9zQcGBp5yfXd3dxo0aFBptdY057NvTiUmJob58+df6PLkHLlCv1EQ+V3Dhg1p2LBhpWy7RYsWBAYGsmrVKqKjo4HS87SrV69m6tSplfKcruZs90+XLl3Iy8vju+++o1OnTgB8++235OXlcfnll5/18x04cID09PRywVHOnqenJ+3bt2fVqlUMGDCgbPmqVavo37//KR/TpUsXVqxYUW7ZZ599RocOHfDw8KjUemuS89k3p7Jx40b1DyfgEv3GypGy1dW+ffvMxo0bzaRJk0zt2rXNxo0bzcaNG01BQUHZOhEREWbZsmVl80899ZTx9/c3y5YtM1u3bjW33nqrCQoKMvn5+Vb8CC6tV69e5rLLLjPr1q0z69atM1FRUeaGG24ot84f909BQYH55z//adauXWv27t1rkpKSTJcuXUxwcLD2z1+waNEi4+HhYWbPnm22b99uxo4da3x9fU1qaqoxxphx48aZ4cOHl62/Z88eU6tWLXPvvfea7du3m9mzZxsPDw/z7rvvWvUjuKxz3Tf//ve/zXvvvWd++uknk5ycbMaNG2cAs3TpUqt+BJdVUFBQ9p4CmOeee85s3LjR7Nu3zxjjmv1GQeQ8xMfHG6DClJSUVLYOYN58882yeYfDYSZOnGgCAwONl5eXueqqq8zWrVurvvga4MCBAyYuLs7UqVPH1KlTx8TFxVW47PCP++fw4cMmNjbWNGrUyHh4eJhmzZqZ+Ph4k5aWVvXFu5iXXnrJNG/e3Hh6epp27dqZ1atXl7XFx8ebbt26lVv/yy+/NNHR0cbT09OEhoaamTNnVnHFNce57JupU6easLAw4+3tberVq2euvPJKs3LlSguqdn0nLpU+eYqPjzfGuGa/sRnz+6gWERERkSqmy3dFRETEMgoiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWOb/AVqYDa5btuMtAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/fUlEQVR4nO3deVyU9d7/8fcAgqgwpsgmCNqvo6kthuWWuYZ7iyfTW1OsTo+oPGnmnXq6K7W7bDl17LSZ57awbPHk0klckk6ilrRoam6ZFSkhhCug6YDw/f0xMacRRFBmhgtez8djHjLf+V4zn68X18yb6/pe19iMMUYAAAAW4efrAgAAAKqD8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACwlwNcF1LTS0lIdOHBAISEhstlsvi4HAABUgTFGhYWFio6Olp9f5ftW6lx4OXDggGJjY31dBgAAOA9ZWVmKiYmptE+dCy8hISGSnIMPDQ31cTUAAKAqCgoKFBsb6/ocr0ydCy9lh4pCQ0MJLwAAWExVpnwwYRcAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFhKnbtIHQAA8IySEmnDBiknR4qKknr2lPz9vV+HR/e8zJ49W1dffbVCQkIUHh6um266SXv27DnncuvWrVNCQoIaNmyoNm3aaO7cuZ4sEwAAnMPSpVJ8vNSnjzR6tPPf+Hhnu7d5NLysW7dO9913nz7//HOlpaXp9OnTSkxM1IkTJ866TGZmpgYPHqyePXtqy5Yt+stf/qL7779fS5Ys8WSpAADgLJYulW65Rfr5Z/f27Gxnu7cDjM0YY7z1YgcPHlR4eLjWrVun6667rsI+U6dO1Ycffqjdu3e72pKTk7Vt2zZlZGSc8zUKCgpkt9uVn5/PdxsBAHCBSkqce1jODC5lbDYpJkbKzLywQ0jV+fz26oTd/Px8SVKzZs3O2icjI0OJiYlubQMGDNCmTZtUXFxcrr/D4VBBQYHbDQAA1IwNG84eXCTJGCkry9nPW7wWXowxmjx5sq699lp17NjxrP1yc3MVERHh1hYREaHTp0/r0KFD5frPnj1bdrvddYuNja3x2gEAqK9ycmq2X03wWniZMGGCvvnmG7377rvn7Hvm12GXHdmq6Guyp0+frvz8fNctKyurZgoGAACKiqrZfjXBK6dK//nPf9aHH36o9evXKyYmptK+kZGRys3NdWvLy8tTQECAmjdvXq5/UFCQgoKCarReAADg1LOnc05LdrbzENGZyua89OzpvZo8uufFGKMJEyZo6dKl+uSTT9S6detzLtOtWzelpaW5ta1Zs0adO3dWgwYNPFUqAACogL+/9MILzp/PPABSdn/OHO9e78Wj4eW+++7TwoUL9c477ygkJES5ubnKzc3VyZMnXX2mT5+ucePGue4nJydr3759mjx5snbv3q3XX39d8+fP15QpUzxZKgAAOIvhw6XFi6WWLd3bY2Kc7cOHe7cej54qXdEcFUl64403NH78eEnS+PHj9dNPPyk9Pd31+Lp16/TAAw9o586dio6O1tSpU5WcnFyl1+RUaQAAPMOTV9itzue3V6/z4g2EFwAArKfWXucFAADgQhFeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApRBeAACApXg0vKxfv17Dhg1TdHS0bDabPvjgg0r7p6eny2azlbt9++23niwTAABYSIAnn/zEiRO64oordPvtt+uPf/xjlZfbs2ePQkNDXfdbtGjhifIAAIAFeTS8DBo0SIMGDar2cuHh4WratGnNFwQAACyvVs556dSpk6KiotSvXz+tXbu20r4Oh0MFBQVuNwAAUHfVqvASFRWlefPmacmSJVq6dKnatm2rfv36af369WddZvbs2bLb7a5bbGysFysGAADeZjPGGK+8kM2mZcuW6aabbqrWcsOGDZPNZtOHH35Y4eMOh0MOh8N1v6CgQLGxscrPz3ebNwMAAGqvgoIC2e32Kn1+16o9LxXp2rWr9u7de9bHg4KCFBoa6nYDAAB1V60PL1u2bFFUVJSvywAAALWER882On78uL7//nvX/czMTG3dulXNmjVTq1atNH36dGVnZ+vNN9+UJM2ZM0fx8fHq0KGDioqKtHDhQi1ZskRLlizxZJkAAMBCPBpeNm3apD59+rjuT548WZKUlJSklJQU5eTkaP/+/a7Hi4qKNGXKFGVnZys4OFgdOnTQihUrNHjwYE+WCQAALMRrE3a9pToTfgAAQO1QpybsAgAA/B7hBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWEqArwsAgKooKZE2bJBycqSoKKlnT8nf39dVAfVLbdkOPbrnZf369Ro2bJiio6Nls9n0wQcfnHOZdevWKSEhQQ0bNlSbNm00d+5cT5YIwAKWLpXi46U+faTRo53/xsc72wF4R23aDj0aXk6cOKErrrhCL730UpX6Z2ZmavDgwerZs6e2bNmiv/zlL7r//vu1ZMkST5YJoBZbulS65Rbp55/d27Ozne0EGMDzatt2aDPGGK+8kM2mZcuW6aabbjprn6lTp+rDDz/U7t27XW3Jycnatm2bMjIyqvQ6BQUFstvtys/PV2ho6IWWDcCHSkqcf9md+YZZxmaTYmKkzEwOIQGe4q3tsDqf37VqzktGRoYSExPd2gYMGKD58+eruLhYDRo0KLeMw+GQw+Fw3S8oKPB4nQC8Y8OGs79hSpIxUlaWs1/v3l4rC6gT5s2bp4kTJ6pFixZq1aqV4uLi1LJlS8XExLj9u2dPpH7++exxwRfbYa0KL7m5uYqIiHBri4iI0OnTp3Xo0CFFRUWVW2b27NmaOXOmt0oE4EU5OTXbD8B/NG/eXKdOnVJWVpaysrKUkZEhf39/lZSUqLS01NXPZvOT1ExS499uX0hqUu75vLkd1rpTpW02m9v9sqNaZ7aXmT59uvLz8123rKwsj9cIwDvK/73ys6Tuko6cox+Acxk6dKjb4ZnS0lIVFxe7BRdJMqZU0iFJ+yT9IKni2Sbe3A5rVXiJjIxUbm6uW1teXp4CAgLUvHnzCpcJCgpSaGio2w1A3dCzp/NY+n/+dpkqKUPSDEnO9thYZz8A1RMUFKTbbrtNAQFVOQhjk3SRpJ2SQtwf8cF2WKvCS7du3ZSWlubWtmbNGnXu3LnC+S4A6jZ/f+mFF8ru5Ula/NvPr0tyzm+bM4fJusD5Gj9+vE6fPl1pHz8/PzVs2ERSumy2i90eK/vDwtvboUfDy/Hjx7V161Zt3bpVkvNU6K1bt2r//v2SnId8xo0b5+qfnJysffv2afLkydq9e7def/11zZ8/X1OmTPFkmQBqseHDpcWLpSZNnpVU9ib7q+z2F7V4sfNxANVXWlqq/Px8hYSEnLWPn5+fAgMD9cknH2nJksvVsqX74zEx8sl26NFTpdPT09WnT59y7UlJSUpJSdH48eP1008/KT093fXYunXr9MADD2jnzp2Kjo7W1KlTlZycXOXX5FRpoO7Jy8tTq1ZxcjhOudpCQkL1889ZbOdANe3du1cLFizQm2++qaysLIWFhenw4cM6Mw7YbDb5+/tr5cqVuv766yV59gq71fn89tp1XryF8ALUPf/93/+tv/3tbyopKXG1+fn5adasWXr44Yd9WBlgDceOHdM///lPpaSkKCMjQ3a7XaNGjVJSUpJatWql2NjYCsPL4sWLNdxLu1UIL4QXoM7Iy8tTXFycTp06Ve6x0NBQZWWx9wWoSElJidLS0pSSkqIPPvhAxcXFGjBggJKSknTDDTcoODjY1TcxMVGffPKJ2x8I8+fP1x133OG1eqvz+V2rJuwCwJmeffZZFRcXV/jY8ePH9eKLL3q5IqB227lzpx566CHFxsZq0KBB2rFjhx5//HFlZWVp5cqVGjlypFtwkaQ77rjDLbg899xzXg0u1cWeFwC1VmV7Xcqw9wWQDh8+rPfee08pKSnatGmTmjVrptGjRyspKUkJCQlnvVZamZMnTyo8PFzHjx/Xww8/rP/93//1UuX/YdmvBwCA36tsr0uZsr0vzH1BfVNcXKzVq1crJSVFy5cvlzFGgwcP1pIlSzRkyBAFBQVV+bmCg4P15JNP6ujRo3rkkUc8WHXNYM8LgFqpKntdyrD3BfXJtm3btGDBAr399tvKy8vTlVdeqaSkJI0ePVrh4eG+Lu+8MecFgOU999xzVQoukvNN76WXXjqv18nNzdX9999f7pLoQG2Sl5enOXPm6Morr9SVV16phQsXasyYMdq6dau2bNmiSZMmWTq4VBeHjQDUSqGhobr4YvereZ46dUrZ2dmKjY1VYGCg22NNmpT/oriKzJs3T++8845b2549e9S2bVvdd999F1Y0UIMcDodWrFihlJQUrVq1SjabTTfccIMef/xxDRw4sF5feZ7DRgAsIyMjQ927d9eOHTvUoUOHGnnOI0eOaNy4cVq4cKGaNm1aI88JnC9jjDZv3qyUlBS9++67OnLkiDp37qzx48dr1KhRZ/2ev7qACbsAUEVNmjTRkiVLqjW5EahpOTk5WrhwoVJSUrRr1y5FRUXpT3/6k5KSktS+fXtfl1frEF4A1GtnHn4CvOXUqVP617/+pZSUFK1Zs0YNGjTQzTffrOeee079+/ev4rc9109M2AVQ78yaNUuXXXaZGjdurIiICN1zzz3nPCUbqAnGGGVkZGjcuHGuS/QXFBTo1VdfVW5urt59910NHDiQ4HIO/O8AqFeMMSopKdFrr72mli1bateuXRo3bpwuv/xy3XPPPb4uD3XUU089pddee02//PKLTp48qaCgIDVo0EDTpk3TzJkzfV2e5RBeANQrNpvN7cMiLi5O119/vb799ltlZWVp7NixysvLU0BAgB555BGNGDHCh9XCyk6cOKFly5YpJSVFn3zyiYKDg3XLLbcoKSlJV1xxhcaPH68HHnjA12VaEuEFQL2yb98+Pfvss0pPT1d2draKi4t16tQpzZ49WwEBAa5raeTl5emqq67S4MGD1bhxY1+XDYsoLS3Vp59+qpSUFL3//vs6fvy4evXqpfnz5+uWW25RSEiIJKmoqIiJ4heA8AKg3jh06JCuueYa9enTR88//7xatmyp0tJSde7cWVdeeaWioqIUFRUlSQoPD1ezZs105MgRwgvOKTMzU2+++aYWLFigzMxMtW7dWlOmTNHYsWPVpk2bcv2ZKH5hCC8A6o2VK1fq9OnTevfdd11fVPfyyy+rqKhIV155pVvfTZs2qbS0VLGxsT6oFFZQWFioxYsXKyUlRevXr1eTJk106623KiUlRddee638/NzPiZk1a5bef/99/fjjj2rSpImGDx+uv//97/X6YnPni/ACoN5o1qyZCgoK9OGHH6p9+/Zavny5Zs+erZYtW6pFixaufocPH9a4ceP0f//3fz6sFrVRaWmp1q5dq5SUFC1dulQnT55U37599dZbb+nmm28+6146JorXLMILgHpjyJAhuvPOOzV27FgFBwfrtttu06233qp9+/a5+jgcDt18882aPn26unfv7sNqUZt89913WrBggd566y1lZWXpkksu0cMPP6zbbrtNrVq1OufylU0Ul6Sbb75Z6enp6tevnxYvXuyxcdQVhBcA9YbNZtPcuXM1d+7cCh83xmj8+PHq27evxo4d6+XqUNscO3ZMixYt0oIFC5SRkSG73a6RI0dq/Pjx6tq1q+vQY1VUNlFcku6//37dcccdWrBggaeGU6dwkToA+M1nn32mRYsW6YMPPnB9e+/27dt9XRa8qKSkRKtXr9aoUaMUGRmpe++9V3a7Xe+9955ycnL02muvqVu3btUKLmUTxQ8dOqTnn39en376qTIyMuTv7++aa9WnTx/XmUg4N/a8AMBvrr32WpWWlvq6DPjAzp07tWDBAi1cuFA5OTlq3769Hn/8cY0ZM0bR0dEX9NzVmSiOqiG8AADqpcOHD+u9995TSkqKNm3apGbNmmn06NFKSkpSQkJCtfauVKaqE8VRdYQXAEC9UVxcrNWrVyslJUXLly9XaWmpBg8erCVLlmjIkCEeuWhcVSaKo3oILwCAOm/btm1KSUnRO++8o7y8PF1xxRV65plnNHr0aIWHh3v0tc81URzVR3gBANRJeXl5evvtt7VgwQJt27ZNLVq00JgxY5SUlFTr5poMGDBAX3/9tU6cOKGYmBgtW7ZMV199ta/LqrUILwCAOsPhcGjFihVKSUnRqlWrZLPZNGzYMD3++OMaOHBgrb2a7UcffeTrEiyF8AIAsDRjjDZv3qyUlBS9++67OnLkiDp37qw5c+Zo1KhRat68ua9LRA0jvAAALCknJ0cLFy5USkqKdu3apaioKN15551KSkpShw4dfF0ePIjwAgCwjFOnTulf//qXUlJStGbNGjVo0EA33XSTnnvuOfXv318BAXys1QesZQBArWaM0eeff66UlBQtWrRI+fn56tatm1555RWNHDlSTZs29XWJ8DLCC+qP0hLp4AbpZI4UHCW16Cn5+fu6KqD+qOY2uH//fr311ltasGCB9u7dq5iYGN13330aN26c2rZt68XCUdt45buNXnnlFbVu3VoNGzZUQkKCNmzYcNa+6enpstls5W5l37wJnJespdKH8dK/+0gbRzv//TDe2Q7A86q4DZ44cUILFy5U//79FR8fryeeeEJdunRRWlqafvrpJz3xxBMEF3h+z8uiRYs0adIkvfLKK+rRo4dee+01DRo0SLt27ar0a8T37Nmj0NBQ130uoYzzlrVU2nCLJOPe/mu2s73nYil2uE9KA+qFc2yDpT3+qU/3hSslJUXvv/++jh8/ruuuu07z58/XLbfcwhcWohyPh5fnn39ed955p/70pz9JkubMmaOPPvpIr776quurwCsSHh7OcUxcuNISafNElXvTlH5rs0mbJ0ktb+QQEuAJlWyDmXlGb26QFkwepcxfStS6dWs9+OCDGjdunNq0aeP9WmEZHg0vRUVF2rx5s6ZNm+bWnpiYqI0bN1a6bKdOnXTq1Cm1b99e//M//6M+ffpU2M/hcMjhcLjuFxQUXHjhqDsObpB+/dmtqei0n06b333hWv4Baf/HUnhPLxeH6jp16pQk6eTJk/r11199XA2qJG+DlJ8jyfnHQeFJow83GS38zGj9t1KThtKILiVKmTtH197wZ/n5eWU2AyzOo+Hl0KFDKikpUUREhFt7RESEcnNzK1wmKipK8+bNU0JCghwOh9566y3169dP6enpuu6668r1nz17tmbOnOmR+lEHnMxxu1t02k+bDjTTiaIzfvUzvpDCeNOs7Xbt2iVJ2rJli44ePerjalAlh75QaWaYtv1UpDVbTurT3Q4VnTbqfan0ZrI0/GqpcUNJV4ZLBBdUkVfONjrza8WNMWf9qvG2bdu6Tcbq1q2bsrKy9Ne//rXC8DJ9+nRNnjzZdb+goECxsbE1VDksLzjK7e5pY9OJogAF+pcq0L/0Pw/YI6UmTbxcHKorODhYktSoUSM1YX3VellZWVr5r8+1evVB/ZJfqtjmfrqtVyP1uayRbr7iiBo1KPlP5zO2VaAyHg0vYWFh8vf3L7eXJS8vr9zemMp07dpVCxcurPCxoKAgj3yFOeqIFj2lRjHOiYG/O+Ye6F+qoIDfwktQCym8E3NeLCAwMND1L9t97VRYWKi0tDQtX75c33zzjZo0aaLEy0M0tFOpLo8LUFGJv44X/X5bszm30RYctkXVeTS8BAYGKiEhQWlpabr55ptd7Wlpabrxxhur/DxbtmxRVBSpHOfBz19KeOG3Mx0q3tunS+4luAAXoKSkRF988YWWL1+u9PR0nT59Wl27dtWTTz6pXr16qWHBJmlHRYf3f9smE+awDaJaPH7YaPLkyRo7dqw6d+6sbt26ad68edq/f7+Sk5MlOQ/7ZGdn680335TkPBspPj5eHTp0UFFRkRYuXKglS5ZoyZIlni4VdVXscOfp0Jsn/jZx8DdBLZzBJfxa39UGWNgPP/yg1NRUrVy5UocOHVKbNm2UnJyswYMHu1/eouG1UsfHpL0vS6eP/Ke9UYwzuHCpAlSTx8PLyJEjdfjwYc2aNUs5OTnq2LGjVq5cqbi4OEnOL9bav3+/q39RUZGmTJmi7OxsBQcHq0OHDlqxYoUGDx7s6VJRl8UOd54Ovf9j5+RceySHioDzcOzYMa1Zs0bLly/Xrl27ZLfbNWDAAA0dOlTt27c/63xGhV8rhXWT8rZI+blSty5Sq/5sgzgvNmNMRRfAsKyCggLZ7Xbl5+e7XeQOkKRff/1Vn332mZo0acKcCQv65ptvdPvtt+uf//ynLr74Yl+XU28UFxcrIyNDy5cv1/r162WMUY8ePTR06FD17NnTNRepKhwOh44fP64ePXqoUaNGHqwaVlOdz2++2wgAUKHvvvtOqampWrVqlY4cOaI//OEPuv/++zVw4EA1b97c1+WhHiO8AABcjhw5otWrV2v58uX67rvvdNFFF2nQoEEaOnQo3ymEWoPwAgD1XHFxsTZs2KDU1FR9+umnstlsuu6665ScnKzu3burQYMGvi4RcEN4AYB6yBij3bt3KzU1VatXr1Z+fr7at2+vBx98UAMGDOC75VCrEV4AoB45ePCgVq1apdTUVP3www8KCwvTjTfeqKFDhzIJGpZBeAGAOs7hcGjdunVKTU1VRkaGAgIC1Lt3b02cOFFdunRRQAAfBbAWfmMBoA4yxmj79u1KTU3VmjVrVFhYqMsvv1zTpk3T9ddfz6UkYGmEFwCoQ3Jzc7Vy5UqlpqZq3759ioiI0IgRIzRkyBDFx8f7ujygRhBeAMDiTp48qbVr1yo1NVVffvmlAgMD1a9fP02dOlWdO3eWvz9XsUXdQngBAAsyxmjLli1KTU3Vxx9/rBMnTuiqq67SI488on79+qlJkya+LhHwGMILAFhIdna2VqxYodTUVGVnZ6tly5YaM2aMhgwZopiYGF+XB3gF4QUAarkTJ07o3//+t1JTU7V582Y1atRI/fv312OPPaZOnTrJz8/P1yUCXkV4AYBaqLS0VJs2bVJqaqr+/e9/y+Fw6Oqrr9asWbPUt29fBQcH+7pEwGcILwBQi+zfv1+pqalasWKFcnNzFRsbqzvuuEODBw9WVFSUr8sDagXCCwD4WGFhodLS0pSamqpt27apcePGGjBggIYOHarLL79cNpvN1yUCtQrhBQB8oKSkRF988YVSU1OVnp6u4uJide3aVU8++aR69eqlhg0b+rpEoNYivACAF/34449KTU3VypUrdfDgQbVp00Z33323Bg8erBYtWvi6PMASCC8A4GH5+fn66KOPlJqaqp07dyo0NFQDBw7U0KFD1b59ew4LAdVEeAEADyguLlZGRoZSU1O1fv16lZaWqkePHnrmmWfUs2dPBQYG+rpEwLIILwBQg/bu3avly5dr1apVOnLkiC655BL9+c9/1sCBA9W8eXNflwfUCYQXALhAR48e1apVq5Samqo9e/booosu0qBBgzR06FC1bdvW1+UBdQ7hBQDOQ3FxsTZs2KDU1FR9+umnstlsuu6663T33Xere/fuatCgga9LBOoswgsAVJExRt9++62WL1+u1atXKz8/X5deeqkefPBBJSYm6qKLLvJ1iUC9QHgBgHM4ePCg67DQDz/8oObNm+vGG2/U0KFDdfHFF/u6PKDeIbwAQAUcDofWrVun1NRUZWRkKCAgQL1799bEiRPVpUsXBQTw9gn4ClsfAPzGGKMdO3Zo+fLlWrNmjQoLC3X55Zdr2rRpuv766xUaGurrEgGI8AIA+uWXX7RixQqlpqZq3759ioiI0IgRIzRkyBDFx8f7ujwAZyC8AKiXTp48qbVr1yo1NVVffvmlAgMD1a9fP02dOlWdO3eWv7+/r0sEcBaEFwD1hjFGW7du1fLly/Xxxx/rxIkT6tSpkx555BH169dPTZo08XWJAKqA8AKgzjtw4IBSU1O1YsUK/fzzz4qOjtaYMWM0ZMgQxcTE+Lo8ANVEeKmikhJpwwYpJ0eKipJ69pTYqwx4T0mJtHev8+c9e6T4+Mq3wV9//VUff/yxUlNTtXnzZgUHB6t///569NFH1alTJ/n5+XmlbqAuqS2fhV7Zel955RW1bt1aDRs2VEJCgjZs2FBp/3Xr1ikhIUENGzZUmzZtNHfuXG+UeVZLlzrfKPv0kUaPdv4bH+9sB+B5n34q3Xab9OKLzvvPPuu8/+mn7v1KS0v15Zdf6tFHH1ViYqJmzZolPz8/zZo1S2lpaZoxY4YSEhIILsB5qE2fhR7f87Jo0SJNmjRJr7zyinr06KHXXntNgwYN0q5du9SqVaty/TMzMzV48GDdddddWrhwoT777DPde++9atGihf74xz96utxyli6VbrlFMsa9PTvb2b54sTR8uNfLAuqNTz+VZs4s337okLP9scekuLgsLV++XCtWrFBubq5iY2N1++23a/DgwYqKivJ+0UAdU9s+C23GnFlKzerSpYuuuuoqvfrqq662Sy+9VDfddJNmz55drv/UqVP14Ycfavfu3a625ORkbdu2TRkZGed8vYKCAtntduXn51/wNRlKSpyp8uefK37cZpNiYqTMTA4hWcWvv/6qzz77TE2aNFFQUJCvy8E5lJQ497AcOuS8X1z8jQoLb1do6D/l5xeuoqI0GZOqkye3qXHjxhowYICGDh2qyy+/XDabzbfFo0IOh0PHjx9Xjx491KhRI1+Xgyrw1mdhdT6/PbrnpaioSJs3b9a0adPc2hMTE7Vx48YKl8nIyFBiYqJb24ABAzR//nwVFxeX+7Izh8Mhh8Phul9QUFBD1TuP651tZUnOBJqV5ezXu3eNvSyA3+zY8Z/g8nu//vqCTp/eJKlYDRp00d13P6lx43qpYcOGXq8RqOtq42ehRw/8Hjp0SCUlJYqIiHBrj4iIUG5uboXL5ObmVtj/9OnTOlTBu9js2bNlt9tdt9jY2BqrPyenZvsBqJ7Dh89sKZUklZTsV3Dw3WradKVCQl7S//t/AwgugIfUxs9Cr8xaO3P3rTGm0l26FfWvqF2Spk+frvz8fNctKyurBip2quqhcg6pA57RvLn7/QYNrpTd/qGaNl2m4OAk+fm1qLAfgJpTGz8LPXrYKCwsTP7+/uX2suTl5ZXbu1ImMjKywv4BAQFqXsE7VFBQkMfmLvTs6TyOl51dfpKS9J/jfD17euTlgXqvY0cpLMz90JG/f0u3Pi1aOPsB8Iza+Fno0T0vgYGBSkhIUFpamlt7WlqaunfvXuEy3bp1K9d/zZo16ty5c7n5Lp7m7y+98ILz5zN3+pTdnzOHybqAp/j7S/fdV3mfe+9lGwQ8qTZ+Fnr8sNHkyZP1f//3f3r99de1e/duPfDAA9q/f7+Sk5MlOQ/7jBs3ztU/OTlZ+/bt0+TJk7V79269/vrrmj9/vqZMmeLpUis0fLjzFLCW7n/sKSaG06QBb7j2Wufp0GFh7u0tWjjbr73WN3UB9Ult+yz0+HVeRo4cqcOHD2vWrFnKyclRx44dtXLlSsXFxUmScnJytH//flf/1q1ba+XKlXrggQf08ssvKzo6Wn//+999co2XMsOHSzfeWDuuKgjUR9deK3Xr5jz76PBh5xyXjh3ZBgFvqk2fhR6/zou31eR1XlD3cJ0XwLe4zgvOpjqf31wjGwAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBfVHaYmUt0E6lCEd3e68D8B7Skuc296hDOe2yDaI8+TR8HL06FGNHTtWdrtddrtdY8eO1bFjxypdZvz48bLZbG63rl27erJM1AdZS6UP46V1Q6S9r0rfPCxl3CblferryoD6Ie9T5zb3zcPObXDdEOc2mbXU15XBgjwaXkaPHq2tW7dq9erVWr16tbZu3aqxY8eec7mBAwcqJyfHdVu5cqUny0Rdl7VU2nCL9OvP7u2OQ9KOmQQYwNPyPnVua45D7u2/Zju3TQIMqinAU0+8e/durV69Wp9//rm6dOkiSfrHP/6hbt26ac+ePWrbtu1Zlw0KClJkZKSnSkN9UloibZ4oyZy9z95XpLBukp+/18oC6o3SEmnvy2d50EiySZsnSS1vZBtElXksvGRkZMhut7uCiyR17dpVdrtdGzdurDS8pKenKzw8XE2bNlWvXr30xBNPKDw8vMK+DodDDofDdb+goKDmBgHrO7ih/B4XSUUlv9vpePqwlLdFuugyLxYG1BNHt0snjqhsR7/btidJMtKvWc5tNaK3t6uDRXksvOTm5lYYOMLDw5Wbm3vW5QYNGqQRI0YoLi5OmZmZeuSRR9S3b19t3rxZQUFB5frPnj1bM2fOrNHaUYeczHG7G2Azahx4WieKAtzfRPNzpQatvVwcUA/k50pF7h81jQNPK8B2xt7QM7ZVoDLVDi8zZsw4Z1j46quvJEk2m63cY8aYCtvLjBw50vVzx44d1blzZ8XFxWnFihUaPnx4uf7Tp0/X5MmTXfcLCgoUGxt7znGgngiOcrsbGFCqztFHdNqc8TvYrYsU3sOLhQH1RF6pVDTLrSnAZhQYUOre74xtFahMtcPLhAkTNGrUqEr7xMfH65tvvtEvv/xS7rGDBw8qIiKiyq8XFRWluLg47d27t8LHg4KCKtwjA0iSWvSUGsU4Jwb+Nu8lMKBUga4ONufjrfpzvB3whFb9JXuU2zbo7rdtsEVPb1cGC6t2eAkLC1NYWNg5+3Xr1k35+fn68ssvdc0110iSvvjiC+Xn56t79+5Vfr3Dhw8rKytLUVGkcpwHP38p4QXnGQ2yyf3N87e9LwlzCC6Ap7ANwgM8dqr0pZdeqoEDB+quu+7S559/rs8//1x33XWXhg4d6jZZt127dlq2bJkk6fjx45oyZYoyMjL0008/KT09XcOGDVNYWJhuvvlmT5WKui52uNRzsdSopXt7oxhne2z5w5EAahDbIGqYxybsStLbb7+t+++/X4mJiZKkG264QS+99JJbnz179ig/P1+S5O/vr+3bt+vNN9/UsWPHFBUVpT59+mjRokUKCQnxZKmo62KHO0/FPLjBOTEwOMq5m5q/9gDvYBtEDbIZYyq5AIb1FBQUyG63Kz8/X6Ghob4uBwAAVEF1Pr/5biMAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGAphBcAAGApAb4uwCpKSqQNG6ScHCkqSurZU/L393VVQP3BNgigjEf3vDzxxBPq3r27GjVqpKZNm1ZpGWOMZsyYoejoaAUHB6t3797auXOnJ8s8p6VLpfh4qU8fafRo57/x8c52AJ7HNgjg9zwaXoqKijRixAjdc889VV7mmWee0fPPP6+XXnpJX331lSIjI3X99dersLDQg5We3dKl0i23SD//7N6ene1s580T8Cy2QQBnshljjKdfJCUlRZMmTdKxY8cq7WeMUXR0tCZNmqSpU6dKkhwOhyIiIvT000/r7rvvPudrFRQUyG63Kz8/X6GhoRdUd0mJ86+7M980y9hsUkyMlJnJ7mvAE9gGgfqjOp/ftWrCbmZmpnJzc5WYmOhqCwoKUq9evbRx48YKl3E4HCooKHC71ZQNG87+pilJxkhZWc5+AGoe2yCAitSq8JKbmytJioiIcGuPiIhwPXam2bNny263u26xsbE1Vk9OTs32A1A9bIMAKlLt8DJjxgzZbLZKb5s2bbqgomw2m9t9Y0y5tjLTp09Xfn6+65aVlXVBr/17UVE12w9A9bANAqhItU+VnjBhgkaNGlVpn/j4+PMqJjIyUpJzD0zU796N8vLyyu2NKRMUFKSgoKDzer1z6dnTeTw9O9u5e/pMZcfbe/b0yMsD9R7bIICKVDu8hIWFKSwszBO1qHXr1oqMjFRaWpo6deokyXnG0rp16/T000975DUr4+8vvfCC84wGm839zbNsR9CcOUwUBDyFbRBARTw652X//v3aunWr9u/fr5KSEm3dulVbt27V8ePHXX3atWunZcuWSXIeLpo0aZKefPJJLVu2TDt27ND48ePVqFEjjR492pOlntXw4dLixVLLlu7tMTHO9uHDfVIWUG+wDQI4k0evsPvoo49qwYIFrvtle1PWrl2r3r17S5L27Nmj/Px8V5+HHnpIJ0+e1L333qujR4+qS5cuWrNmjUJCQjxZaqWGD5duvJGrewK+wjYI4Pe8cp0Xb6rJ67wAAADvsOx1XgAAAM6F8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACzFo+HliSeeUPfu3dWoUSM1bdq0SsuMHz9eNpvN7da1a1dPlgkAACzEo+GlqKhII0aM0D333FOt5QYOHKicnBzXbeXKlR6qEAAAWE2AJ5985syZkqSUlJRqLRcUFKTIyEgPVAQAAKyuVs55SU9PV3h4uP7whz/orrvuUl5e3ln7OhwOFRQUuN0AAEDdVevCy6BBg/T222/rk08+0XPPPaevvvpKffv2lcPhqLD/7NmzZbfbXbfY2FgvVwwAALyp2uFlxowZ5SbUnnnbtGnTeRc0cuRIDRkyRB07dtSwYcO0atUqfffdd1qxYkWF/adPn678/HzXLSsr67xfGwAA1H7VnvMyYcIEjRo1qtI+8fHx51tPOVFRUYqLi9PevXsrfDwoKEhBQUE19noAAKB2q3Z4CQsLU1hYmCdqqdDhw4eVlZWlqKgor70mAACovTw652X//v3aunWr9u/fr5KSEm3dulVbt27V8ePHXX3atWunZcuWSZKOHz+uKVOmKCMjQz/99JPS09M1bNgwhYWF6eabb/ZkqQAAwCI8eqr0o48+qgULFrjud+rUSZK0du1a9e7dW5K0Z88e5efnS5L8/f21fft2vfnmmzp27JiioqLUp08fLVq0SCEhIZ4sFQAAWITNGGN8XURNKigokN1uV35+vkJDQ31dDgAAqILqfH7XulOlAQAAKkN4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlhLg6wKsoqRE2rBBysmRoqKknj0lf39fVwUAQP3jsT0vP/30k+688061bt1awcHBuvjii/XYY4+pqKio0uWMMZoxY4aio6MVHBys3r17a+fOnZ4qs0qWLpXi46U+faTRo53/xsc72wEAgHd5LLx8++23Ki0t1WuvvaadO3fqb3/7m+bOnau//OUvlS73zDPP6Pnnn9dLL72kr776SpGRkbr++utVWFjoqVIrtXSpdMst0s8/u7dnZzvbCTAAAHiXzRhjvPVizz77rF599VX9+OOPFT5ujFF0dLQmTZqkqVOnSpIcDociIiL09NNP6+677z7naxQUFMhutys/P1+hoaEXVG9JiXMPy5nBpYzNJsXESJmZHEICAOBCVOfz26sTdvPz89WsWbOzPp6Zmanc3FwlJia62oKCgtSrVy9t3LixwmUcDocKCgrcbjVlw4azBxdJMkbKynL2AwAA3uG18PLDDz/oxRdfVHJy8ln75ObmSpIiIiLc2iMiIlyPnWn27Nmy2+2uW2xsbI3VnJNTs/0AAMCFq3Z4mTFjhmw2W6W3TZs2uS1z4MABDRw4UCNGjNCf/vSnc76GzWZzu2+MKddWZvr06crPz3fdsrKyqjuks4qKqtl+AADgwlX7VOkJEyZo1KhRlfaJj493/XzgwAH16dNH3bp107x58ypdLjIyUpJzD0zU7xJBXl5eub0xZYKCghQUFFTF6qunZ0/nnJbsbOchojOVzXnp2dMjLw8AACpQ7fASFhamsLCwKvXNzs5Wnz59lJCQoDfeeEN+fpXv6GndurUiIyOVlpamTp06SZKKioq0bt06Pf3009Ut9YL5+0svvOA8q8hmcw8wZTuC5sxhsi4AAN7ksTkvBw4cUO/evRUbG6u//vWvOnjwoHJzc8vNXWnXrp2WLVsmyXm4aNKkSXryySe1bNky7dixQ+PHj1ejRo00evRoT5VaqeHDpcWLpZYt3dtjYpztw4f7pCwAAOotj11hd82aNfr+++/1/fffKyYmxu2x35+dvWfPHuXn57vuP/TQQzp58qTuvfdeHT16VF26dNGaNWsUEhLiqVLPafhw6cYbucIuAAC1gVev8+INNXmdFwAA4B219jovAAAAF4rwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALMVjXw/gK2UXDC4oKPBxJQAAoKrKPrercuH/OhdeCgsLJUmxsbE+rgQAAFRXYWGh7HZ7pX3q3HcblZaW6sCBAwoJCZHNZqvR5y4oKFBsbKyysrLq5Pcm1fXxSXV/jIzP+ur6GOv6+KS6P0ZPjc8Yo8LCQkVHR8vPr/JZLXVuz4ufn1+5b7GuaaGhoXXyF7JMXR+fVPfHyPisr66Psa6PT6r7Y/TE+M61x6UME3YBAIClEF4AAIClEF6qISgoSI899piCgoJ8XYpH1PXxSXV/jIzP+ur6GOv6+KS6P8baML46N2EXAADUbex5AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4+Z0nnnhC3bt3V6NGjdS0adMqLWOM0YwZMxQdHa3g4GD17t1bO3fudOvjcDj05z//WWFhYWrcuLFuuOEG/fzzzx4YwbkdPXpUY8eOld1ul91u19ixY3Xs2LFKl7HZbBXenn32WVef3r17l3t81KhRHh5NeeczvvHjx5ervWvXrm59ass6rO74iouLNXXqVF122WVq3LixoqOjNW7cOB04cMCtny/X3yuvvKLWrVurYcOGSkhI0IYNGyrtv27dOiUkJKhhw4Zq06aN5s6dW67PkiVL1L59ewUFBal9+/ZatmyZp8o/p+qMb+nSpbr++uvVokULhYaGqlu3bvroo4/c+qSkpFS4PZ46dcrTQzmr6owxPT29wvq//fZbt35WXYcVvZ/YbDZ16NDB1ac2rcP169dr2LBhio6Ols1m0wcffHDOZWrFNmjg8uijj5rnn3/eTJ482djt9iot89RTT5mQkBCzZMkSs337djNy5EgTFRVlCgoKXH2Sk5NNy5YtTVpamvn6669Nnz59zBVXXGFOnz7toZGc3cCBA03Hjh3Nxo0bzcaNG03Hjh3N0KFDK10mJyfH7fb6668bm81mfvjhB1efXr16mbvuusut37Fjxzw9nHLOZ3xJSUlm4MCBbrUfPnzYrU9tWYfVHd+xY8dM//79zaJFi8y3335rMjIyTJcuXUxCQoJbP1+tv/fee880aNDA/OMf/zC7du0yEydONI0bNzb79u2rsP+PP/5oGjVqZCZOnGh27dpl/vGPf5gGDRqYxYsXu/ps3LjR+Pv7myeffNLs3r3bPPnkkyYgIMB8/vnnHh/Pmao7vokTJ5qnn37afPnll+a7774z06dPNw0aNDBff/21q88bb7xhQkNDy22XvlLdMa5du9ZIMnv27HGr//fbkpXX4bFjx9zGlZWVZZo1a2Yee+wxV5/atA5XrlxpHn74YbNkyRIjySxbtqzS/rVlGyS8VOCNN96oUngpLS01kZGR5qmnnnK1nTp1ytjtdjN37lxjjPMXuUGDBua9995z9cnOzjZ+fn5m9erVNV57ZXbt2mUkuf0CZWRkGEnm22+/rfLz3HjjjaZv375ubb169TITJ06sqVLPy/mOLykpydx4441nfby2rMOaWn9ffvmlkeT25uur9XfNNdeY5ORkt7Z27dqZadOmVdj/oYceMu3atXNru/vuu03Xrl1d92+99VYzcOBAtz4DBgwwo0aNqqGqq66646tI+/btzcyZM133q/r+5C3VHWNZeDl69OhZn7MurcNly5YZm81mfvrpJ1dbbVuHZaoSXmrLNshhowuQmZmp3NxcJSYmutqCgoLUq1cvbdy4UZK0efNmFRcXu/WJjo5Wx44dXX28JSMjQ3a7XV26dHG1de3aVXa7vcq1/PLLL1qxYoXuvPPOco+9/fbbCgsLU4cOHTRlyhTXN3x7y4WMLz09XeHh4frDH/6gu+66S3l5ea7Hass6rIn1J0n5+fmy2WzlDo16e/0VFRVp8+bNbv+vkpSYmHjW8WRkZJTrP2DAAG3atEnFxcWV9vH29nY+4ztTaWmpCgsL1axZM7f248ePKy4uTjExMRo6dKi2bNlSY3VXx4WMsVOnToqKilK/fv20du1at8fq0jqcP3+++vfvr7i4OLf22rIOq6u2bIN17osZvSk3N1eSFBER4dYeERGhffv2ufoEBgbqoosuKtenbHlvyc3NVXh4eLn28PDwKteyYMEChYSEaPjw4W7tY8aMUevWrRUZGakdO3Zo+vTp2rZtm9LS0mqk9qo43/ENGjRII0aMUFxcnDIzM/XII4+ob9++2rx5s4KCgmrNOqyJ9Xfq1ClNmzZNo0ePdvtCNV+sv0OHDqmkpKTC7eds48nNza2w/+nTp3Xo0CFFRUWdtY+3t7fzGd+ZnnvuOZ04cUK33nqrq61du3ZKSUnRZZddpoKCAr3wwgvq0aOHtm3bpksuuaRGx3Au5zPGqKgozZs3TwkJCXI4HHrrrbfUr18/paen67rrrpN09vVstXWYk5OjVatW6Z133nFrr03rsLpqyzZY58PLjBkzNHPmzEr7fPXVV+rcufN5v4bNZnO7b4wp13amqvSpqqqOUSpfa3Vref311zVmzBg1bNjQrf2uu+5y/dyxY0ddcskl6ty5s77++mtdddVVVXrus/H0+EaOHOn6uWPHjurcubPi4uK0YsWKciGtOs9bVd5af8XFxRo1apRKS0v1yiuvuD3myfV3LtXdfirqf2b7+WyTnnK+tbz77ruaMWOG/vWvf7mF1q5du7pNKO/Ro4euuuoqvfjii/r73/9ec4VXQ3XG2LZtW7Vt29Z1v1u3bsrKytJf//pXV3ip7nN62vnWkpKSoqZNm+qmm25ya6+N67A6asM2WOfDy4QJE8551kR8fPx5PXdkZKQkZxKNiopytefl5blSZ2RkpIqKinT06FG3v9zz8vLUvXv383rdM1V1jN98841++eWXco8dPHiwXEquyIYNG7Rnzx4tWrTonH2vuuoqNWjQQHv37r3gDz9vja9MVFSU4uLitHfvXkmeX4feGF9xcbFuvfVWZWZm6pNPPjnn19jX5Po7m7CwMPn7+5f7a+z328+ZIiMjK+wfEBCg5s2bV9qnOr8DNeF8xldm0aJFuvPOO/X++++rf//+lfb18/PT1Vdf7fp99aYLGePvde3aVQsXLnTdrwvr0Bij119/XWPHjlVgYGClfX25Dqur1myDNTZ7pg6p7oTdp59+2tXmcDgqnLC7aNEiV58DBw74dMLuF1984Wr7/PPPqzzhMykpqdxZKmezfft2I8msW7fuvOutrgsdX5lDhw6ZoKAgs2DBAmNM7VmH5zu+oqIic9NNN5kOHTqYvLy8Kr2Wt9bfNddcY+655x63tksvvbTSCbuXXnqpW1tycnK5yYKDBg1y6zNw4ECfTfaszviMMeadd94xDRs2POfEyTKlpaWmc+fO5vbbb7+QUs/b+YzxTH/84x9Nnz59XPetvg6N+c/E5O3bt5/zNXy9DsuoihN2a8M2SHj5nX379pktW7aYmTNnmiZNmpgtW7aYLVu2mMLCQleftm3bmqVLl7ruP/XUU8Zut5ulS5ea7du3m//6r/+q8FTpmJgY8/HHH5uvv/7a9O3b16enSl9++eUmIyPDZGRkmMsuu6zcqbZnjtEYY/Lz802jRo3Mq6++Wu45v//+ezNz5kzz1VdfmczMTLNixQrTrl0706lTJ5+cSlyd8RUWFpoHH3zQbNy40WRmZpq1a9eabt26mZYtW9bKdVjd8RUXF5sbbrjBxMTEmK1bt7qdlulwOIwxvl1/Zaehzp8/3+zatctMmjTJNG7c2HVmxrRp08zYsWNd/ctO03zggQfMrl27zPz588udpvnZZ58Zf39/89RTT5ndu3ebp556yuen2VZ1fO+8844JCAgwL7/88llPW58xY4ZZvXq1+eGHH8yWLVvM7bffbgICAtxCrTdVd4x/+9vfzLJly8x3331nduzYYaZNm2YkmSVLlrj6WHkdlrnttttMly5dKnzO2rQOCwsLXZ91kszzzz9vtmzZ4jobsbZug4SX30lKSjKSyt3Wrl3r6iPJvPHGG677paWl5rHHHjORkZEmKCjIXHfddeWS9smTJ82ECRNMs2bNTHBwsBk6dKjZv3+/l0bl7vDhw2bMmDEmJCTEhISEmDFjxpQ7ZfHMMRpjzGuvvWaCg4MrvPbH/v37zXXXXWeaNWtmAgMDzcUXX2zuv//+ctdK8Ybqju/XX381iYmJpkWLFqZBgwamVatWJikpqdz6qS3rsLrjy8zMrPB3+ve/175efy+//LKJi4szgYGB5qqrrnLb25OUlGR69erl1j89Pd106tTJBAYGmvj4+AoD9fvvv2/atm1rGjRoYNq1a+f2weht1Rlfr169KlxXSUlJrj6TJk0yrVq1MoGBgaZFixYmMTHRbNy40YsjKq86Y3z66afNxRdfbBo2bGguuugic+2115oVK1aUe06rrkNjnHtrg4ODzbx58yp8vtq0Dsv2EJ3td662boM2Y36baQMAAGABXOcFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYCuEFAABYyv8HCZEXIrMjqX0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sphere_point = lambda rad: np.array([np.cos(rad), np.sin(rad)])\n", - "\n", - "square_lattice = Lattice([1, 0], [0, 1])\n", - "tilted_lattice = Lattice([1, 1], [0, 1])\n", - "honeycomb_lattice = Lattice(sphere_point(0), sphere_point(np.pi * 2/3))\n", - "\n", - "def get_elementary_cell(lattice: Lattice):\n", - " points = []\n", - " for n1 in range(-1, 2):\n", - " for n2 in range(-1, 2):\n", - " p = lattice.get_point(n1, n2)\n", - " p_len = np.linalg.norm(p)\n", - " # if (p_len <= lattice.vec_lengths).any():\n", - " points.append(p)\n", - " return points\n", - "\n", - "def get_n_points_around_center(n)\n", - "\n", - "points = get_elementary_cell(tilted_lattice)\n", - "vor = Voronoi(points)\n", - "\n", - "print(vor)\n", - "fig = voronoi_plot_2d(vor)\n", - "\n", - "def get_orthogonal_2D(vec):\n", - " return np.array((vec[1], -vec[0]))\n", - "def plot_voronoi(lattice, v: Voronoi, subplot_kw={}):\n", - " fig, ax = plt.subplots(**subplot_kw) \n", - " lattice_points = v.points\n", - " lattice_vec_norm = np.sqrt(np.sum(lattice.vec_lengths**2))\n", - " print(lattice_vec_norm, np.linalg.norm(v.vertices, axis=1))\n", - " cell_vertices = v.vertices[np.linalg.norm(v.vertices, axis=1) <= 0.5 * lattice_vec_norm]\n", - " \n", - " x, y = zip(*lattice_points)\n", - " ax.scatter(x, y, color=\"blue\")\n", - " x, y = zip(*cell_vertices)\n", - " arrowprops = dict(arrowstyle=\"-|>,head_width=0.4,head_length=0.8\", color=\"black\", shrinkA=0,shrinkB=0)\n", - " for i, vec in enumerate(lattice.vecs):\n", - " ax.annotate(f\"\", xy=lattice.vecs[i], xytext=lattice.center, arrowprops=arrowprops)\n", - " # add name of vector at a perpendicular offset starting at half length\n", - " ax.annotate(r\"$\\vec{a}_\"+f\"{i+1}$\", xy=0.7*lattice.vecs[i], xytext=0.7*lattice.vecs[i] + 0.06*get_orthogonal_2D(lattice.vecs[i]))\n", - " \n", - " ax.scatter(x, y, color=\"orange\")\n", - " ax.fill(x, y, color=\"#4444\")\n", - " return fig\n", - " \n", - "\n", - "plot_voronoi(tilted_lattice, vor)\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c2faef81-5f2a-4950-b986-e891ddfa7da8", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a6b6ccf4-34c7-419d-8bcc-f3ce2870ba25", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "conda", - "language": "python", - "name": "conda" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/scripts/crystal_lattices.ipynb b/scripts/crystal_lattices.ipynb deleted file mode 100644 index 3ecfa39..0000000 --- a/scripts/crystal_lattices.ipynb +++ /dev/null @@ -1,562 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "eaed683c-c6f1-45e4-aaee-ae4e57209f5f", - "metadata": {}, - "outputs": [], - "source": [ - "import scipy as scp\n", - "from scipy.spatial import Voronoi, voronoi_plot_2d\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "from mpl_toolkits.mplot3d.art3d import Poly3DCollection\n", - "%matplotlib widget" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "efd84ecd-9fb3-4d2f-9f7a-47cd1ff09eea", - "metadata": {}, - "outputs": [], - "source": [ - "class Lattice:\n", - " def __init__(self, *vecs):\n", - " # if the vecs were put in an iterable\n", - " if len(vecs) == 1:\n", - " vecs = vecs[0]\n", - " if len(vecs) == 3:\n", - " pass\n", - " elif len(vecs) == 2:\n", - " pass\n", - " else: raise ValueError(\"Vecs must contain either 2 or 3 vectors\")\n", - " self.dim = len(vecs)\n", - " self.vecs = list(vecs)\n", - " for i, v in enumerate(self.vecs):\n", - " if type(v) != np.ndarray:\n", - " self.vecs[i] = np.array(v)\n", - " if self.vecs[i].shape != (self.dim,):\n", - " raise ValueError(f\"Got {self.dim} vectors, therefore all vectors must be {self.dim} dimensional but vector {i+1} has shape {self.vecs[i].shape}\")\n", - " self.vecs = np.array(self.vecs)\n", - " self.vec_lengths = np.array([np.linalg.norm(v) for v in self.vecs])\n", - " self.center = np.zeros(self.dim)\n", - "\n", - " def get_point(self, *ns):\n", - " if len(ns) != len(self.vecs): raise ValueError(f\"Requires one index for each lattice vector {len(self.vecs)}, but got only {ns}\")\n", - " point = self.center.copy()\n", - " for i, n in enumerate(ns):\n", - " point += n * self.vecs[i]\n", - " return point\n", - "\n", - " \n", - " def get_points_around_center(self, n):\n", - " points = []\n", - " import itertools\n", - " ns = [i for i in range(-n, n+1)]\n", - " for n in itertools.product(*[ns for _ in range(self.dim)]):\n", - " # print(n)\n", - " points.append(self.get_point(*n))\n", - " return points" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "515b9133-233b-4a6a-8b2f-a2fca10fea3d", - "metadata": {}, - "outputs": [], - "source": [ - "def rot_mat_2D(rad):\n", - " return np.array([[np.cos(rad), -np.sin(rad)], [np.sin(rad), np.cos(rad)]])\n", - "\n", - "\n", - "def get_reciprocal_lattice(lattice: Lattice):\n", - " if lattice.dim == 2:\n", - " rot_90_deg = rot_mat_2D(np.pi / 2)\n", - " a1, a2 = lattice.vecs\n", - " b1 = 2 * np.pi * rot_90_deg @ a2 / (np.dot(a1, rot_90_deg @ a2))\n", - " b2 = 2 * np.pi * rot_90_deg @ a1 / (np.dot(a2, rot_90_deg @ a1))\n", - " return Lattice(b1, b2)\n", - " elif lattice.dim == 3:\n", - " a1, a2, a3 = lattice.vecs\n", - " V = np.dot(a1, np.cross(a2, a3))\n", - " b1 = 2 * np.pi/V * np.cross(a2, a3)\n", - " b2 = 2 * np.pi/V * np.cross(a3, a1)\n", - " b3 = 2 * np.pi/V * np.cross(a1, a2)\n", - " return Lattice(b1, b2, b3)\n", - " else: raise NotImplementedError(f\"Dim must be 2 or 3, but is {lattice.dim}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "2855d08e-70d8-4ef7-ba19-2c06316caf15", - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "def get_elementary_cell(lattice: Lattice):\n", - " points = lattice.get_points_around_center(1)\n", - " return points\n", - "\n", - "def get_orthogonal_2D(vec):\n", - " return np.array((vec[1], -vec[0]))\n", - "\n", - "def get_unit_cell_vertices(lattice: Lattice, voronoi: Voronoi):\n", - " \"\"\"regard only voronoi vertices which are closest to the center <=> their norm is <= 0.5*(norm of the unit vectors added together\n", - " \"\"\"\n", - " lattice_vec_norm = np.sqrt(np.sum(lattice.vec_lengths**2))\n", - " return voronoi.vertices[np.linalg.norm(voronoi.vertices, axis=1) <= 0.5 * lattice_vec_norm]\n", - " \n", - "def plot_unit_cell(lattice, fig_ax=None, vec_label=\"a\", subplot_kw={}):\n", - " # get voronoi of the points around the center\n", - " points = get_elementary_cell(lattice)\n", - " voronoi = Voronoi(points)\n", - "\n", - " if fig_ax:\n", - " fig, ax = fig_ax\n", - " else:\n", - " if lattice.dim == 3:\n", - " fig = plt.figure()\n", - " ax = fig.add_subplot(1,1,1, projection=\"3d\") \n", - " else:\n", - " fig, ax = plt.subplots(**subplot_kw) \n", - "\n", - " # unit cell vertices\n", - " cell_points = get_unit_cell_vertices(lattice, voronoi)\n", - " # sort by polar angle for the fill function\n", - " cell_points = list(cell_points)\n", - " # print(cell_points)\n", - " # print([i for i in map(lambda p: np.arctan2(p[1],p[0]), cell_points)])\n", - " if lattice.dim == 2:\n", - " cell_points.sort(key=lambda p: np.arctan2(p[1],p[0]))\n", - " x_cell, y_cell = zip(*cell_points)\n", - " ax.fill(x_cell, y_cell, color=\"#4444\")\n", - " ax.scatter(x_cell, y_cell, color=\"orange\")\n", - " \n", - " # lattice points\n", - " x_lat, y_lat = zip(*lattice.get_points_around_center(3))\n", - " ax.scatter(x_lat, y_lat, color=\"blue\")\n", - " \n", - " # lattice vectors\n", - " arrowprops = dict(arrowstyle=\"-|>,head_width=0.4,head_length=0.8\", color=\"black\", shrinkA=0,shrinkB=0)\n", - " for i, vec in enumerate(lattice.vecs):\n", - " ax.annotate(f\"\", xy=lattice.vecs[i], xytext=lattice.center, arrowprops=arrowprops)\n", - " if vec_label is not None:\n", - " # add name of vector at a perpendicular offset starting at half length\n", - " ax.annotate(r\"$\\vec{\"+f\"{vec_label}}}_{i+1}$\", xy=0.7*lattice.vecs[i], xytext=0.7*lattice.vecs[i] + 0.06*get_orthogonal_2D(lattice.vecs[i]))\n", - " elif lattice.dim == 3:\n", - " # todo filter so that only\n", - " ridges = voronoi.ridge_vertices\n", - " lattice_vec_norm = np.sqrt(np.sum(lattice.vec_lengths**2))\n", - " for ridge in ridges:\n", - " verts = voronoi.vertices[ridge]\n", - " # TODO: doesnt seem to work\n", - " \"\"\"regard only voronoi vertices which are closest to the center <=> their norm is <= 0.5*(norm of the unit vectors added together\n", - " \"\"\"\n", - " verts = verts[np.linalg.norm(verts, axis=1) <= 0.5 * lattice_vec_norm]\n", - " x_lat, y_lat, z_lat = zip(*lattice.get_points_around_center(1))\n", - " ax.scatter(x_lat, y_lat, z_lat, color=\"red\", marker=\".\")\n", - " # print(verts, type(verts), verts.shape, verts.ndim)\n", - " #ax.add_collection3d(Poly3DCollection([voronoi.vertices[ridge]], edgecolor=\"black\"))\n", - " for vec in lattice.vecs:\n", - " ax.plot(*[i for i in zip([0,0,0], vec)])\n", - " ax.set_xlim(-2, 2)\n", - " ax.set_ylim(-2, 2)\n", - " ax.set_zlim(-2, 2)\n", - " else: raise NotImplementedError(f\"Dim must be 2 or 3, but is {lattice.dim}\")\n", - "\n", - " # limit to 2*lattice vectors\n", - " def calc_lim(axis):\n", - " lim = 2.05 * np.max(np.abs(lattice.vecs[axis,:]))\n", - " return -lim, lim\n", - " ax.set_xlim(*calc_lim(0))\n", - " ax.set_ylim(*calc_lim(1))\n", - " if lattice.dim == 3: ax.set_zlim(*calc_lim(2))\n", - " fig.tight_layout()\n", - " return fig" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "c2faef81-5f2a-4950-b986-e891ddfa7da8", - "metadata": {}, - "outputs": [], - "source": [ - "sphere_point = lambda rad: np.array([np.cos(rad), np.sin(rad)])\n", - "\n", - "square_lattice = Lattice([1, 0], [0, 1])\n", - "tilted_lattice = Lattice([1, 0.5], [0, 1])\n", - "honeycomb_lattice = Lattice(sphere_point(0), sphere_point(np.pi * 2/3))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "a6b6ccf4-34c7-419d-8bcc-f3ce2870ba25", - "metadata": {}, - "outputs": [], - "source": [ - "# fig, axs = plt.subplots(3, figsize=(4, 12))\n", - "# plot_unit_cell(square_lattice, fig_ax=(fig, axs[0]))\n", - "# plot_unit_cell(tilted_lattice, fig_ax=(fig, axs[1]))\n", - "# plot_unit_cell(honeycomb_lattice, fig_ax=(fig,axs[2]));" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "5314dd3a-17a7-402d-b3ee-ddbf69a6c4ed", - "metadata": {}, - "outputs": [], - "source": [ - "def plot_lattice(lattice: Lattice):\n", - " reci = get_reciprocal_lattice(lattice)\n", - " print(reci.vecs)\n", - " if lattice.dim == 3:\n", - " fig = plt.figure()\n", - " axs = [fig.add_subplot(1,2,i, projection=\"3d\") for i in [1,2]]\n", - " fig.suptitle(\"3D Lattice\")\n", - " \n", - " else:\n", - " fig, axs = plt.subplots(1, 2)\n", - " plot_unit_cell(lattice, fig_ax=(fig, axs[0]))\n", - " plot_unit_cell(reci, fig_ax=(fig, axs[1]), vec_label=\"b\")" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "39a49d00-fc93-4f2a-8645-d5e440e7a092", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[ 6.28318531e+00 -3.84734139e-16]\n", - " [ 3.84734139e-16 6.28318531e+00]]\n", - "[[ 6.28318531e+00 -3.84734139e-16]\n", - " [-3.14159265e+00 6.28318531e+00]]\n", - "[[6.28318531e+00 3.62759873e+00]\n", - " [4.44252717e-16 7.25519746e+00]]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9509fdd0b81b47a7bdcdd99704c382a7", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCTklEQVR4nO3deXhU9d3//9eQwLAlgxjIQgKJrUAVla2yVDZbUUS0ainW3gj3V1GqVIFSNWoF/IkRtRbrblVQqtarBiy9QYW7EqQCKhgWEbmxRoghMSwyAyITSD6/P2JGh0wWSGZOcj7Px3WdS+ecM8z7Pcub15yZOXiMMUYAAACwRgunCwAAAEBsEQABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLxDtdQCxUVFRo9+7dSkhIkMfjcbocADFkjNHBgweVlpamFi3c9Z6X2QbYq6GzzYoAuHv3bmVkZDhdBgAHFRYWKj093ekyGhWzDcDJzraYB8CcnBwtWrRIn3zyidq0aaPBgwdr7ty56tGjR63XW7VqlaZPn66tW7cqLS1Nt956qyZPnlyv20xISJBUeSe1a5eoNWukkhIpJUUaPFiKi2twW01eebno26K+JXt7P77vXr0CyszMCM0BN2G28Ty3rW/J3t4bfbaZGLvwwgvN/PnzzUcffWQ2btxoRo8ebbp27WoOHTpU43U+++wz07ZtW3PLLbeYjz/+2PzlL38xLVu2NK+99lq9btPv9xtJZuFCv0lPN0b6bklPNyY3t7G6a5pycw19W9S3Mfb2HqnvtLTK17/f73e6vEbHbON5blPfxtjbezRmW8wD4PFKS0uNJLNq1aoa97n11ltNz549w9bdcMMNZuDAgfW6jaohKfnD7jzJGI+ncnHrkyc3t7I/+rajb2Ps7b2mvitf9+4OgMw2+nZ738bY23u0ZpvHGGMa5djkSfr00091+umna8uWLerVq1fEfYYOHao+ffrokUceCa1bvHixfvnLX+rw4cNq2bJlrbcRCATk8/kk+SUlVtvu8Ujp6VJBgbsOI5eXS5mZ0hdfRN5O3+7qW7K399r7Dkjyye/3KzGx+uu/OWO2Rd5O3+7qW7K392jONkd/EmeM0fTp03XeeefVGP4kqaSkRMnJyWHrkpOTdezYMe3du7fa/sFgUIFAIGypvQ6psFBavfrk+miqVq+u+cUi0bfb+pbs7b2uvm1l6+NN37GrKVZs7T2as83RADhlyhRt3rxZr7zySp37Hn+Kg6oDl5FOfZCTkyOfzxda6vsrueLieu3WbNS3H/p2D1t7d1s/jc1t9w/P88bZrzmxtfdo9uNYAPztb3+rJUuWaOXKlXX+fDklJUUlJSVh60pLSxUfH69TTz212v7Z2dny+/2hpbCwsF41pabWv/7moL790Ld72Nq72/ppbG67f3ieN85+zYmtvUezn5gHQGOMpkyZokWLFuntt99WVlZWndcZNGiQVqxYEbZu+fLl6t+/f8Tv/3m9XiUmJoYttfF4pIwMaciQE+ulqRsypPI7ETWdH5a+Y1tXLNjae11928rWx5u+Y1tXLNjaezRnW8wD4E033aS//vWvevnll5WQkKCSkhKVlJTom2++Ce2TnZ2ta665JnR58uTJ2rlzp6ZPn65t27bp+eef13PPPacZM2ac8O0ffydWXZ43z11fHJUq+6n63Qx9h192Y9+Svb3X1rcteLzDL9O3u9jae1RnW+P9ULl+JEVc5s+fH9pnwoQJZtiwYWHXy8vLM3369DGtWrUymZmZ5sknn6z3bdZ2rqyMDPf+dLxKpPMH0be72dp7pL67dHH/aWCYbfRtQ9/G2Nt7NGab46eBiYWqUyX4/X61a5eo1asrv1iZmlp5eNVt7xgiKS8XfVvUt2Rv78f3fc45AXXs6O7TwDDb6NuWviV7e2/s2WZdAHTbXwAAaufm17+bewNQu4a+/h09DQwAAABijwAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIABEyTvvvKMxY8YoLS1NHo9Hr7/+eth2Y4xmzZqltLQ0tWnTRsOHD9fWrVudKRaAVQiAABAlX3/9tc455xw99thjEbc/8MADevjhh/XYY4/pgw8+UEpKii644AIdPHgwxpUCsE280wUAgFuNGjVKo0aNirjNGKN58+bpzjvv1BVXXCFJeuGFF5ScnKyXX35ZN9xwQyxLBWAZjgACgAMKCgpUUlKikSNHhtZ5vV4NGzZMa9ascbAyADbgCCAAOKCkpESSlJycHLY+OTlZO3fujHidYDCoYDAYuhwIBKJXIABX4wggADjI4/GEXTbGVFtXJScnRz6fL7RkZGTEokQALkQABAAHpKSkSPruSGCV0tLSakcFq2RnZ8vv94eWwsLCqNcJwJ0IgADggKysLKWkpGjFihWhdWVlZVq1apUGDx4c8Tper1eJiYlhCwCcDL4DCABRcujQIX366aehywUFBdq4caM6duyorl27aurUqbrvvvt0+umn6/TTT9d9992ntm3b6uqrr3awagA2IAACQJSsX79eI0aMCF2ePn26JGnChAlasGCBbr31Vn3zzTe68cYb9dVXX2nAgAFavny5EhISnCoZgCVi/hFwXWfGP15eXp48Hk+15ZNPPolNwQBwkoYPHy5jTLVlwYIFkip/ADJr1iwVFxfryJEjWrVqlXr16uVs0QCsEPMjgFVnxv/v//5vXXnllfW+3vbt28O+79KpU6dolAcAAOB6MQ+AtZ0ZvzadO3dWhw4dGr8gAAAAyzSbXwH36dNHqamp+ulPf6qVK1c6XQ4AAECz1eR/BJKamqpnnnlG/fr1UzAY1MKFC/XTn/5UeXl5Gjp0aMTrcLZ8AACAmjX5ANijRw/16NEjdHnQoEEqLCzUQw89VGMAzMnJ0ezZs2NVIgAAQLPSbD4C/r6BAwdqx44dNW7nbPkAAAA1a/JHACPJz89Xampqjdu9Xq+8Xm8MKwIAAGg+Yh4A6zozfnZ2toqKivTiiy9KkubNm6fMzEydeeaZKisr01//+lfl5uYqNzc31qUDAAC4QswDYF1nxi8uLtauXbtC28vKyjRjxgwVFRWpTZs2OvPMM7V06VJdfPHFsS4dAADAFTzGGON0EdEWCATk8/nk9/v5x9MBy7j59e/m3gDUrqGv/2b5IxAAAACcPAIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWCbe6QJirbxcWr1aKi6WUlOlIUOkuDinq4o++rarb8ne3o/v+5xznK4oNni86duGviV7e2/02WZibNWqVeaSSy4xqampRpJZvHhxndfJy8szffv2NV6v12RlZZknn3zyhG7T7/cbSWbhQr9JTzdG+m5JTzcmN/ckm2kmcnMNfVvUtzH29h6p77S0yte/3+93urxGx2zjeW5T38bY23s0ZlvMA+CyZcvMnXfeaXJzc+sVAD/77DPTtm1bc8stt5iPP/7Y/OUvfzEtW7Y0r732Wr1vs2pISv6wO08yxuOpXNz65MnNreyPvu3o2xh7e6+p78rXvbsDILONvt3etzH29h6t2eYxxpgGHkQ8aR6PR4sXL9bPf/7zGve57bbbtGTJEm3bti20bvLkydq0aZPWrl1br9sJBALy+XyS/JISI9QhpadLBQXuOoxcXi5lZkpffBF5O327q2/J3t5r7zsgySe/36/ExOqv/+aM2RZ5O327q2/J3t6jOdua/I9A1q5dq5EjR4atu/DCC7V+/XodPXo04nWCwaACgUDYUhtjpMLCys/W3WT16ppfLBJ9u61vyd7e6+rbVrY+3vQdu5pixdbeoznbmnwALCkpUXJycti65ORkHTt2THv37o14nZycHPl8vtCSkZFRr9sqLm5wuU1Kffuhb/ewtXe39dPY3Hb/8DxvnP2aE1t7j2Y/TT4ASpUfFX9f1afWx6+vkp2dLb/fH1oKCwvrdTupqQ2rs6mpbz/u7/vvki6QZOrYr/njMUckbrt/eJ5X+ZukkWK2nfh+zUU0+2nyATAlJUUlJSVh60pLSxUfH69TTz014nW8Xq8SExPDltp4PFJGRuVPyd1kyJDK70TUkJMt6dtImibpf79d3Nu3xGNeU9+2svXxtqPvqtm2QtJKSe7tW+Ixj8Zsa/IBcNCgQVqxYkXYuuXLl6t///5q2bLlCf95x9+JVZfnzXPXF0elyn4eeaTy/23tW3pDUtG3/3+Xqt4pu7FvicdcsjcE8niHX3Z739L/SKo6OPIHMdvc2XtUZ1tj/lS5Pg4ePGjy8/NNfn6+kWQefvhhk5+fb3bu3GmMMeb2228348ePD+1fdRqYadOmmY8//tg899xzJ30amEjnysrIcO9Px6tEOn+QDX2/9lqFadmyj5E8354qQ6ZTp+Wu79sYex/zSH136eL+08Aw2+zq+7XXKkx8/NnHzbZ/ub5vY+x9zKMx22J+Gpi8vDyNGDGi2voJEyZowYIFmjhxoj7//HPl5eWFtq1atUrTpk3T1q1blZaWpttuu02TJ0+u921WnSrB7/erXbtEziBuSd/Lli3T6NGjQ5dbtIhT//79tG7duhq/P+omNj7mUqSz5QfUsaO7TwPDbLOr73/+85+69NJLQ5dbtIjTgAED9O67/2a2uVhjzzZHzwMYK98fkm77CwCRGWPUr18/bd68WeXl5WHbli9frgsuuMChyhBrbn79u7k3RGaMUe/evfXRRx+poqIibNu//vUvnX/++Q5Vhlhr6Ou/yX8HEDgZb7zxhvLz86uFv7i4ON11112y4H0PABf6n//5H23evLla+IuLi9Mf/vAHZhvqjQAI1zHG6K677lJchM8EysvL9f777+t///d/HagMAE5e1Wxr0aL6X93l5eVas2aNVq5c6UBlaI4IgHCdmo7+VeEoIIDmqKajf1U4CogTQQCEq9R29K8KRwEBNDe1Hf2rwlFAnAgCIFylrqN/VTgKCKA5qevoXxWOAqK+CIBwlZkzZ9Zrv6qjgG+//XaUKwKAhrv77rvrtV/VUcBVq1ZFuSI0d/FOFwA0pu7duysYDIat27Nnj0pLS3XmmWeGrY+Li5PX641leQBwUnr06FHtk409e/Zoz549OuOMM8LWx8fHM9tQJ84DCNd76KGHdO+99+rAgQNOlwIHuPn17+beULe5c+fqwQcf1N69e50uBQ7gPIAAAKBWJSUluvnmm+v8DiHswUfAAAC4zDPPPKOXX345bN327dvVo0cP3XTTTQ5VhaaEI4AA4JBZs2bJ4/GELSkpKU6XBRe4/vrrlZeXF1oWLVqkfv366de//rXTpaGJIAAC38PHJIi1M888U8XFxaFly5YtTpcEF2rfvr1yc3PVoUMHp0tBE8FHwLAaH5PAafHx8Rz1Q9S1atXK6RLQxBAAYbXrr79e119/fejy/v37dc011/AxCWJmx44dSktLk9fr1YABA3TffffptNNOc7osuMBtt92mzZs364033nC6FDRBBEDge6o+JuEcWoiFAQMG6MUXX1T37t315Zdf6t5779XgwYO1detWnXrqqdX2DwaDYee5DAQCsSwXzczGjRvVp08fp8tAE8V3AIHvadWqFeEPMTNq1ChdeeWVOuuss/Szn/1MS5culSS98MILEffPycmRz+cLLRkZGbEsF83Mpk2b1Lt3b6fLQBNFAIT17rnnHp111llq166dkpOT9Zvf/EZHjx51uixYqF27djrrrLO0Y8eOiNuzs7Pl9/tDS2FhYYwrRHNRUlKiL7/8UhUVFRo6dKjatm2r/v37a9OmTU6XhiaCAAirGWNUXl6up59+Wh9//LEWLFig1157Tc8++6zTpcFCwWBQ27ZtU2pqasTtXq9XiYmJYQsQSX5+viRp3rx5uu+++7R+/XolJCToqquucrgyNBUEQFjN4/Fo9uzZGjx4sLp166ZRo0bpggsu0CeffKLCwkINHz5cZ5xxhs4++2z9/e9/d7pcuMyMGTO0atUqFRQU6L333tMvfvELBQIBTZgwwenS0Mxt3LhRrVu31uuvv67zzjtPZ5xxhubMmcNsQwg/AoHVdu7cqQcffFB5eXkqKirS0aNHdeTIEeXk5Cg+Pl7z5s1T7969VVpaqr59++riiy9Wu3btnC4bLvHFF1/oV7/6lfbu3atOnTpp4MCBWrdunbp16+Z0aWjmNm7cqF/+8pdKS0sLrauaXS1atGC2gQAIe+3du1fnnnuuRowYoYcfflhdunRRRUWF+vfvr969eys1NTX0UVznzp3VsWNH7d+/nyGJRvO3v/3N6RLgUhs3btTkyZPD1n344YdKSUlRWlqaunTpIonZZjMCIKy1bNkyHTt2TK+88oo8Ho8k6fHHH1dZWVm1X86tX79eFRUV/OoSQJN3+PBhffrppyovLw+tq6io0KOPPqqJEyeG5p3EbLMZARDW6tixowKBgJYsWaIzzjhD//znP5WTk6MuXbqoU6dOof327duna665hh+GAGgWNm3apLi4OM2fP19Dhw5Vhw4ddMcdd+jrr7/WHXfcEdqP2WY3fgQCa40ePVrXXnutxo8fr/POO09FRUX65S9/GXb0LxgM6vLLL1d2drYGDx7sXLEAUE+bNm1S9+7dNWvWLF155ZXq06ePWrZsqTVr1ighIUESsw0cAYTFPB6PnnrqKT311FMRtxtjNHHiRJ1//vkaP358jKsDgJMzefLk0Pf/xo4dW207sw0SRwCBGr377rt69dVX9frrr6t3797q3bu3tmzZ4nRZANAgzDZIHAEEanTeeeepoqLC6TIAoFEx2yBxBBAAAMA6BEAAAADLEAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAy8U4XAAtUlEt7VkvfFEttUqVOQ6QWcU5XFX229g3YwtbXuK19u4xjAfCJJ57Qgw8+qOLiYp155pmaN2+ehgwZEnHfvLw8jRgxotr6bdu2qWfPntEuFQ1RuEjacIt0+Ivv1rVNl/o9ImVc4Vxd0WZr34AtbH2N29q3CznyEfCrr76qqVOn6s4771R+fr6GDBmiUaNGadeuXbVeb/v27SouLg4tp59+eowqxkkpXCSt/kX4oJCkw0WV6wsXOVNXtNnaN2ALW1/jtvbtUo4EwIcffljXXnutrrvuOv3oRz/SvHnzlJGRoSeffLLW63Xu3FkpKSmhJS6OQ85NVkV55btEmQgbv123YWrlfm5ia9+ALWx9jdvat4vF/CPgsrIybdiwQbfffnvY+pEjR2rNmjW1XrdPnz46cuSIzjjjDN11110RPxaWpGAwqGAwGLocCAQaXjhOzJ7V1d8lhjHS4UIdKVyhik5Do1pKWVmZJOnw4cNRvR1JarHnHbWuR9/as1pKHh71egA0MmZbDZhtzU3MA+DevXtVXl6u5OTksPXJyckqKSmJeJ3U1FQ988wz6tevn4LBoBYuXKif/vSnysvL09Ch1V9gOTk5mj17dlTqRz19U1yv3XZsfkclraN7JPfzzz/XsWPH9O6770b1diQp5cg7Oqs+O9bz/gHQxDSh2bZz504dPXqU2YaT4tiPQDweT9hlY0y1dVV69OihHj16hC4PGjRIhYWFeuihhyIGwOzsbE2fPj10ORAIKCMjo5EqR720Sa3Xbi3adVH7Nu2jWorX65XH41H79tG9HUlqEddFOliPHet5/wBoYprQbGvVqhWzDSct5gEwKSlJcXFx1Y72lZaWVjsqWJuBAwfqr3/9a8RtXq9XXq+3QXWigToNqfxl2OEiRfrOiJF0ND5ZQd+58nqi+y656ruisXhOBFudq7K9ndXyWKkiv53xVN4vnSL/4h1AE9eEZlt8fOVf4cw2nIyY/wikVatW6tevn1asWBG2fsWKFRo8eHC9/5z8/HylpvJOo8lqEVd5WgBJOm5cmG/XfZE8Q4rygIw5T5y+SP69pEh/NXx7P/SbxzmzgOaK2cZscwlHfgU8ffp0Pfvss3r++ee1bds2TZs2Tbt27dLkyZMlVX6Ee80114T2nzdvnl5//XXt2LFDW7duVXZ2tnJzczVlyhQnykd9ZVwhDXlNatslbPXR+GQVdHlABxLOd6iw6DqQcL4Kujyoo/Gdwze0Ta+8PzhXFtC8MdvCNzDbmiVHvgM4btw47du3T/fcc4+Ki4vVq1cvLVu2TN26dZMkFRcXh50TsKysTDNmzFBRUZHatGmjM888U0uXLtXFF1/sRPk4ERlXSF0u05HCFdqx+R21aNdFQd+57nt3fJwDCefrQPth8vrfV8XXRTr97KFqnXEB744Bt2C2MduaOcd+BHLjjTfqxhtvjLhtwYIFYZdvvfVW3XrrrTGoClHRIk4VnYaqpHWc2rdpH/XvxTQZnjgF2vTVofLu+kGnnzAgAbdhtjHbmjFHPgIGAACAcwiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAAAcVVJSoptvvlkVFRVOl2KNeKcLAAAAdnnmmWf08ssvh63bvn27evTooZtuusmhquxCAAQAADF1/fXX6/rrrw9d3r9/v6655hr9+te/drAqu/ARMNCM8DEJADdq3769cnNz1aFDB6dLsQZHAIEm7Psfk3z66af65ptv5PF4+JgEgGvcdNNN2rlzp2bOnKkf//jHTpdjDesCYHm5tHq1VFwspaZKQ4ZIcXFOVxV9Nvf9xRdeHTvm0fr17dWnz6Fm1ff3Pybp06ePNm7cKEnKzc1V//79NWDAgBqva/Nj/v2+zznH6Ypig8fbvr6/+KKVjh5t0SxnmyTddttt2rx5s4qKirRlyxYtXbpUo0aN0uzZs2sNgjY/5o052xz7CPiJJ55QVlaWWrdurX79+mn16tW17r9q1Sr169dPrVu31mmnnaannnrqhG9zyRIpM1MaMUK6+urK/2ZmSosWnVwPzcWiRXb2/fbbHXTJJb2Um9tJR4600A03dNcll/TS2293cLq0BnvnnXc0cOBAXXjhhXrvvfeqbbf1MY/Ud69eTldVtxOdh8djttnVd9VsW7y4kw4fbr6zbePGjTrnuBSzfPlynXvuubr44ov1wQcfVLuOrY95NGabIwHw1Vdf1dSpU3XnnXcqPz9fQ4YM0ahRo7Rr166I+xcUFOjiiy/WkCFDlJ+frzvuuEM333yzcnNzT+h2x4+XvvgifF1RkfSLX7j3ybNoUWV/tvX99tsd9PvfZ6m0tGXY+tLSlvr977Oa3aA8Xnl5uSTpX//6V7UgaOtjXlPfu3c7U099neg8jITZ9h239+2m2bZp0yb17t07bF3VbIsUBG19zKM12zzGGNOwP+LEDRgwQH379tWTTz4ZWvejH/1IP//5z5WTk1Nt/9tuu01LlizRtm3bQusmT56sTZs2ae3atXXeXiAQkM/nk+SXlFhtu8cjpadLBQXuOoxcXl75juH4J02VWPZ9+PBhvfvuu2rfvr28Xm9Ub6u8XLrkkl7fDkiPpIck3SvpwLd7GCUnH9U///lR1PsOBoM6dOiQfvKTn6ht27Yn9Wfcc889+vvf/66PP/64xh9/xMXFqby8XCNHjlR+/j3asyfyR8N2PtcDknzy+/1KTKz++nfaic7D72O2Rd5uz2ybK+lBSXu/3aP5zLaSkhKlpqbqpZde0qRJk3T48OGI+1XNtosuGqUPP5yt0tLIHw3b+Vxv2GyL+XcAy8rKtGHDBt1+++1h60eOHKk1a9ZEvM7atWs1cuTIsHUXXnihnnvuOR09elQtW4a/EwoGgwoGg6HLgUCg1pqMkQoLKz9bHz78BJpp4lavrnlASu7tOz+/vUpLW31vTVDSUUkvhNZ8+aX0xBMlysw8EtVajh07piNHjqigoOCk/nIwxujDDz/UZZddpv3792t3DW/5qt41r1jxvzJmuaRekuZJ+ulxf547H/O6nutN1YnOQ2ZbJWZbleC3S/ObbZs3b5Yk3XXXXWrXrl2NAbBqtr311lsy5g1JZ0n6s6ThYfu59TGP5myLeQDcu3evysvLlZycHLY+OTlZJSUlEa9TUlIScf9jx45p7969Sk1NDduWk5Oj2bNnn3BtxcUnfJUmrb79uK3vvXtbHrfmiKTDkiaGrV2wIDb1NIZ//OMf9drPmKojhB9JukNS9e8HSu57zJtrPyc6D5ltlZhtVb6RdEjNebYVFBTUa7/vZtsWSXdKejfifm57zKPZj2O/AvZ4PGGXjTHV1tW1f6T1kpSdna3p06eHLgcCAWVkZNRZ03E5stmrbz9u6zsp6ehxa/4/STMlhX/b4Ykn/k99+x6Kai1lZWU6dOiQBg8efFIfk+zcuVMPP/ywVq1ape3bt4feDUfi8Xi+fV1kSbpbUs0nVHXbY97c+6nvPGS2VWK2VclR5XxrfrPt6quvVuvWrfX888+rb9+++uijj2rc97vZdpoqZ/nVNe7rtsc8mv3E/EcgSUlJiouLq/butrS0tNq74CopKSkR94+Pj9epp55abX+v16vExMSwpTYej5SRUflTcjcZMqTyOxE15Wq39t2nzyF17lym8KEYL6nlt0u8kpON+vcPqmXLllFd4uPjFR8ff1LX9fv9+slPfqL9+/frT3/6k374wx/W2ndWVpZeeGGhunT5P3k8E7/tNZxbH/O6nutN1YnOQ2ZbJWZb855tLVu21ObNm9W3b1+1bNmy1oM/knTaaadp4cKXvp1t1yjSsSu3PubRnG0xD4CtWrVSv379tGLFirD1K1as0ODBgyNeZ9CgQdX2X758ufr371/t+391Of5OrLo8b567vjgqVfbzyCOV/29b37//fdWXJo7/jZORxyPNmPFFk+972bJlOnbsmF555RWNHDlSbdq0CdteNTRTU1P14x//WNu3b9c11/yX/vzn+G+367j9K//r1se8pud6U3Yy87AmPN7hl93atxtm2+HDh/Xpp5/W+IlG1WxLS0sLzbb/+q+r9ec/x327/fj9K//r1sc8WrPNkdPATJ8+Xc8++6yef/55bdu2TdOmTdOuXbs0efJkSZUfc1xzzTWh/SdPnqydO3dq+vTp2rZtm55//nk999xzmjFjxgnd7sKFUpcu4evS06XXXpOuuKLBbTVJV1xR2Z9tfZ9//gE9+GCBOncO/8gkOfmoHnigQOeff8CZwk5Ax44dFQgEtGTJEu3YsUOlpaVh27OysrRw4UItXLhQXbt2VXx8ZfCz9TGvqe/jLzc1dc3D+mC2fcftfbthtm3atElxcXGaP3++3n///bAfNkmVR/xeeuklvfjii+ratavivk11tj7m0ZptjnwHcNy4cdq3b5/uueceFRcXq1evXlq2bJm6desmSSouLg47B1ZWVpaWLVumadOm6fHHH1daWpr+/Oc/68orrzyh2730UulXv7LvDOJXXCFddpl9fZ9//gENG3ZA+fnttXdvSyUlHW1WZ8sfPXq0rr32Wo0fPz7s6F/btm319NNP66qrrlJ8fLzy8vKqXdfWxzxS3+ecI3Xs6HRlNatrHtYHs82uvpv7bNu0aZO6d++umTNn6sorr1RRUZEkKTMzU3PmzNG4ceMUFxfHbPueaMw2R84DGGtV58pqqucBs0Esz5XVlDTGeQCrvPnmm/rqq680duzY0NE+ScrLy9Njjz2m1157raHlupKbX/9u7q25YLY1fLYtW7ZMgUBAY8eODR3tk5htdWno69+6fwsYaK4uuuiiausuvPBCffjhh/r666+Vnp6uxYsX84+pA2hWLr744mrrmG3RRwAEmrG33nrL6RIAoNEx26LPkR+BAAAAwDkEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALEMABAAAsAwBEAAAwDIEQAAAAMsQABF9FeVqsecdpRxZqcRvPpRMudMVxYYpV+I3HyrlyEq12POOVGFJ34AtmG3MtmYspgHwq6++0vjx4+Xz+eTz+TR+/HgdOHCg1utMnDhRHo8nbBk4cGBsCkbDFS6SlmSq9bujdNbBHJ1ZMkW9/nOJOhx82+nKoqrDwbfV6z+X6MySKTrrYI5avztKWpJZeX8AaP6Ybcy2Zi6mAfDqq6/Wxo0b9eabb+rNN9/Uxo0bNX78+Dqvd9FFF6m4uDi0LFu2LAbVosEKF0mrfyEd/iJsdctjpcoq+r1rB2WHg28rq+j3anmsNHzD4aLK+4NBCTRvzLbwDcy2Zik+Vje0bds2vfnmm1q3bp0GDBggSfrLX/6iQYMGafv27erRo0eN1/V6vUpJSYlVqWgMFeXShlskmWqbPN+uTf/yIR1oP0zyxMW6uugx5Ur/8kFJlX0et7Fy7YapUpfLpBYu6huwBbON2eYSMQuAa9eulc/nC4U/SRo4cKB8Pp/WrFlTawDMy8tT586d1aFDBw0bNkxz5sxR586da9w/GAwqGAyGLgcCgcZpAvW3Z3W1d8ff55HU6tiX8vrfV6BN39jVFWWJ33yoVse/Ow5jpMOFlfdP8vBYlQWgsTDbasBsa25iFgBLSkoihrbOnTurpKSkxuuNGjVKY8eOVbdu3VRQUKA//OEPOv/887VhwwZ5vd6I18nJydHs2bMbrXachG+K67VbxddFOlTePcrFxE77I0X127Ge9w+AJobZVjtmW7PR4AA4a9asOsPWBx98IEnyeCIcODYm4voq48aNC/1/r1691L9/f3Xr1k1Lly7VFVdcEfE62dnZmj59euhyIBBQRkZGrTWikbVJrddup589VD/o9JMoFxM7LfaUS+/m1L1jPe8fAE0Ms612zLZmo8EBcMqUKbrqqqtq3SczM1ObN2/Wl19+WW3bnj17lJycXO/bS01NVbdu3bRjx44a9/F6vTUeHUSMdBoitU2v/HJwhO/KSB6pbbpaZ1zgru+LZFxQr77VaUisKwPQGJhtYra5Q4MDYFJSkpKSkurcb9CgQfL7/Xr//fd17rnnSpLee+89+f1+DR48uN63t2/fPhUWFio1lXcZTVqLOKnfI5W/DAt9NbrKt0d8+81z14CU7O0bsIWtr3Fb+3axmJ0G5kc/+pEuuugiTZo0SevWrdO6des0adIkXXLJJWE/AOnZs6cWL14sSTp06JBmzJihtWvX6vPPP1deXp7GjBmjpKQkXX755bEqHScr4wppyGtS2y7h69umV67PiPwRfrNna9+ALWx9jdvat0vF7EcgkvTSSy/p5ptv1siRIyVJl156qR577LGwfbZv3y6/3y9JiouL05YtW/Tiiy/qwIEDSk1N1YgRI/Tqq68qISEhlqXjZGVcUXlagD2rK78c3Ca18iMCt79LtLVvwBa2vsZt7duFPMaYSB/mu0ogEJDP55Pf71diYqLT5QCIITe//t3cG4DaNfT1z78FDAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACgEMyMzPl8XjClttvv93psgBYIN7pAgDAZvfcc48mTZoUuty+fXsHqwFgCwIgADgoISFBKSkpTpcBwDJ8BAwADpo7d65OPfVU9e7dW3PmzFFZWZnTJQGwAEcAAcAht9xyi/r27atTTjlF77//vrKzs1VQUKBnn3024v7BYFDBYDB0ORAIxKpUAC7DEUAAaESzZs2q9sOO45f169dLkqZNm6Zhw4bp7LPP1nXXXaennnpKzz33nPbt2xfxz87JyZHP5wstGRkZsWwNgIt4jDHG6SKiLRAIyOfzye/3KzEx0elyAMRQrF//e/fu1d69e2vdJzMzU61bt662vqioSOnp6Vq3bp0GDBhQbXukI4AZGRnMNsBCDZ1tfAQMAI0oKSlJSUlJJ3Xd/Px8SVJqamrE7V6vV16v96RrA4AqBEAAcMDatWu1bt06jRgxQj6fTx988IGmTZumSy+9VF27dnW6PAAuRwAEAAd4vV69+uqrmj17toLBoLp166ZJkybp1ltvdbo0ABYgAAKAA/r27at169Y5XQYAS/ErYAAAAMsQAAEAACxDAAQAALAMARAAAMAyBEAAAADLEAABAAAsQwAEAACwDAEQAADAMgRAAAAAyxAAAQAALGPdPwVXXi6tXi0VF0upqdKQIVJcnNNVRR9929W3ZG/vx/d9zjlOVxQbPN70bUPfkr29N/psMzF07733mkGDBpk2bdoYn89Xr+tUVFSYmTNnmtTUVNO6dWszbNgw89FHH53Q7fr9fiPJLFzoN+npxkjfLenpxuTmnkQzzUhurqFvi/o2xt7eI/Wdllb5+vf7/U6X1+iYbTzPberbGHt7j8Zsi2kAvPvuu83DDz9spk+fXu8AeP/995uEhASTm5trtmzZYsaNG2dSU1NNIBCo9+1WDUnJH3bnScZ4PJWLW588ubmV/dG3HX0bY2/vNfVd+bp3dwBkttG32/s2xt7eozXbPMYY08CDiCdswYIFmjp1qg4cOFDrfsYYpaWlaerUqbrtttskScFgUMnJyZo7d65uuOGGet1eIBCQz+eT5JeUWG27xyOlp0sFBe46jFxeLmVmSl98EXk7fburb8ne3mvvOyDJJ7/fr8TE6q//5ozZFnk7fburb8ne3qM525r0j0AKCgpUUlKikSNHhtZ5vV4NGzZMa9asqfF6wWBQgUAgbKmNMVJhYeVn626yenXNLxaJvt3Wt2Rv73X1bStbH2/6jl1NsWJr79GcbU06AJaUlEiSkpOTw9YnJyeHtkWSk5Mjn88XWjIyMup1e8XFJ19rU1TffujbPWzt3W39NDa33T88zxtnv+bE1t6j2U+DA+CsWbPk8XhqXdavX9+g2/B4PGGXjTHV1n1fdna2/H5/aCksLKzX7aSmNqjMJqe+/dC3e9jau9v6aWxuu394njfOfs2Jrb1Hs58GnwZmypQpuuqqq2rdJzMz86T+7JSUFEmVRwJTv3cvlJaWVjsq+H1er1der7fet1P13YEhQ06qzCZryJDKvoqKKg+PH4++Y19btNnae11928rWx5u+Y19btNnaezRnW4OPACYlJalnz561Lq1btz6pPzsrK0spKSlasWJFaF1ZWZlWrVqlwYMHn9SfefyBw6rL8+a564ujUmU/jzxS+f/0HX7ZjX1L9vZeW9+24PEOv0zf7mJr71GdbY34S+U67dy50+Tn55vZs2eb9u3bm/z8fJOfn28OHjwY2qdHjx5m0aJFocv333+/8fl8ZtGiRWbLli3mV7/61UmfBibSubIyMtz70/Eqkc4fRN/uZmvvkfru0sX9p4FhttG3DX0bY2/v0ZhtMT0NzMSJE/XCCy9UW79y5UoNHz5cUuX3/ebPn6+JEydKqvy+3+zZs/X000/rq6++0oABA/T444+rV69e9b7dqlMl+P1+tWuXyBnE6dsKtvZe/Wz5AXXs6O7TwDDb6NuWviV7e2/s2ebIeQBj7ftD0m1/AQConZtf/27uDUDtGvr6b9KngQEAAEDjIwACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAlolpAJwzZ44GDx6stm3bqkOHDvW6zsSJE+XxeMKWgQMHRrdQAAAAF4tpACwrK9PYsWP1m9/85oSud9FFF6m4uDi0LFu2LEoVAgAAuF98LG9s9uzZkqQFCxac0PW8Xq9SUlKiUBEAAIB9msV3APPy8tS5c2d1795dkyZNUmlpaa37B4NBBQKBsAUAAACVmnwAHDVqlF566SW9/fbb+uMf/6gPPvhA559/voLBYI3XycnJkc/nCy0ZGRkxrBgAAKBpa3AAnDVrVrUfaRy/rF+//qT//HHjxmn06NHq1auXxowZozfeeEP/93//p6VLl9Z4nezsbPn9/tBSWFh40rcPAADgNg3+DuCUKVN01VVX1bpPZmZmQ28mJDU1Vd26ddOOHTtq3Mfr9crr9TbabQIAALhJgwNgUlKSkpKSGqOWetm3b58KCwuVmpoas9sEAABwk5h+B3DXrl3auHGjdu3apfLycm3cuFEbN27UoUOHQvv07NlTixcvliQdOnRIM2bM0Nq1a/X5558rLy9PY8aMUVJSki6//PJYlg4AAOAaMQ2Ad999t/r06aOZM2fq0KFD6tOnj/r06RP2HcHt27fL7/dLkuLi4rRlyxZddtll6t69uyZMmKDu3btr7dq1SkhIiGXpAHBC6nPi+127dmnMmDFq166dkpKSdPPNN6usrCy2hQKwUkzPA7hgwYI6zwFojAn9f5s2bfTWW29FuSoAaHxVJ74fNGiQnnvuuWrby8vLNXr0aHXq1En//ve/tW/fPk2YMEHGGD366KMOVAzAJjENgABgi7pOfL98+XJ9/PHHKiwsVFpamiTpj3/8oyZOnKg5c+YoMTExVqUCsFCTPw8gALjR2rVr1atXr1D4k6QLL7xQwWBQGzZscLAyADbgCCAAOKCkpETJyclh60455RS1atVKJSUlEa8TDAbDToLPv3IE4GRxBBAA6qmxT3zv8XiqrTPGRFwv8a8cAWg8HAEEgHpqzBPfp6Sk6L333gtb99VXX+no0aPVjgxWyc7O1vTp00OXA4EAIRDASSEAAkA9NeaJ7wcNGqQ5c+aouLg4dGL75cuXy+v1ql+/fhGvw79yBKCxEAABIAp27dql/fv3h534XpJ++MMfqn379ho5cqTOOOMMjR8/Xg8++KD279+vGTNmaNKkSfwCGEDUEQABIAruvvtuvfDCC6HLffr0kSStXLlSw4cPV1xcnJYuXaobb7xRP/nJT9SmTRtdffXVeuihh5wqGYBFPOb7Z152qUAgIJ/PJ7/fzztrwDJufv27uTcAtWvo659fAQMAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZeKdLiDWysul1aul4mIpNVUaMkSKi3O6quijb7v6luzt/fi+zznH6Ypig8ebvm3oW7K390afbSZGCgoKzP/7f//PZGZmmtatW5vTTjvN3H333SYYDNZ6vYqKCjNz5kyTmppqWrdubYYNG2Y++uijE7ptv99vJJmFC/0mPd0Y6bslPd2Y3NyGdNb05eYa+raob2Ps7T1S32lpla9/v9/vdHmNjtnG89ymvo2xt/dozLaYBcA33njDTJw40bz11lvmP//5j/nHP/5hOnfubH73u9/Ver3777/fJCQkmNzcXLNlyxYzbtw4k5qaagKBQL1vu2pISv6wO08yxuOpXNz65MnNreyPvu3o2xh7e6+p78rXvbsDILONvt3etzH29h6t2eYxxpgGHkQ8aQ8++KCefPJJffbZZxG3G2OUlpamqVOn6rbbbpMkBYNBJScna+7cubrhhhvqdTuBQEA+n0+SX1Jite0ej5SeLhUUuOswcnm5lJkpffFF5O307a6+JXt7r73vgCSf/H6/EhOrv/6bM2Zb5O307a6+JXt7j+Zsc/RHIH6/Xx07dqxxe0FBgUpKSjRy5MjQOq/Xq2HDhmnNmjU1Xi8YDCoQCIQttTFGKiys/GzdTVavrvnFItG32/qW7O29rr5tZevjTd+xqylWbO09mrPNsQD4n//8R48++qgmT55c4z4lJSWSpOTk5LD1ycnJoW2R5OTkyOfzhZaMjIx61VRcXK/dmo369kPf7mFr727rp7G57f7hed44+zUntvYezX4aHABnzZolj8dT67J+/fqw6+zevVsXXXSRxo4dq+uuu67O2/B4PGGXjTHV1n1fdna2/H5/aCksLKxXL6mp9dqt2ahvP/TtHrb27rZ+Gpvb7h+e542zX3Nia+/R7KfB3wHcu3ev9u7dW+s+mZmZat26taTK8DdixAgNGDBACxYsUIsWNWfQzz77TD/4wQ/04Ycfqk+fPqH1l112mTp06KAXXnihXjXa/j2ZoqLKw+PHo2939S3Z23vtffMdQLseb/p2W9+Svb1Hc7Y1+AhgUlKSevbsWetSFf6Kioo0fPhw9e3bV/Pnz681/ElSVlaWUlJStGLFitC6srIyrVq1SoMHDz6peo8/cFh1ed48dz1ppMp+Hnmk8v/pO/yyG/uW7O29tr5tweMdfpm+3cXW3qM522L2K+Ddu3dr2LBh6tq1q1588UXFfe9RSklJCf1/z549lZOTo8svv1ySNHfuXOXk5Gj+/Pk6/fTTdd999ykvL0/bt29XQkJCvW7b7/erQ4cOeuaZQs2alajdu7/b1qWLdP/90qWXNk6fTdGSJdJtt4m+ZUffkr29R+o7NTWg4uIMHThw4NujZe7BbON5XsWGviV7e4/KbGuk09TUaf78+d+er6r68n2SzPz580OXq04EnZKSYrxerxk6dKjZsmXLCd12YWFhjbfNwsJix1JYWNgYo6xJYbaxsLCc7Gxz9DyAsVJRUaHdu3crISFBHo9HgUBAGRkZKiwsdN13gmpD33b1Ldnb+/f7TkhI0MGDB5WWllbn106am+NnWyy45Tnlhj7c0IPkjj6c6MEY06DZZsW/BdyiRQulp6dXW5+YmNhsn2wNQd/2sbX3qr7d9tFvlZpmWyy45Tnlhj7c0IPkjj5i3UNDZpu73g4DAACgTgRAAAAAy1gZAL1er2bOnCmv1+t0KTFF33b1Ldnbu619x4Jb7ls39OGGHiR39NEce7DiRyAAAAD4jpVHAAEAAGxGAAQAALAMARAAAMAyBEAAAADLWB0AP//8c1177bXKyspSmzZt9IMf/EAzZ85UWVmZ06VF3Zw5czR48GC1bdtWHTp0cLqcqHriiSeUlZWl1q1bq1+/flq9erXTJUXdO++8ozFjxigtLU0ej0evv/660yVFXU5Ojn784x8rISFBnTt31s9//nNt377d6bJcpT5zY9euXRozZozatWunpKQk3XzzzU1+pmZmZsrj8YQtt99+u9Nl1ak5z7ZZs2ZVu89TUlKcLqtOdc1WY4xmzZqltLQ0tWnTRsOHD9fWrVudKbYOVgfATz75RBUVFXr66ae1detW/elPf9JTTz2lO+64w+nSoq6srExjx47Vb37zG6dLiapXX31VU6dO1Z133qn8/HwNGTJEo0aN0q5du5wuLaq+/vprnXPOOXrsscecLiVmVq1apZtuuknr1q3TihUrdOzYMY0cOVJff/2106W5Rl1zo7y8XKNHj9bXX3+tf//73/rb3/6m3Nxc/e53v4txpSfunnvuUXFxcWi56667nC6pVm6YbWeeeWbYfb5lyxanS6pTXbP1gQce0MMPP6zHHntMH3zwgVJSUnTBBRfo4MGDMa60HhrtXyV3iQceeMBkZWU5XUbMzJ8/3/h8PqfLiJpzzz3XTJ48OWxdz549ze233+5QRbEnySxevNjpMmKutLTUSDKrVq1yuhTXqWluLFu2zLRo0cIUFRWF1r3yyivG6/Uav98fwwpPTLdu3cyf/vQnp8s4Ic19ts2cOdOcc845TpfRIMfP1oqKCpOSkmLuv//+0LojR44Yn89nnnrqKQcqrJ3VRwAj8fv96tixo9NloBGUlZVpw4YNGjlyZNj6kSNHas2aNQ5VhVjx+/2SxOs5htauXatevXopLS0ttO7CCy9UMBjUhg0bHKysbnPnztWpp56q3r17a86cOU36Y2u3zLYdO3YoLS1NWVlZuuqqq/TZZ585XVKDFBQUqKSkJOxx8Xq9GjZsWJN8XOKdLqAp+c9//qNHH31Uf/zjH50uBY1g7969Ki8vV3Jyctj65ORklZSUOFQVYsEYo+nTp+u8885Tr169nC7HGiUlJdVeb6eccopatWrVpF9zt9xyi/r27atTTjlF77//vrKzs1VQUKBnn33W6dIicsNsGzBggF588UV1795dX375pe69914NHjxYW7du1amnnup0eSel6r6P9Ljs3LnTiZJq5cojgJG+XHr8sn79+rDr7N69WxdddJHGjh2r6667zqHKG+Zk+raBx+MJu2yMqbYO7jJlyhRt3rxZr7zyitOlNHmNPTcivbaceM2dSF/Tpk3TsGHDdPbZZ+u6667TU089peeee0779u2Lac0nqjnPtlGjRunKK6/UWWedpZ/97GdaunSpJOmFF15wuLKGay6PiyuPAE6ZMkVXXXVVrftkZmaG/n/37t0aMWKEBg0apGeeeSbK1UXPifbtdklJSYqLi6v2jri0tLTaOzS4x29/+1stWbJE77zzjtLT050up8lrzLmRkpKi9957L2zdV199paNHj8b8NdeQvgYOHChJ+vTTT5vk0Sg3zrZ27drprLPO0o4dO5wu5aRV/Yq5pKREqampofVN9XFxZQBMSkpSUlJSvfYtKirSiBEj1K9fP82fP18tWjTfg6In0rcNWrVqpX79+mnFihW6/PLLQ+tXrFihyy67zMHKEA3GGP32t7/V4sWLlZeXp6ysLKdLahYac24MGjRIc+bMUXFxcegvwOXLl8vr9apfv36Nchv11ZC+8vPzJSnsL/GmxI2zLRgMatu2bRoyZIjTpZy0rKwspaSkaMWKFerTp4+kyu9rrlq1SnPnznW4uupcGQDra/fu3Ro+fLi6du2qhx56SHv27Altaw7nI2qIXbt2af/+/dq1a5fKy8u1ceNGSdIPf/hDtW/f3tniGtH06dM1fvx49e/fP3SEd9euXZo8ebLTpUXVoUOH9Omnn4YuFxQUaOPGjerYsaO6du3qYGXRc9NNN+nll1/WP/7xDyUkJISOjvh8PrVp08bh6tyhrrkxcuRInXHGGRo/frwefPBB7d+/XzNmzNCkSZOUmJjobPE1WLt2rdatW6cRI0bI5/Ppgw8+0LRp03TppZc26ddKc59tM2bM0JgxY9S1a1eVlpbq3nvvVSAQ0IQJE5wurVZ1zdapU6fqvvvu0+mnn67TTz9d9913n9q2baurr77awapr4ORPkJ02f/58Iyni4nYTJkyI2PfKlSudLq3RPf7446Zbt26mVatWpm/fvlacFmTlypURH98JEyY4XVrU1PRanj9/vtOluUZ95sbOnTvN6NGjTZs2bUzHjh3NlClTzJEjR5wrug4bNmwwAwYMMD6fz7Ru3dr06NHDzJw503z99ddOl1an5jzbxo0bZ1JTU03Lli1NWlqaueKKK8zWrVudLqtOdc3WiooKM3PmTJOSkmK8Xq8ZOnSo2bJli7NF18BjjDHRj5kAAABoKprvF94AAABwUgiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGUIgAAAAJYhAAIAAFiGAAgAAGAZAiAAAIBlCIAAAACWIQACAABYhgAIAABgGQIgAACAZQiAAAAAliEAAgAAWIYACAAAYBkCIAAAgGX+fzggPbRWtZsXAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "47bb31473a70418cb164f9b5d5399168", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZW0lEQVR4nO3de1xUdf4/8NcwwHAfNBAGB4U2003NC5ZKjYptmiW1UVZf92vaVhttbl6yjOq3apuRXVzbbmaZZretRFs3rbQ1iL5qqYl5XysURAZEZSYuDjic3x/jTAwMMMDMnJnzeT0fj5PNmTPM+zOfOR/enHM+562SJEkCEREREQkjSO4AiIiIiMi3mAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgguUOwBeamppw8uRJREdHQ6VSyR0OEfmQJEn45ZdfkJSUhKAgZf3Ny7GNSFzdHduESABPnjyJ5ORkucMgIhmVlpZCr9fLHYZHcWwjoq6ObT5PAHNzc7Fu3TocPnwY4eHhSE9Px5IlS9C/f/92X1dQUIC5c+fiwIEDSEpKwiOPPILs7Gy33jM6OhqA7UOKjIzBtm2A0QgkJgLp6YBa3e1mkZ+yWsH+FkzLPh80yIyUlGTHOKAkHNvE3cdFbTcgbts9PrZJPjZx4kRp1apV0v79+6WioiLphhtukPr06SPV1NS0+Zqff/5ZioiIkGbNmiUdPHhQeuONN6SQkBBp7dq1br2nyWSSAEjvvGOS9HpJAn5d9HpJysvzVOvIn+TlSexvwbjq86Qk2/5vMpnkDs/jRB/bRN3HRW23JInbdm+MbT5PAFuqrKyUAEgFBQVtbvPII49IAwYMcFp33333SaNGjXLrPeyDJGBy+vAASVKpbIvSvzyiycuz9Sv7Wxxt9bltv1d2Aiji2CbqPi5quyVJ3LZ7a2yT/Ypok8kEAOjZs2eb22zfvh0TJkxwWjdx4kTs2rULjY2N3Xp/SbL9O3u27fAqBT6rFZg169e+bY79rUzt9bmolPxdF3UfF7XdgLht9+bYJmsCKEkS5s6di6uvvhqDBg1qczuj0YiEhASndQkJCTh//jyqqqpabW+xWGA2m52W9uMASkuBwsKutYP8S2EhcOJE28+zv5Wnoz4XlVK/66Lu46K2GxC37d4c22RNAGfOnIkffvgBH3zwQYfbtrzFgXQhHXZ164Pc3FxotVrH4u4sufJytzYjP+duP7K/lYN92T6lfT6i7uOithsQt+3ebI9sCeBf/vIXbNiwAV999VWH05cTExNhNBqd1lVWViI4OBgXXXRRq+1zcnJgMpkcS2lpqVsx6XTux0/+y91+ZH8rB/uyfUr7fETdx0VtNyBu273ZHp8ngJIkYebMmVi3bh22bt2K1NTUDl8zevRobNmyxWnd5s2bMWLECISEhLTaXqPRICYmxmlpj0oFJCcDBkPn2kL+yWAA9Hpbv7rC/laejvpcVEr9rou6j4vabkDctntzbPN5AvjAAw/g3Xffxfvvv4/o6GgYjUYYjUbU19c7tsnJycGdd97peJydnY3jx49j7ty5OHToEN566y2sXLkS8+bN6/T7t/wQ7Y+XLRPjPkIiUKuBF1+0/T/7Wwzt9bkoRPqui7qPi9puQNy2e3Vs8+RUZXcAcLmsWrXKsc306dOlsWPHOr0uPz9fGjZsmBQaGiqlpKRIr732mtvv2d69spKTlTt1XHSu7pvE/lY2V33eu7fybwMj6tgm6j4uarslSdy2e2NsU0mS8m+cYDabodVqYTKZEBkZg8JC24WVOp3t8KrS/mKgX1mtYH8LpmWfDxliRs+etv2/o8tBAg3HNnH3cVHbDYjbdk+PbcIlgEr7BUBE7VPy/q/kthFR+7q7/8t+I2giIiIi8i0mgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIREREJBgmgERERESCYQJIROQlX3/9NTIzM5GUlASVSoVPPvnE6XlJkrBw4UIkJSUhPDwc48aNw4EDB+QJloiEwgSQiMhLamtrMWTIELz88ssun3/22WexdOlSvPzyy9i5cycSExNx7bXX4pdffvFxpEQkmmC5AyAiUqpJkyZh0qRJLp+TJAnLli3D448/jqysLADA22+/jYSEBLz//vu47777fBkqEQmGRwCJiGRQXFwMo9GICRMmONZpNBqMHTsW27ZtkzEyIhIBjwASEcnAaDQCABISEpzWJyQk4Pjx4y5fY7FYYLFYHI/NZrP3AiQiReMRQCIiGalUKqfHkiS1WmeXm5sLrVbrWJKTk30RIhEpEBNAIiIZJCYmAvj1SKBdZWVlq6OCdjk5OTCZTI6ltLTU63ESkTIxASQikkFqaioSExOxZcsWx7qGhgYUFBQgPT3d5Ws0Gg1iYmKcFiKiruA1gEREXlJTU4Mff/zR8bi4uBhFRUXo2bMn+vTpg9mzZ+Ppp59Gv3790K9fPzz99NOIiIjA1KlTZYyaiETABJCIyEt27dqFjIwMx+O5c+cCAKZPn47Vq1fjkUceQX19Pf785z/j7NmzGDlyJDZv3ozo6Gi5QiYiQfj8FHBHd8ZvKT8/HyqVqtVy+PBh3wSsEFYrkJ8PfPCB7V+rVe6IyNvY5/IbN24cJElqtaxevRqAbQLIwoULUV5ejnPnzqGgoACDBg2SN2giEoLPjwDa74x/11134ZZbbnH7dUeOHHG63iU+Pt4b4SnSunXArFnAiRO/rtPrgRdfBC7cf5YUhn1ORETt8XkC2N6d8dvTq1cvxMbGej4ghVu3Drj1VkCSnNeXldnWr13LhEBp2OdERNSRgJkFPGzYMOh0OlxzzTX46quv5A4nIFittqNALRMB4Nd1s2fz1KCSsM+JiMgdfp8A6nQ6rFixAnl5eVi3bh369++Pa665Bl9//XWbr7FYLDCbzU6LiAoLnU8BtiRJQGmpbTtSBvY5ERG5w+9nAffv3x/9+/d3PB49ejRKS0vx/PPPY8yYMS5fk5ubi0WLFvkqRL9VXu7Z7cj/sc+JiMgdfn8E0JVRo0bh6NGjbT7Pu+Xb6HSe3Y78H/uciIjc4fdHAF3Zs2cPdO38BtNoNNBoND6MyD8ZDLaZn2Vlrq8JU6lszxsMvo+NvIN9TkRE7vB5AtjRnfFzcnJQVlaGNWvWAACWLVuGlJQUDBw4EA0NDXj33XeRl5eHvLw8X4cecNRq220/br3V9ou/eUJgrzW/bJltO1IG9jkREbnD56eAd+3ahWHDhmHYsGEAbHfGHzZsGP76178CAMrLy1FSUuLYvqGhAfPmzcPll18Og8GAb775Bhs3bkQW72Phlqws220/evd2Xq/X83YgSsU+JyKijqgkydWJImUxm83QarUwmUzCFk+3Wm0zP8vLbdd/GQw8CqR07HMbJe//Sm4bEbWvu/t/QF4DSJ2nVgPjxskdBfkS+5yIiNoSkLOAiYiIiKjrmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgguUOwNesVqCwECgvB3Q6wGAA1Gq5oyJvYX+Lp2WfDxkid0TKJ+p+xnaL1W5AYW2XfKygoECaPHmypNPpJADS+vXrO3xNfn6+NHz4cEmj0UipqanSa6+91qn3NJlMEgDpnXdMkl4vScCvi14vSXl5XWwM+bW8PIn9LRhXfZ6UZNv/TSaT3OF5nH1sk7Ntou5nbLdY7ZYk/2t7d/d/nyeAmzZtkh5//HEpLy/PrQTw559/liIiIqRZs2ZJBw8elN544w0pJCREWrt2rdvvaf+QAJNTxwGSpFLZFhG+vCLJy7P1K/tbHG31uW2/ZwLoDaLuZ2y3WO2WJP9se3f3f5UkSZJcRx9VKhXWr1+P3//+921uM3/+fGzYsAGHDh1yrMvOzsbevXuxfft2t97HbDZDq9UCMAGIcREHoNcDxcUBfCiXHKxWICUFOHHC9fPsb+Vpv8/NALQwmUyIiWm9/wcy+9gmR9tE3c/YbtfPK7XdgP+2vbv7v99PAtm+fTsmTJjgtG7ixInYtWsXGhsbXb7GYrHAbDY7Le2RJKC01HZenwJfYWHbOyrA/laijvqcPE/U/Yztdk2p7QaU23a/TwCNRiMSEhKc1iUkJOD8+fOoqqpy+Zrc3FxotVrHkpyc7NZ7lZd3O1zyA+72I/tbOdiXvifqfsZ2e2a7QKLUtvt9AgjYThU3Zz9r3XK9XU5ODkwmk2MpLS116310uu7FSf6hdT9+DOBaAFIH21GgYl/6nrufudL6pnV7KgBcAmBHB9sFNlH7G1Bu2/0+AUxMTITRaHRaV1lZieDgYFx00UUuX6PRaBATE+O0tEelApKTbdO5KfAZDLbrMWx/H0gA5gD48sLC/lYi5z4nX+joM1fqfta63QUAfgJwHYASgdrtTKntBpTbdr9PAEePHo0tW7Y4rdu8eTNGjBiBkJCQTv+8lh1of7xsmfIuXBWVWg28+KL90WcAyi78/xOwHwVkfytL8z5nEugb7X3mSh5XW7f75wvPmAGMgyRVCNLuXym5vwHltt3nCWBNTQ2KiopQVFQEACguLkZRURFKSkoA2E7f3nnnnY7ts7Ozcfz4ccydOxeHDh3CW2+9hZUrV2LevHmdfu933gF693Zep9cDa9cCWVldbhL5oaws4OOPJYSEPAHAvsd+h/j4L9nfCpWVZduXW+7jLR+T57T1mSt9XHVu937YxhgJQAn0+vHIyDgra3zeImp/A8psu89vA5Ofn4+MjIxW66dPn47Vq1djxowZOHbsGPLz8x3PFRQUYM6cOThw4ACSkpIwf/58ZGdnu/2ezadKR0bGKOcu3tSuTZs24YYbbnA8DgpSY8SINOzYsaPN60cp8LWuBGJGz568DYw3Kao6QidYrcDFF1+GkpJfb1OmVqsxfPhwbN26FVFRUTJG5z2i9jfgX23v7v4v630AfcVfBknyHUmSkJaWhh9++AFWq9Xpuc2bN+Paa6+VKTLyNSXv/0puWyBobGxEREQEzp8/77RerVbj6quvxueff46wsDCZoiOlU/x9AIm64rPPPsOePXtaJX9qtRpPPPEEBPi7h4i87OjRo62SPwCwWq0oLCzElClT2rxfLZHcmACS4kiShCeeeAJqF8flrVYrvvvuO3z55ZcyREZESrJv3742n2tqasLGjRsxffp0NDU1+TAqIvcwASTFaevonx2PAhKRJ+zfvx/BwcFtPi9JEv75z3/iz3/+M8cb8jtMAElR2jv6Z8ejgETkCa6uMW5JkiS8/vrrWLp0qY+iInIPE0BSlI6O/tnxKCARdVdRUVGbY4hKpUJQkO1XbJ8+faDX630ZGlGHmACSoixYsMCt7exHAbdu3erliIhIiWpra1uVGbWfeVCpVBg1ahSeeeYZHDp0CMeOHcPtt9/u1s81Go148MEHed0geV3bFy8QBaBLL70UFovFad2pU6dQWVmJgQMHOq1Xq9XQaDS+DI+IFOLgwYOQJAlBQUFoampCZGQkrr/+euzbtw96vb5VBau2rFixAu+//77TuiNHjqB///544IEHvBE6EQDeB5AE8Pzzz+Opp55CdXW13KGQDJS8/yu5bf7up59+wtSpU5Geno7MzEwYDAaEhIRg6dKleOyxx3D69GlERkZ2+ueeOXMGd955J959913ExsZ6PnBSjO7u/zwCSERE1Em/+c1v8O2337Zan5mZiYceeghffvklbrrppk7/3KioKOTl5fHsBHkdrwEkIiLykH79+qF///749NNPu/T60NBQJn/kE0wAiYhksnDhQqhUKqclMTFR7rComzIzM/Hpp5+6PZFj/vz5mDRpkpejInLGBJCoGc7AI18bOHAgysvLHUt71SUoMEyePBlGoxG7d+92a/uioiIMGTLEy1EROeM1gCQ0zsAjuQUHB/Oon8JcddVV6NGjB/7973/jiiuu6HD7vXv34q677vJBZES/4hFAEtqf/vQn5OfnO5Z169YhLS0Nf/jDH+QOjQRx9OhRJCUlITU1FXfccQd+/vlnuUOibgoODsakSZPw73//u8NtjUYjKioq0NTUhDFjxiAiIgIjRozA3r17fRApiYwJIFEz9hl4vP0C+cLIkSOxZs0afPHFF3jjjTdgNBqRnp6O06dPu9zeYrHAbDY7LeSfMjMzUVRUhBMnTrS73Z49ewAAy5Ytw9NPP41du3YhOjoad9xxhy/CJIExASRqhjPwyJcmTZqEW265BYMHD8bvfvc7bNy4EQDw9ttvu9w+NzcXWq3WsSQnJ/syXOqEiRMnQq1WdzgbuKioCGFhYfjkk09w9dVX47LLLsPixYtx+PBhlJaWYty4cbjssstw+eWX4+OPP/ZR9CQCJoAkvCeffBKDBw9GZGQkEhIScP/996OxsVHusEhAkZGRGDx4MI4ePery+ZycHJhMJsfSshQZ+Y8ePXrAYDB0eBq4qKgIt912G5KSkhzr7DeQDgoKwrJly3Dw4EF8+eWXmDNnDmpra70aN4mDCSAJTZIkWK1WvP766zh48CBWr16NtWvX4s0335Q7NBKQxWLBoUOHoNPpXD6v0WgQExPjtJD/yszMxH/+8592k7aioiIMHTrUad3333+PxMREJCUlOZ7r1asXevbsiTNnzngxYhIJE0ASmkqlwqJFi5Ceno6+ffti0qRJuPbaa3n6hXxi3rx5KCgoQHFxMb799lvceuutMJvNmD59utyhkQdkZmbCYrHgyy+/dPl8XV0dfvzxR1itVse6pqYmvPTSS5gxYwZUKpVj/a5du9DU1MTT/uQxTABJaMePH8fMmTMxaNAg9OjRA1FRUfjoo4+g1+sRHBzM0y/kVSdOnMD//M//oH///sjKykJoaCh27NiBvn37yh0aeYC9Kkhbp4H37t0LtVqNVatW4bvvvsN///tf3HbbbaitrcVjjz3m2O706dO48847sWLFCl+FTgLgfQBJWFVVVbjyyiuRkZGBpUuXonfv3mhqasKIESMwdOhQ6HQ6x6m45qdfulLgnciVf/7zn3KHQF42efJkvPfee2hqakJQkPMxl7179+LSSy/FggULcMstt+DMmTO48cYbsW3bNkRHRwOwXRZw8803IycnB+np6XI0gRSKCSAJa9OmTTh//jw++OADx6mWV155BQ0NDa2uyeHpFyLqiszMTLzwwgvYvXt3q5tCZ2dnIzs7GwAwZcqUVq+VJAkzZszA+PHjMW3aNJ/ES+LgKWASVs+ePWE2m7FhwwYcPXoUS5cuxcKFC9G7d2/Ex8c7tuPpFyLqquZVQTrr//7v//Dhhx/ik08+wdChQzF06FCWCiSP4RFAEtYNN9yAu+++G9OmTUN4eDj+93//F7fddhuOHz/u2IanX4ioO5pXBXnyySc79dqrr76adcnJa5gAkrBUKhWWL1+O5cuXu3yep1+IyBMyMzPx/vvvo7S0lJeRkN/gKWCiNvD0CxF5gr0qiL3SC5E/4BFAojbw9AsReULzqiD2SR9EcuMRQCIiIi9zpypIpzRZgYp84NgHtn+brB29gsgJE0AiIiIv66gqSKeUrgM2pAD/yQC2TbX9uyHFtp7ITUwAiYiIvKyjqiBuK10HFN4K1J1wXl9XZlvPJJDcxASQiIjIByZPnoyNGzd2/driJiuwexYAycWTF9btns3TweQWJoBEREQ+kJmZCaPRiN27d3ftB5wqbH3kz4kE1JXatiPqABNAIiIiH+hOVRAAQH25Z7cjoTEBJCIi8oHmVUG6JFzn2e1IaEwAiYiIfCQzMxNFRUUoLS3t/IvjDbBqklxeAQgAElSQwvVAvKFbMZIYmAASERH5iL0qyKefftqp10mShNKyk9ivucf2uOXzF/5b3HMW6i0NngiVFI4JIBERkY/Yq4J0JgG0Wq04evQo9u3bh9MRY1Hc+zk0Bvdy2qYxOAFHE3JxwNwfRUVFMJlMng6dFIal4IiIiHwoMzMTjz32GGpraxEZGdnutufOncPhw4dRWlqKHj16ICIiAtUYj+qosYiq24MQaxUa1XGoiRgGqNTQaZtQUVGB77//HpdddhkSEhJ81CoKNDwCSERE5EPuVgUxm83Yu3cvSkpKEB8fj4iIiF+fVKlREzkCZ2OuQ03kCEClBgAEBQUhMTERjY2NKCoqwrFjx1jTnFxiAkhERORD7lQFqaqqQlFRESorK6HT6RAaGur2z1epVIiLi4NGo8H+/ftx5MgRNDY2eiJ0UhCeAhaE1QoUFgLl5YBOBxgMgFotd1QXNFltNy6tL7fdviDeAAT5S3Ad8OPY/brPiQQ3efJkvPvuu2hqakJQ0K/HYiRJwokTJ3D48GE0NTUhKSkJKpWqS+8RExODkJAQHD16FOfOncOAAQMQHh7uqSZQgJPtCOCrr76K1NRUhIWFIS0tDYWFbd+5PD8/HyqVqtVy+PBhH0YcuNatA1JSgIwMYOpU278pKbb1sgvkouZ+HLtf9zkRITMzExUVFU5VQZpP9lCr1YiPj+9y8mcXHh6OhIQEnDhxgpNDyIksCeCHH36I2bNn4/HHH8eePXtgMBgwadIklJSUtPu6I0eOoLy83LH069fPRxEHrnXrgFtvBU60qB5UVmZbL2tCEMhFzf04dr/ucyIC0LoqyLlz57Bv3z4cOXIEMTExiI2N9dh7hYSEQKfT4cyZM/j+++9RUVHhsZ9NgUuWBHDp0qW4++67cc899+C3v/0tli1bhuTkZLz22mvtvq5Xr15ITEx0LGqez2qX1QrMmgVILu4aal83e7ZtO58L5KLmfhy7X/c5ETk0rwrS7mQPD+HkEGrJ59cANjQ0YPfu3Xj00Ued1k+YMAHbtm1r97XDhg3DuXPncNlll+GJJ55ARkaGy+0sFgssFovjsdls7n7gAaiwsPVRoOYkCSgttW03bpzPwrJxs6h5TfFnOH/R1d16q/r6ekiShOrq6m79HLvg098gyt2C7AnjPPKe7vLrPiciJ5mZmXj//fexefNmaDQa6HQ6rx7YsE8OMZvN2L9/P+rr63HJJZcgJCTEa+9J/svnCWBVVRWsVmurexMlJCTAaDS6fI1Op8OKFSuQlpYGi8WCd955B9dccw3y8/MxZsyYVtvn5uZi0aJFXok/kJS7WQ/c3e08ys1i5T/uL0R5aPcGxOPHj8NqtWL79u3d+jl2uoZCDHVnQxkKstv6UgJwGMBBALe0sx0RyUWSJAwcOBBBQUEoKCjAjBkzun29n7s4OYQAGWcBt/yiS5LU5pe/f//+6N+/v+Px6NGjUVpaiueff95lApiTk4O5c+c6HpvNZiQnJ3so8sChc7MeuLvbeZSbxcrDYlMRFxHXrbeKjIx0/OXrCWF1qUCtGxv6qCC71WrFDz/8gMLCQuTlFQL4CsDpC8+eB9A6gZalz4kIgG2f/emnn1BaWorBgwdjz549uOuuu3waQ/PJIfYza1qt1qcxkLx8ngDGxcVBrVa3OtpXWVnZqTuWjxo1Cu+++67L5zQaDTQaTbfiVAKDAdDrbRf/u7omTKWyPW+Qo254vAGI0NsmTbi4lk6CrbRRXVQa1KruHQG0/2HhqVMrdVFpaAjuhZDzlXD9J4vK1jYvFWSvq6vDd999h8LCQnz99dfYtm0b6urqHLPjAft1PdeiZfIna58TUavKHuPHj8crr7yC+vp6nx+Fs08OYeUQMfl8EkhoaCjS0tKwZcsWp/VbtmxBenq62z9nz5490PEwRrvUauDFF23/3/Lgqv3xsmUy3RsuSA2k2YKTWqRRtnRQhRMJ8xx3t/crKjVOJDwMwFXqeqEtacs8ej/As2fP4pFHHsGIESMQExODjIwMLFq0CP/5z39QV1dni0WSWlzU/ZRzZHL3OZHgXE32GDNmDBoaGvDtt9/KEhMnh4hLllnAc+fOxZtvvom33noLhw4dwpw5c1BSUoLs7GwAtlO4d955p2P7ZcuW4ZNPPsHRo0dx4MAB5OTkIC8vDzNnzpQj/ICSlQWsXQv07u28Xq+3rc/KkicuAEByFhpH/xOWIOdTs43BCSju/Syqo8fLFFjHqqPHuyzIjgg9YFgLJHv2g927dy+ee+457N69G9YLU3itViskF4d2g4KC0K/fldDrr3Ra7xd9TiSotip79OnTB3379sXXX38tW2ysHCImWa4BvP3223H69Gk8+eSTKC8vx6BBg7Bp0yb07dsXAFBeXu50T8CGhgbMmzcPZWVlCA8Px8CBA7Fx40Zcf/31coQfcLKygJtu8s+qEKbo8fgueiUujiqDRjrjVNTc31VH/1qQvf7szwjrkYr+V93jlUog48aNw6xZs/CPf/zDZdLXXFNTExYvnoesLP/scyKRuFPZw2Aw4LPPPmtVFcTXODlELCqpo98mCmA2m6HVamEymRATEyN3ONTMjz/+iMOHDyMpKclr77FmzRqsXLkSBQUFXnuP2tpaNDQ0ID093WsD5vnz53H99ddj69atjqOAruh0OpSUlCA4mJUeAWXv/0pumxLYJ3v8+OOPCAsLa/Pmzrt378af/vQnrFmzBgMHDvRtkC40NjaisrIScXFxnBzix7q7/8v3pwYJr6mpCRUVFYr4CzM8PBz19fUeu9egK8HBwfj4449x8cUXtzmhJSgoCHPmzGHyRySzzlT2GDJkCGJiYmQ9DdwcK4eIgQkgyeaXX35BTU0NIiMj5Q6l24KCgqBSqXD27Fmvvo9Wq8XcuXPbPAIYGhqKe+65x6sxENEFTVagIh849oHt3wvVfzpb2SM4OBjp6ekoLCz0fsxuandySBvtpsDCwwQkm+rqalgsFsfF0IEuMjISlZWV6Nevn1furC9JEpYsWYLHHnsMo0aNwrfffut0PaBarcZdd92FHj16ePy9iaiF0nW2kpDNqwJF6GHu9zcUnb4YJpOpU5U9DAYDPv/8cxiNRiQmJnop6M5xVTmkX9g+BO99qFW7kfaixye/kXfxCCDJ5tSpU4q6X2NERARqa2thMpk8/rNfeeUV6HQ65OTkIDk5GRqNBtHR0U7bWK1WzJo1y+PvTUQtlK4DCm9tVc5SqitD9N67EF29BUlJSZ2692h6ejrUarVfHQW0i4mJQY8ePVBzaA3U2++A1LIUZl2Z7fMoXSdPgNQlTABJFnV1daiurlbE6V+74OBgNDU1eTwBrKiowHvvvYfq6mq89957OH78ONatWweDwYDs7GyoVCoEBQXhuuuuc6qYQ0Re0GS1HflzeRdQ27qB596ACp27l15MTAyGDh3qlwkgAISHheLyxrfQ+s6tgOOz2D2bp4MDCBNAkoXJZEJ9fT3CwsLkDsWjwsPDUVFR4bEbqe7duxdXXnkliouLUVBQgKlTpwIAoqKikJeXh5deegm/+93v0NTUhIceesgj70lE7ThV2OrIX3MqAKHnKxBVt6fTP3rMmDHYuXMn6uvruxGgd0TV7YHG2lb1IwCQgLpS2+dDAYEJIMnizJkzCAoKkvWeV94QGRnpmNzSXf/6179w1VVX4aKLLsLOnTsxcuRIx3OhoaHQaDQIDg5GXl4eNmzYgGuuuabb70lEHagvd2uzEGtVp3+03FVB2uN2e9z8fEh+yvrtSwGhoaEBp06dUtTpXzuNRoOGhoZunQaWJAnPPPMMbr75Zlx33XUoLCyEXq/Hk08+icGDByMyMhIJCQm4//770djYiOjoaGRmZra6uSwReUG4eyVIG9VxHW/Ugj9UBWmL2+1x8/Mh+TEBJJ8zm82oq6tTZAII2I7OVVZWdum1586dw/Tp05GTk4PHH38cH330ESIjIyFJEqxWK15//XUcPHgQq1evxtq1a/Hmm296OHoiale8wTbrtY2ToRKAhuAEW0WjLjAYDPjmm2/8rh5vTcQwNAT3cnHlo50KiEi2fT4UEJgAks9VV1ejqampUzPkAklERASqq6s7fR1PRUUFxo8fj48++gjvvfce/va3vzlOkatUKixatAjp6eno27cvJk2ahGuvvRaHDx8GANx8883o0aMHbr31Vo+3h4iaCVLbbnkCoGUSKF1YdyJhXpfLWY4ZMwanT5/GoUOHuhOl56nUOJHwMADX018AAGnLvFIKk7yDCSD5lJKqf7SlK1VB2prsYXf8+HHMnDkTgwYNQo8ePRAVFYWPPvoIer0eAPDggw9izZo1nmwGEbUlOQswrAUiejutbgxOQHHvZ1EdPb7LP9rfqoI0Vx09HsW9n0NjcC/nJyL0ts+D9wEMKLwRNPmUfYKEkmtLNq8KotN1fD3Mv/71L/zhD39Av379sGHDBiQnJzs9X1VVhSuvvBIZGRlYunQpevfujaamJowYMQJDhw4FAGRkZCA/P98LrSEil5KzgN43wbjvY5z8eTei4vrZTvt28cifXfOqIPfff7+HgvWc6ujxqI4aC/XpbQg+fwr9h4xDsC6DR/4CEI8Akk8prfpHW+xVQRobG9vcpvlkj4kTJ+Kbb75plfwBwKZNm3D+/Hl88MEHmDBhAgYOHIivv/4aDQ0NjgSQiGQQpMY57SicDBmLmsgR3U7+7AwGA44cOQKj0eiRn+dxKjVMYcNQGX4NpF5jmfwFKCaA5FNKq/7Rlo6qgrSc7PHxxx+3OSmmZ8+eMJvN2LBhA44ePYqlS5di4cKF6N27N+Lj473ZDCKSgb0qyDfffCN3KKRgTADJZ5RY/aMt7VUFaW+yhys33HAD7r77bkybNg1XX301ysrKcNttt/HoH5FC2auC+ON1gKQcvAaQfMZe/SM2NlbuUHzCXhUkNTXVkeDt3bsXN954IxoaGlBQUOB0c+e2qFQqLF++HMuXL/d2yETkJ8aMGYNXXnkF9fX1ip40R/LhEUDyGaVW/2hLy6og9soePXv2xHfffedW8ueuiRMnYsqUKdi0aRP0ej127tzpsZ9NRL5nMBj8tioIKYMYv4lJdkqu/tEWe1WQ6upqtyZ7dMcXX3yBU6dOoa6uDidOnMAVV1zh0Z9PRL7Vt29fv60KQsrABJB8QunVP9pz//33IycnB4899li7kz2IiJrz16ogpAxMAMknlF79w5XTp08jJycHW7ZswapVq/DUU08Jc/qbiLrPb6uCkCLwtxF5nQjVP1r673//izvvvBNGoxG5ubmYOHGi3CERUYAZMmQIoqOjeRqYvIIJIHmdfSKEKKc+8/Pz8cc//hFarRZr1qzBgAEDcPbsWbnDIqIA07wqCJGnMQEkrxOl+ockSVi1ahXmzZuH0aNHY+XKlUhMTHSrKggRkStjxozx76ogFLCYAJLXiVD9w2KxYMGCBXj55Zfxxz/+EUuWLHGc8u6oKggRUVtYFYS8hQkgeZUI1T9Onz6N7OxsbNmyBU899RT+/Oc/O032aK8qCBFRe1gVhLyFCSB5lb36R1hYmNyheIV9skdZWRlWrFiBSZMmudzOXhWEt3Mgos4aM2YMdu7cifr6erlDIQVhAkhepeTqHy0newwePLjNbVtWBSEichergpA3KO+3MvkNpVb/aGuyR3vsVUF4GpiIOsteFYSzgcmTguUOgJTLXv0jPj5e7lA8xmKxYPHixdi4cSPuvvtuZGdnu310MzQ0FJWVlR4vA0dEymcwGPDZZ5+hqalJkWdUyPf4LSKvUVr1j44me3QkIiIC1dXVvI6HiDqNVUHI05gAklcorfqHu5M92hMeHo76+npUV1d7PkAiUrTLL7+cVUHIo5gAklcoqfpHZyZ7tCcoKAgqlYpVQYio00JCQlgVhDyKCSB5hRKqf3RlskdHWBWEiLrKXhWkoqJC7lBIAZgAklcEevWP9ip7dAerghBRV9mrgvAoIHkCE0DyuECv/tHdyR7tYVUQIuoqVgUhT2ICSB4XyNU/PDHZoyOsCkJEXWUwGBRZFcRoNOLBBx/kuOhDTADJ4wK1+oenJnt0hFVBiKirxowZo4iqICtWrMC4ceMcyx133IGPP/4Yr732mtyhCYM3giaPCsTqH5IkYfXq1XjllVcwfvx4LFq0yKu3r2leFSQmJsZr70NEytO8Ksi4cePkDqfL/vSnP+FPf/qT4/GZM2dw55134g9/+IOMUYmFCSB5VKBV/+hOZY/uYFUQIuoqJVYFiYqKQl5eXkBPHgw0yvjmkN8IpOof3pzs0RFWBSGirlJaVZAHHngAWVlZ+OGHH+QORSjCHQG0WoHCQqC8HNDpAIMBCIBcxb81WYFThWiqK0P98TMID+svd0QOVitw4oQG58+rsGtXFIYNq4FabZvsMWfOHDQ2NmLFihVeu96vLeHh4TBVn0H9sc8QHm4BwnVAvAEI4pexu1ru40OGyB2Rb4g6tonYbntVkA8/3IH09KsRF9foGNsCyfz58/HDDz+grKwM+/btw8aNGzFp0iQsWrQIV1xxRZuvE7HPAc+PbbIdAXz11VeRmpqKsLAwpKWldXhfo4KCAqSlpSEsLAwXX3wxli9f3un33LABSEkBMjKAqVNt/6akAOvWda0NBKB0HbAhBfhPBoK2/y8GVzyIq09PQ+wvW+WODFu3xmLy5EHIy4vHuXNBuO++SzF58iD84x87HZM93nnnHZ8nfwDQszYf19Tcg557bgG2TQX+k2H7HEv5ZeyOdeta7+ODBskdVcc6Ox62JOrY5qq/RWh3YWE8Ghqux8aN2/D446mOsW3r1li5Q+uUoqIiDGmRxWzevBlXXnklrr/+euzcubPVa0Ttc2+MbbIkgB9++CFmz56Nxx9/HHv27IHBYMCkSZNQUlLicvvi4mJcf/31MBgM2LNnDx577DE8+OCDyMvL69T7TpsGnDjhvK6sDLj1VuV/ebyidB1QeCtQ5/yhhlorkVr2sKxJ4NatsXj44VRUVoY0WyuhsvIFvP32/bjkkrFYuXIlEhISfB5b7C9bkVr2MMKkKucn6spsnyeTwC5Zt862L7fcx0+elCced3V2PHRFxLGtrf5WervtY5vFciOAIgC2D6CyMgQPP5waUEng3r17MXToUKd1VqsVgOtEUNQ+99bYppIkSerej+i8kSNHYvjw4U7TvX/729/i97//PXJzc1ttP3/+fGzYsMHpeofs7Gzs3bsX27dv7/D9zGYztFotABOA1rMuVSpArweKi8U4jOwRTVbbEasWyZ+dBKAxOAH7f/NvQOXbD9VqBSZPHnQh+VMBeB7AUwBuBPAOgMfRq9cT+PTTg77vb8mKQT9NRsj5SqhcbqACIvTAjcU8HdwJVqvtr+OWA6SNGYDWb2ddd3Y8bE7Usa39/vZtu48dO4b9+/cjKSnJu2+ElmNbNYB4AC8DyL6whYSEhEb8+9/7vd7umpoaWK1WXH311QgJCen4BS0YjUbodDq89957uPfee1FXV+dyO7VaDavViuuum4Tvv1+EykrXp4bF/K53b2zz+TWADQ0N2L17Nx599FGn9RMmTMC2bdtcvmb79u2YMGGC07qJEydi5cqVaGxsbPXls1gssFgsjsdms7ndmCQJKC21nVsP4Fn1vnWqsM3kD7ClXaHnKxBVtwc1kSN8FxeAPXuiUFnZvAZxHYAaAB8BeB/A/6Cy0rbdiBG+vRdfVN0ehJ6vbGcLCagrtX2+CeN8FVbAKyxsOxnwZ50dDzm22XTU30ptt/PY1gNAOoDlAH69bVVFBfDqq0akpJzzaiwWiwVNTU34+eefERzc+VTCPuHjiSeeQGRkZJsJoP2I4BdffAFJ+gzAYAD/ADDOaTul9rk3xzafJ4BVVVWwWq2tTr0lJCTAaDS6fI3RaHS5/fnz51FVVQWdTuf0XG5uLhYtWtTp2MrLO/0ScdW792GFWKs63sjDqqpa/jV6HkAIgHwAI9vZzvvc/jzc/HzJJlD33c6OhxzbbNxtj9La3XrMugLAUgAznNauXu2beDyhuLjYre0kyV4hZB+AxwH8n8vtlNbn3myPbLOAVSrnE2CSJLVa19H2rtYDQE5ODubOnet4bDab3brfWos8ktoT7t6H1aiO83IgrcXFNbZY8+SFpaPtvM/tz8PNz5dsAn3fdXc85Nhm4257lNbu1mPWCwCWwHbRza9effW/GD7cu2c3amtrYbVacdVVV3XpFPDUqVMRFhaGt956C8OHD8f+/fvb3FalUl34nX8xgAUApra5rdL63Jvt8XkCGBcXB7Va3eqv28rKyjYvyE9MTHS5fXBwMC666KJW22s0mk7dTNJ+7YDB4PZLKN5gu1atrgwtBx/g12sAayKG+Ty0YcNq0KtXQ7NrAFuyXSczbJjvS7HVRAxDQ3Cvjq8BjOeXsTMMBts+XFZmOxUUKDo7HnJss+mov5XabtdjW/Nf47axbcQIC9Rq757hCA4OhkqlQkhISJcSwB9++AHZ2dkICQlp9+APAFx88cVYuPBJPPro7Th5Ui1Un3tzbPP5LODQ0FCkpaVhy5YtTuu3bNmC9PR0l68ZPXp0q+03b96MESNGdPqL1/J7Zn+8bJmyLhz1uiA1kPbihQctjl5cWHciYZ7PJ4AAtn58+GH7RRMt9xgJKhUwb94JefpbpcaJhIcvRNLqSds/acs4AaST1GrgxQtfxw5+l/iVroyHbRFpbGuvv5Xebr8d2zqhrq4OP/74o+P6vpbsCWFSUhKuuOIKHDlyBP/7v1Pxj3+oLzzfcnvbv0rtc2+NbbLcBmbu3Ll488038dZbb+HQoUOYM2cOSkpKkJ1tm8mUk5ODO++807F9dnY2jh8/jrlz5+LQoUN46623sHLlSsybN69T7/vOO0Dv3s7r9Hpg7VogK6vbzRJPchZgWAtEOH+oFnUvFPd+FtXR42UKDBg/vhrPPVeMXr2cT5kkJDTi2WeLMX58tTyBAaiOHo/i3s/hnKrF0esIve3zTOaXsSuysmz7cst9vOVjf9PReOgOEce2tvpb6e3257HNXXv37oVarcaqVavw3XffOU1sAmxH/N577z2sWbMGffr0cVSWErXPvTW2yXIbGMB249Nnn30W5eXlGDRoEP7+979jzJgxAIAZM2bg2LFjyM/Pd2xfUFCAOXPm4MCBA0hKSsL8+fPdHiDtt0owmUyIjIwR8g7iXnWhEgjqy3GkxIxjdcmI75Uod1QAbFPo9+yJQlVViF/dLf/8+fM4VWnE1f0laEPqWAnEg1rfLd+Mnj399zYwQPvjYXs4tslfFcKXt4FpTu6xrTu3gVm+fDlefvllLFiwAHPnzkVZWRkkSUJKSgoWL16M22+/HWq1Gvn5+Xj55Zexdu1ap9fL3edy8fTYJlsC6EvNB0l//QWgFCUlJSgqKoJer5c7FL9mNpuhUqmQnp7epetnyH1K3v+V3LZAIVcCKLfu3gewuU2bNsFsNmPKlClOdeTbSgDJprv7v3C1gMm7tFotNBoNGhoaEBoa2vELBFVTU4OLL76YyR8RCe/6669vtW7ixIn4/vvvUVtbC71ej/Xr17dbH5g6jwkgeVR0dDSioqJQU1ODnj17yh2OX2pqst3Pip8PEZFrX3zxhdwhKJ4sk0BIuYKCgpCQkIBz57x7F/pAVl9fj4iIiAslvIiIiHyPCSB5XGxsLIKCgtqc4i+62tpaxMbGIjw8vOONiYiIvIAJIHmcVqtFREQEamtr5Q7FLzU2NiI+Pl7uMIiISGBMAMnjQkJCEB8fzwTQBYvFgtDQUJ7+JSIiWTEBJK/o2bMnmpqaHBMeyKa2ttYxUYaIiEguTADJK+yngTkZxFl9fT0SEhIQFMRdj4iI5MPfQuQVERERiI2N5WngZs6fP4+goCDExsbKHQoREQmOCSB5TXx8fKsajyKrq6tDVFQUKzYQEZHsmACS1zSvCkK26h/x8fGs/kFERLJjAkhe07wqiOhY/YOIiPwJE0DyGlYF+RWrfxARkT9hAkhexaogNqz+QURE/oQJIHkVq4LYsPoHERH5EyaA5FWsCsLqH0RE5H+YAJLXiV4VhNU/iIjI3zABJK8TvSoIq38QEZG/4W8k8jqRq4Kw+gcREfkjJoDkE6JWBWH1DyIi8kdMAMknYmNjhawKwuofRETkj5gAkk9ERUUJVxWE1T+IiMhfMQEknxCxKgirfxARkb9iAkg+I1pVEFb/ICIif8UEkHxGtKogrP5BRET+igkg+YxIVUFY/YOIiPwZE0DyKVGqgrD6BxER+TMmgORTolQFYfUPIgE0WRFm2oGkxgJE1e4CJDGub4ZkhfbcHvSq/w9UlQVAkyDtVphguQMgsdirglRVVSEiIkLucLyC1T+IBFC6Dtg9C4l1J5AIAKVAQ3AvnEh4GNXR4+WOzmtif9kKfcVzCD1faVtRsBiI0ANpLwLJWfIGR53CwxPkc/Hx8Yq+ITSrfxApXOk6oPBWoO6E0+qQ85VILXsYsb9slSkw74r9ZStSyx5GiD35s6srs30epevkCYy6hAkg+VxsbCxCQ0MVmwSy+geRgjVZgd2zAEitnlJd+Fdf8bzyTgdLVugrngPwazubPWn7Z/dsng4OIEwAyeeUXBWE1T+IFO5UYasjf82pAISer0BU3R7fxeQDUXV7EHq+0kXyZycBdaW2z4cCAhNA8jklVwVh9Q8ihasvd2uzEGuVlwPxLbfb4+bnQ/JjAkiyUGpVEFb/IFK4cJ1bmzWq47wciG+53R43Px+SHxNAkoVSq4Kw+geRwsUbbLNe2zgZKgGwBCegJmKYT8PytpqIYTgXFO/iykc7FRCRbPt8KCAwASRZKLEqCKt/EAkgSG275QmAlkmgdOHxD8F3oaFROWc3JEnCqaozOBJ1PwCVo52/uvA4bZnt86GAwASQZKO0qiCs/kEkiOQswLAWiOjttFoVocf5Uf+E5pL/walTpxTxB67VaoXRaERYWBh0Vz4AlWEtVC3ajQi97fPgfQADCm8ETbJpXhVECTeFrq+vR2pqKqt/EIkgOQvofZNt1mt9ue3at3gDQoLUGGi1Ijw8HD/++CMaGxsD9qbwjY2NqKioQK9evXDZZZdduLep63bzyF/gYQJIslFSVRBW/yASUJAaSBjXarVarcYll1yC8PBwHD582JFEqVRt30TF39TV1eHMmTPo06cP+vfv7zyxrY12U2DhoQqSlVKqgrD6BxE1p1KpoNfrMXToUERFRaG8vDxg7npgNpthMplw6aWXYtCgQbyrgULxCKAgrFagsBAoLwd0OsBgANR+cMQ+NjYWoSFqhJl2IFxVjUZ1nG32nMoPgnOHZLXd8PXsUfRMGogQ9dVyR+Tgr31OJJK4uDgMHToUhw4dQnl5OXr16oXQ0FC5w3JJkiRUVVUhKCgIgwYNQp8+fQLqqCV1jk+PAJ49exbTpk2DVquFVqvFtGnTUF1d3e5rZsyYAZVK5bSMGjXKNwErxLp1QEoKkJEBTJ1q+zclxbZeblFnN2OcaQYuK38AqScfx6Wl92HQT5MDopZm7C9bMeinybi09D4Mr38eKT/dBWxI8Yt6mP7c50SiiY6OxpAhQ5CSkuK3k0OaT/YYMmQI+vbty+RP4XyaAE6dOhVFRUX4/PPP8fnnn6OoqAjTpk3r8HXXXXcdysvLHcumTZt8EK0yrFsH3HorcKJF5aKyMtt6WROC0nUI+r/bEGo95bQ6EAqq+3NRdL/ucyJBaTQaDBw4EAMGDEBNTQ3Onj0rd0gOjY2NKC8vx0UXXYRhw4ahV69ecodEPuCzBPDQoUP4/PPP8eabb2L06NEYPXo03njjDXz66ac4cuRIu6/VaDRITEx0LKyz6h6rFZg1C5Bc3LnTvm72bNt2PtesoHobd5Ty34LqflwU3a/7nEhw9skhgwcPhiRJqKiogORqZ/Whuro6VFRUoE+fPhgyZAivYxaIz64B3L59O7RaLUaOHOlYN2rUKGi1Wmzbtg39+/dv87X5+fno1asXYmNjMXbsWCxevLjdv1AsFgssFovjsdls9kwjAkxhYeujQM1JElBaattu3DifhWXjZkF1VBaiWjPUZ2G5I9ZShNCWR/6cNCuK7uOZcn7d50TkmBwSFhbmuC4wISEBahku0DWbzaitrcWll16KSy65BMHBnBYgEp/1ttFodJm09erVC0ajsc3XTZo0CVOmTEHfvn1RXFyM//f//h/Gjx+P3bt3Q6PRuHxNbm4uFi1a5LHYA1W5mzW53d3Oo9wsGB6pNqO+jX6WS+R5N/+gkKEoul/3ORE5yDk5hJM9CPBAArhw4cIOk62dO3cCgMsvmCRJ7X7xbr/9dsf/Dxo0CCNGjEDfvn2xceNGZGW5vut4Tk4O5s6d63hsNpuRnJzcboxKpHOzJre723mUmwXD+w8Zh/4JV3k5mE6qaAT+48YfGDIURffrPiciJ/bJIWFhYTh+/DhiY2MRGRnp1fe0Wq2orKxEVFQUfvvb3/J6P4F1OwGcOXMm7rjjjna3SUlJwQ8//ICKiopWz506dQoJCQluv59Op0Pfvn1x9OjRNrfRaDRtHh0UicEA6PW2i/9dXWaiUtmeN8hRu9teUL2uDHBZXlxle94fC4v7cex+3edE1Ip9coi9ckhDQwN69OjhlfdyXdmDRNXtBDAuLg5xcXEdbjd69GiYTCZ89913uPLKKwEA3377LUwmE9LT091+v9OnT6O0tBQ6HsLokFoNvPiibeanSuWcENgPui5bJtO94ewF1Qtvhe2Kv+bZip8XFvfj2P26z4nIJV9UDmm3sgcJyWezgH/729/iuuuuw7333osdO3Zgx44duPfeezF58mSnCSADBgzA+vXrAQA1NTWYN28etm/fjmPHjiE/Px+ZmZmIi4vDzTff7KvQA1pWFrB2LdC7Re1uvd62vo2z6L7RRkH1gCgs7sex+3WfE5FL3qwcwsoe5IpK8uEc9DNnzuDBBx/Ehg0bAAA33ngjXn75Zaf6qSqVCqtWrcKMGTNQX1+P3//+99izZw+qq6uh0+mQkZGBv/3tb526ps9sNkOr1cJkMgl7yNuvq0I0WQO3sLgfx+7Xfe5DSt7/ldw2kdXU1ODgwYOOyZNdnRzSfLLHpZdeyskeCtPd/d+nCaBcOEgSiUvJ+7+S2yY6i8WCI0eOdHlyCCd7KF9393/e9IeIiMjPdGdyCCd7kDuYABIREfmhdieHSFZE1e1BiLUKjeo41EQMA1RqTvYgtzEBJCIi8lOuKocMiDyIPqdecKpI1BDcC/+NfgDlTWms7EFu8dksYCIiIuqauLg4DBs2DP0jDuA35fMR0qIcZcj5Sgw8uwBX6E6gf//+TP6oQ0wAiYiIAkBURDguMb0EwHHHUQfVhf/2KlkMldTk48goEDEBJCIiCgSnCqGqL2uV/NmpIAF1pbZbUxF1gAkgERFRIKgv9+x2JDQmgERERIEg3M0SqO5uR0JjAkhERBQI4g22cpPtnARGRLJtO6IOMAEkIiIKBEFqIO3FCw9cTwNB2jK/KUdJ/o0JIBERUaBIzgIMa4GI3s7rI/S29clZ8sRFAYc3CiIiIgokyVlA75tss33ry23X/MUbeOSPOoUJIBERUaAJUgMJ4+SOggIYTwETERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASEckkJSUFKpXKaXn00UflDouIBMD7ABIRyejJJ5/Evffe63gcFRUlYzREJAomgEREMoqOjkZiYqLcYRCRYHgKmIhIRkuWLMFFF12EoUOHYvHixWhoaJA7JCISAI8AEhHJZNasWRg+fDh69OiB7777Djk5OSguLsabb77pcnuLxQKLxeJ4bDabfRUqESkMjwASEXnQwoULW03saLns2rULADBnzhyMHTsWl19+Oe655x4sX74cK1euxOnTp13+7NzcXGi1WseSnJzsy6YRkYKoJEmS5A7C28xmM7RaLUwmE2JiYuQOh4h8yNf7f1VVFaqqqtrdJiUlBWFhYa3Wl5WVQa/XY8eOHRg5cmSr510dAUxOTubYRiSg7o5tPAVMRORBcXFxiIuL69Jr9+zZAwDQ6XQun9doNNBoNF2OjYjIjgkgEZEMtm/fjh07diAjIwNarRY7d+7EnDlzcOONN6JPnz5yh0dECscEkIhIBhqNBh9++CEWLVoEi8WCvn374t5778Ujjzwid2hEJAAmgEREMhg+fDh27NghdxhEJCjOAiYiIiISDBNAIiIiIsEwASQiIiISDBNAIiIiIsEwASQiIiISDBNAIiIiIsEwASQiIiISDBNAIiIiIsEwASQiIiISDBNAIiIiIsEIVwrOagUKC4HyckCnAwwGQK2WOyryFva3eFr2+ZAhckekfKLuZ2y3WO0GFNZ2yYeeeuopafTo0VJ4eLik1Wrdek1TU5O0YMECSafTSWFhYdLYsWOl/fv3d+p9TSaTBEB65x2TpNdLEvDrotdLUl5eFxpDfi8vT2J/C8ZVnycl2fZ/k8kkd3geZx/b5GybqPsZ2y1WuyXJ/9re3f3fpwngX//6V2np0qXS3Llz3U4An3nmGSk6OlrKy8uT9u3bJ91+++2STqeTzGaz2+9r/5AAk1PHAZKkUtkWEb68IsnLs/Ur+1scbfW5bb9nAugNou5nbLdY7ZYk/2x7d/d/lSRJkq+POq5evRqzZ89GdXV1u9tJkoSkpCTMnj0b8+fPBwBYLBYkJCRgyZIluO+++9x6P7PZDK1WC8AEIKbV8yoVoNcDxcUBfCiXHKxWICUFOHHC9fPsb+Vpv8/NALQwmUyIiWm9/wcy+9gmR9tE3c/YbtfPK7XdgP+2vbv7v19PAikuLobRaMSECRMc6zQaDcaOHYtt27a1+TqLxQKz2ey0tEeSgNJS23l9CnyFhW3vqAD7W4k66nPyPFH3M7bbNaW2G1Bu2/06ATQajQCAhIQEp/UJCQmO51zJzc2FVqt1LMnJyW69X3l512Ml/+FuP7K/lYN96Xui7mdst2e2CyRKbXu3E8CFCxdCpVK1u+zatatb76FSqZweS5LUal1zOTk5MJlMjqW0tNSt99HpuhUm+Ql3+5H9rRzsS98TdT9juz2zXSBRatu7fRuYmTNn4o477mh3m5SUlC797MTERAC2I4G6Zp9sZWVlq6OCzWk0Gmg0Grffx37+3mDoUpjkZwwGW3+WldkOzbfE/laejvqcPE/U/YztFqvdgHLb3u0jgHFxcRgwYEC7S1hYWJd+dmpqKhITE7FlyxbHuoaGBhQUFCA9Pb1LP7PlgUP742XLlHfhqqjUauDFF23/z/4WQ3t9Tt4h6n7GdovVbkC5bffpNYAlJSUoKipCSUkJrFYrioqKUFRUhJqaGsc2AwYMwPr16wHYTv3Onj0bTz/9NNavX4/9+/djxowZiIiIwNSpUzv9/u+8A/Tu7bxOrwfWrgWysrrVNPIzWVm2fmV/i6OtPm/5mDxH1P2M7XZer/R2A8psu09vAzNjxgy8/fbbrdZ/9dVXGDdunC0glQqrVq3CjBkzANiu91u0aBFef/11nD17FiNHjsQrr7yCQYMGuf2+zadKR0bGKOcu3tQhRd21ndzSuhKIGT178jYw3iTqfsZ2i9VuwL/a3t39X5b7APqavwySROR7St7/ldw2Imqfou8DSERERESexwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDBMAImIiIgEwwSQiIiISDDBcgdAvmG1AoWFQHk5oNMBBgOgVssdFXkT+5yIiNri0yOAixcvRnp6OiIiIhAbG+vWa2bMmAGVSuW0jBo1yruBKsy6dUBKCpCRAUydavs3JcW2npSJfU5ERO3xaQLY0NCAKVOm4P777+/U66677jqUl5c7lk2bNnkpQuVZtw649VbgxAnn9WVltvVMCJSHfU5ERB3x6SngRYsWAQBWr17dqddpNBokJiZ6ISJls1qBWbMASWr9nCQBKhUwezZw0008NagU7HMiInJHQEwCyc/PR69evXDppZfi3nvvRWVlZbvbWywWmM1mp0VEhYWtjwI1J0lAaaltO1IG9jkREbnD7xPASZMm4b333sPWrVvxwgsvYOfOnRg/fjwsFkubr8nNzYVWq3UsycnJPozYf5SXe3Y78n/scyIicke3E8CFCxe2mqTRctm1a1eXf/7tt9+OG264AYMGDUJmZiY+++wz/Pe//8XGjRvbfE1OTg5MJpNjKS0t7fL7BzKdzrPbkf9jnxMRkTu6fQ3gzJkzcccdd7S7TUpKSnffxkGn06Fv3744evRom9toNBpoNBqPvWegMhgAvd528b+ra8JUKtvzBoPvYyPvYJ8TEZE7up0AxsXFIS4uzhOxuOX06dMoLS2FjocwOqRWAy++aJv5qVI5JwQqle3fZcs4GUBJ2OdEROQOn14DWFJSgqKiIpSUlMBqtaKoqAhFRUWoqalxbDNgwACsX78eAFBTU4N58+Zh+/btOHbsGPLz85GZmYm4uDjcfPPNvgw9YGVlAWvXAr17O6/X623rs7LkiYu8h31OREQd8eltYP7617/i7bffdjweNmwYAOCrr77CuHHjAABHjhyByWQCAKjVauzbtw9r1qxBdXU1dDodMjIy8OGHHyI6OtqXoQe0rCzbbT9YFUIc7HP5LV68GBs3bkRRURFCQ0NRXV3dapuSkhI88MAD2Lp1K8LDwzF16lQ8//zzCA0N9X3ARCQUnyaAq1ev7vAegFKzc1bh4eH44osvvByVGNRq4EKOTYJgn8vLfuP70aNHY+XKla2et1qtuOGGGxAfH49vvvkGp0+fxvTp0yFJEl566SUZIiYikbAWMBGRF3R04/vNmzfj4MGDKC0tRVJSEgDghRdewIwZM7B48WLExMT4KlQiEpDf3weQiEiJtm/fjkGDBjmSPwCYOHEiLBYLdu/eLWNkRCQCHgEkIpKB0WhEQkKC07oePXogNDQURqPR5WssFovTTfBFrXJERN3HI4BERG7y9I3vVfZ78zQjSZLL9QCrHBGR5/AIIBGRmzx54/vExER8++23TuvOnj2LxsbGVkcG7XJycjB37lzHY7PZzCSQiLqECSARkZs8eeP70aNHY/HixSgvL3fc2H7z5s3QaDRIS0tz+RpWOSIiT2ECSETkBSUlJThz5ozTje8B4JJLLkFUVBQmTJiAyy67DNOmTcNzzz2HM2fOYN68ebj33ns5A5iIvI4JIBGRF3R043u1Wo2NGzfiz3/+M6666iqnG0ETEXmbSpJclYxXFrPZDK1WC5PJxL+siQSj5P1fyW0jovZ1d//nLGAiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwTABJCIiIhIME0AiIiIiwQTLHYCvWa1AYSFQXg7odIDBAKjVckdF3sL+Fk/LPh8yRO6IfEPU7zrbLVa7AXHb7vGxTfKR4uJi6Y9//KOUkpIihYWFSRdffLH017/+VbJYLO2+rqmpSVqwYIGk0+mksLAwaezYsdL+/fs79d4mk0kCIL3zjknS6yUJ+HXR6yUpL687LSN/lZcnsb8F46rPk5Js+7/JZJI7PI8TfWwTdR8Xtd2SJG7bvTG2+SwB/Oyzz6QZM2ZIX3zxhfTTTz9J//rXv6RevXpJDz30ULuve+aZZ6To6GgpLy9P2rdvn3T77bdLOp1OMpvNbr+3fZAETE4fHiBJKpVtUfqXRzR5ebZ+ZX+Lo60+t+33yk4ARRzbRN3HRW23JInbdm+NbSpJkqRuHkTssueeew6vvfYafv75Z5fPS5KEpKQkzJ49G/PnzwcAWCwWJCQkYMmSJbjvvvvceh+z2QytVgvABCCm1fMqFaDXA8XFYhxGVjqrFUhJAU6ccP08+1t52u9zMwAtTCYTYmJa7/+BTNSxTdR9XNR2A+K23Ztjm6yTQEwmE3r27Nnm88XFxTAajZgwYYJjnUajwdixY7Ft27Y2X2exWGA2m52W9kgSUFpqO7dOga+wsO1BAmB/K1FHfS4qpX7XRd3HRW03IG7bvTm2yZYA/vTTT3jppZeQnZ3d5jZGoxEAkJCQ4LQ+ISHB8Zwrubm50Gq1jiU5OdmtmMrL3dqM/Jy7/cj+Vg72ZfuU9vmIuo+L2m5A3LZ7sz3dTgAXLlwIlUrV7rJr1y6n15w8eRLXXXcdpkyZgnvuuafD91CpVE6PJUlqta65nJwcmEwmx1JaWupWW3Q6tzYjP+duP7K/lYN92T6lfT6i7uOithsQt+3ebE+3rwGsqqpCVVVVu9ukpKQgLCwMgC35y8jIwMiRI7F69WoEBbWdg/7888/4zW9+g++//x7Dhg1zrL/pppsQGxuLt99+260YRb1ORlT2aybKymynBVpifytP+33OawCV9l0XdR8Xtd2AuG335tjW7SOAcXFxGDBgQLuLPfkrKyvDuHHjMHz4cKxatard5A8AUlNTkZiYiC1btjjWNTQ0oKCgAOnp6V2Kt+WBQ/vjZcuU9aURmVoNvPii7f/Z32Jor89FIdJ3XdR9XNR2A+K23Ztjm89mAZ88eRJjx45Fnz59sGbNGqib9VJiYqLj/wcMGIDc3FzcfPPNAIAlS5YgNzcXq1atQr9+/fD0008jPz8fR44cQXR0tFvvbTKZEBsbixUrSrFwYQxOnvz1ud69gWeeAW680TPtJP+xYQMwfz7Y3wJx1ec6nRnl5cmorq6+cLRMOUQf20Tdx0VtNyBu270ytnnoNjUdWrVq1YX7VbVemgMgrVq1yvHYfiPoxMRESaPRSGPGjJH27dvXqfcuLS1t8725cOEixlJaWuqJocyvcGzjwoVLV8c2We8D6CtNTU04efIkoqOjoVKpYDabkZycjNLSUsVdE9QetlusdgPitr15u6Ojo/HLL78gKSmpw8tOAk3Lsc0XlPKdUkI7lNAGQBntkKMNkiR1a2wTohZwUFAQ9Hp9q/UxMTEB+2XrDrZbPKK23d5upZ36tWtrbPMFpXynlNAOJbQBUEY7fN2G7oxtyvpzmIiIiIg6xASQiIiISDBCJoAajQYLFiyARqOROxSfYrvFajcgbttFbbcvKOWzVUI7lNAGQBntCMQ2CDEJhIiIiIh+JeQRQCIiIiKRMQEkIiIiEgwTQCIiIiLBMAEkIiIiEozQCeCxY8dw9913IzU1FeHh4fjNb36DBQsWoKGhQe7QvG7x4sVIT09HREQEYmNj5Q7Hq1599VWkpqYiLCwMaWlpKCwslDskr/v666+RmZmJpKQkqFQqfPLJJ3KH5HW5ubm44oorEB0djV69euH3v/89jhw5IndYiuLOuFFSUoLMzExERkYiLi4ODz74oN+PqSkpKVCpVE7Lo48+KndYHQrksW3hwoWtPvPExES5w+pQR2OrJElYuHAhkpKSEB4ejnHjxuHAgQPyBNsBoRPAw4cPo6mpCa+//joOHDiAv//971i+fDkee+wxuUPzuoaGBkyZMgX333+/3KF41YcffojZs2fj8ccfx549e2AwGDBp0iSUlJTIHZpX1dbWYsiQIXj55ZflDsVnCgoK8MADD2DHjh3YsmULzp8/jwkTJqC2tlbu0BSjo3HDarXihhtuQG1tLb755hv885//RF5eHh566CEfR9p5Tz75JMrLyx3LE088IXdI7VLC2DZw4ECnz3zfvn1yh9ShjsbWZ599FkuXLsXLL7+MnTt3IjExEddeey1++eUXH0fqBo9VJVeIZ599VkpNTZU7DJ9ZtWqVpNVq5Q7Da6688kopOzvbad2AAQOkRx99VKaIfA+AtH79ernD8LnKykoJgFRQUCB3KIrT1rixadMmKSgoSCorK3Os++CDDySNRiOZTCYfRtg5ffv2lf7+97/LHUanBPrYtmDBAmnIkCFyh9EtLcfWpqYmKTExUXrmmWcc686dOydptVpp+fLlMkTYPqGPALpiMpnQs2dPucMgD2hoaMDu3bsxYcIEp/UTJkzAtm3bZIqKfMVkMgEA92cf2r59OwYNGoSkpCTHuokTJ8JisWD37t0yRtaxJUuW4KKLLsLQoUOxePFivz5trZSx7ejRo0hKSkJqairuuOMO/Pzzz3KH1C3FxcUwGo1O/aLRaDB27Fi/7JdguQPwJz/99BNeeuklvPDCC3KHQh5QVVUFq9WKhIQEp/UJCQkwGo0yRUW+IEkS5s6di6uvvhqDBg2SOxxhGI3GVvtbjx49EBoa6tf73KxZszB8+HD06NED3333HXJyclBcXIw333xT7tBcUsLYNnLkSKxZswaXXnopKioq8NRTTyE9PR0HDhzARRddJHd4XWL/7F31y/Hjx+UIqV2KPALo6uLSlsuuXbucXnPy5Elcd911mDJlCu655x6ZIu+errRbBCqVyumxJEmt1pGyzJw5Ez/88AM++OADuUPxe54eN1ztW3Lsc51p15w5czB27FhcfvnluOeee7B8+XKsXLkSp0+f9mnMnRXIY9ukSZNwyy23YPDgwfjd736HjRs3AgDefvttmSPrvkDpF0UeAZw5cybuuOOOdrdJSUlx/P/JkyeRkZGB0aNHY8WKFV6Ozns6226li4uLg1qtbvUXcWVlZau/0Eg5/vKXv2DDhg34+uuvodfr5Q7H73ly3EhMTMS3337rtO7s2bNobGz0+T7XnXaNGjUKAPDjjz/65dEoJY5tkZGRGDx4MI4ePSp3KF1mn8VsNBqh0+kc6/21XxSZAMbFxSEuLs6tbcvKypCRkYG0tDSsWrUKQUGBe1C0M+0WQWhoKNLS0rBlyxbcfPPNjvVbtmzBTTfdJGNk5A2SJOEvf/kL1q9fj/z8fKSmpsodUkDw5LgxevRoLF68GOXl5Y5fgJs3b4ZGo0FaWppH3sNd3WnXnj17AMDpl7g/UeLYZrFYcOjQIRgMBrlD6bLU1FQkJiZiy5YtGDZsGADb9ZoFBQVYsmSJzNG1psgE0F0nT57EuHHj0KdPHzz//PM4deqU47lAuB9Rd5SUlODMmTMoKSmB1WpFUVERAOCSSy5BVFSUvMF50Ny5czFt2jSMGDHCcYS3pKQE2dnZcofmVTU1Nfjxxx8dj4uLi1FUVISePXuiT58+MkbmPQ888ADef/99/Otf/0J0dLTj6IhWq0V4eLjM0SlDR+PGhAkTcNlll2HatGl47rnncObMGcybNw/33nsvYmJi5A2+Ddu3b8eOHTuQkZEBrVaLnTt3Ys6cObjxxhv9el8J9LFt3rx5yMzMRJ8+fVBZWYmnnnoKZrMZ06dPlzu0dnU0ts6ePRtPP/00+vXrh379+uHpp59GREQEpk6dKmPUbZBzCrLcVq1aJQFwuSjd9OnTXbb7q6++kjs0j3vllVekvn37SqGhodLw4cOFuC3IV1995bJ/p0+fLndoXtPWvrxq1Sq5Q1MMd8aN48ePSzfccIMUHh4u9ezZU5o5c6Z07tw5+YLuwO7du6WRI0dKWq1WCgsLk/r37y8tWLBAqq2tlTu0DgXy2Hb77bdLOp1OCgkJkZKSkqSsrCzpwIEDcofVoY7G1qamJmnBggVSYmKipNFopDFjxkj79u2TN+g2qCRJkryfZhIRERGRvwjcC96IiIiIqEuYABIREREJhgkgERERkWCYABIREREJhgkgERERkWCYABIREREJhgkgERERkWCYABIREREJhgkgERERkWCYABIREREJhgkgERERkWCYABIREREJhgkgERERkWCYABIREREJhgkgERERkWCYABIREREJhgkgERERkWD+PwORoWwiRjQsAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "430e96282417425998230e3794982b7a", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABa10lEQVR4nO3de3wTZb4/8M80bUOvKaU0TZtCiwIK5VpWLku5uaKsFNeKynF/CLsKorJyWVwFzxH0t8Aq6imruyKKKN6Ov4XCorCruHKpAitFilAQwVPohfQKJPRC0ybz+yOkkjZtQ5vJJDOf9+sVMZNJ8v3OdJ5+OzPP8wiiKIogIiIiItUIkjsAIiIiIvItFoBEREREKsMCkIiIiEhlWAASERERqQwLQCIiIiKVYQFIREREpDIsAImIiIhUhgUgERERkcqwACQiIiJSGRaARERERCrDApCIiIhIZVgAEhEREakMC0AiIiIilQmWOwBfsNvtOH/+PKKioiAIgtzhEJEPiaKIy5cvIzExEUFByvqbl20bkXp1tW1TRQF4/vx5JCcnyx0GEcmouLgYRqNR7jC8im0bEXW2bVNFARgVFQUAWL++GCtWROP8+Z9eS0wEXngBmDZNpuB8YPt24KmnwLyhjrwB9ebuLu+EBAvKypKb2wElUXvbplZqPb7VTIq2TRBFUfRSfH7LYrFAp9MBMAOIdnnNedVk82YgK8vnoUkuJweYPh1ouZeZtzLzBtSbe1t5AxYAOpjNZkRHR7t5Z+BSc9umVmo9vtVMqrZN9QUg4DhwjEagsBDQaHwenmRsNiAlBSgpcf8681ZW3oB6c28/b3UWgIBy97daqfX4VjMp2zZl3RHdSaIIFBcDublyR+JdubltNxQA81Za3oB6c+8ob7VS6v5WK7Ue32omZdvGAvAaJpPcEXiXp/kwb+VQa+5Ky8fbuH2UQa3Ht5pJuS9ZAF7DYJA7Au/yNB/mrRxqzV1p+Xgbt48yqPX4VjMp9yXvAYRy75tw3jtQWuru5lHmrbS8AfXm3n7evAdQaftbrdR6fKuZlG2b6s4Athwr1fk8O1t5B4xGA6xd6/h/5u36XIl5A+rNvb281UJN+1ut1Hp8q5mUbZuqCsD33gOSklyXGY3K7jafleXIj3k7KD1vQL25t5V3y+dKpMa2Ta3UenyrmVRtm6ouAZvNZkRERCM313FjpcEAZGSo468lmw3MW0V5A+rNvWXeQ4ZYEBur7EvAam7b1Eqtx7eaebttU10BqLRfAETUPiUf/0rOjYja19XjX1WXgImIiIiIBSARERGR6rAAJCIiIlIZFoBEREREKsMCkIiIiEhlWAASERERqQwLQCIiIiKVYQFIREREpDIsAImIiIhUhgUgERERkcqwACQiIiJSGRaARERERCrDApCIiIhIZVgAEhEREakMC0AiIiIilWEBSERERKQyLACJiIiIVMbnBeC+ffuQmZmJxMRECIKAbdu2tbv+nj17IAhCq8f333/vm4CJiIiIFCbY119YW1uLIUOG4De/+Q3uuecej9936tQpREdHNz/v2bOnFOERERERKZ7PC8ApU6ZgypQp1/2++Ph4xMTEeD8gIiIiIpUJmHsAhw0bBoPBgFtvvRW7d+9ud92GhgZYLBaXBxERERE5+H0BaDAYsH79emzZsgU5OTno378/br31Vuzbt6/N96xevRo6na75kZyc7MOIiYiIiPybIIqiKNuXCwK2bt2KX/3qV9f1vszMTAiCgO3bt7t9vaGhAQ0NDc3PLRYLkpOTYTabXe4jJCLls1gs0Ol0ijz+lZwbEbWvq8e/358BdGfUqFE4ffp0m69rtVpER0e7PIiIiIjIISALwCNHjsBgMMgdBhEREVFA8nkv4JqaGpw5c6b5eWFhIfLz8xEbG4tevXph6dKlKC0txaZNmwAA2dnZSElJwcCBA2G1WvH+++9jy5Yt2LJli69DJyIiIlIEnxeAeXl5mDhxYvPzxYsXAwBmzZqFd955ByaTCUVFRc2vW61WLFmyBKWlpQgLC8PAgQOxY8cO/PKXv/R16ERERESKIGsnEF/hjdJE6qXk41/JuRFR+1TZCYSIiIiIOo8FIBEREZHKsAAkIiIiUhkWgEREREQqwwKQiIiISGVYABIRERGpDAtAIiIiIpVhAUhERESkMiwAiYiIiFSGBSARERGRyrAAJCIiIlIZFoBEREREKhMsdwBERESdZbMBubmAyQQYDEBGBqDRyB0VSYn73DtYABIRUUDKyQEWLABKSn5aZjQCa9cCWVnyxUXS4T73Hl4CJiKigJOTA0yf7loIAEBpqWN5To48cZF0uM+9iwUgEREFFJvNcRZIFFu/5ly2cKFjPVIG7nPvYwFIREQBJTe39Vmga4kiUFzsWI+Ugfvc+1gAEhFRQDGZvLse+T/uc+9jAUhERAHFYPDueuT/uM+9jwUgEREFlIwMR89PQXD/uiAAycmO9UgZuM+9jwUgEREFFI3GMewH0LogcD7PzubYcErCfe59LACJiCjgZGUBmzcDSUmuy41Gx3KOCac83OfexYGgiYgoIGVlAXfdxVkh1IT73HtYABIRUcDSaIAJE+SOgnyJ+9w7eAmYiIiISGVYABIRSWTfvn3IzMxEYmIiBEHAtm3bXF4XRRErVqxAYmIiwsLCMGHCBBQUFMgTLBGpCgtAIiKJ1NbWYsiQIXjttdfcvv7iiy/ilVdewWuvvYZDhw4hISEBt912Gy5fvuzjSIlIbXgPIBGRRKZMmYIpU6a4fU0URWRnZ+OZZ55B1tXui++++y70ej0+/PBDPPLII74MlYhUhmcAiYhkUFhYiLKyMkyePLl5mVarxfjx47F//34ZIyMiNeAZQCIiGZSVlQEA9Hq9y3K9Xo9z5865fU9DQwMaGhqan1ssFukCJCJF4xlAIiIZCS2mNRBFsdUyp9WrV0On0zU/kpOTfREiESkQC0AiIhkkJCQA+OlMoFNFRUWrs4JOS5cuhdlsbn4UFxdLHicRKRMLQCIiGaSmpiIhIQG7du1qXma1WrF3716MGTPG7Xu0Wi2io6NdHkREncF7AImIJFJTU4MzZ840Py8sLER+fj5iY2PRq1cvLFy4EKtWrULfvn3Rt29frFq1CuHh4XjggQdkjJqI1IAFIBGRRPLy8jBx4sTm54sXLwYAzJo1C++88w7+8Ic/oL6+Ho899hguXryIkSNH4vPPP0dUVJRcIRORSgiiKIpyByE1i8UCnU4Hs9nMSyZEKqPk41/JuRFR+7p6/PMeQCIiIiKVYQFIREREpDIsAImIiIhUhgUgERERkcqwACQiIiJSGRaARERERCrDApCIiIhIZVgAEhEREakMC0AiIiIilWEBSERERKQyLACJiIiIVIYFIBEREZHKsAAkIiIiUhmfF4D79u1DZmYmEhMTIQgCtm3b1uF79u7di/T0dHTr1g19+vTBunXrpA+UiIiISKF8XgDW1tZiyJAheO211zxav7CwEL/85S+RkZGBI0eOYNmyZXjiiSewZcsWiSMlIiIiUqZgX3/hlClTMGXKFI/XX7duHXr16oXs7GwAwM0334y8vDy89NJLuOeeeySKkoiIiEi5/P4ewAMHDmDy5Mkuy26//Xbk5eWhsbHR7XsaGhpgsVhcHkRERETk4PcFYFlZGfR6vcsyvV6PpqYmVFVVuX3P6tWrodPpmh/Jycm+CJWIiIgoIPh9AQgAgiC4PBdF0e1yp6VLl8JsNjc/iouLJY+RiIiIKFD4/B7A65WQkICysjKXZRUVFQgODkaPHj3cvker1UKr1foiPCIiIqKA4/dnAEePHo1du3a5LPv8888xYsQIhISEyBQVERERUeDyeQFYU1OD/Px85OfnA3AM85Kfn4+ioiIAjsu3Dz74YPP68+bNw7lz57B48WKcPHkSb7/9NjZs2IAlS5b4OnQiIiIiRfD5JeC8vDxMnDix+fnixYsBALNmzcI777wDk8nUXAwCQGpqKnbu3IlFixbhL3/5CxITE/HnP/+ZQ8AQERERdZIgOntUKJjFYoFOp4PZbEZ0dLTc4RCRDyn5+FdybkTUvq4e/35/DyAREREReRcLQCIiIiKVYQFIREREpDIsAImIiIhUxu8HglYSmw3IzQVMJsBgADIyAI1G7qikx7zVlTeg7tzlwm2uLtzf6tNynw8Z0sUPFFXAbDaLAESz2SxbDFu2iKLRKIrATw+j0bFcyZi3uvIWRf/L3R+Of6k4c3vvPbNfbXOSlr8dYyQ9d/s8MbFrbRuHgfGBnBxg+nTHLruWcyrjzZuBrCyfhyU55u26XOl5A/6Zu9zHv5ScuQFmAK65qeHnTY388RgjabW1zwELgM63bSwAJWazASkpQEmJ+9cFATAagcJCZZ2+Z97uX1dq3oD/5q7WAhBQ9s+bGvnrMUbSaX+fd60AZCcQieXmtn2wAo6KvrjYsZ6SMG/3lJo3oO7c/RW3ubLwGFOfjvZ5V7AAlJjJ5N31AoX7fOwerhe41Lq/AXXn7u+4zZWBx5j6SLkvWQBKzGDw7nqBonU+BQBCAKzpYL3Aptb9Dag7d3/Hba4MrffjQgDdAVg7WI8ClZT7kgWgxDIyHPdkOG/QbUkQgORkx3pK0jrv7+A4A/gUgB0qytuVUvMG1J27v+I2VxbXY6wewJsALgF4FwD3txJ11K52BQtAiWk0wNq1jv9vuQOdz7OzlXfDbuu8vwcgABABZEEU96gk758oeX8D6s7dH3CbK9+1xxjwBoC6q///HJxnAbm/laW9drWrWAD6QFaWo2t+UpLrcqNR2V32XfP+7ppXGhEa+ksYjd/IFJm01Lq/AXXnLqf33uM2V4usLOCDD+oRFLTymqWl6N79Xe5vhWqrXW35/HpxGBgfUuvI7TYbYDSmoqzsbPOyoKAgREZG4uuvv0ZaWpp8wUlIrfsb8K/c/eX4l8K1uUVERPvNNidpZWdnY/Hixfjp17eApKRE/O///i9CQ0NljY2k03omEAtiYzkOYLuU/AsgENTV1SEyMhItf9Q0Gg26d++OgwcP4oYbbpApOlI6JR//Ss6N3Kuvr0evXr1QVVXV6rX169djzpw5MkRFcujq8c9LwCS5kydPtir+AMBms+HixYuYMGECSqQa6IiISEHeeOMNVFdXt1ouCAKee+45WK1WN+8iao0FIEnu2LFjbb5ms9lQVlaGiRMnorKy0odREREFlvr6eqxcudLtH9SiKKK0tBTvvvuuDJFRIGIBSJI7fvw4QkJC2ny9qakJhYWFuPXWW2E2m30YGRFR4Gjr7J8TzwLS9WABSJI7evQoGhsb213HZrPh2LFjePrpp30UFRFR4Gjv7J8TzwLS9WABSJLLz89v8zXN1W6Ker0ejzzyCH73u9/5KCoiosDR0dk/J54FJE8Fyx0AKVt1dbVLbzWNRgObzQYASEhIwGOPPYapU6di6NChEKQY6pyISAFeeukliKLocjuNzWaD3W53WWa321FaWopt27bhvvvukyNUChAsAElS33//ffP/d+vWDbfddhvuuusufPLJJyguLsZ//dd/yRgdEVFgWLFiBX788UeXZQcPHsTBgwexcOFCl+UajQajRo3yYXQUiFgAkqTS0tKwYsUK3HLLLZg4cSK6desGAAgLC8Ovf/1rlJaWIqkTw5mXlZVh1apVyM7ORlAQ72QgImV7+OGHWy174YUXcOzYMaxevVqGiCjQsQAkSel0OixfvrzV8jvuuAMajQY7duzA3LlzO/yc9evX48MPP3RZdurUKfTv3x+PP/641+IlIlIq/uFM12IBSLKIjY3Fz3/+c3zyySceFYBz5851We/ChQt48MEH8etf/1rKMImIAhb/cKb2sAAk2WRmZuK//uu/UFdXh/Dw8Ot6b2RkJLZs2QKtVitRdEREgY1/OFN7eA6YZDN16lRcuXIFX3755XW/NzQ0lMUfEdF1cP7hHBMTI3co5AdYAJJs+vfvjxtvvBGffPKJR+s///zzGDRoECIiIqDX6/Hoo492OMA0ERE58A9nuhYLQJKNIAjIzMzEp59+2u7o9oBjhHubzYY33ngDJ06cwDvvvIPNmzfjrbfe8lG0RESB56mnnsKUKVPkDoP8EAtAklVmZibOnz+Pb7/9tt31nKPbjxkzBr1798aUKVNw22234fvvv0dxcTEmTJiAAQMGYPDgwfjb3/7mo+iJiPxbfn4+hgwZIncY5IdYAJKsxo4dC51Oh08//bTd9c6dO4f58+cjLS0N3bt3R2RkJP7f//t/MBqNCA4ORnZ2Nk6cOIEvvvgCixYtQm1trY8yICLyX0ePHsXQoUPlDoP8EAtAklVISAjuuOOOdu8DrKqqwi233IKqqiq88sor+Oqrr3DgwAFoNBoMHToUBoOhuYGLj49HbGwsLly44KMMiIj8U1lZGcrLy2G32zFu3DiEh4djxIgROHr0qNyhkR9gAUiyy8zMxOHDh3H+/Hm3r+/cuRNNTU346KOPMHnyZAwcOBD79u2D1Wpt9ZdtXl4e7HY7kpOTfRA5EZH/OnLkCAAgOzsbq1atQl5eHqKiojBjxgyZIyN/wAKQZDdlyhQEBQW1eRk4NjYWFosF27dvx+nTp/HKK69gxYoVSEpKQs+ePZvXq66uxoMPPoj169f7KnQiIr+Vn5+Pbt26Ydu2bRg7diwGDBiAlStX8t5pAsACkPyAc1aQtgrAO++8Ew899BBmzpyJsWPHorS0FPfdd5/L2b+GhgbcfffdWLp0KcaMGeOjyImI/Fd+fj7uu+8+JCYmNi+LiIgAAAQFBfHeaZXjTCDkFzIzM7F8+XLU19cjLCzM5TVBELBu3TqsW7fO7XtFUcTs2bMxadIkzJw50xfhEhH5vfz8fMybN89l2bfffouEhAQkJiYiKSkJgOu9084CkZSPZwDJL2RmZqK+vh7/+te/rvu9X3/9NT7++GNs27YNQ4cOxdChQ3Hs2DEJoiTyrhUrVkAQBJdHQkKC3GGRAtTV1eHMmTOw2WzNy+x2O1599VXMnj0bgiA0L+e90+rEM4DkF5yzgnz66aeYOnXqdb137NixsNvtEkVGJK2BAwfiiy++aH6u0WhkjIaU4ujRo9BoNNi4cSPGjRuHmJgYLFu2DLW1tVi2bFnzes57pzmovvqwACS/IAgCpk6dir/97W8QRdHlr9MusduAylyg3gSEGYCeGUAQf8GS/wgODuZZP/K6o0ePol+/fli+fDnuueceXLhwAdOmTcP+/fsRFRUFgPdOqx0LQPIbmZmZyM7OxpEjRzB8+PCuf2BxDnB4AVBX8tOycCOQvhZIzur65xN5wenTp5GYmAitVouRI0di1apV6NOnj9t1Gxoa0NDQ0PzcYrH4KkwKMPPmzWu+/+/ee+9t9TrvnSbeA0h+IyMjAzqdrt1BoT1WnAPkTnct/gCgrtSxvDin699B1EUjR47Epk2b8Nlnn+HNN99EWVkZxowZg+rqarfrr169GjqdrvnBe7aos3jvNAmiKIpyByE1i8UCnU4Hs9mM6OhoucOhdsyYMQM//vgjDh061PkPsduA7Smti79mguNM4LRCXg5WgUA6/mtra3HDDTfgD3/4AxYvXtzqdXdnAJOTkwMiN/K+F154AWvWrEFVVZXcoZAMutq28Qwg+ZWpU6ciLy+vzVlBPFKZ207xBwAiUFfsWI/Ij0RERGDQoEE4ffq029e1Wi2io6NdHkREncECkPyKc1aQHTt2dP5D6k3eXY/IRxoaGnDy5EkYDAa5QyEihWMBSH6lR48e7c4K4pEwD395eroekUSWLFmCvXv3orCwEP/+978xffp0WCwWzJo1S+7QiEjhWACS38nMzMSuXbtQX1/fuQ/omQF7tyS0dXOrCAEIT3YMCUMko5KSEvzHf/wH+vfvj6ysLISGhuLgwYPo3bu33KERkcKxACS/M3XqVNTX1+PLL7/s1PutTTYUxi4AgFZFoHj1vxf7LGcHEJLd//zP/+D8+fOwWq0oLS3Fli1bMGDAALnDIiIVYAFIfuemm27CDTfc0KnhYJqamvD999+jwNIfZxL+hMbgeJfXG4P1+C76WRypSmXPOSIiUi3ZCsC//vWvSE1NRbdu3ZCeno7c3LZ7ZO7Zs6fVfJmCIOD777/3YcTkK4IgIDMzE59++imuZ5Qiu92O06dP4+zZs4iPj8flmNtw/IZP8UPyGyhMXIkfkt/A8Rs+gS3xLlitVhQUFMBsNkuYCRERkX+SpQD8+OOPsXDhQjzzzDM4cuQIMjIyMGXKFBQVFbX7vlOnTsFkMjU/+vbt66OIydcyMzNRWlqK/Px8j9YXRRE//vgjfvzxR/To0QOhoaGOFwQNaiJG4GL0HaiJGAEIjsu+PXv2RE1NDY4fP47a2lqJsiAiIvJPshSAr7zyCh566CE8/PDDuPnmm5GdnY3k5GS8/vrr7b4vPj4eCQkJzQ9Omq5cY8eORXR0tMeXgYuKinD69GnodDqEhYV1uL4gCNDr9bhw4QIKCgo63+GEiIgoAPm8ALRarTh8+DAmT57ssnzy5MnYv39/u+8dNmwYDAYDbr31VuzevbvN9RoaGmCxWFweFFhCQ0Nxxx13eFQAmkwmfP/99wgPD0dERITH3xEUFISEhASUlZXh5MmTsFqtXQmZiIgoYPi8AKyqqoLNZoNer3dZrtfrUVZW5vY9BoMB69evx5YtW5CTk4P+/fvj1ltvxb59+9yuz/kylSEzMxN5eXkwmdoesLmqqgonTpyARqPp1KwIGo0Ger0eJSUlOHXqFGw2W1dCJiIiCgjBcn2xIAguz0VRbLXMqX///ujfv3/z89GjR6O4uBgvvfQSxo0b12r9pUuXusyj6ZwvkwLLtbOCPPzww61ev3TpEo4fP46mpib07Nmz098TEhKC+Ph4nD17FiEhIejXrx+CgthBnoiIlMvnv+Xi4uKg0Whane2rqKhodVawPaNGjeJ8mQrXo0cPjBkzxu1l4JqaGhQUFKC2thZxcXFd/q7Q0FDExsbizJkzKCwsvK7ex0RERIHG5wVgaGgo0tPTsWvXLpflu3btwpgxYzz+nCNHjnC+TBXIzMzEF1984dJJo76+HgUFBbh48SL0en2bZ46vV1hYGKKjo/HDDz+gpKTEK59JRNKy2YA9e4CPPnL865d3cdhtQPke4OxHjn/t/hgkAibOgNjnAUCWS8CLFy/GzJkzMWLECIwePRrr169HUVER5s2bB8BxCbe0tBSbNm0CAGRnZyMlJQUDBw6E1WrF+++/jy1btmDLli1yhE8+lJmZiaeeegq7d+/GL3/5S1itVpw4cQIVFRVISEjw+qXayMhI2Gw2nDhxAiEhIUhISPDq5xOR9+TkAAsWANf+vWY0AmvXAllZ8sXlojgHOLwAqLsmyHAjkL4WSPaXIBEwcQbEPg8QstzodP/99yM7OxvPP/88hg4din379mHnzp3N81+aTCaXMQGtViuWLFmCwYMHIyMjA1999RV27NiBLO5txbt2VhDnLB+lpaXQ6/WSDQOk0+kQFBSEEydOcLYQIj+VkwNMn+5aCABAaaljeU6OPHG5KM4Bcqe7FlUAUFfqWF7sD0EiYOIMiH0eQARRBTc7WSwW6HQ6mM1m3g8YgBYuXIgtW7bgs88+w5kzZxAfH//TQM8SKi8vR0REBIYMGQKdTif595E0lHz8Kzm39thsQEpK60LASRAcZ4UKCwHZhou124DtKa2LqmaC4wzbtMJOz0v+wgsvYM2aNV37Q9UHcXpDQOxzH+vq8S9bL2AiT02dOhVr167FF198gfT0dJ8Uf4Bj4PGysjIcP34cQ4cOva4xBolIOrm5bRcCACCKQHGxY70JE3wWlqvK3HaKKgAQgbpiVJ7IQUPM6E59hdlsht1u79I9y9pLB9DTgzhRmQvoJ3T6e7oqIPZ5gGEBSH4vJSUF4eHh+O677zB27Fiffa9zthCTyYSCggIMHjwY3bp189n3E5F77QwN2qn1JFHv2ZcXn/4G50M6nr3InfPnz6OpqcnjKTPdSWz8Bh4NouVhPlI5f14EcBbAVgBHAbwDoHUHQFn3eYBhAUh+zWQy4ccff8TPfvYzHDx4EI899phPv985W4jJZEJwcDDS0tJ8dgaSiNzzdAAIWQeKCPPsyyPj+iIxIrFTXxEdHY2goCAkJnbu/QAQWdsXKPZgRQ/z8RabzYbjx48jNzcXubm5+Pzz3QAqr76qAbAR7gpADg7iORaA5LeuneXj1ltvxbPPPovKysouDfrcGdfOFhISEoIBAwZwHmoiGWVkOO73Ki11XPpryXk/WEaG72Nr1jPDce9cXSmA1kGKABqD9agJH+bz0K5VEz4M1uB4hDRVuCmngOZ7AHtKuzHr6+tx6NAhfPXVV9i7dy++/vpr1NbWQhAEBAUFtZil6XG07MPqF/s8wHC6A/JLly5dQkFBARobGxEbG4uf//znCAoKwtdffy1LPCEhIejZsyfOnj2L06dPw263yxIHETlu8l+71vH/LYcBdT7Pzpa5M0CQxjGECgCxRWnlKAcFlOiXAILMf0wKGpTonwTQukxtjjs9W7IOIKdOncKoUaMQHR2N8ePH49lnn8WuXbtQW1vriEEUWxR/QQCWuKbgL/s8wLAAJL9TW1uLgoIC1NTUNJ/ti4mJweDBg9uc/9kXtFpt82whZ8+e5WwhRDLKygI2bwaSklyXG42O5X4xSlhyFmxjPoZV4zpbUWOwHoVJL+JS1CSZAnN1KWoSCpPWoDE43mW5XWsAMjZLOg5gQ0MDDh8+jKamJgCOS79tta3BwcEYM2Y6jEbXqV39ap8HEF4CJr9SX1+P48eP4+LFi0hISHCZ5SMjIwNvvvkmGhoaoNVqZYkvLCwMNpsNp06dQkhICOeYJpJRVhZw112Onp8mk+P+r4wM/zoLVB0+Hoci3kKfyFJ0w0U0auIcl33lPvPXwqWoSbgUOR6RdUcQYqtChUWD4MSJGG78WRuXhr1j8ODBWLdundv53ltqamrCyy8vws9+5t/7PFCwACS/YbVacfLkyTZn+Rg3bhxeffVVHDp0yKe9gVuKjIxEU1MTTp48ydlCiGSm0fj3sB8mkwkQNKiPHon6jleXl6BBTcQIAIAt9AouVV9sHmtOKuvXr8eHH34Io9HY7nA2QUFBGDZsGEaNGgXAv/d5oOAlYPILzrNqJSUlbc7ykZqaiqSkJOTm5soQoauYmBgIgoATJ06gurpa7nCIyA/V1NSgoqIiIAeS79atG6xWKyoqKiT9nrlz52LPnj04e/Ys7rjjjjbXs9vtWLJkSZuv0/VjAUiys9vtOH36NM6ePYv4+HgEB7s/MS0IAsaNG4fc3Fy/uP+uR48eaGhoQEFBASwWi9zhEJGfqaysRH19PcLCOjfOn9wiIiJgMplgtVp98n39+/dv8zW9Xo977rnHJ3GoBQtAkpUoiigsLMSZM2cQGxvb4Rh7GRkZKC8vxw8//OCjCNsXHx+Py5cv4/jx48291oiImpqacP78eYSHh7vcyxxIoqKiYLFYJL/KcfnyZWRlZeHPf/4zli1bhpiYGJdbgIKCgrBgwQKEhIRIGofasAAkWZWUlODUqVOIjo726K/k4cOHIyIiQtbewNdyzhZSXV2NgoICXLlyRe6QiMgPXLhwAZcuXQroOZo1Gg00Gg3Onz8v2VWXc+fOoU+fPtixYwc++eQTrFy5Etu3b3cpAIODgzF37lxJvl/NWACSbEwmE06cOIGwsDBERkZ69J6QkBCMHj3aL+4DdHLOFlJeXo6TJ0+isbFR7pCISGamq3OStXVLS6DQ6XSoqqrC5cuXvf7Z+/fvxy233ILa2lrMnj0bd955JwDHlZ433ngDgOOP7FmzZqFHjx5e/361YwFI0rPbgPI9wNmPHP/abaiqqsLJkycRFBR03TdIZ2RkoKCgAFVVVZKE2xkajQbx8fEoLi7GqVOnHAOXusmbiJQvkDt/tOTsDFJeXu7Vz920aRMmTpyI/v37IzIyEr/4xS9cXv/tb3+L3//+982Xf8n7WACStIpzgO0pwL8mAvsfAP41EfZtvVCe9zoaGho69Vedc1aQr776yvvxdoFztpDCwkKYvvkLxL+nuOSN7SmO7UFEihbonT9a8mZnELvdjqeffhqzZs3Cr3/9a7z//vuorKyE3W7HuHHjEB4ejhEjRuDo0aNYs2YNSkpKMHDgQC9kQS2xACTpFOcAudOBOtexnYQr5zHgwrPoF3a8Ux/bvXt3DBo0yK8uAztptVrcqP0OSYULgPoWY1rVlTq2B4tAIsVSQuePlrzVGaSmpgZZWVl48cUX8dJLL2HDhg0oKCgAAGRnZ2PVqlXIy8tDVFQUZsyYAUEQOM6qhFgAkjTsNuDwAribBN3ZJCZXvAyInbssOm7cOBw8eBANDQ2dj1EKog03XPozALgZPf/qtji8kJeDiRRKCZ0/WvJGZ5Bz587h5z//Of71r39h+/bt+P3vfw9BEJCfn49u3bph27ZtGDt2LAYMGICVK1fi+++/R1lZGe6++250794d06dP93JWxAKQpFGZ2+rM37UEAKFN5YisO9Kpj8/IyMCVK1eQl5fXyQClEVl3BKFNFe1MnSQCdcWO7UNEiqOUzh8tdaUzyIEDB3DLLbfAYrHgwIEDmDp1avNr+fn5uO+++5CYmNi8LCIiAoDjcvETTzyBTZs2dT0BaoUFIEmj3uTRaiG2znXk6NOnD5KSkvxmOBgnj/PxcPsQUeCora1VTOePljo7M8j777+PCRMmoF+/fvjmm2+Qlpbm8np+fj6GDh3qsuzbb79FQkICDAYDJk6ciKioqK6GT26wACRphBk8Wq1RE9epjxcEARkZGX4zK4iTx/l4uH2IKHBUVFQoqvNHSxERETh//rxHnUHsdjuWLVuGmTNn4te//jW++OIL9OzZ02Wduro6nDlzxjFqwjXve/XVVzF79mzF3EPpr1gAkjR6ZgDhRri7Ew5w3A1nDdajJnxYp79i3LhxKC8vx+nTpzv9Gd5WEz4M1uB4N3c+OglAeLJj+xCRYiix80dLnnYGqampwT333IM//elPWLNmDTZs2ACtVttqvaNHj0Kj0WDjxo345ptv8MMPP+C+++5DbW0tli1bJlUadBULQJJGkAZIX3v1iWtjKF5dVqJfAgiaTn+Fv80KAgAQNCjRPwmgne4v6dmO7UNEiqHEzh8tOTuDmEymNq+8FBUVYezYsfjiiy+wfft2LFmypM2C+OjRo+jXrx9WrFiBe+65B8OGDUNISAj279/Py74+wAKQpJOcBWRsBsKTXBY3ButRmPQiLkVN6tLHh4SEYNSoUf5VAAK4FDUJhUlr0Bgc7/pCuNGxPZKz5AmMiCSj1M4fLUVHR7fZGcTZ2ePSpUvYv3+/S2cPd+bNm4fjx4/j3nvvRXFxMWpra/HRRx9x1g8fUfZPKskvOQtIugtlx/+G0jN5iOrZz3HZtwtn/q41btw4LF++HNXV1X7VaFyKmoRLkeMRfOEANNYK9BsyHiGJk3jmj0iBlNz5o6WwsDBcuHABlZWVLmc7P/jgAzz00EMYMWIEcnJyEB8f386neO7222/Ht99+i9raWhiNRmzduhU/+9nPvPLZasczgCS9IA0adKNxPmQ8aiJGeK34AxyzggiC4HezggAABA3M3YahPGwSxPjxLP6IFEppM390JCIiAqWlpbBarbDb7XjmmWfwf/7P/8GMGTPwr3/9y2vFHwB89tlnqKysRF1dHUpKSlj8eRELQApo3bt3x+DBg/3uMjARqUNTUxNKS0sV3fmjJWdnkKKiIkyfPh2rV6/Giy++iI0bN7rt7EH+iZeAKeBlZGTgrbfeQkNDAxsfIvIpZ+ePlkOcKJlGo8GFCxcwdepUlJaWYtu2bZg2bZrcYdF14hlACnjjxo3DlStXcPjwYblDISKVKS8vB6D8zh/XOnbsGBYtWoSLFy/is88+Y/EXoFgAUsDr06cPEhMTeRmYiHyqtrYWZWVlquj84fSPf/wDc+fORXJyMl566SXo9Xq5Q6JOYgFIAc85K8i+ffv8alYQIlI2NXX+sNvt+Otf/4r//M//xG233YZ169YhKSmpuTMIBR4WgKQI/jgrCBEpl5o6f9TX1+Opp57C22+/jSeeeALPPfccQkNDPZ4ZhPwTC0BShOHDhyM8PBy5ublyh0JEKqCGmT8AoKysDA899BAOHDiAl19+GbNmzWoueD2ZGYT8FwtAUoTQ0FCMHj2a9wESkU+oofPHsWPH8OCDD8JsNmPjxo0YP358q3XamxmE/BsLQFKMjIwMFBQU8HIEEUnK2flDyWf//vnPf2Lu3LkwGo3YtGkT+vbt63a9sLAwNDQ0oLKy0scRUlexACTFGDt2LAD456wgRKQYVVVVqK+vR3h4uNyheJ2zs8czzzyD2267Da+//nqH02xeOzMIBQ4WgKQY3bt3x6BBg3gfIBFJxmazoaSkRJGdP+rr6/H000/j7bffxu9+9zs899xzHg2uz84ggYkFIClKRkYGDh48iIaGBrlDISIFqq6uVmTnj/Lycjz00EPYv38/XnrpJcyePdvjAtfZGaSsrIydQQIIC0BSlHHjxqG+vp6zghCRJJTY+eP48eOYOXMmzGYz3n77bUyYMOG6PyM6OhqVlZXsDBJAWACSotxwww2cFYSIJFFbW4vy8nJFnf377LPPMHfuXCQlJWHTpk3o169fpz6HnUECDwtAUhTnrCC5ubm8FEFEXlVVVYW6ujpFdP6w2+14/fXXsWzZMvziF7/AunXrOuzs0RF2BgksLABJcTIyMlBWVoYzZ87IHQoRKYSSOn84O3ts2LAB8+fP97izR0fYGSSwsAAkxUlPT0d4eDgvAxOR1yil80dFRQXmzJmD/fv3Y82aNfjNb37jtYKWnUECCwtAUpzQ0FCMGjWKBSAReY0SOn8UFBRg5syZuHDhAt5++21MnDjR69/BziCBgwUgKRJnBSEib1FC54/PP/8cc+bMgcFg6FJnj46wM0jgYAFIiuScFeTrr7+WORIiCnSB3PnDbrfjjTfewNKlS3HrrbfijTfeQFxcnKTf6ewM0tjYKOn3UNewACRFio2NxaBBg3gZmIi6JJA7f9TX12Pp0qVYv349Hn/8cTz//PNe6ezREXYGCQwsAEmxlDYriM1mg81mkzsMIlUJ1M4fzs4eX331FdasWYPf/va3PitgNRoNgoKCYDKZ2BnEj7EAJMXKyMhQ1Kwg06ZNQ1JSEiZNmoQrV67IHQ6RKgRi548TJ040d/bYsGEDJk2a5PMYdDodO4P4ucD5ifYSmw3IzQVMJsBgADIyAI1G7qikp8a8b7zxRhgMBmzZchAWy52Ii2vEsGE1AZX3+vXr8eGHHwIA8vLymm9GT0hIwIsvvojZs2cjNDTU7XvVuM+B1nkPGSJ3RL6h1v0tCbsNqMzFlUuFsBZfQHRUutwRtWKzASUloWhsDEJeXmRz2/b5559jxYoV6Nu3L15++WXJ7/drS1hYGC5cuIDKijJE138L1JuAMAPQMwMI4g9mZ3i7bZPtDOBf//pXpKamolu3bkhPT0dubm676+/duxfp6eno1q0b+vTpg3Xr1l33d27fDqSkABMnAg884Pg3JQXIyelcDoEiJ0edee/e3R2XLv0Ke/bk4plnUvDII/0wdWoavvwyRu7QPDZ37lzs2bMHe/bsQd++fZuXm81mPPLII0hNTcX69etbjbyv1n3uLu+0NLmj6tj1toctqbVtk0RxDrA9BfjXRHQ7/FukX1qCkWX3I+byl3JH1uzLL2MwdWoatm7tibq6IDzySD/ceedAPP30u1i6dCkmTpyI9evXy1b8OaVovoXx8FjgXxOB/Q84/t2e4tjGdF2kaNtkKQA//vhjLFy4EM888wyOHDmCjIwMTJkyBUVFRW7XLywsxC9/+UtkZGTgyJEjWLZsGZ544gls2bLlur535kygpMR1WWkpMH26chvKnBxHfmrL+8svY/Dkk6mor58GoAjAMQBARUUInnwyNaCKwPaYTCY88sgj6NOnD958801YrVbV7vO28j5/Xp54PHW97aE7amzbJFGcA+ROB+pcN2ZIUwVSS5/0iyLQ2bZVVIRcs7QOlZUPYteuP+OOO36PP/7xjz7p7NGemMtfIu3SCoTaWgwHU1fq2MYsAj0mVdsmiDLcoTly5EgMHz4cr7/+evOym2++Gb/61a+wevXqVus/9dRT2L59O06ePNm8bN68eTh69CgOHDjQ4fdZLBbodDoAZgCtb+QVBMBoBAoLlXXJxGZz/MXQ8ofGyZd5nzt3Dt999x2SkpKk/SI48p46Ne1qA2kFEAdgKYBlV9cQodc34pNPjkued21tLRobGzF27Ng2L9V6atiwYcjPz3f7miAIEEURiYlJqKtbjkuXZgFo/X3q/Fm3ANDBbDb75Y3819seXkutbZsk7DbH2ak69w2mCKAxWI/jN3wCCPJsTNe2TQDwwtXHDQBOANgEvT7TJ21bu0Qb0n6cipCmCrjvdiIA4UZgWiEvB3dAyrbN5/cAWq1WHD58GE8//bTL8smTJ2P//v1u33PgwAFMnjzZZdntt9+ODRs2oLGxESEhIS6vNTQ0uPT8tFgs7cYkikBxsePa+oQJ15GMn8vNbbv4A5Sb95EjkaiocBY/WgAZAF4DUNW8Tnk5sHTpRSQkSDtOVWNjI2w2G/7+979D08kW+eDBg/jhhx/aHVLB+Xfc+fOlAOYCWAzg/wJY2GI9Ze7zjn7W/dX1tods2yRUmdtm8Qc4yq3QpnJE1h1BTcQI38V1Dde2DQCq4Sj+ywB8BWAYyssd640YUSNLjAAQWXcEoU0V7awhAnXFjm2un+CrsAKSlG2bzwvAqqoq2Gw26PV6l+V6vR5lZWVu31NWVuZ2/aamJlRVVcFgMLi8tnr1ajz33HPXHZvJdN1v8Wue5qO0vKuqQlosyQTwbwCfuSw9dqwRhYXSDqtit9shiiJOnDjRqSEYRFFEZWUloqKicPny5Vb3+rWtBsA+tCwAnZS2zwM1n+ttD9m2Sajes40UYqvqeCWJtG7begNIBZALwNDOer7l8TbycJurmZTHrmy9gFv+MhRFsd1fkO7Wd7ccAJYuXYrFixc3P7dYLEhOTu4wphZ1ZMDzNB+l5R0X1/Ks3qNXH67+7//9QfK/kn11CRhwDFPR1NQE4FcAVgBou4uY0vZ5oOfjaXvItk1CYZ5tpEaNfB0rWrdtj199dLSeb3m8jTzc5mom5bHr804gcXFx0Gg0rf66raioaPVXsFNCQoLb9YODg9GjR49W62u1WkRHR7s82iMIQHKyY9gEJcnIcNz/01ZdrdS8hw2rQXy8FY67dtwRoddbMWyYfJdIPHXu3DnMnz8faWlpOHbsmNt1goIch/HUqVNx+HA+jMatEAT3xZ9S93lHP+v+6nrbQ7ZtEuqZ4bgvrY271kQA1mA9asKH+TSsawVK21YTPgzW4Pg2o3TcA5js2ObULinbNp8XgKGhoUhPT8euXbtclu/atQtjxoxx+57Ro0e3Wv/zzz/HiBEjWt3/15GWG9H5PDtbeTdJazTA2rWO/1db3k8+6bxpomUTJEIQgCVLSvw+76qqKtxyyy2oqqrCK6+8ghtvvNHldefAtKNHj8YvfvELbN26FcOHD1HtPm8rb3/WmfawLWra35II0gDpV3+IWhSBV683oUS/RLYOIEAAtW2CBiX6J69G1epFxz/p2ewA4gEp2zZZhoFZvHgx3nrrLbz99ts4efIkFi1ahKKiIsybNw+A4zLHgw8+2Lz+vHnzcO7cOSxevBgnT57E22+/jQ0bNmDJkiXX9b3vvQe07IRqNAKbNwNZWV1Oyy9lZTnyU1vekyZdwpo1hYiPd70Uotc34sUXCzFp0iV5ArsOO3fuRFNTEz766CNMnjwZYWFhLq9PnToV+fn5+OMf/3i1J6iDWvd5W3n7oON5l3TUHnpCjW2bJJKzgIzNQLjrxrRq4lGY9CIuRfl+Ro2WAqVtuxQ1CYfDlqIppMWZ7HCjYxsn8wfTU1K1bbLcA3j//fejuroazz//PEwmE9LS0rBz50707t0bgGNss2vHwEpNTcXOnTuxaNEi/OUvf0FiYiL+/Oc/45577rmu7502DfiP/1DfaPlZWcBdd6kv70mTLmH8+Es4ciQSVVUhATcTSGxsLCwWC7Zv344BAwbgwoULAIBu3brh4MGDGHJ1GPg9e/a0eq9a97m7vIcMAWJj5Y6sbR21h55Qa9smieQsIOkuoDIX9rpS/FB0Gefqe6FnVILckTULhLatsbER1dqxMI9dgDj7Sc4E0kVStG2yjAPoa86xsvx1HDA18OU4gP6kK51ARFHEo48+ig8//BBhYWGYMmUKrly5gpqaGnz66afN6+3ZswevvfYaNm/e7O3wFUHJx7+Sc/MXpaWl+Pbbb2EwGJrvt6WOVVdXIzIyErfcckunh8Ci9nX1+FfdXMBEgUIQBKxbt65T0x4SkXf06NEDkZGRqKmpYZHtIVEUceXKFfTv35/Fnx/jnzNEAez222/Hvffei507d8JoNOLQoUNyh0SkKN26dYPBYEBNjf+PGuAvamtrERERIftcxNQ+ngEkCmCfffZZxysRUZfo9XqcPXsWVqu1y+N5qoHFYkFqairCw8PlDoXawTOARERE7dDpdOjRowfMZrPcofi9xsZGBAUFtTmuL/kPFoBERETtCAoKQmJiIqxWK+x2u9zh+DWLxYLu3buje/fucodCHWABSERE1IFrO4OQe87OH0lJSez8EQBYABIREXWAnUE6xs4fgYUFIBERkQf0ej2Cg4NhtVrlDsUvWSwW6PV6dv4IECwAiYiIPMDOIG1rbGyEIAjs/BFAWAASERF5ICgoCAaDgZ1B3LBYLIiNjWXnjwDCApCIiMhDcXFx7AzSAjt/BCYWgERERB5iZ5DW2PkjMLEAJCIiug7sDOLq8uXL7PwRgFgAEhERXQd2BvlJY2MjALDzRwBiAUhERHQd2BnkJ5z5I3CxACQiIrpO7AzyU+cPo9HIzh8BiAUgERHRdWJnEHb+CHQsAImIiDpB7Z1B2PkjsLEAJCIi6gQ1dwZh54/AxwKQiIioE9TcGYSdPwIfC0AiIqJOUmNnEM78oQwsAImIiDrJ2Rnk8uXLcofiM87OHz179pQ7FOoCFoBERERdoNfrERISoprOIOz8oQwsAEl6dhu05gNIbNyLyNo8QLTJHZFviDborhyBvv5LCBV7AbtK8iZSGTV1BmlsbIQgCOz8oQDBcgdAClecAxxegIS6EiQAQDFgDY5Hif5JXIqaJHd0kom5/CWM5WsQ2lThWLBvJRBuBNLXAslZ8gZHRF7l7AxSVlYGu92OoCDlnluxWCyIiYlh5w8FUO5PKcmvOAfInQ7UlbgsDmmqQGrpk4i5/KVMgUkr5vKXSC19EiHO4s+prtSxPYpz5AmMiCTj7AxSW1srdyiSYecPZWEBSNKw24DDCwCIrV4Srv5rLH9JeZeDRRuM5WsA/JTnNS86/jm8kJeDiRRGDZ1B2PlDWVgAkjQqc1ud+buWACC0qRyRdUd8F5MPRNYdQWhThZviz0kE6ood24eIFEWv10Oj0Si2Mwg7fygLC0CSRr3Jo9VCbFUSB+JbHufj4fYhosCh5M4g7PyhPCwASRphBo9Wa9QoaxJxj/PxcPsQUeAICgpCYmKiImcGYecP5WEBSNLomeHo9drGxVARgDVYj5rwYT4NS2o14cPQoIl3c+ejkwCEJzu2DxEpjhI7g4iiiPr6enb+UBgWgCSNII1jyBMALYtA8erz09GPA4KyGhObHfgu5LcAfsrzJ1efp2c7tg8RKY4SO4PU1tYiMjIScXHKumKjdiwASTrJWUDGZiA8yWWxEG5ERb+/4qxtOOrq6mQKzvvsdjvKy8thS7wL1ls+hNAib4QbHduD4wASKZrSOoM4O39ERETIHQp5EQeCJmklZwFJdzl6vdabHPe+9cxAvBCEvqdP49SpU9BoNNBqtXJH2iWiKKK8vBwxMTEYOHAgtFGjgD73tcqbZ/6IlM/ZGeTixYsBP2QKO38oFwtAkl6QBtBPcFkkALjhhhvQ2NiIH3/8sXkuzUBVVVWF8PBwDBw4EFFRUY6FbvImIuVzdgYpLy8P+JlB2PlDuQL3p5ICnkajQb9+/dCrVy9UVFSgqalJ7pA65eLFiwgKCkJaWhobSSICoIzOIOz8oWwsAElWISEhuPnmm5GQkND813IgsVgsaGxsxMCBAwP+Ug8ReY8SOoPU1dUhIiKCnT8UigUgyU6r1WLgwIGIi4tDWVkZRLHtQVT8SW1tLWpra3HTTTchMTFR7nCIyM8EemcQi8XCzh8KxgKQ/ILz/jmdTofy8nK/LwKvXLkCs9mMfv36oXfv3nKHQ0R+KJBnBnF2/khISJA7FJIIC0DyG9HR0UhLS0NYWBiqq6vlDqdNVqsVVVVV6NOnD/r06QNBaHvmXyJSr0CeGYSdP5SPvYDJr3Tv3h0DBw7E0aNHcfHiRb9rfJqamlBRUYFevXqhX79+vDGaSGY2G5CbC5hMgMEAZGQA/nRYxsXFITIiDMEXvoIutA6NmjjHDEj+OAi+aENk3REEN1Wi/jKQ1Pc//LKN8/d9HihYAJLfiY+Px80334xjx47h8uXLPw2rIjO73Y6ysjIkJiZiwIABCA7m4UMkp5wcYMECoKTkp2VGI7B2LZDlJ+Otd6vcibHVjyOksax5mTU4HiX6J3EpapKMkbmKufwljOVrENpUAQDoA8D+7euA5s9+NXh9IOzzQMFLwOSXjEYjbrrpJtTU1PjFbCHO4i8+Ph4DBw5EaGio3CERqVpODjB9umshAAClpY7lOTnyxOWiOAfInY7ga4o/AAhpqkBq6ZOIufylTIG5irn8JVJLn0TI1eLPKejKeSB3uiMPPxAQ+zyAsAAkv5WSkoK+ffvi4sWLaGhokC0OURRRUVHRPMtHWFiYbLEQkeMS4IIFgLu+Ys5lCxc61pON3QYcXoB2ZgWHsfwlQJQzSACiDcbyNQBaztoOAFc35uGFjnxkFBD7PMDwGhb5LUEQ/GK2kKqqKoSFhbnO8kFEssnNbX0W6FqiCBQXO9abMMFnYbmqzAXq2g5SABDaVI4m025cDBniu7ha6N54tPmyr3siUFfsyEfGmY0CYp8HGBaA5Necs4U0NjaiqKgICQkJPr33zjnLx8CBA/2uQwqRWplM3l1PEvWefbk+2g6tTr6hVmLMRwCLByt6mI9UAmKfBxgWgOT3nLOFNDY2oqysDAaDwSdza16+fBmNjY0YPHgw4uPjJf8+IvKMweDd9SQR5tmX9+4/Cr318p0BRPlFoJ0za808zEcqAbHPAwzvAaSA4OvZQmpra1FTU8NZPoj8UEaGo+dnW0NwCgKQnOxYTzY9M4BwI9zdWecgAOHJjvXkFCBxBsQ+DzAsAClgOGcLiY6ORnl5uWTfw1k+iPybRuMY9gNoXRA4n2dnyzw2XJAGSL8aZFvdQNKzHevJKUDiDIh9HmB8WgBevHgRM2fOhE6ng06nw8yZM3Hp0qV23zN79mwIguDyGDVqlG8CJr9z7WwhVVVVXv98zvJBFBiysoDNm4GkJNflRqNjuV+MCZecBWRsBsJbBBludCz3l/H1AiTOgNjnAUQQfTjp6pQpU1BSUoL169cDAObOnYuUlBR88sknbb5n9uzZKC8vx8aNG5uXhYaGIjY21uPvtVgs0Ol0MJvNiI6O7nwC5DcqKipw9OhRaDQaxMTEeOUzm5qaUFZWhl69eiEtLY0DPSuEko9/JefmqYCYFcJuc/SirTc57qXrmSH7GTW3AiTOgNjnPtDV499nv+FOnjyJf/7znzh48CBGjhwJAHjzzTcxevRonDp1Cv3792/zvVqtlhNSkwtvzxZit9tRXl4Og8GAm2++mcUfUYDQaAJg2I8gjaxDqHgsQOIMiH0eAHx2CfjAgQPQ6XTNxR8AjBo1CjqdDvv372/3vXv27EF8fDz69euHOXPmoKKivTGLgIaGBlgsFpcHKU9SUhL69+/f5dlC7HY7TCYTevbsiYEDB0Kr1XoxSiIiIv/jswLQOY1WS/Hx8SgrK3PzDocpU6bggw8+wJdffomXX34Zhw4dwqRJk9qdGWL16tXN9xnqdDokJyd7JQfyL4IgdHm2kJazfISHh0sQKRERkX/pcgG4YsWKVp00Wj7y8vIAwO0N9aIotnuj/f33348777wTaWlpyMzMxD/+8Q/88MMP2LFjR5vvWbp0Kcxmc/OjuLi4q2mSnwoKCsINN9yAPn36oLKyEo2Njdf1/urqaoSFhSEtLY2zfBARkWp0+Uan+fPnY8aMGe2uk5KSgu+++87t0B2VlZXQ6/Uef5/BYEDv3r1x+vTpNtfRarW8jKciLWcLMRgM0HhwR/DFixchCAJn+SAiItXpcgEYFxeHuLi4DtcbPXo0zGYzvvnmG9xyyy0AgH//+98wm80YM2aMx99XXV2N4uJiGDjcN13jemcLcc7yMWjQIM7yQUREquOzewBvvvlm3HHHHZgzZw4OHjyIgwcPYs6cOZg6dapLD+CbbroJW7duBQDU1NRgyZIlOHDgAM6ePYs9e/YgMzMTcXFxuPvuu30VOgUIrVaLAQMGoEePHigvL3fMFiLaEFmbh+6WfyKyNg8Qbairq0NNTQ369++PpJYDShEREamAT8e6+OCDD/DEE09g8uTJAIBp06bhtddec1nn1KlTMJvNAByX9o4dO4ZNmzbh0qVLMBgMmDhxIj7++GPer0VuRUREIC0tDfn5+RBKtiKt4U2ENv3Ua7xBE4/vQn6Lvmm/QUpKinyBEhERycinBWBsbCzef//9dte5dlzqsLAwfPbZZ1KHRQoTHR2NYXGFiCxZ2eq1UFsFRthegF2bDkHoJ0N0RERE8uNcwKQ8dhuifvhPAG3ObAnNkcWOUe+JZJSSktJq1ISnn35a7rCISAU43QEpT2UuUFfSqvhzEiACdcWO9QJg1HtStueffx5z5sxpfh4ZGSljNESkFiwASXnqTd5dj0hCUVFRnOqSiHyOl4BJecI8HCLI0/WIJPTCCy+gR48eGDp0KFauXAmr1Sp3SESkAjwDSMrTMwMINwJ1pQBENysIjtd7Zvg6MiIXCxYswPDhw9G9e3d88803WLp0KQoLC/HWW2+5Xb+hocFlykPOc05EncUzgKQ8QRogfe3VJ210A0nPdqxH5GXXMz3mokWLMH78eAwePBgPP/ww1q1bhw0bNqC6utrtZ3OecyLyFkG8dtwVhbJYLNDpdDCbzYiOjpY7HPKV4hzg8AKgruSnZeHJjuIvOUu2sMi3fH38V1VVoaqqqt11UlJS0K1bt1bLS0tLYTQacfDgQYwcObLV6+7OACYnJ7NtI1KhrrZtvARMypWcBSTd5ejtW29y3PPXM4Nn/khSnk6P6c6RI0cAoM2pLjnPORF5CwtAUrYgDYd6Ib904MABHDx4EBMnToROp8OhQ4ewaNEiTJs2Db169ZI7PCJSOBaAREQy0Gq1+Pjjj/Hcc8+hoaEBvXv3xpw5c/CHP/xB7tCISAVYABIRyWD48OE4ePCg3GEQkUqxFzARERGRyrAAJCIiIlIZFoBEREREKsMCkIiIiEhlWAASERERqQwLQCIiIiKVYQFIREREpDIsAImIiIhUhgUgERERkcqwACQiIiJSGRaARERERCrDApCIiIhIZVgAEhEREakMC0AiIiIilWEBSERERKQyLACJiIiIVIYFIBEREZHKsAAkIiIiUhkWgEREREQqwwKQiIiISGVYABIRERGpTLDcAaiJzQbk5gImE2AwABkZgEYjd1TSY97qyhtQd+5y4TZXF+5v9Wm5z4cM6eIHiipgNptFAKLZbJYthi1bRNFoFEXgp4fR6FiuZMxbXXmLov/l7g/Hv1Scub33ntmvtjlJy9+OMZKeu32emNi1tk0QRVHsclnq5ywWC3Q6HcxmM6Kjo33+/Tk5wPTpjl12LUFw/Lt5M5CV5fOwJMe8XZcrPW/AP3OX+/iXkjM3wAzANTc1/LypkT8eYySttvY5YAHQ+baNBaDEbDYgJQUoKXH/uiAARiNQWKis0/fM2/3rSs0b8N/c1VoAAsr+eVMjfz3GSDrt7/OuFYDsBCKx3Ny2D1bAUdEXFzvWUxLm7Z5S8wbUnbu/4jZXFh5j6tPRPu8KFoASM5m8u16gYN7eWS+QqDl3f8dtrgw8xtRHyn3JAlBiBoN31wsUzNs76wUSNefu77jNlYHHmPpIuS95D6DEnNfvS0vd3cCp3Hs2mLe68gb8N3feA6jMnzc18tdjjKTT/j7nPYB+TaMB1q51/L+zl5aT83l2tvIOVuatrrwBdefuD7jNlY/HmPq0t8+7igWgD2RlObrmJyW5Ljcald1ln3m7Lld63oC6c5fTe+9xm6sFjzH1aWuft3x+vXgJ2IfUOnI781ZX3oB/5e4vx78Urs0tIiLab7Y5Sc+fjjHyjdYzgVgQG8txANul5F8ARNQ+JR//Ss6NiNrX1eOfl4CJiIiIVIYFIBEREZHKsAAkIiIiUhkWgEREREQqwwKQiIiISGV8WgCuXLkSY8aMQXh4OGJiYjx6jyiKWLFiBRITExEWFoYJEyagoKBA2kCJiIiIFMynBaDVasW9996LRx991OP3vPjii3jllVfw2muv4dChQ0hISMBtt92Gy5cvSxgpERERkXL5tAB87rnnsGjRIgwaNMij9UVRRHZ2Np555hlkZWUhLS0N7777Lurq6vDhhx9KHC0RERGRMvn1PYCFhYUoKyvD5MmTm5dptVqMHz8e+/fvb/N9DQ0NsFgsLg8iIiIicvDrArCsrAwAoNfrXZbr9frm19xZvXo1dDpd8yM5OVnSOImIiIgCSZcLwBUrVkAQhHYfeXl5XfoOQRBcnoui2GrZtZYuXQqz2dz8KC4u7tL3ExERESlJcFc/YP78+ZgxY0a766SkpHTqsxMSEgA4zgQaDIbm5RUVFa3OCl5Lq9VCq9V26juJiIiIlK7LBWBcXBzi4uK8EUsrqampSEhIwK5duzBs2DAAjp7Ee/fuxQsvvCDJdxIREREpnU/vASwqKkJ+fj6Kiopgs9mQn5+P/Px81NTUNK9z0003YevWrQAcl34XLlyIVatWYevWrTh+/Dhmz56N8PBwPPDAA74MnYiIiEgxunwG8Ho8++yzePfdd5ufO8/q7d69GxMmTAAAnDp1CmazuXmdP/zhD6ivr8djjz2GixcvYuTIkfj8888RFRXly9CJiIiIFEMQRVGUOwipWSwW6HQ6mM1mREdHyx0OEfmQko9/JedGRO3r6vHv18PAEBEREZH3sQAkIiIiUhkWgEREREQqwwKQiIiISGVYABIRERGpDAtAIiIiIpVhAUhERESkMiwAiYiIiFSGBSARERGRyrAAJCIiIlIZFoBEREREKsMCkIiIiEhlWAASEUlg5cqVGDNmDMLDwxETE+N2naKiImRmZiIiIgJxcXF44oknYLVafRsoEalSsNwBEBEpkdVqxb333ovRo0djw4YNrV632Wy488470bNnT3z11Veorq7GrFmzIIoiXn31VRkiJiI1YQFIRCSB5557DgDwzjvvuH39888/x4kTJ1BcXIzExEQAwMsvv4zZs2dj5cqViI6O9lWoRKRCvARMRCSDAwcOIC0trbn4A4Dbb78dDQ0NOHz4sNv3NDQ0wGKxuDyIiDqDBSARkQzKysqg1+tdlnXv3h2hoaEoKytz+57Vq1dDp9M1P5KTk30RKhEpEAtAIiIPrVixAoIgtPvIy8vz+PMEQWi1TBRFt8sBYOnSpTCbzc2P4uLiTudCROrGewCJiDw0f/58zJgxo911UlJSPPqshIQE/Pvf/3ZZdvHiRTQ2NrY6M+ik1Wqh1Wo9+nwiovawACQi8lBcXBzi4uK88lmjR4/GypUrYTKZYDAYADg6hmi1WqSnp3vlO4iI2sICkIhIAkVFRbhw4QKKiopgs9mQn58PALjxxhsRGRmJyZMnY8CAAZg5cybWrFmDCxcuYMmSJZgzZw57ABOR5FgAEhFJ4Nlnn8W7777b/HzYsGEAgN27d2PChAnQaDTYsWMHHnvsMfz85z9HWFgYHnjgAbz00ktyhUxEKiKIoijKHYTULBYLdDodzGYz/7ImUhklH/9Kzo2I2tfV45+9gImIiIhUhpeAiYgoYNlsQG4uYDIBBgOQkQFoNHJHRVLiPvcOFoBERBSQcnKABQuAkpKflhmNwNq1QFaWfHGRdLjPvYeXgImIKODk5ADTp7sWAgBQWupYnpMjT1wkHe5z72IBSEREAcVmc5wFcteF0bls4ULHeqQM3OfexwKQiIgCSm5u67NA1xJFoLjYsR4pA/e597EAJCKigGIyeXc98n/c597HApCIiALK1ZnzvLYe+T/uc+9jAUhERAElI8PR81MQ3L8uCEBysmM9Ugbuc+9jAUhERAFFo3EM+wG0Lgicz7OzOTacknCfex8LQCIiCjhZWcDmzUBSkutyo9GxnGPCKQ/3uXdxIGgiIgpIWVnAXXdxVgg14T73HhaAREQUsDQaYMIEuaMgX+I+9w5eAiYiIiJSGRaARERERCrDApCIiIhIZVgAEhEREakMC0AiIiIilWEBSERERKQyLACJiIiIVIYFIBEREZHKsAAkIiIiUhkWgEREREQqwwKQiIiISGVYABIRERGpDAtAIiIiIpXxaQG4cuVKjBkzBuHh4YiJifHoPbNnz4YgCC6PUaNGSRsoERERkYL5tAC0Wq2499578eijj17X++644w6YTKbmx86dOyWKkIiIiEj5gn35Zc899xwA4J133rmu92m1WiQkJEgQEREREZH6BMQ9gHv27EF8fDz69euHOXPmoKKiot31GxoaYLFYXB5ERERE5OD3BeCUKVPwwQcf4Msvv8TLL7+MQ4cOYdKkSWhoaGjzPatXr4ZOp2t+JCcn+zBiIiIiIv/W5QJwxYoVrTpptHzk5eV1+vPvv/9+3HnnnUhLS0NmZib+8Y9/4IcffsCOHTvafM/SpUthNpubH8XFxZ3+fiIiIiKl6fI9gPPnz8eMGTPaXSclJaWrX9PMYDCgd+/eOH36dJvraLVaaLVar30nERERkZJ0uQCMi4tDXFycN2LxSHV1NYqLi2EwGHz2nURERERK4tN7AIuKipCfn4+ioiLYbDbk5+cjPz8fNTU1zevcdNNN2Lp1KwCgpqYGS5YswYEDB3D27Fns2bMHmZmZiIuLw9133+3L0ImIiIgUw6fDwDz77LN49913m58PGzYMALB7925MmDABAHDq1CmYzWYAgEajwbFjx7Bp0yZcunQJBoMBEydOxMcff4yoqChfhk5ERESkGIIoiqLcQUjNYrFAp9PBbDYjOjpa7nCIyIeUfPwrOTcial9Xj3+/HwaGiIiIiLyLBSARERGRyrAAJCIiIlIZFoBEREREKsMCkIiIiEhlWAASERERqQwLQCIiIiKVYQFIREREpDIsAImIiIhUhgUgERERkcqwACQiIiJSGRaARERERCrDApCIiIhIZVgAEhEREakMC0AiIiIilWEBSERERKQywXIH4Gs2G5CbC5hMgMEAZGQAGo3cUUmPeasrb0C9ubfMe8gQuSPyDbXub7Xi/lYfr7dtogqYzWYRgPjee2bRaBRF4KeH0SiKW7bIHaG0tmwRmbeK8hZF9ebuLu/ERMfxbzab5Q7P69TetqmVWo9vNZOibRNEURS7XJb6OYvFAp1OB8AMINrlNUFw/Lt5M5CV5fPQJJeTA0yf7vhxuRbzVmbegHpzbytvwAJAB7PZjOjoaDfvDFxqbtvUSq3Ht5pJ1bapvgAEHAeO0QgUFirrFLrNBqSkACUl7l9n3srKG1Bv7u3nrc4CEFDu/lYrtR7faiZl28ZOIHBU1cXFjmvrSpKb23ZDATBvpeUNqDf3jvJWK6Xub7VS6/GtZlK2bSwAr2EyyR2Bd3maD/NWDrXmrrR8vI3bRxnUenyrmZT7kgXgNQwGuSPwLk/zYd7KodbclZaPt3H7KINaj281k3Jf8h5AKPe+Cee9A6Wl7m4eZd5KyxtQb+7t5817AJW2v9VKrce3mknZtqnuDKCzp1TL59nZyjtgNBpg7VrH/zNv1+dKzBtQb+7t5a0WatrfaqXW41vNpGzbVHEG0Gw2IyYmBuvXF2PFimicP//Ta0lJwJ/+BEybJl98Utu+HXjqKTBvqCNvQL25u8vbYLDAZErGpUuXrp4tUw61t21qpdbjW82kaNtUUQCWlJQgOTlZ7jCISEbFxcUwGo1yh+FVbNuIqLNtmyoKQLvdjvPnzyMqKgqCIMBisSA5ORnFxcWKuyeoPcxbXXkD6s392ryjoqJw+fJlJCYmIihIWXe9tGzbfEEpP1NKyEMJOQDKyEOOHERR7FLbpoq5gIOCgtxWx9HR0QH7w9YVzFt91Jq7M2+lXfp1aqtt8wWl/EwpIQ8l5AAoIw9f59CVtk1Zfw4TERERUYdYABIRERGpjCoLQK1Wi+XLl0Or1codik8xb3XlDag3d7Xm7QtK2bZKyEMJOQDKyCMQc1BFJxAiIiIi+okqzwASERERqRkLQCIiIiKVYQFIREREpDIsAImIiIhURtUF4NmzZ/HQQw8hNTUVYWFhuOGGG7B8+XJYrVa5Q5PcypUrMWbMGISHhyMmJkbucCT117/+FampqejWrRvS09ORm5srd0iS27dvHzIzM5GYmAhBELBt2za5Q5Lc6tWr8bOf/QxRUVGIj4/Hr371K5w6dUrusBTFk3ajqKgImZmZiIiIQFxcHJ544gm/b1NTUlIgCILL4+mnn5Y7rA4Fctu2YsWKVts8ISFB7rA61FHbKooiVqxYgcTERISFhWHChAkoKCiQJ9gOqLoA/P7772G32/HGG2+goKAA//3f/41169Zh2bJlcocmOavVinvvvRePPvqo3KFI6uOPP8bChQvxzDPP4MiRI8jIyMCUKVNQVFQkd2iSqq2txZAhQ/Daa6/JHYrP7N27F48//jgOHjyIXbt2oampCZMnT0Ztba3coSlGR+2GzWbDnXfeidraWnz11Vf4n//5H2zZsgW///3vfRzp9Xv++edhMpmaH//5n/8pd0jtUkLbNnDgQJdtfuzYMblD6lBHbeuLL76IV155Ba+99hoOHTqEhIQE3Hbbbbh8+bKPI/WASC5efPFFMTU1Ve4wfGbjxo2iTqeTOwzJ3HLLLeK8efNclt10003i008/LVNEvgdA3Lp1q9xh+FxFRYUIQNy7d6/coShOW+3Gzp07xaCgILG0tLR52UcffSRqtVrRbDb7MMLr07t3b/G///u/5Q7jugR627Z8+XJxyJAhcofRJS3bVrvdLiYkJIh/+tOfmpdduXJF1Ol04rp162SIsH2qPgPojtlsRmxsrNxhkBdYrVYcPnwYkydPdlk+efJk7N+/X6aoyFfMZjMA8Hj2oQMHDiAtLQ2JiYnNy26//XY0NDTg8OHDMkbWsRdeeAE9evTA0KFDsXLlSr++bK2Utu306dNITExEamoqZsyYgf/93/+VO6QuKSwsRFlZmct+0Wq1GD9+vF/ul2C5A/AnP/74I1599VW8/PLLcodCXlBVVQWbzQa9Xu+yXK/Xo6ysTKaoyBdEUcTixYsxduxYpKWlyR2OapSVlbU63rp3747Q0FC/PuYWLFiA4cOHo3v37vjmm2+wdOlSFBYW4q233pI7NLeU0LaNHDkSmzZtQr9+/VBeXo4//vGPGDNmDAoKCtCjRw+5w+sU57Z3t1/OnTsnR0jtUuQZQHc3l7Z85OXlubzn/PnzuOOOO3Dvvffi4YcflinyrulM3mogCILLc1EUWy0jZZk/fz6+++47fPTRR3KH4ve83W64O7bkOOauJ69FixZh/PjxGDx4MB5++GGsW7cOGzZsQHV1tU9jvl6B3LZNmTIF99xzDwYNGoRf/OIX2LFjBwDg3XfflTmyrguU/aLIM4Dz58/HjBkz2l0nJSWl+f/Pnz+PiRMnYvTo0Vi/fr3E0UnnevNWuri4OGg0mlZ/EVdUVLT6C42U43e/+x22b9+Offv2wWg0yh2O3/Nmu5GQkIB///vfLssuXryIxsZGnx9zXclr1KhRAIAzZ8745dkoJbZtERERGDRoEE6fPi13KJ3m7MVcVlYGg8HQvNxf94siC8C4uDjExcV5tG5paSkmTpyI9PR0bNy4EUFBgXtS9HryVoPQ0FCkp6dj165duPvuu5uX79q1C3fddZeMkZEURFHE7373O2zduhV79uxBamqq3CEFBG+2G6NHj8bKlSthMpmafwF+/vnn0Gq1SE9P98p3eKoreR05cgQAXH6J+xMltm0NDQ04efIkMjIy5A6l01JTU5GQkIBdu3Zh2LBhABz3a+7duxcvvPCCzNG1psgC0FPnz5/HhAkT0KtXL7z00kuorKxsfi0QxiPqiqKiIly4cAFFRUWw2WzIz88HANx4442IjIyUNzgvWrx4MWbOnIkRI0Y0n+EtKirCvHnz5A5NUjU1NThz5kzz88LCQuTn5yM2Nha9evWSMTLpPP744/jwww/x97//HVFRUc1nR3Q6HcLCwmSOThk6ajcmT56MAQMGYObMmVizZg0uXLiAJUuWYM6cOYiOjpY3+DYcOHAABw8exMSJE6HT6XDo0CEsWrQI06ZN8+tjJdDbtiVLliAzMxO9evVCRUUF/vjHP8JisWDWrFlyh9aujtrWhQsXYtWqVejbty/69u2LVatWITw8HA888ICMUbdBzi7Ictu4caMIwO1D6WbNmuU27927d8sdmtf95S9/EXv37i2GhoaKw4cPV8WwILt373a7f2fNmiV3aJJp61jeuHGj3KEphiftxrlz58Q777xTDAsLE2NjY8X58+eLV65ckS/oDhw+fFgcOXKkqNPpxG7duon9+/cXly9fLtbW1sodWocCuW27//77RYPBIIaEhIiJiYliVlaWWFBQIHdYHeqobbXb7eLy5cvFhIQEUavViuPGjROPHTsmb9BtEERRFKUvM4mIiIjIXwTuDW9ERERE1CksAImIiIhUhgUgERERkcqwACQiIiJSGRaARERERCrDApCIiIhIZVgAEhEREakMC0AiIiIilWEBSERERKQyLACJiIiIVIYFIBEREZHKsAAkIiIiUhkWgEREREQqwwKQiIiISGVYABIRERGpDAtAIiIiIpVhAUhERESkMv8fOJN4Ua0D0ooAAAAASUVORK5CYII=", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_lattice(square_lattice)\n", - "plot_lattice(tilted_lattice)\n", - "plot_lattice(honeycomb_lattice)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "ef0a5d74-739f-4688-ad7f-fed91c39dcaa", - "metadata": {}, - "outputs": [], - "source": [ - "simple_cubic = Lattice([1,0,0], [0,1,0], [0,0,1])\n", - "graphite = Lattice([0.5,-0.5 * 3**(0.5),0], [0.5,0.5 * 3**(0.5),0], [0,0,1])\n", - "fcc = Lattice([0.5,0.5,-0.5], [-0.5,0.5,0.5], [0.5,-0.5,0.5])\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "364f3ddb-21d0-4586-8b3b-acad8ba20d9b", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[6.28318531 0. 0. ]\n", - " [0. 6.28318531 0. ]\n", - " [0. 0. 6.28318531]]\n", - "[[ 6.28318531 -3.62759873 0. ]\n", - " [ 6.28318531 3.62759873 -0. ]\n", - " [-0. 0. 6.28318531]]\n", - "[[6.28318531 6.28318531 0. ]\n", - " [0. 6.28318531 6.28318531]\n", - " [6.28318531 0. 6.28318531]]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6a86aabea01c44019ffea0aaf5515ce0", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXwjd33//9JpyYcsWb69vtbew7veze56L28SkgANhIQGWs7vo5CEs0BCSHpQvqE03IRQCuFI4NeSpAW+QGih5YZCyLlLkl3f930fsmTLtm7NzO8P72cyGo+kGWlGktef5+ORR/bwjsay9Nbr8z5ebx3HcRwoFAqFQqFQKLsGfbZvgEKhUCgUCoWSWagApFAoFAqFQtllUAFIoVAoFAqFssugApBCoVAoFApll0EFIIVCoVAoFMougwpACoVCoVAolF0GFYAUCoVCoVAouwwqACkUCoVCoVB2GVQAUigUCoVCoewyqACkUCiq09nZiZtvvhl1dXWwWq0oKSlBe3s7vvvd72772uuvvx46nQ46nQ56vR5FRUVobm7Gm9/8Zvz4xz8Gy7KyHvP2229HYWGhKvc/Pz+P+++/H52dndv+7pe//CXuv/9+yX/X0NCA22+/XZV7oFAoFC0xZvsGKBTKlcfa2hpqa2vx9re/HTU1NfD5fPje976Hd7zjHZicnMTHP/7xmK/fu3cvvve97wEAfD4fJiYm8NOf/hRvfvObce211+JnP/sZiouLM3b/8/Pz+OQnP4mGhgYcO3Ys5u9++ctf4hvf+IakCPzJT34Cm82WmZukUCiUNKACkEKhqM7111+P66+/PubPbrnlFkxMTODb3/72NgFotVpx9uzZmD97z3veg0cffRTvete78L73vQ8//OEPtb7ttDl+/Hi2b4FCoVBkQUvAFAolY5SWlsJolH/uvOOOO/C6170OTzzxBKamptJ+/NHRUdxxxx3Yt28f8vPzUVNTg9e//vXo6enhv+aPf/wjTp06xT8+KU/ff//9uP322/GNb3wDAPg/1+l0mJycBCBdAl5bW8Pf/M3fYO/evcjLy0N5eTle97rXYXBwkP+acDiMz3zmMzh48CDy8vJQVlaGO+64Ay6XK+3vmUKhUKSgGUAKhaIZLMuCZVmsrq7iiSeewG9+8xt8/etfV3SNP//zP8cvf/lLPPPMM6ivr0/rfubn5+F0OvGFL3wBZWVl8Hg8ePzxx3HmzBl0dHTgwIEDOHHiBB599FHccccd+PjHP46bb74ZALBnzx6EQiH4fD78+Mc/xvnz5/nrVlVVST7exsYGrrnmGkxOTuKjH/0ozpw5g83NTTz99NNYWFjAwYMHwbIsbr31VjzzzDP4+7//e5w7dw5TU1P4p3/6J1x//fV46aWXYLVa0/q+KRQKRQwVgBQKRTM++MEP4lvf+hYAwGw246GHHsL73/9+Rdcgom9+fj7t+3nFK16BV7ziFfzvGYbBzTffjMOHD+Nb3/oWvvzlL8Nms6G1tRUA0NTUtK00XVFRAQDb/lyKr3zlK+jr68Pvfvc7vPrVr+b//C/+4i/4X//oRz/Cr3/9a/znf/5nzJ9fddVVOHXqFB577DF84AMfSO0bplAolDjQEjCFQtGM//t//y9efPFF/OIXv8C73vUu3HnnnfjSl76k6Bocx6l2P9FoFJ/73Odw6NAhmM1mGI1GmM1mjIyMYGBgQLXHIfzqV7/C/v37Y8SfmJ///Oew2+14/etfj2g0yv937NgxVFZW4o9//KPq90WhUCg0A0ihUDSjrq4OdXV1AIDXve51AICPfexjuO2221BWVibrGqT3r7q6Ou37uffee/GNb3wDH/3oR3HdddfB4XBAr9fjPe95DwKBQNrXF+NyufjvPx5LS0tYW1uD2WyW/PuVlRXV74tCoVCoAKRQKBnj9OnTeOSRRzA+Pi5bAP7P//wPdDpdTOk2Vb773e/ine98Jz73uc/F/PnKygrsdnva1xdTVlaG2dnZhF9TWloKp9OJX//615J/X1RUpPp9USgUCi0BUyiUjPHkk09Cr9dj7969sr7+0Ucfxa9+9Su8/e1vT5pJk4NOp0NeXl7Mn/3iF7/A3NxczJ+Rr5HKCib6OzE33XQThoeH8Yc//CHu19xyyy1wu91gGAYnT57c9t+BAweSPg6FQqEohWYAKRSK6rzvfe+DzWbD6dOnUVFRgZWVFTzxxBP44Q9/iL/7u7/blv0LBAK4cOEC/+vx8XH89Kc/xc9//nNcd911eOSRR2Q9LsMw+PGPf7ztzwsKCnDTTTfhlltuwWOPPYaDBw/i6NGjuHjxIh588EHs2bMn5uubmppgtVrxve99Dy0tLSgsLER1dTWqq6tx5MgRAMADDzyAm266CQaDAUePHpUs4X7kIx/BD3/4Q9x66634h3/4B5w+fRqBQABPPfUUbrnlFtxwww1429vehu9973t43eteh7vvvhunT5+GyWTC7OwsnnzySdx666144xvfKOv7p1AoFNlwFAqFojLf+c53uGuvvZYrLS3ljEYjZ7fbueuuu477j//4j21fe91113EA+P8KCgq4vXv3cm9605u4J554gmMYRtZj3nbbbTHXEf5XX1/PcRzHra6ucu9+97u58vJyLj8/n7vmmmu4Z555hrvuuuu46667LuZ6/+///T/u4MGDnMlk4gBw//RP/8RxHMeFQiHuPe95D1dWVsbpdDoOADcxMcFxHMfV19dzt912W8x1VldXubvvvpurq6vjTCYTV15ezt18883c4OAg/zWRSIT70pe+xF111VWcxWLhCgsLuYMHD3Lvf//7uZGREVnfP4VCoShBx3EqjthRKBQKhUKhUHIe2gNIoVAoFAqFssugApBCoVAoFApll0EFIIVCoVAoFMougwpACoVCoVAolF0GFYAUCoVCoVAouwwqACkUCoVCoVB2GVQAUigUCoVCoewyqACkUCgUCoVC2WVQAUihUCgUCoWyy6ACkEKhUCgUCmWXQQUghUKhUCgUyi6DCkAKhUKhUCiUXQYVgBQKhUKhUCi7DCoAKRQKhUKhUHYZVABSKBQKhUKh7DKoAKRQKBQKhULZZVABSKFQKBQKhbLLoAKQQqFQKBQKZZdBBSCFQqFQKBTKLoMKQAqFQqFQKJRdBhWAFAqFQqFQKLsMKgApFAqFQqFQdhlUAFIoFAqFQqHsMqgApFAoFAqFQtllUAFIoVAoFAqFssugApBCoVAoFApll0EFIIVCoVAoFMougwpACoVCoVAolF0GFYAUCoVCoVAouwwqACkUCoVCoVB2GVQAUigUCoVCoewyqACkUCgUCoVC2WVQAUihUCgUCoWyy6ACkEKhUCgUCmWXQQUghUKhUCgUyi6DCkAKhUKhUCiUXQYVgBQKhUKhUCi7DCoAKRQKhUKhUHYZVABSKBQKhUKh7DKoAKRQKBQKhULZZVABSKFQKBQKhbLLoAKQQqFQKBQKZZdBBSCFQqFQKBTKLoMKQAqFQqFQKJRdBhWAFAqFQqFQKLsMKgApFAqFQqFQdhlUAFIoFAqFQqHsMqgApFAoFAqFQtllUAFIoVAoFAqFssugApBCoVAoFApll0EFIIVCoVAoFMougwpACoVCoVAolF0GFYAUCoVCoVAouwwqACkUCoVCoVB2GVQAUigUCoVCoewyqACkUCgUCoVC2WVQAUihUCgUCoWyy6ACkEKhUCgUCmWXQQUghUKhUCgUyi6DCkAKhUKhUCiUXQYVgBQKhUKhUCi7DCoAKRQKhUKhUHYZVABSKBQKhUKh7DKoAKRQKBQKhULZZVABSKFQKBQKhbLLoAKQQqFQKBQKZZdBBSCFQqFQKBTKLoMKQAqFQqFQKJRdBhWAFAqFQqFQKLsMKgApFAqFQqFQdhlUAFIoFAqFQqHsMqgApFAoFAqFQtllUAFIoVAoFAqFssugApBCoVAoFApll0EFIIVCoVAoFMougwpACoVCoVAolF0GFYAUCoVCoVAouwwqACkUCoVCoVB2GVQAUigUCoVCoewyqACkUCgUCoVC2WVQAUihUCgUCoWyy6ACkEKhUCgUCmWXQQUghUKhUCgUyi6DCkAKhUKhUCiUXQYVgBQKhUKhUCi7DCoAKRQKhUKhUHYZVABSKBQKhUKh7DKoAKRQKBQKhULZZVABSKFQKBQKhbLLoAKQQqFQKBQKZZdBBSCFQqFQKBTKLoMKQAqFQqFQKJRdBhWAFAqFQqFQKLsMKgApFAqFQqFQdhlUAFIoFAqFQqHsMqgApFAoFAqFQtllUAFIoVAoFAqFssugApBCoVAoFApll0EFIIVCoVAoFMougwpACoVCoVAolF0GFYAUCoVCoVAouwwqACkUCoVCoVB2GVQAUigUCoVCoewyqACkUCgUCoVC2WVQAUihUCgUCoWyy6ACkLINjuMQjUbBsiw4jsv27VAoFIqqsCyLaDRK4xtlV2PM9g1QcguWZRGJROD3+wEARqOR/89gMECvp2cGCoWyMyGH21AohHA4DIPBEBPfDAYDdDpdtm+TQskIOo4egSjYCowMw/CZv3A4zP85x3EIh8PweDyora2FyWTigyUVhBQKZSdADrck+8cwDP/nRPTp9XoqCCm7BpoBpIDjOKyvr2N2dhZ79+6FTqeL+Q8ANjc3MT09jaqqKkQiEQDSwZIKQgqFkktwHMeLP47joNPpoNfrwbIs9Ho9DAYDf9DlOA6hUAihUIj/OnLgNRqN0Ov1VBBSrhioANzlMAyDSCSCQCCA6elpNDc3IxqNwu12o6ioCBaLBQB4YWc0br1kSLCMRCJ8tpAKQgqFkkuQGEWyfcJDrRDhn4sFYTAY5L+GCEJhSwwVhJSdChWAuxTSC0MaofV6PTiOw+bmJrq6uhAMBhGJRJCfnw+Hw4G8vDywLMv/exIwicATnrJJhlCn08UIQqPRSIMlhULJCCQeMQyzTagli0NyBaG4h5AKQspOgvYA7kLEPTA6nQ4bGxu4cOECdDodamtrUV9fD4Zh4PV6sbq6CrfbjUAggMLCQtjtdjgcDtjtdphMJsnHIIKQBE0SUMVDJTRYUigUNRH3M0uJMlL5SLVCIRSELMtifn4eFosF5eXlVBBSdgw0A7iLkOqF0el0iEajGBkZAcuyaGtrQ2lpKcLhMPR6PcrKylBWVoaNjQ10dHSgoaEBq6urGBsbg9/vR1FRES8G7XY7XyImp2Opxw6Hw3z20GAwxAyV0GBJoVBSRVzy1UqAiTOEGxsbfIwLhUIIBoPQ6/Xb2mKoIKTkElQA7hKEJV/g5QDm9XrR1dUFs9kMnU6HsrKyhN5Y5eXlKC8vBwCEQiGsrq5idXUVIyMjCAaDvCB0OBwoLi7mRaBcQUgn8CgUSioQ94J4WT8hJHunFiSekhhHrs8wDBiGiRkqoYKQkitQAbgLkOqF4TgOk5OTGBkZwd69e1FZWYlnn3027jWkglReXh4qKytRWVkJAAgGg7wgHBgYQDgchs1m4wWhzWaTFIQkEJMAHi9YUkFIoVDESPUzZyNOCAWlVI+0sDQtFIzilhga4yiZggrAK5h4vTDhcBg9PT3Y2NjAyZMn4XA4EAgEkp6Ik/29xWJBVVUVqqqq+GZpIgjn5+cRjUa3CUJhsKaCkEKhKIH0M7/wwgtobGyE0+nMyZgQTxBGo1FEIhEqCClZgQrAK5R4vTButxvd3d2w2+24+uqr+SEOEmTiiTylQUin08FqtcJqtaK6uhocx8Hv92NtbQ2rq6uYnZ0FwzB876DD4UBRUVFSQUgc/Mlj6PV6mM1mOlRCoewixP3MoVAoxtA506QSH+UKQmq8T9EKKgCvQKR6YViWxejoKCYnJ3HgwAHU1tZKBi0yHCKGlI1TRafToaCgAAUFBaipqQHHcfD5fFhdXcXa2hqmp6fBcRwvBh0OBwoLC7c1WwstGSKRCJ577jm0t7fDZDJR01YKZRcg1c9MbKyyfV+pkkwQAtRnlaI+VABeQZCSLzkVEwEUCATQ3d2NcDiMs2fPoqioaNu/lSOU1G6aLiwsRGFhIWpra3kPQlIynpiYgE6nixGEBQUFMRtKSIaQBEJq2kqhXNkI+5mFgindA2quEU8Qio33OY5DXl4ef/ClgpCiBCoArxDilXyXlpbQ29uLiooKtLW18TYtYoQl4HgZQC3R6XQoKipCUVER6urqwLIsLwjdbjfGx8eh1+tjBKHZbAYA3m4BoKatFMqVSDJvv2wLwEzERynj/RdffBFNTU0oKSmhxvsUxVABuMOJ5+3HMAyGhoYwPz+Pw4cPo6qqKuF1xD2A4oCa6QCr1+ths9lgs9lQX18PlmWxsbEBj8cDl8uF0dFRXswuLCzA6XTCarVu22EsFIQsy1JBSKHsMOR4+ymNT1q8zzMZH4UVEBK/xLZaVBBSkkEF4A4mnrcfWeem1+tx7tw55OfnJ71WsiEQ4WNmI4jo9XoUFxejuLgYwJaTv8fjQU9PD5aWljA6Ogqz2cxnB+12O6xWK4D4a52oaSuFktvI9fZTKgCXl5fh9XpRUlLCuxHsVMQtMQA13qfIgwrAHQp5c5P9vKQfZHZ2FgMDA6irq8O+fftkBza1p4C1xmAwwG63AwCOHTvGm1qvrq5ibm4Og4ODyMvL4wUh2WcMbF8IT01bKZTcIl4/czzkCkCGYTAwMIDFxUXY7XbMzc2BZVnJ4bOdQKJ4TY33KcmgAnCHIXwjC0/F0WgUfX19cLvdOHbsGMrKyhRdV64AzFYGMBkGgwElJSUoKSkBAESjUV4QzszMoL+/H/n5+Xx2UNhDSE1bKZTcIZV1bsTpIBGbm5vo7OyE0WhEe3s7n/UnbgTC4TPhwTE/P1/W4+cyQkFIfVYpBCoAdxBivysSGMk6N6vVinPnzsFisSi+tpIScK4hFaSMRiOcTiecTicAIBKJYG1tDWtra5iamkJfXx8KCgpiSsZCT0Rq2kqhZB6S9ZOzzk1Isgzg3Nwc+vv7+coIAD4TJnQjIMNn4l5joSAkrSVishUbU/EgBKjxPoUKwB0Dyfo999xz2L9/P8rLy7etc9u7d2/Kb9CdVgJWislkQllZGZ8ZDYfDvCn1+Pg4fD4fCgsLYwQhGTKhpq0UiraI+5mVtlvE8wGMRqMYGBjA8vJyTGUkXrZQOHzW0NAAlmX5SsLCwgKGhoYkW0uyFR/VEJ2JBKHQeJ8KwisPKgBzHHEvDDnpSq1zS5dEp2i5GcJMks69mM1mlJeXo7y8HAAQCoV4QTgyMoJAIICioiI+yBcXFysShEtLS6isrITFYqGCkEJJgFQ/s1KkYtfGxgY6OzthNptx9dVXp1QZ0ev1fAwA4reW6HQ65OfnIxKJ8JWETKG2CBMKQrGtFhGEm5ubYFkWZWVl1Hh/B0MFYA4j1Quj1+uxvr6O/v7+bevc1HrMdP5+p5KXl4eKigpUVFQAAILBIC8Ih4aGEAqFYLPZ+P7B4uJi/sQsJQiHhoZQXFwc86FGXfwplJeJ18+cCkIBSIbhBgcH0dDQgKamJtXea/FaS8bHx7G2toZnnnmGrySUlJTEHBx3KlIuCh6Phz8kk6+hxvs7j539yryCkeqFISn58fFxtLS0xF3nlipyMoC7BYvFgsrKSlRWVgIAAoEAv7ZuYGAA4XAYxcXFfLm4uLh424eM0WiEyWSSnMATe3RRQUjZTRCT9oGBAezfvz9tjzoSu4TDcMePH0dpaamKd70d0lri8XhgMBhQW1vLD5QID44ki2iz2WKmc9MlGwdy8nMigi+e8T4VhLkPFYA5RrxeGOE6t6amJtTV1an+2HLenLmYAcxEULFarbBaraiurgbHcbwgJLYz0WiUF4TEq5DcVyJLBrLnk5q2UnYLwtf+zMwM9u3bl/ZrXafTIRgM4vnnn4fVasXVV1/N2z5lAnL/eXl5kgfH1dVVzM/Px8QJh8OBoqKitA9+2YgTQjeIeD6rdBNT7kMFYA4h7oUhbyzhOjedTqdZYBNnAMVvcsoWpN8nPz8fNTU14DgOfr+fD/TT09MAgP7+fpSUlPCBXo4gpKatlCsV8To3UhpN91DJcRx8Ph+8Xi+am5vTGoZL9z7EiA+O4jjBcVxaHoTZOpAnsgNLZLxPBCE13s8NqADMAeL1wkitc7t48aJmb/rdNASiJjqdDgUFBSgoKMCePXsQiUTwzDPPwOFwwOv1YmpqCgBgt9v5YC8M9FQQUq50pPqZCcn8+xIRiUTQ29uLjY0NVFRUoKmpKe171QpxnOA4jt93TjwIxfvOc9WDkJhzyyGeIKTG+9mHCsAsE8/0NN46NzmGp6mSzEuL3C9FHrW1tXzA29jY4IdKxIHebrejoKBAUhAKLRmoiz9lJ5LI209OzImH1+tFZ2cnCgoKUFlZmfHpWyGpvPd0Oh2KiopQVFSEuro6ft/56uqqYg/CTKNEAIqJ56IgFoSkZCxsiaExTl2oAMwi5EOdYRg+MCZb5xbP70oNdloGMFchz5FQ0BFvsUSBXnjyt1qt207OwmtT01ZKriPH20+v1ys+0HIch6mpKYyMjKCpqQmNjY0YHBzc8bFJuO+8oaEBDMNgfX0dHo8H8/PzGBoagsViiRGEuVgCVooSn1VqvK8uVABmAXEvjJJ1btnMAObqmy3X7kssAMWIAz3LslhfX8fq6iqWlpYwMjICk8m0TRAKr0lNWym5TLx+ZjFKM4DhcBi9vb1YX1+P8T/V6/V8FSVbqC3GDAbDNg9CUkUg24wAYHp6GuXl5THbjLRGy5WgyQShx+MBAFRUVFDj/TShAjDDxCv5yl3nlq0MIGGnn7IzgdLniJSD7XY7GhsbwTAMvF4v1tbWYrYPCAUheX3IMW0lj0GCJTVtpWiFsH+ViIRErzMlGcDV1VV0dXXBZrPh3Llz/C5vIL1S8k7BaDSitLSUt7Yhm6E4jsPY2Bj8fn+Meb3dblfVckZIJnfCiwWh1+sFx3FwOp0xGUJqq6UcKgAziFQvjNJ1bjQD+DK5GvDlfPAlwmAwoKSkBCUlJQC2Xjfk5D83N4fBwUG+FEREIZkMl2PJMD09jdraWlitVtpwTVEN8eFWzntATjzjOA4TExMYGxvDvn37UF9fv+262RaA2Xh8k8kEnU6HhoYGFBYWIhQKJfQglPIqTZVMCkCpxyYHWfJ78tpLVAGhgnA7VABmAGEvDGme1el0Ka1z0zIDSO410Xh/roquXELt4GgwGGK2DwhLQdPT0/w6KuHJn2RHxIKQYRhMTU2hurqamrZSVEOqn1kOyeJZOBxGd3c3fD4fTp8+zXtsitHyYCyXbMVGKQ9CcuCL50FYUlKCwsLClEVRNgUgy7Ixpe54JWNqvJ8cKgA1hmVZRKPRbSVft9uN7u5uxevctAx0JBiHw2EMDQ1Br9ejpKQkppSQiwIw14SK1sFRqhQknDD2+XwoKCiIEYTk9UV+fsItJdS0lZIq8fqZ5ZIonnk8HnR1dcFut+PcuXMJYyQ9nMai0+lkeRAKB0qETgTJyLYATCTepAQhNd6XhgpAjYjXC8OyLEZHRzE5OYkDBw4oXuemdbPz5uYm+vr6UFBQAJPJhMHBQX7tGbEzyc/Pp6enBGQ6OJJ1VGRoKBwO84JQ3BtUWFgI4GUftnglY2raSklGvH5mJUhlADmOw/j4OMbHx2XHSK0rI8nIZjlUDlIehMSJwO12Y2xsLGboROhEEO9xs/k9K/n8EdpqkX8fz2dVPGV8pUMFoAaI7Q/Ih6xwndvZs2f5RdpK0CoDSIL5yMgI9u3bh5qaGrAsy9/36uoqvF4vhoeHMTw8nPLJUe17zkWyGRwBwGw2o7y8HOXl5QAQ0xs0Pj4OAOjo6IjpDSIBMp4gJB5dwWCQCkIKb0OUStZPiHgIJBQKobu7G4FAAGfOnIHNZpN1nd2cAUzVg5BYU9XX129zIhgeHobZbI6J88LBxGxnANN5bCWC8Eo33qcCUGXi9cII17m1tbXxDaxK0eKkG41G0dvbi3A4jObmZjQ2Nsakysnas/HxcRw9ehR6vR4ej4c/ORKzUrL2LN4E824h2wJQjLA3yO/348KFC6ipqcHq6ioGBgYQDofjLqyP119DTVt3J/H6mVNFeKB1u93o6uqC0+nE8ePHFcXIXBCA2Xh8tR4znhOB1OCZw+EAwzA5WwJWilAQ7jbjfSoAVYJ8KM7NzWF5eRlHjhyBTie9zi0d1M4Arq+vo7OzE1arFYWFhSgoKOAfR+qxdbqX3evJyVEcKKxWa8zJMZsO/dkg3ROqlrAsC4PBgKqqKlRVVcVtFhcLQnHJmJq27j5IP/Of/vQn7N+/H8XFxWn/TEkGcGRkBJOTk2hpaUFNTY3i62ZbAGbzta3FY4udCMQehJubm/D7/fD7/XyfcapJDaWoLQCFCKsfwHbj/WAwiMnJSdTX18e4KOxUQUgFoAoIe2Gi0SgCgQB0uvjr3NJBrQwgx3GYm5vDwMAAGhsb0dTUhD/96U+KfQD1ej0vFPbu3YtoNBqz27K3t5fvPyspKYkpN6pBLr7pci0DKETcPxOvWZwE+9nZWTAME7PHuKioKCVBSE1bdybifuZAIKBaBoh42Ol0upTbYoDsC0Agd1tS1EA8ePbSSy+hqKiI72kPBAIxHoRqx3khmfYgBF4WhAzDYHZ2FrW1tVfEJiYqANNE3AtjNBr5F0m8dW7poEagi0aj6O/vx8rKCk6cOMHbiwivLfUYcl7QRqMxZiCB9J95PB4MDAwgEonEWBEUFRXtiDeKEpQ2KWcSORN0pFm8pqYGHMfB5/NhdXUVa2tr/PSg0JS6sLCQ/xnKFYTUkmFnINXPbDAYVKlCuFwueL1e2Gw2nDp1Kq0MkpK4SETn3NwciouLd3TrSjatZ4qLi1FZWQkAMVUE0lZC4ry4ipAuWmYA5Tw2AN4ya6cb71MBmCKk5EtOxUJjZ7/fj+Hh4bjr3NIhld2ZQjY3N9HZ2QmTybRt40iyIJqK+BR7UwUCAXg8Ht6KAADsdjsfhPPz8xVZEeQiuZwBJL2pctHpdCgsLERhYSFqa2vBcRw2Nzdjsrw6nS5GEAqHgpJ5dAHUtDVXEfYzC3+G6cYgUvKdnp5GYWEhqqur0y4fym2NCYfD6OrqQiAQQFNTE3w+H+bn52NaV4j11U5pXcnWAJ7wPWqxWGLaSsjgIKkisCwbIwjTOfjnggBM5qIgttXKVZ9VKgBTIJ79gdfrxeDgIFiWxTXXXKPJiTKdHsD5+Xn09fWhvr4ezc3N295EcgReOqJLOFAitCLweDxwuVwYHR2F0WjkxWBJSQm/4WInkcsCMN3spLAHtK6uDizL8oLQ7XZjfHycbygnwV4o6pMJQo7j4HK5UF1dDbPZTAVhFkjm7ZeOAAwEAujq6kI0GkV7eztGRkZUySbKiV2rq6vo7OyE3W7H2bNn+a8nrStra2vweDwYHx+Hz+fj+2BJ60qyzHmmyeYBONnCABLnxVWE1dVVTE5OJjw0JiObAlB8GBKz0wQhFYAKEWb9yA+b415e51ZVVYWVlRXNygmpZOEYhsHg4CAWFxdx1VVX8fYgUqidAUyE0IqgoaFh2+TZwMAA8vPzeUG4U07luSwA1Q6eer1+m52ElKgXrq0T+ouJBWEwGMTQ0BDKyspiVor98pe/RH5+Pt7whjeodu+U7cjx9ktVAC4vL6OnpwcVFRVoaWnhP/jUiCmJrsNxHKampniLq/r6et7wnnxv4h63UCjEVyr6+voQjUb51y/ZoiF+XrJZjs00SmKcuIogPDSurKzEOEkILWfiXT/bGUAlvY1yBWEoFMIXvvAFfP7zn4fVatXk3qWgAlAm8bz9xOvcdDodXC6XZvehNGD6/X50dnZCp9Ph3LlzCV9cya6tdaART56RDRcej4c3NBZOp5rN5pwUWrtJAIrR6/UoLi7mV3YxDMP7iy0uLm7zF7Pb7TGvSTJBTVbZkQGEX//616iqqqICUEPkevspFYAsy2JoaAizs7NobW2NcUJQy9Ug3uE0Go2ip6cHXq83Zt1mshial5cXU9L0+/28IJycnIwZfiPxajeRToyTOjSSg//CwgKGhoaQl5cXIwiFlaBs9lgrbaERE08QejwefPWrX8UXv/hFtW5VFlQAyoD0wojr/1Lr3NbX1zXdSakk+C4tLaGnpwc1NTU4cOCArBeuliVgpYg3XAhP5f39/XwmdmpqKu2+EjXZzQJQjHC7AABJfzFhsCeN0wQydOD3+/ktJhR1idfPHA8lMYgcQAHg3LlzvM2U8FpqxBQpAbixsYGOjg5YrVacO3eOP1Skcm0yGEUyWCTLTUyTyZT78vJyzC5uLcnVErBShGIa2IoRxIVgZmZm267zbHsQqu1iodNtLVvIy8vLmJUOgQrABAjtD4SnYpZlMTY2JrnOLd0G6WTIKcOSE/fc3BxaW1v5SS0l15Z6g2Vb1IhP5W63mz/dT01NAUDMqTzRKiMtoQIwPlL+YkQQzszMYGNjAzqdDoODgzGZXp/Pp6kA/PznP4//+q//4ocBzp07hwceeAAHDhzQ7DFzATklXzFyY9zi4iJ6e3tRXV2NAwcOSH5wqhUvxXGRuDAQiys134/CLHdjYyOi0SiGh4exvr6OyclJbG5uamp9JeZKi3EGgwFOp5N3pxDvOmcYBn19fXA6nRn3IEw3AxiPzc3NrGzUogIwDvECY7J1bpkQgImuT5qsGYZBe3v7thN3smsn+/tcmbwl/nU6nQ5Hjx7lT+Wrq6tYXl7GyMgIX2okPYSZGiihAlA+RqMxJtgvLy/zGZWpqSk89dRT+MxnPgO/34+GhgZ4PB5NSm5PPfUUPvShD+HUqVOIRqO47777cOONN/IHiysRkvVTus4tWYwTmt8nO4CqXQJmGAb9/f1YXl7G8ePH+Z4+LTEajcjPzwfHcTh8+DDC4fAVb32VyRgnrgT94Q9/QE1NDXw+H0ZGRhAMBjPmQah2BpDg8/lU8QlWChWAEqSzzo2UNLR6gyQqmbhcLnR3d8c0WStB6ylgLRGeyoUDJR6Phy8jFBQUxNg8aHVqpAIwdXQ6HfLy8rBv3z4AwL59+xAKhfCJT3wCP//5z/Htb38bR48exc9//nPU1NSo9ri//vWvY37/6KOPJhyW2smI+5mVTiAmEoA+nw+dnZ2yze/1ej1/yE4HnW5r69KFCxdgMBhw9dVXJxzE0/L9aTabUVFRgYqKihhLFI/Hw1tfqVGpuFJKwEogr7vy8nL+QB8IBPgMYX9/f8wmIyK41Yp5WmUASYWDZgCzSDz7AyXr3MiLQ6uTgtSJmbixT01N4dChQyl/MOZ6CVgJUgMlxIZAeGok2cFkNg9KoAIwdRiGiXnfOBwOvOMd78BDDz2EL37xizhz5gyeeuopVFRUaHofXq9X0+tni3j9zEqIJwCJzVRtbS32798v69pqZQBXV1cRDAZRWVmp6LHVIt7hWcoSRTwlbzKZYqyvlPYPXmkl4GSPC8S+bskmI+HAjtiDMJ5xvVK0zAAqqdapBRWAl4lX8lW6zo28MMUfZGohzgCGQiF0dXUhFAqltUoJ0MYIWmvkvpFNJhPKy8v5rE4wGOQHSsj+22Q2D3KhAjB1pN43JKgXFRWhoqICb3nLWzS9B47jcO+99+Kaa67R9HEySbx+5lQQZ+0YhsHAwACWlpaS2kxJXSudmCKcMDYajTh48GDK18oE8ayvxJUKofVVvErFbs4AJvIgJAM7xGtWyrheOGGsZPmA1hnATEMFIKR7YTiOS2mdmzADqAXCE7Pb7UZXVxecTidOnDihipv+TioBp3MvFosF1dXV/P5bsVGpcDJN7F2XDGJlkovsRAEIZPaEfOedd6K7uxvPPvtsRh5Pa1IZ9EiEXq/ny8dks5DRaExqMxXvWqnGymAwiM7OTjAMgyNHjqC/vz+l66hBqs9nvEqFx+PhKxU2m43/GqlyZraEWDYFoNwYptNtN64nveJin1JhrE/0+LQH8AohXi9MNBpFX18f3G634nVuwklhLSABc2xsDOPj4zh48CD27NmjyptRKABJH6P4769EpIxKxTYPQquSZGWaXM8AZtpqQAnxTtiZOiHfdddd+J//+R88/fTT2LNnj+aPpzUsy8LlcmFlZUW1aViyC3hubg79/f1xNwvJIdVYubKygq6uLr7f2efz5dThNFXElQph/yApZwr362aLXM0AJkOqV5z4lMrxIKQZwCsEcS8M8ePxer3o6urirSBS2eih5SQwEayzs7M4ffo0b7irBjstA6gVYpsHoS/V9PR00jJNrgvAXL03QDoDGI1GEQqFNA2QHMfhrrvuwk9+8hP88Y9/RGNjo2aPlQmE/cx+vx8ulwvNzc2qXd/j8WBlZSXtfedKS8Acx2FsbAwTExNoaWnhRXoutKdo8fikv41UKoRrF8fGxgAAg4ODcDqdGV2dmc0eQDXXpol9SsW2VMLhQYfDgUgkolkGkArADBCvF4ascxseHkZTUxP27t2b1ilDCwFIdlkCW6aqaq9F24k9gJlA7EsVDof5DSXCMg3JDuayyNqJJeDNzU0ASKu/NRkf+tCH8P3vfx///d//jaKiIiwuLgKAbA/NXEJc8jUajapM2gJb5spTU1PgOC7ppK0clGQAw+Ewurq6EAgEtvU7Zzs2ZeL9Li5nhkIhPPfcc7BYLLyputVq5Q+mDofjinM60Dq2im2phMODZBsV2UBFhgfVeI7pEEgGiNcLI1zndurUKf40kCpqC0DhLsuGhgaMjY1pthM3m6vgUiEb92Q2m+OWaebm5hCNRmE2mzE9PZ321JnaaNXDohYMw2wrr/t8PgDQ9IT88MMPAwCuv/76mD/faQceqX5mUrJNB9ITPTg4yB9y1Nh3LjcDuLq6iq6uLhQXF+PcuXPbPnSzLQCzATnINTY2wmAwxBgmj42NIRAIaOJ0IDWJmykyfYAVl+R7enqg0+kQiUQwNDSEUCgUs5401efY5/Ohurpa7dtPyq4RgCTr9/TTT+PEiRP8h4nUOrd0UVMARiIR9Pb2wuv14tSpU7BYLBgbG9PkBEZLwKkhLtMMDg7yVgQTExP8QAkJxJlc9i0ml7OTgHQG0OfzwWKxaCpcd/rrOpG3n8FgSCsDGI1G0dvbi9XVVZw4cQLBYBBzc3Oq3HeyWCk8/O7btw/19fVxLaqy/TPM9OOLH09smBwMBvmDqdDpgMShVA+miazCtCYXKhg2mw11dXUAXj78C90kiOk3WU8q535pCVgjxN5+0WgUDMMkXOeWLmoJQK/Xi87OThQUFPC7LEOhEABtUvA7rQScS/dC0Ol0MJlMKCoqwv79+8GyrGSTsbBMk4m9oYRcCKCJkMpQZmtN0k4hXj8zIZ14JO6JzsvLw8LCgmoH3EQl4Gg0yq96PHnyZMLKDIlNudx/qxXxvl+LxRKzOpM4HXg8nrQOprtZAIrjk/jwL/QgnJ6eBsdxMaI7Xhzz+XyatrjE44oWgFIlX71ej0AggMHBwbjr3NIlXQHIcRxmZmYwNDSEvXv3xvQjCm1m1H4jJOvH2W2BNVWEH0J6vR52ux12u53fG0rKNFNTU+jr60NhYWHMhhItM13ZDqDJiJcBzIZFQq4j7Gcmrzmp92gqGUCO4zA9PY3h4WHJGKSWAIxXAt7Y2EBHRwcvPJMdksi9ZUsA5npslHI6EB9MLRZLzME0XjUsmwKQDIFki0RTwIk8CD0eD8bHx+Pai6kd455++mk8+OCDuHjxIhYWFvCTn/wEb3jDG/i/5zgOn/zkJ69cARhvzyXHcejp6UFVVVXcdW7pkk6AJBY0Ho8HJ06c4JtRCeT70GLIJNkmECA3s265RqIgZTQaUVpayu8oFe4NJT0l4r2haga8nSoAc6mPMhcQH27jiT/g5XgkVxyRtpO1tTW0tbVt272spgCUOnQS/9XGxkbZ1jXkNZ1tc+Sd8niJDqYTExPo7e3d1j9I3pfZzgBmMw4o6aGO50EotBfzer34wQ9+gMnJSYTDYdXu0+fz4aqrrsIdd9yBv/zLv9z291/84hfx5S9/+coTgMJeGOHIOFnnFgqF0NDQoKljfKoBcmNjA52dncjLy+PLLVLXBrQJNjutBAzk5slbSRZCuDcU2OopIRtKhGuMkpUQ5LJTBWA2JuRylXi7yuNBnk85H15ra2vo6upCQUEBrr76asnMm1YZQIZh0N/fj+XlZRw/fpw/JMlBeMBX8m9yLZ6lghoxUHwwDYVC/MF0YGAAkUgExcXF/KFUrcdVSrbjVzo+gFL2YsPDw6iqqsLvf/97fPjDH8ZXvvIVvPKVr8SDDz6Yls/jTTfdhJtuukny7ziOw1e+8hXcd999V5YAFPb4AdLr3IqKijQ30EwlQBJT1YaGBjQ3NydcdQNkTwBSkpNOGcpqtaKmpobfGyr2/RK61peUlCiexMx2AE1GogzgbifervJkyFlPSWywyLBFQ0ND0oyiGpAMoM/nQ2dnJwwGQ0r2MlrGRSWPn0m0/F7z8vJQWVmJysrKmN42j8eDyclJAEBfX19M/2AmnoNsxy81XRQMBgNaWlrw5S9/Gb/5zW/wyCOPgOM4PPvss5rGu4mJCSwuLuLGG2+8MgRgvF4YqXVuFy9e1MykmaAkQAr3aMoxVSXfm9Yl4IWFBaytrcHpdMb0peXSiTmX7kWIWn1IUiUEYlKqtG+HkO0AmgypEzbtAUxvnZswAyiFUhsstTOA0WgU58+fx549e7B///6UN4oA8mNCKBTC6Ogo8vPzUVJSkjEBowVa37e4ty0QCOD8+fMoKiratimJxCKtBttyuQcwHXw+H8rKynD69Gnccsstql9fCPE4raio2PkCUGx/QARSvHVu6VoiyEG8LD0ewlOvkj2aWpUuiLDs7e3F0tISnE4nBgcH+fR/OByGxWKRJXDMNhuMADgAgbvuAj77WdXvN1fRqk9F2EAMgO/bIVN9pG+HfI3UQMlOEIA0AxgLy7IIh8OKsn5CdDpd3JhE/PVsNpusYQtAfnxLBsuymJ6eRiQSwbFjx9Iy3VYiAImhfmFhITY3NzEyMsJP5hMBk9QO7K67kP/44wCAKAAMDOyoHsB0H1en06GhoYFfp5apwbZsxy8tdwFnegpYp9PtbAEYrxcm0To3tYJXIuSckBcXF9Hb25vSqVerDGA0GoXb7UZ+fj7Onj0Lg8EAnU7H96VNTU1hdnYWi4uLfLCUWj9kdDhAwqcOQP7Xvgb/LhKAmZpEjNe3s7q6yk+5k74d4kmV7QCaCDKoQAXgFvH6mVNBHJM4jsPExATGxsYS+uvJuVYqBINBdHZ2IhwOw2g0pr1xRY4AFE4279u3D1VVVQC2XnfCg1RfXx8/AFFSUgKbzbbtPVNwWfwBgAlA7fHjcP32t2l9D6mQrdKz8HGlNiWROKT2YFu2h0C0yABGIhGEw+GMCUDyXltcXNyZAjBeLwwxDU20zk0NV/xkJAqQLMticHAQ8/PzOHLkCN/8r/T6ap/+3G43pqamYDabcfr0aX5Dik6nQ35+PvLz8+H1epGfnw+Hw8FvvRgYGOD34pLTnlUksLV8u+Zi2SZbVhTivh3hhhLiScUwDJaXl/mfay49f+RgRgVg/H7mVBFWPkKhEHp6euDz+VLaJ07iT6qv85WVFXR1daGiogK1tbV44YUXFF9DTDJ3BIZh+IrQyZMnYbfb+ZYhsYAJhULweDzweDzo6ekBy7K8eCkpKYHV5dp2/bxgMGdbUtQm2c890WDbzMwMOI6LKRcriUPZPMDGO6CmC1l1makY19jYiMrKSvzud7/beQIw3XVumSgBxxOZgUAAnZ2d4DgO586dS7mvSc0eHGEmoKysjH+BS12fvEmJfcDevXv5XYlCG5PXAMjNHFNmyAUzWqFwJwMlGxsbeOmll3iTUqPRGNM/qMZqr3QgrzkpAZjuesadglxvP6WQyofH40FXVxccDkfK+8SVTBUL4TgOY2NjmJiYQEtLC/bs2QO/36+5p6Df70dHRweMRiPa29v5NpZ45OXlxRgob25uwuPxwOVy8eXiPxP9m+gVNgSS7HGVvCalBtvI8zk6OgqTyRQz2CblfkHItgAE1F+BR1Zdqul0sLm5idHRUf73ExMT6OzsRElJCerq6vCRj3wEn/vc53aWAIzXC6NknVsmBKBUiXZ5eRk9PT2orKzEwYMH0zpFqNUDKHTaP336NNbW1uB2uxVdQ7grkWSdxvv70XzoEAzY6gFcaW2Fd2Eh6ZtbKbl64s4FASiGNHIDwJEjR2AwGLC+vs5ncskieWHfjlb7puMRjUYlM127JQNISr5jY2Pw+Xw4fPiwqtuJZmdnsby8nPbmI6EZvdw4Fg6H0dXVhUAgEGO+r+YGD6m46HK50NXVhZqaGhw4cEDxh7dwEKu+vp7vd1urq0Px9DR0ABgALz39NKKCz6ZMkQslYCVIPZ9ksI0MbBYUFMTEIaFXbzaHQOIdUNPF5/PBarWqet2XXnoJN9xwA//7e++9FwBw22234bHHHsPf//3fIxAI7AwBSEpX5FRMPiRSWeem1+sRiUQ0vV8y2QZsvWhGRkYwPT2Nw4cPq7LwWY0ewM3NTXR0dMBisfDN316vNy0fQGHWKbi+zrvNezweeC6LDDJ1l4mtF9kiFwUgEHuCNRgMMQMl4kXyfr8/rhGslvcn9RjkXq5khP3MwNbPQ63XUCgUQjAYRDQaxZkzZ9K2wRIKQDmQQZPi4mKcO3cu5gNd6GuqpgAUZhvVirvAy/1u6O2FHy+XiyNzc9jc3MQzzzwTWy7ewdPF8VAzvhkMBv65ampq4itKq6urGBkZQTAYhM1m459ThmGy9nySx1b78YnPqZrXvf7665N+Vt9///25LwDjlXwDgQC6u7sVr3PLVAk4HA4jGAyiq6sLkUgE7e3tqmUx0u0BXFxcRE9PD+rq6rB//37+hae2D6DQbT5euZiYHJeUlFwx2x5yVQCSn63UCVq8SJ58sK2ursYYwQobudX+HuP51F3JRtBS/cxGo1G1GLWysoLu7m4YDAY0Nzer4oEqdxsR6ckm3oJSgybCa6Wb2SHxKxKJoLu7Gz6fL+lnQ7rvVVIuBoD5+Xns378/prxpNpuVTRcrYKeUgJUgrCgBW8NCJA719PQgGo0iLy+Pt7/K5I7wVKfwk5HN+JbTAlCY9RMq76WlJfT29qKiokLxOrdM2cAEAgE8//zzKC0tVX3lXKoZQJKNnJmZwdGjR7cNoGi9CUSqXEyarScnJ6HX6xNOF8e7p1wjVwWgcG1YMsR9UOIl5wBidlqqMVCSSABeiSXgeIdbNWIUy7IYHR3F1NQUWlpasLCwoMYtA3jZViZRDBK2l5w8eTJuD6eam42I6X9HRwcKCwvR3t6e0TaGeOViJdPFqTxmpslkfLNYLKiurkZ1dTW/xpVhGH5lnbCSkYoxvhK08gDc3NzMqJAVkpMCMJ63H1nnNj8/j8OHD/MnLyVobQPDcRx/Yjl8+DBqampU/8GmkgEMh8Po7OxEKBTC2bNnJT9Q5Qg8tU6dwnLxnj17YsrFczu8XJyrAjAdHznxknOy0zKVRu54xAuwJEBeSSTy9ktXAAorDyQDtry8rGrcSyQANzY20NHRwdtwJfIWVFpOTgTxMN27d6/sHcJqIfVYiqeLd0i5OFt9eORwZLPZ0NDQEPOZQYzxtexjTrRJJx1oBlAA6YURT9wI17mlM0GrpQ0MaXTe2NiA3W7Hnj17NHkcpRnAtbU1dHZ2ori4GCdOnIibjVS7BKwEOeVi4mnndDpRWFiY00Mguei1p9Z96XQ62Gw2PhBLNXIT8U5EoZwMuFSAJdnHK6UHMF4/sxCDwcAffpXicrnQ3d2N8vJytLS08M+72nEvngAkP//GxkZZIkzpBg8piLVWNBrF/v37sXfv3pSvlQ7JvodE08WkXOxwOOB0OmWVi6/EErCcxyYxTPiZAcQa44+Pj8Pn8/H9g2r0MWtpAp2tCkfOCECh/YHY24/4zZF1bul8iGlVAibu8g6HA01NTVheXlb9MQhKMoAzMzMYHBxEc3Nzwv2eQGYzgMkQ94L4/X7+9Dw1NQW9Xo/CwkIwDINgMCg/9f/sszC/7nXg9HpEuruBujrV7z3XM4BqI9XITQLx2NgYAoEAv6GkpKQExcXFkveRqAR8JayCk7vOLZUYJRw2O3ToEGpqamL+Xu3Kh1gAMgyD/v5+LC8v4/jx47w5eTJIdSdVcUoMpRmGgcViUexpmC2SlYt7e3tjhh/ivWck48zRo8ibnETo+HHgqadUv/dsxrdERtBSxvikGtff349oNMonEVLpOdcqfmYzvuWEAOQ4DuuXp0YtFgsfGOOtc0sHtQMhx20tUR8dHcX+/ftRV1eHhYUFTc2m5QRMsmN4eXkZJ06c4MsQya6rZQ9gOojLxRsbG5ibm8Pa2hrOnz+/LeMkeVJ79lkUvO51W8bULAtzayt86+uq32uuCkCteljEiAdKgsEgn83t6+tDNBqF3W7nP9xIIE4kAHd6BpBk/eSU4ZUKQOIvyrJs3GEzLTOAwpWWV199teI+rFQFIPE0dDqdOHz4MJ5//vmcrQokI1G5uK+vDwzDxLRY5OfnS36vZpsNpOBu6uhA0OlEVKG1VzKyLQDlxjCpPmYiCEnPufA5TbaKVcs9wLs2A0iyfmNjYzAYDDh48CCAxOvc0kHNQBiJRNDT04P19XWcOnWKT0WradQsRbIMYCAQQEdHB3Q6neLnLlcFoBC9Xo/i4mJwHIe1tTWcOnWKPz0PDw/HlIuFE6tmIv4uowOAhgZgclLV+8tVAZit0rTFYkkYiHU6HRwOBy8Ahc9fOBxGJBLRVAA+/fTTePDBB3Hx4kUsLCzgJz/5Cd7whjeocm1xP7OcHkwlAnBpaQk9PT2oqqpK6C+qVQYwnZWWwmspiSvC6WKh/Vc245Pa73exePH5fPB4PFhZWcHY2BhMJhOKior4rDIpF4uLxnmRCFJrJojPThGAQoR9zLW1tXwSwePxYGlpCcPDw/w+aCIKxb2rWvUA+v3+3ScAxfYHRqOR33mZbJ1bOqhVAvZ6vfxCcXGjs9YCMFGgI2uWKisr0dLSonjHcDJyQQASyL2IM05kYlVYLnY4HDiu0wHi+1fRmFp4X7koAHNhD3C8QLy6uoq5uTmEQiE8//zzKCkpQTgc5u9XywDp8/lw1VVX4Y477sBf/uVfqnbdeP3MySAiONHPi2VZDA0NYW5uTtZAXDp9hVLodDpMT09jdXUVra2tae3yVZIBJFUhj8ezbbo42wdUrR5bp9OhsLAQhYWFqKur43tuFxcXwTAMnnnmGX66+KjwfjS5m+zu41UrtpIkQnFxMRobG2NK8FNTU+jr60NhYSEvCO12u2Y9gJubm7tPAJKSD8lKGI1G+P1+XLp0Kek6t3RIVwBy3MsLxZuamtDY2LjtBan1pLGUwBSudCNrlpSSLBDnoqiRQrgCTXjSu/DYY3jFbbfxWUAWANPfD7Xf0tleWB6PXBCAYoSBOBQK8VZAq6ureOyxx/DII48AAP7xH/8RN954I6677jrVs4E33XQTbrrpJlWvSSBlIyWvBzK4Ea/k5Pf70dnZCQBob2+XNUGoZu9zMBiE3+/n/U3TnWCUmwH0+Xzo6OiAyWTCuXPntk2aKxGAahv6ZvL9TnpujUYj3G43Tp8+zR94wwCEz4rfZlP9QLoTM4DJEJfgw+Ew/5wODg4iHA4jLy8PRqMR6+vrqvqg+nw+WS1aWpDVErBQTQeDQbhcLpSVlSVd55YORDyl8iKORqPo7e3F6uoq2traUFJSkvAxtEIc6MQr3VJthJYzsZdLGUA5iE96a0ePwvyKV4A1GHDhhz9E8OmnJcvF6UAzgKnBMAzy8vL4QPzAAw/g9a9/Pd7whjcgHA7jnnvuQUNDA373u99l+1ZlQWwrlEL+DcMw2+IgKbkqXW2mVkwiFQaj0Yi9e/eqYl8hJwO4vLyM7u7uhN/3ToxP6aLT6ZCXl4fKykpUVlYi7PVi9YMfRPGPfoTJP/9zjN12G0yXM+rkv3Q/W69EASjGbDajoqICFRUVvGft8PBwzOFL3D+Y6nOy63sAx8bGMDs7i/z8fBw7dkzTFxcpryh9EYu9rRL5nKW7qSMZwmAutdItVXJpClgrTE1N4ObmoAPQDsSYUU9PT/P9aCRYptJ7SgVgakj12JDJzocffhg6nQ5+vz9Ld5c5iNGyMGPHMAwGBwexsLCAI0eObDNxT4YalQ+yWq2lpQWLi4spX0tMonjJcRxGR0cxOTmJ1tbWhKXudKaJ1SAXYqNOp0Phww+Defhh1AKovlwuFpY2hWbU8aaLE7EbBKAQ4llbUFCA/Px87Nu3L64PKikZK/FBzabNVVYFIBlWCIfD2LdvH5aXlzV/YQlP13JfSMTbqqGhAc3Nzao2cacCEWpkpVt9fT327duX9nOXy1PA8Uj3e7ZaraipqdlWLhYaiwrNqOX42VEBmBpS70mxSepOsoNJ5zUgjCFkyjYdD9R02lLC4TC6u7vh9/t5Y2mXy6Wa2IqXnZR63ETkYnzSEjnfq9CiCdiaLhZO5DMME7OOU85Gn90mAIWPbTQa4/qgejwezMzMoL+/HwUFBTH9g4k+N3atEfTi4iIKCgrQ1tYGj8eD+fl5zR+TvHikyitiiLeVy+VS7G2l9UnU5XJhcnJScqWbbG64Acbz5wEA0bY26H72sx0VQNW+V3G5OBqN8sGSLCaXUy6mAjA1pDKAm5ubqqyZyxapihIiAOfn59HX14fa2tqUp2zJ9VKJSaurq+jq6kJxcTHOnTvHf5CpGeOkrrW+vo6Ojg4UFRXJXukmlUnUWyzQY6vflw0GVblfKbL1+lT6uMJysXC62O1289PFwt3FUhWlXDGCzjQMw0g+H2KRLVxiQD43bDYb/5yKVwBqOQRy//3345Of/GTMn1VUVPAZ/KwKQDJ9A0DVBeiJIA3ZyYLX5uYmOjs7+YZjJaXAdPoMkxEKhbCyssJ7fqV8cnj4YZgviz8AMF+8CN2//Au4V70q7j/ZbSdso9EYM10sLhcDiOmtIa8RKgBTQ0oAXql7gJOh1+sxOjqK9fV1XHXVVbwhejrXUxJfhVYr+/btQ319fcxrWs0+Z7Fwm5ubQ39/P/bu3avIBUIcnwwWCz/gpQfAWCxgBCJQ7fdopmNjuo8Xb7o4Wbk42xnAbD62nJ5e8RKDQCDAC8LZ2VmwLAu73Y68vDz4fD7NV10ePnwY//u//8v/Xvg9ZFUAqrn/UgnJHmthYQG9vb0pbx4hT7DabxSy0s1gMKC8vDy9F80992z7I8eDD4J75Svj/pNcFDWZRG65mGXZrPYixSNXp5MJ8QSg1uWRzc1NjI6O8r+fmJhAZ2cnSkpKUKfBphg59xMMBqHT6VIyVpZCSQZQOFQmtlpJ5XrJIGKSrHRbWFhIyfhfLADFUVsPQBj1d9NhVg7iTFY4HN5mRk28blPpo1eDbB5iUzWCtlqtsFqtqK6u5lcArq6u4o9//CPuvfdeRKNRfPWrX8XKygpe9apXqb5C1mg0xrVpyikBqKZPVSLiCUASgObn59M6dQsXnKvxYuU4DjMzMxgaGsK+ffsQDAbTD761tcDMTMwfhR2OXdcDmCqJysUcx+HixYvKp4uPHkXBZVPqsF6PyNqaqveslY+VWmRLAL700ku44YYb+N/fe++9AIDbbrsNjz32WFrXVvKeEa69NJvNaGxsVNUAX84BWzzsFm+oTM0MoE6nQygUwgsvvMBXNlLpc1TyXDMMg5GREXAch9LS0pSGIcSPnQ20fFyz2SxZLp6bm0MgEOD9OhOVi8VYbTboseVR6P/Od4A3vUnRPWWzBKxG/BSuAHznO9+JN73pTWhqakJtbS0eeeQR3HvvvVheXlY1To+MjKC6uhp5eXk4c+YMPve5z/H7srM+BUwwGo2alU3FSJVDhOPdqTZaC68PQJUAKexDJNYzw8PD6YvlkREwghIJAyAwOAjupZf4L4nX30bZjrBcPDc3h2PHjvEbLxKVi3mefRaFgo0keSyLyIEDwNCQavdIS8DSXH/99Vl/XUejUfT392NlZQXHjx/H1NSUZqvb4kGG3RobG9HU1JQwDqvpdcowDEZHR1FZWYlDhw6l/OEnFoCR9naYzp+HDluCI9LWBuDl4UNgKzsjXLVWUlICp9OZdC1YLpDJ16ywXMwwDPx+P6qqqhRNF1ttNv7zRgeg4F3vgk+BACRZx52WAUyE1WpFKBTC3//93+PAgQMIBoOqir8zZ87g3//937F//34sLS3hM5/5DM6dO4e+vj44nc7cEYDC6Vw5k5bpPpYwGJJ1StXV1Th48GDaP2S1BCARpeKVbmrZzDDBYExJRLe+HnNd8mvyQZDL5cNcgTxn+fn5cDgcqKmp4XddJ5ouNr397duuZV1YQEDFe8vlDCDZfCG+v2yuScoU6+vr6Ozs5K2cLBYLZmdnVW2JSZQBJHvDl5aWZA+76fV6RCKRtO6J9Bl6vV5UVlaitbU1rRizLQP45JMQ36HH40FnZyfKy8uxb98+PuGwubkJj8eD5eVljIyMwGKxwOl08tktOe+bbBwishGTiQhLVC6ORqMxdlr5+fnbSvJK71zpRh210SJ+hsNhRKNRfsJdrYw/QWhwf+TIEbS3t6OpqQmPP/447r333twqAQNbJ+FMCECGYcCyLIaHhzEzM5PUY0oJxGU+HQFIDFfJjk/hi16rKeOd5gOYS/dCEItm8utk08U1b3gDTjz+eMy1Iiq/D3I5A0hO91JTwFeqABS2doizbmr3RMcbTCMWMwaDQVG/YbolYKGpPrHKUMPGKt49CZ9rsj84Go2CYZiYslx9fT2i0SjW1tbgdrv53eLEKsXpdKKgoCAnDsPZin9SWbh45WLhdPGfIVb0Kb178rPN1nOvRQZwc3MTgLarLoUUFBTgyJEjGBkZAZBDJWC9Xq/5CjXhYwWDQbzwwguIRqM4d+6c6n1GqQZIjuMwPj6O8fFxHDp0CDU1NZLX1uLNfyVuAsk0UgJQjOR08f79CD/+OEzYCpIMgKmeHpQEAqqVo3JZAJL3vVQJWOkwQC4R73UgFEAnTpzYtgpKbQFInldhFoNsFdmzZ49ii5l0BCBZ6WY2m3Hu3DkMDAyocqCNF59YlkV/fz+Wl5cTbnAiGI1GlJaW8plQ0srhdrsxOTnJrw0Tbta4EnsA45GsTSvedHH35z6Hq/7v/+VL8q4jRxD0eGC322W99q7EDCARgJnyNw2FQhgYGMC1114LIIcEIJC5QRDSAJxuz0kiUgmQkUgEPT092NjYwJkzZ2Cz2SS/TishJrwux3GIRqMx/lu5cOoVk2v3JEcAiiHTxeH1dYQ4DhsbG3C73fAsLmJ4eJgvF5PVQ6lmyHeCAJQygr7SMoBerxddXV0JtwppkQEEwGe8hoeHMTs7i9bW1rgTgsmul4poIyvdhKJTrQOt1HWCwSA6OjrAcRza29tTOkyR3eJ79uwBy7JYW1uL6X2z2WywWq2IRqM5awGlJkq/R366+M474bvzzphysae/ny8Xk5JxvAzrlZgBJENuWsXlv/3bv8XrX/961NXVYXl5GZ/5zGewvr6O2267DUAOTQED2nsBkrVCGxsbqKiowJEjRzR7LKUBkkzf5efno729PeFElVa7hokAJCfmubk53tHc6XTyJSRKfFIRgEKELvOkXEw+cMbGxhAIBHhT0ZKSEthsNtmPlesCkHh0CsnmmiS14TgO09PTGB4eTupxZzAYEA6HVXtscsgNBAIYGBgAwzBp+YgqjUEcx2FkZARTU1Pb2m3Uimfig/Ha2ho6OjrgdDpx+PDhbQf9VN6j4t63UCjE9/aGQiE888wz/N87nU5FK8GUkkslYCWIy8Ukw+rxeDA+Pg6j0RgzMEc+C8nj5roPoBKIANTqe5qdncXb3/52rKysoKysDGfPnsWFCxdQX18PIAczgFoJwFAohK6uLoRCIZSWlmr+oaKknE18B+WumtO6B/CFF14AwzA4efIkb348MDCAcDgMo9GI2dlZvrGXEku6AlCMuBwlNBWduWzjI2y2TpThyHUBKBVcs7kmSQ3I6yASiaC3tzeht54QtWMh6Ut+6aWXUFFRgZaWlrQ+zJTEt2Qr3dSKZ0IBSCaapUys1SQvLw9VVVXIy8vD0NAQDh06xG+1GhoaQn5+Pi8Gi4uLVRcQuVgCVoJOp0NBQQEKCgpQW1vLZ1hXV1f5tWqFhYVJY5vWkMSIVhlArfjBD36Q8O+zLgCFb1qtSsAejwddXV1wOBw4ceIEBgcHNTfqlXOqZVkWQ0NDmJubU+Q7qFUP4MbGBoCtkuThw4f56aSKigpwHIfJyUksLi7C5XLxk3IkuIn3HeYJRv6DVivYpSVF92IR/Hvf8ePAU09t+5pczEaqLQDFiE1FiRn10tIShoeH+Z8JKRkLfyY7VQDu9BIwMXAvKipK6K0nRE0ByHEcxsbGwHEc6uvr0dzcnPY15WbtvF4v/73HW+mmVjwjQrK/vx8LCwuSvZWq8da3Iv9XvwJweZjhu98Fyspihr3ISjC3242BgQFEIpGXrWY+8AGUPf00gK01dYH1dW3uUwO0NJQXZlibmpoQDof5A+/CwgJYluVN2hOVi9WGvNa16AHM5qrLrAtAIWqXgDmOw8TEBMbGxvjJL51Ol5GtI8kCZCgUQmdnJyKRiOJSjBY9gPPz8+jt7QUAtLa2bjvh63Q6WCwW5OXl4fjx4zGTcmSS1W63w+l0ovb662NeWNZAAL4f/1i26WeezRbz7ws7OrCpwveYCTLZpyJeSp6sXKxFD4taSAlAUh7ayRnA+fl5dHV1obm5GQ0NDbJfF2odhoXZN5PJJHufeTKU+AomK3erlQFkWRbLy8swm82yzKTTeY/m/+pX/ESrDkD1X/0Vhn7zm5ivEa4EE07GrqysoOWy+AMAA7YOvEGFIjCbJeBMCRaz2YyKigpUVFRgbW0NPT09cDqdScvFahOvRzldsm1zlVMCUM0MYDgcRk9PDzY3N3H69GkUFxfHPE66HlbJSBQgSW9KSUkJ2traFDf1q9kDSKxwZmdnceTIEXR1dcX9WqHwTDQp17yysv0f/8d/yBaAkmes6WkgC2u5lJLNJvBk5eJoNIrp6WmEw+Gsl1TExMsAbm5u7ugeQKfTiVOnTvErtOSixiGVZB6Li4vR3t6O559/XrWDb6IYxLIsBgYGsLi4KMtXUA33B6/Xi/n5eX7bgdZWYmKSvePFk7FiDAAuXbrEV1QKCwtlxZGdXgJW+rhGoxG1tbV8uZjsLhaXi4kZtVoZO60mkLXeA5yMrAtAsahQI0CRwGez2XDu3LltZYdM2M1IBUjxSrdUe1PUygCGw2F0dXUhGAzGlGdSubZwUi54000wXS6PAFslkou3346SiQk4nc6ka9FYbN/jGU/85drEXS5NAYrLxc899xzy8/NllYszTaIS8E7uNbVYLCl9CKUjAInB8sjISEyc0WJ/rxjh1O25c+dkHTLSPdDOzc2hv78fxcXFsFqtGXkds9gSbRy2xF/EYEgrJrMAKioq4Ha7MTU1xZdCid2MVGZrN2QAhYhbWPR6PT89LC4Xk5I78W9Mt1wcb0gtXbLd45x1ASgk3VOvMPAlKrmoGQjjIQ5qDMOgr68PKysrsryolFw7FcjUcWFhIdrb22E0Gvnsa7zAIld46n/4Q/ja2mAdGQEHYO0DH0DVmTNwu92YmZmBTqeLmZQTB7fg+jryBTsjfXnapPW1IJcEoBByT9XV1SguLk5aLi4qKspouVhqwo6UzXZyBjBVUj0MR6NR9PT0SA6bqHnwlYpBbrcbXV1dKCsrU2SvleqBVthDfezYMaytrSEYDMr+98R8PBWCvb3Ia22FHkDYaIRrbAwYGJD971cL8mH3+aHDyz2ANQBqamokM1tkzZrT6YTNZstqK0c2BWCixxWWi5VMF8t9bC3s4rLd45xzAjDVEjCZsltbW0s6ZZeJHkChyPT7/ejo6IDBYIhZ6ZYq6WYAl5aW0N3dHXfqOJEAlM3Fi/waMwuAamyJD5Zl+bVopEdIKrj9+9f/GR879EoAwOf7/wCp4nGuDoHkogAEYk/Q4nJxMBjkg6XS6WI1iEaj2wJsKBQCwzA7WgCm+lpIJUaRQx3xFxR/wKl58BVeiwyIjY6O4uDBg6itrVV0rVQOtOFwGJ2dnQiHw3wP9bpolaWm1NUhJOzZW11V9M//+4FPx41vUpkt0l7T09MDlmV5A+psxMBcyQAmQmq6OJ1ysVb907teAApfSEajEYGA8u2nZJdmfn4+rr766qTKPpMlYJfLhe7ubsmVbqmSatM0mQacmJjAkSNHthnAZmITiF6vh91uh91ux969e+MGt1BI/kk+l9gpAlCMxWJBdXV1StPFWt2bz+cDkLk1SbmEUgFIDlPilXLpXDMRJL6RjSZra2sp9ToCyuPZ+vo6Ojo6YLPZcOLECf61mM1NRVo+ttg3b3NzE263G4uLi/D7/bhw4UKMG4PW+753ggAUk265WMsMYDYPuFkXgEKUBiiO4zA7O4vBwcGkk2bix9G6BKzT6eByuTA6OorDhw+jurpatWunYpsQjUbR3d2NjY0NSS8u4GUBmOjaagc5cXAjwiMUfnlIxx/c8iLUwkdLbXJZAMo1cFU6XaxGuViqB3BzcxM6nW5H9wCmColRyV5PDMNgYGAAS0tLSQcu1C4BMwyD8+fPIy8vT7a9TbxryY0rxDNVKt7vhlWVwr3F+fn5mJqaQkNDA9xuN4aGhhAOh1FcXMz3Dmphk5LNIRC1snCJysUTExMvby+5fODVMgOYyiYetcg5ASi3BByNRtHf34+VlRXFfk9al4CJ/1M0Gk240i0pP/oRjO98J78blr3c36K0ZOL3+3Hp0iXeHiFeoE4mALV+0wuFh00gULnLU4UxPlpOZ06KrVy8JwC8mEgliCUqF8/OzoLjuLTLxQzDbBvW0tolPxOkUwIGtp6XeNlWn8+Hzs5OGAwGXH311UlbS9Q8+LrdbgBAWVmZ4j3CMVgsaALQBCDyqlcBv/iF5JdxHIfh4WHMzMzE9UzNdgYwW49L9opL9b2ZTCY+XjocDkkfRqXsxAxgIuSUiy0WC1iWVT0RseuHQMQlYDnCbHNzE52dnTCZTCn11GkpAEkfDrDV85ay+ANguiz+gK0fVNRiARsMKgp0Kysr6OrqQnV1NQ4cOJDwDZSNDKAcCvILcO7cuRgfrdHRUb4HxuVyZX2KlaDmKVVN1LQx0KJczDDMtvfxlSAAUyWZAFxcXERvby9qamqSvq8JamQAhSvdAGDfvn2pv6aKiyE8ipp//3tILb+LRCLo6uriN4nEawnYDRlAIeLvVSxkGIaB1+uF2+3GxMQEv7eYCMJkbgyJHjcbMU5LA2oh4nJxJBLB2NgYVlZWVJ8upj6AAuQIs/n5efT19fGO9qm8ELXapUvujZTN0kX8kjJga2JMTs+MsDH70KFDqKmpkfeYCYJotk/YQh8thmEwOTmJ+fl5jI6OIhgM8qUPp9MZ/035wAMwff7ziFRVKZrak0uuZgDJz03twC23XOxwOPgPHal7kCoBZ/t0rBapvG+I5YQ4Hgp9O1tbWxWVj9LNAApto06fPo3z58+n1RtlDIW2/+HNN8dkAcmBuqCgIO4mEUK2BWA2Hlsy1jQ1weR2Aw88gJL3v593nJAa9BJazcjdW3ylZQCTYTKZUFhYiHA4jCNHjsQtF5MqiJL9z7t+CESI0IpEjLDXRcnaNCnUzgBKrXQbHh5W3WyahJdkPTPEcsbtdituzE4mAHMFg8GAoqIiWCwWnDp1KuZNOTk5CYPBwAc2MjGHW29FwZNPAgDMc3NgUnDfBwBMTyO/tRU6bP1M/IJr5KoA1MrIVEyicvHc3Bw/5EMCJunvi9cDmM01SdlGHKeCwSA6OzvBMIzi7UFAehlAr9eLjo4O3lSavI7SEZSSfp8f+xj/y2RuBWKUHux3+utKKk5bL9tnAYD57/4Ovt5e4GtfAxCbuWdZFhsbG3C73Zibm8PAwEDMVGzpoUOw+v0AAH9xMbjLgpE87m4SgECsD2C8cjEZxCLPo8PhSDqUk+1DbtYFoPCFFE+YERsVvV4v21w0EWoKQLLSLRqN4ty5c/wHmhrllrDFAvPlvj8OQPR//xdA4gxgMBjEpUuXoNPp0N7errg8LhSAUmIwV0ssQiNqslCciEHio3XtZfFHSLWLo+Cy+AO2srT5NhsvAnNVADIMA51Ol/F7E5eLyQQjKRfn5eXB6XRK+rdlojzyzW9+Ew8++CAWFhZw+PBhfOUrX8G1116r6WPKRdgTvbKygu7ubsUee/GupwTywdbU1ITGxsaYuJBOjGODQXAWC/9eigDANdeA4ziMjo5icnJS0q0gHtmuUOQCYnlkefxxBC8LwJiv0+v5vcV79+5FJBLh3Ri4P/9z5F8WfwBQ4PVi8667eCF5JQyBKCVepluqXEz2Pw8ODiISifCVKYfDEbPhhfRsZjPGZV0ACpEKUKn0uiSDnBTTfSGvrq7yi6lbW1tjXiCqlJnX1iR7YshzIL7/1dVVdHR0oLy8HIcOHUr5ucrFEnA8pH5+woXizc3NCIVCGOzqlvz3oVBIUcoe2F6aFz7LuSoAc6E3UTjB2NDQAIZheKEeCoUwODiI+fl5lJSUwOfzwev1ano6/uEPf4iPfOQj+OY3v4mrr74a3/rWt3DTTTehv79fcl1XqqT6viHxcHR0FBMTE2hpacGePXtSvg+lB1+WZdHf34+lpaVtg3Y6nU6VGBcJBuFyuTA4OIhrr70W0WgUXV1d2NzcjOtWEA+lzzPHcarae2S7BPzQV+/FxxJ8bSJMJhM/FWvp3h4rLY8/jq4774TT6cxYL56YbD0uIN8HULz/2e/383YzpFzscDiQl5cHk8mk+arLZDEupwQgGQIhDu2krKq01yUZ5A2f6puf4zhMT09jeHgY+/fvR11d3bYXZipWLXIRniDIr2dmZjA4OBj3fuSS6L5zUdjI4fxTv8LK5kOoeoUejU+//IEVBfDcc8+hsLCQLxcXFxcnfaOT9U/C3/O/zlEBmM3ySTxImd7pdMLlcqGpqYmftHv3u9+NsbExlJSU4Jvf/CZuvPHGuP52qfLlL38Z7373u/Ge97wHAPCVr3wFv/nNb/Dwww/j85//vGqPkyp6vR7Dw8NgGCY9NwHB9eQKtkAggM7OzoQr3dSKceQ6m5ub6OjogMViSehWEA8lApCsrNvY2OD7U51OZ07tx06G8Ht96JsfQNuJF8AgtrIRvO8+xdcNW60wivx4A04ndDodRkZGEAgEMD4+Dp/Ph5KSEtl7i9NFKy8+rR5bWC4mlSmyBOFXv/oV7rvvPnAch29961vw+Xy49tprVbe8ShbjckoAkifY5/PxpsCp9LrIfZx4+0cTIeyvS7RxREuzaXH/DVm8rtQOJx47JQMo516+88jnUVX7c9TV+jDxjw34yU/z8IFHp8CeOQP893/jmstG1B6PB729vTE9avEsTXzHj6Pw8qQ3APhuuIH/dTZPqYnIRQEohGVZWK1W2Gw2VFVV4fz587jrrrvQ09ODH//4x7jnnnvwr//6r3jHO96hyuOFw2FcvHgR//AP/xDz5zfeeCOef/55VR4jHdbW1uDz+WCz2XD69GlV7DvkZgDJSrfy8nK0tLTEjZFqxTi9Xo9IJIILFy6gtrYW+/fv13RHutfrxaVLl1BSUoKmpiZ4vV4sLy9jZGQEVquVF4N2u13R5ols8Y3vvBOnj/dAb+Tw8ycOofVDi6gKRMCdPx93h3oi2KUlsIJeQgaAbmIC+y///vnnn4fdbofX6+X7rYXDJGq8ViXvi2U1u3YyEtkxyUW4BOFDH/oQ/uIv/gIHDx5EKBTC+973PhiNRoyNjal0x/JiXNYFoNgGBgD+9Kc/oaKiImHwSQfyplYavEgvotFoTNpfp9WkMfDycxYMBtHX14doNIr29nZVTg/JAlkuCcBkfO0rf4vWw0+jwB4GE9bhpf4TuOvz/wZWkNyJ57JPetTIB0JJScnLDb1PPYXNOI9JM4CpIT6MkQ+VM2fO8CdkNVlZWQHDMKioqIj584qKCiwuLqr6WEpeD8J95vn5+aipqVHtQy+ZYFO60k2NGMdxHObn5xGJRHDVVVehqqoq5WvJEYDESLq5uRl1dXW8pUd9fT2i0ShWV1d5u49oNBrjO5pr2UHXzBw6Rz6DU0cmAQBLC0UIrL8dlaMfRLpR2p9kOK6srAwOh4MfgnC73ZiamoqxmikpKVF1b3Eu9gCmQ3FxMTiOw0MPPYSKigq4XC5Vry8nxmVdABJYlsXo6CgAYO/evWhsbNTssUj/ihIBSFa6yfHTA7QVgOSxX3zxRTgcDrS1tanmgbdTpoCT8dA3PoQTJy7AbGUQ8hlxqfcs7r7z6wn/jbhHjXwgCBt67XY7LwilJlSpAFQOx3GSPTY+nw/FxcUAoFkvYC79/KLRKHp6euD1enHy5ElMTk6qGkMS2cAIH/v06dP8856IdGMcecy1tTUYjca0xB+QeDiO+BdOT0/j2LFjKCsr2/a1RqMxxlTZ5/PB7XbLzg5m8nB88cLTGJ39FFr3rwAARifKcXTfZ9B6/LTmjy18jwiHIICtnmpSUenp6eFN4knMVDqUKCQXpoDVRLjqUqfTpeVskohEMS4nBGAwGERXVxfC4TAMBkPCdUZqIdcTS7g/V8lKNy0FIFHv1dXVKZdLeMrLoV9fB7t/P9DdnfQUnWsZQKnv/Rv/egdOHe+EwcRhYzUPAwPX4+67H1B8bfEHgt/vh9vthtvtxtjYGMxmMx/YiOExFYDKIe8T8Qnb7/erukJRSGlpKQwGw7Zs3/Ly8rYTcyYgfndWq5VfqzYzM6NqG0m8ErCw907JSrd0YpxwO9GxY8fw0ksvpXQdIZKx6+GHobvnHgDA4r/+K86+4Q2ypi6FvqMkO0imZIXZQfL+zyTf+84/w172EzTWb4LjgJ6hJrznHf+ZscdPFOPy8vJQVVWFqqoq3iTe7XZjYWEBQ0NDyM/P57ODSvcWZ3sIRO0MIFl1qVVmWU6My7oADIfDeP755+F0OtHW1oZnn31WFRPlZMjph4lEIuju7obP51M8kabFvmHhOiQAqK2tTesNobdYXn4BDA8jXFwM3f/8j/wMYFsbrCMjiBgMiK6upnwfqSJ1n//ff/wlTh4dg04HuJYK4Z5/Pe68+6NpP5awoZcYUa+trfFiMBAIoLi4OGaQKZeEYC4LQPI+zKQRtNlsRltbG373u9/hjW98I//nv/vd73Drrbdq8pjxmJubQ39/PxobG2MGXdT2K5USbMRlIZXeu1RjnHg7USAQUHWYhOfhh2G65x5+YOuV73kPon/1V4qumXe5Fy7w4IMof//7+elOkh0U2hkxDAOPx6Ood1Ap3/jKR3Hw0B9R5AiBiepwqe8qfOg9j2nyWPGQG9uEJvGNjY28RYrH45FdURGSzRimxWMTCxitPifkxLisC8C8vDwcP34cdrsdOp1O8z29hGSn142NDVy6dAmFhYVJHehTub5SyDqkQCCAs2fP4vnnn0/7+sKPWw5bzvxyN4GY7HbkkcwNw4AVeOFlg96OF9Az+o+46uASAGBy2ok9pR/Fze+7UZPHE06wAltTk8RU1efz4bnnnstIY7RcdoIAlCoBa+mRde+99+Id73gHTp48ifb2dnz729/G9PQ0/vqv/1rVx4kX4IXm9sePH99W+VA7Fgqvx7IsRkZGMDMzgyNHjqSU9VQa4+JtJ1LLlkscu3QC8QdctmtqaZG9AajAZuP/feHf/R02L5sqS2UH5+fnMTY2hv7+fjAME5MdVCvD89DX7sLxY+eRVxBFOGDAxZ6zuO7q96pybSWk+nOSskgRV1SEe4vFbU3ZFoBaZAC1XnWZLMZlXQACW+toyBs3VbNSpSQKrmSlm/hErgQ1BeDm5iYuXbqEgoICnD17FiaTSTObGXEQFb/Zyd+ZRd9bNqXFj777TVhsP0BTw5YA7R1uwGuvfQjVKnq5JcNqtcaYUNfW1vKN0cSImgQ3m80m+ZoyOp0wRSIIWa1gl5ZUvb9cF4AGg2Hbc6K1AHzrW98Kt9uNT33qU1hYWEBrayt++ctfor6+XrPHJPh8PnR2dsJgMODqq6+W7I0yGAwISa1LSxESk8LhMDo7OxEKhRLu1pV7PTkwDIPe3l54PJ5tPYZStlapIIxdMzMzkBxhkWsn1t6+ze8z//HH4ZcwVTYajSgpKcHExASuvvpq+Hw+rKys8NlBUvZUOlks5GvffjdOnbgEg5mDz2tGX8+1eNNb7sXKyoria6VLyj+nBx6A5bOfBQAEv/MdFLzpTdsqKuIVkkREFxUVZbWqolUPoNZbQJLFuJwQgEJICU1rpAQgy7IYHBzEwsIC3yicKmoJwOXlZXR3d6Ourg779u3j3wBqWLJEjEaYolE+0EVbW3fcEMj5p3+EAy1PodgZBBvV4eJAKz70rv/I2v2QSTWpxmi3243Z2VkA23dwWmw2/s2YHwggYrMhpGJGNZcFYLzTdSYC5Ac/+EF88IMf1PQxxCwtLaGnpyepub3ah2Fyveeffx7FxcU4ceJEWsNjcmNcIBCI2eQkNl4XGtunAxkCGRgYwPz8PPLPn0dFe3uMnQlE24DikoIHIfk/yQ6SQTLy3hdmB0Oh7Ztv4vGtx9+K01cNQacH3Mv5mJ96He685+N8LMk0KQmxH/8YBZ/9LP9ZU/Cud8F3+jRvUyOsqOzbtw/BYBButxsejwdTU1N8wsPr9aKkpESxR2S6aNED6PP5MrLqMlGMyzkBmKkScLI9m+laqqQrADmOw/j4OMbHx9Ha2rptQk4Vgbm5icjDDwMPPgj8+78D11wD3XPPySoBB6xW5AvMQrX/iW3nRz/6PI5d9TwsRRFEggZc7D2ND3/g4SzcyctIWRWIG6PX19e37eC8QXQdIwD1cj+5LQCj0ei24EpKRFq65GcKEuBZlsXw8DBmZ2dlmdurHQuXlpbAcRzq6ur4lW7pICcGud1udHZ2orKyEi0tLZKvQaGvaTofsgzDIBKJwO128zE8GgwCJ08CFRXAL34h/2JPPQVOUAIGAP+DDyb8J1Jx02g0xpQ9ic1UKPzynnj/5X3Z4uzg+Ggfnr/4tzh+aAEAMDPjgLPwbrz7g2/gv2anrGQzv+tdMc+lDoChrQ1MHOsTi8WCmpoa1NTU8AbKPT09/E5xpeb96aJFCVjrCoccckIACoVFpkrAwuBFVro5nU4cPnxYlR90OgJNaMkQbwOAaqbMH/jA1n8S15X68CF/xy4tYfO++5D3ta8h1NAASKwP0pKvfet9OHniJRjzWATWTejqvRofvvsrGb0HKZKdjnU6neQOTikCgYBq/UO5alANxA+um5ubWQ+QaiE+YMrJbKolAIW9hgBQX1+vymshUYwTbktK5ikoLAGnyubmJnp6egAAZ8+ejc1spjhh7Ftfh6G0FMZwGKHe3pRMlYUIbaZsgoMNxzLbegcvnf8dosZHsX+vFwDQP1qLG6/+RkbbWqQgW7qUvn4YsxkIxy42ZWS6fRADZZPJhP3796OwsJC3munr69Os51KIFgdo0gOYTXJCAArJZAk4Go1icnISIyMjaa9QE5NqYzMxmzaZTAktGbS0meE4DouLi+jp6eFT86WlpdvfWJ/9LEKXezoyySOP/R+cuqofegOw6rJiauxGfPjuT2b8PqRQ+vMmOzj9xcXI93qhw9ZAjreqChcuXIDVao3pH0r1cJLNNUrJiFdeyYUTshp4vV5cuHABZWVlOHTokOyfgxqxkJRfdTodzp49i2eeeUa1cla8GMQwW4JmZWUl4bYk4XUApBzPXC4Xurq6UFlZifn5edU8UQGAWVmRVd1I53OjIL8AV199NZ8d/MmPvo79B/+IitIAWAboHDyE973zu1n1HRSjWACurMRsF2EB2cM4BCLC5Jj3E6sZh8OR9ms9nk9puuRCfMs5AZipDCAA3oFeTpBSirCvRe6bhZRLqqqqcPDgwYQvOC3Xsi0uLsLlcuHw4cPQ6/VYXV3FxMQE/H4/v6nA6XRqPsEkZn56Gr977oM4cXir92Vuzo51zxvwvrs+krF7SEaqjcrczAx809PAXXcBX/sajHV1uFZgRD00NIRwOKzINkFILmcApYIrKQFn+4SsBoWFhWhpaVFsdJxuBpDYrZDyq7AUrQZSZvpkxy6ApNuSCKnel3BryuHDh2Gz2TA/P6/oGrkCyQ4++p1/xFVHn4PVFkE0pMdLfSdx4vA78cwzz8TsLCbPa6bf0+QzJ5XH9a+vA/fdB9hswEeVW3NJZeHimfd7PB4MDw8jFArFxMxUPrPi+ZSmSy7Et5wQgOJ1cGpOvklBPJziNSWrgfBUm+zkIAxkLS0t2LNnT9LrJ3K9TxWGYRAIBBAIBHDmzBlYLBawLAun04nm5masra3h0qVLWFtbw8TEBEwmEx+QpMb21eSPv/0p3JtfRUvzlt/g0HgVDtR/FPV128vj2SStSbW6OuC//5v/rZQRNWkol2ObIGSnZQADgQBYlr0iegBT3XKRqgDkOA4TExMYGxvbFk/U3FEuzgCurq6io6NDcaaTXEvJgZZlWfT19WFlZQWnTp2C3W7nD6jZIt3HfujhD6DtxAswWRgEN0y41HsOH/nwV2OyXIuLi/xksclkAsdxGe3vTUcAAgDSqBjJOcSKYyax5/J4PBgfH4fJZIrZ9S7HnksrAZgLLS45IQCFaD0EQqZq8/PzYbfbNRF/gPyyhtJyifD6agY7cnJnWRb79+9HUVERQqEQotEoLyxICfjo0aO83Ynb7cbo6CiCwSDsdjtKS0vhdDqR/8Y3wnL+/Na10+wRnF+cQIHzUdTW+sGxQOfgAbz/th9iYWFB9b2t6aKVVYHQiLq2tlbSNqG4uJgXhGKD0WwuUk+GlAAUrknaraQSC5OtdFNbAJJrTU9PY2hoKOVWGiUH2lAoxMcqYZYxlaqI0LRd8WCDzQYDtsqZ/hdeUPRvxXzjO+/A6WO90Bs5eN0WjA69Eh+5+3MAtme5iKHy1NQUfD4fnnnmGV7QCLODWpC2AEwDpUJXp9MhPz8f+fn5qK2t5T+zPB4PJicneXsukh2MZ89FXpdalIDVrjwqJScFoBYlYI7jMDo6isnJSbS2tmJzc1PTTCN5sSQKtqmUSwhqZgDX19dx8eJFOJ1O6PV6/oOHvNnJz4P8n2EYGI3GGCNkoann6L/9G26+LP4AIH9yEv7LpU251P3+SUzf+TfYyLPgye8fhMPuBxPW46W+47jrff+myvetBZnKtIltEwKBAJ8dnJqagsFgiDnp5vIUsJQA3NzchF6v1/TDLFOk+mGpVADKWemm5oYivV6PUCiE3t5eLC0toa2tLeW1aHIPtOvr67h06RLsdjuOHDkS87qR6ydIBhnI8yB8jvV6Pf9fIswC2yYDAMfp0zHZezl03XINHH4fnrqhBnUf30pELM7bwIb+Ch+4+31x/x0xVA4Gg/B6vWhoaNiWHSSxQe0JWfKc7ZTpYyF6vZ6Ph83NzQiFQnx2kGzXEgppkhwiLSpqf89+v19WtU9LckIAikvAamcAw+Ewuru74ff7+ZVuY2NjmmYadTpdQpG2traGjo6OlCeP1coAkmGPpqYmNDY24qWXXgLDMHzGyGg0gmVZMAyDxcVF/kOJCAryn/CkFX3Xu7Y9ju6JJzDz0Y/C6XQmn9K69Va88rJfV0koiDf+ZSd+8z/70dHTjg/f9bKIzLW9xIB2GcBkWK3WGNsEr9cLj8eD6elp9Pf3w2g0IhwOw+FwxD3pZgspAUj6Y3JVtGYC4UEs2c+LvI/r6+tj/ELFqJkBZFkWLpeL31+czvSlnKE28j3u3bsXe/fu3fY9yhGARPiRx8rLy+Ob/MnQHjnokqygVHZQHK31UBaP3nHn3/DXePWTc1ieAX76D+04uu/TaD1+WtY1yPcpzg6SgyCZkCWCRihqUiVbGUAi2tWMB3l5eaiurkZ1dTVvz+XxeDA/P8/vLSafV1p8v5nwOU1GTghAIWqXgNfX19HR0YGioqKYlW5a7OoVEy+ozc7OYmBgAPv27UvZkiHdDKDQZ/Do0aOoqKjgRd/IyAg8Hg/KysrgdDphNBoxODgIj8eDEydOwGQyJQyWxve/H/i7v4t5PPe112J5eRkjIyNJT6j5IrNWPYDx/25EVWujou/RerlEAwBhAOEMrKrLhR3AQiPqpqYmhEIhdHZ2IhqNoqurC4D0STdbMAyz7R5yoT9GTVIpTxJRnCirLFzpRt7Hya6pRtxbW1vDzMwMjEYjzpw5k3bWO9Hzw3EcxsbGMDExkfB7TGYnQ4Qe+XsSd4QCj4hD8l+87CCD2A9PpUdR8bNVOgqEp4+i5KzMTSUA8M1v4szDD/POAb7eXpjq6lBRUYGKioqY3sGFhYUYUZNqdjBbAlCrMixBaM9F9hYTq5mFhQUwDIOuri4+ZqohCukUsARqloDJknWpE2MmDKfFAlC4aeTEiRN8+TTVa6eaASNrmVZXV3HmzBkUFRXxwe7QoUO8UfHU1BR6e3thMBhgNBpx+PBhFBcXx0ztSQbLO+5A9BvfQNHkJAAgUFKCkieeQAnA968oPaGusNXAKvDwF74Km96LqH4TV13zJiBPuq/N6HTGBFkzgPB996XVhCyHXBCAYvLy8mA2m1FRUYGqqqptJ92CggL+Z5AJU1Ux8XoAs306zjbkOYln2xIKhdDV1YVwOJxRb0FygHU6naq1PCSylCE9jaR6E49EAlCY+UtUzhOWf8khl/w74YE30tGBwuPHtzJ/ANYeeUThd7wdt64SP/rBT2BnwzAbV5HnrMBf3nF33K8//PDLpvd6AAWtrfAJDrlaZAezLQAz9bjEnquiogJutxuDg4NwOBxYWVnB6Ogo8vLy+N7BVAcgqQC8jNolYDkr3TIhAIWnbbJ/kwTrdDeNpJoBDIVCuHTpEoCtvkOz2RxTEhFmjyorK3lPQovFgq6uLhiNRpSWlqK0tBQlJSX8C58ESHLC5i5ehFcQLPQMA51Ot20h+MbGBtxuN+bn5zE4OIjCwkI0v+Y1qPvNb/h7ZgCYapoQ0UXgN0XhRwGAAjz19HkUs2H0//5HyK+oxRvf8fK6G3Mksm2XZ97Xvqa5b2EuCkAAMR988U66QlNV4Uk3E/cmJQAzsSYplyFCJBqNbuvnW1tbQ2dnJ+x2u6KVbun4hwrj6vHjxxEMBrGwsJDSteTcF/EwNBgMfKxKRDw7GWGJV0kvF3n+hZlYEt/YujpsCPbwRsNh4IUXZL//GcRmAfv31AOcDowhCrdBD8AJuBk88oWvokjvRVi/ide85c5tRtDkkTjBr+MhFDUkO7iyssJnB+UcBLMV37TOACaC4ziYTCbU1dXxe4uJ1YycAbx45MIhNycEoJB0hRlx3CcTYvGElpZGyuLHIGVom82W9v5N4bWVZgBJA7XD4UBrayvfD0TG64VvrpWVFfT09KC2thZNTU284FxdXcXKygpGRkYQCATgcDh4QVhQUCAdLBOUUmw2G2w2GxobGxEOh7dS7vffj94jR/CqL30JodJSLD//PP66pATffeg+WNhCbLDF2DSyiPLBshRYCuJbX/gqivRrCBl8eD8AcagI3XRTis+2fHJdAIoRfygQiyRSrrdYLDEnXS0GXOJlALN9OlaTVErAOp1uWzzkOA4zMzMYGhpCc3MzGhoaFL3eUo2v4XAYHR0diEQifFydn59XLYaKnx9iKVNeXo5Dhw7J+uCX2iksrFCk28gvlR0k8XN9fR06nQ7hcBgGg4HvAY9334H1daClBea5OYQffBAN738/Dv7oUaxNDyPKOLCmsyBqiMBnisJ3+cD7xA9+CjsXhNGwCnvdfrwVscJPyatLmB0UHgTdbjd6e3vBsqxkdjBb8S2b08din1KDwcB/5gFIOoAndXDJlVWXOScAjUZjyiVgj8eDzs5OWT5UmSoBkxdFY2MjL6TUQOkHytLSErq7u/lyOIC4p+KZmRnek1DoX6bX6/mAcODAAfj9fqysrPCC0GKxoKysDKWlpXA4HHy/pThYijOOJFjGOLwfOoSVu+/GysoK3JcHGY5e/1Z+K8mTP/seNuanEGFK4NWZETVEsWmKYhOFAArx4Mc/g4995uO8CIwCwA9/mM5TLoudJgCFCBfZ19fXbzNVDYfDKC4u5l8DamXodoMATBVhRYRYRrlcrpRbSFIZAvF6vejo6IDdbkdbWxt/gFXzEC28FmndUWopIywBk//I96r2FKcwOzg9PY3R0VG0tLTwQ3PCkmW8QRIMDEC4HO3mt9zB/3p+ehq/+dHXkccWYJ21w2dkEDVEsAIDgFIsTq9iqKIaB5bmeeHn+853Uv5+xAdBYWWGZAczVRGQQg0Bn85jJ9ISyQbwioqKeDFts9n410GmY1xDQwOmpqZi/iwnBKC4N0+puaXQSPnAgQOora1N+kLRWgByHIdwOIzJyUkcO3YM5eXlql5fbvAVDnscOXKEX58jJf5YdmtZ/eLiIk6cOAG73Z7w2vn5+XxaPBqNwuPxYGVlBX19fYhGoygpKeFPShaLZVt2UNhjA2wPlqRUSQYZiM3M9PQ0SupaUb3/JFiWRVVpKf73vx6BmS3EOlsM/+Vg+el/+qfLT4IeRVEdCh+8HyF9EHf8zRdSf+JlPN+5OLmaig2MHFNVkh0UtgMoRWoTSC7sycwFSJzy+/3o7OyETqfDuXPnUrbHUToEMj8/j76+Pt4lQBhX1RSApMIwODiIubk5HD9+nM+wKEVYfSD3qQUcx2F4eJjv6SbxUnzgFVc/kmUHAaC6rg53/O0X+d//56NfRci9hHDUgTW9GYwhih/89Xv5vzdFTbCPjUH/pY+h6uAxvOqWt6b8fel0upjKjDA7ODc3B5Zl0dPTo9pksRyyuclIyRo48QBeOBzmY2ZPTw9fZRkcHMT6+nrGD7mf+tSn8N73vvy6yQkBKISIBKm+Fymi0Sg/0EAc4eWgZQk4Eomgu7sb0WgU+/btU138AfJ6ABmGQV9fHzweT8ywBwlQQvEXiUTQ09ODYDCIM2fOKD7pGY3GmN4+YX/J4OAgCgoKUFpairKyMhQXF8fNDsYrFQtH9skpa3JyEj6fD6NTU7jqlW/jA9LPvv8IuHUPQkwJvDoTGEMUGyZgA0UAivDQAw/BDj/0hjXUH70a1974emVPfgJ2cgYwEWJTVaER9fj4OPr6+mCz2fifgdw+GCCxDcyVQjpegKurq+js7ORXuqXrhSbn4EsOg7Ozs3H7qNWOoRMTE2BZFmfPnk3pZ0+EVSr9fkohhtuBQACnT5+OaTWK1zuY7MCbCOEwyPz0NH77o6/BxNqwztrgNzKIGCNwwQigFMsD8xjr/QoKDauXD7wPpPW9CrODXq8XXV1dKCws3JYdFGe41CSbPqbpDDqZzWZUVVWhqqqKz6w++eST+PGPf4xAIIC/+Iu/wOtf/3rcfPPNePWrX63ynW+nqKgIlZUvT5rnrACUE6R8Ph8/pKB0pZtWGUCfz4dLly7BarXCZrPJErGJMFosMQu0o8EggOQ9gMQtn+M4nD17Fnl5edtKEyQ4kmZri8WC06dPp92jKNVfQkrFnZ2dAMCXcp1OJ8xmc9xgGc+Ty+FwwO/3Q6/XY//+/Xx2cGJiAnWH2/lrBzY28If/fBhGtghethgBY+RysDQBKMNy1ygGL/0LCgyrCOkjuONvPp/W936lCkAx8YyoPR4Ppqam+HaBRH0wBFoClobjOEQiEYyPj+Pw4cOoqalJ+5pyMoDhcBhdXV0IBoMJp4tVEYAtLTBPTOAVl3/rO3wYposXU7oUee9NTk6isrISdrtdk/ci6TM3Go04depU0g07iXoHUzGhrq6rw+1/+yDGx8e3LJ6e+hm4DS9CjANrehNYQxQbemADNgA2fO2Bh1AMPwzGVTSdeiXOvuI1aX3/BoMBjY2NfGwXZ7iEO4vVyg5ms7KiJAOYCJJZvfXWW/GqV70K1dXV+PjHP47z58/j0UcfzYgAfOCBB/DpT38atbW1ePOb35x7AlCq8VkKstJtz5492L9/v+IfkBYC0OVyoaurC7W1tdi/fz8uXryYXoB0OGIGGfQAUFkJLC4m7AEUu+WTU79USYRME1ZWVqb0PMrBZDLFnIK8Xi9WVlYwNTXFZ45IdrCwsDAmO5jIk4s8t1arFXv27MGePXv4zJTb7cbIyAiCwSCuevX/2QpI//VfcP7jJ3nfrO/e8GeYfMU5rOuBdWytzPr6Aw+hGD7AuIZDV9+CtrPXKvped4sAFCPugyFWQjMzMzErl5xOJ4qKimLuJd4mkHRsknY6JCMfDofR2NioivgDkse9jY0NXLp0ifdNTXQYVEMAmiYmYn6f39eHSArXITHiyJEjWF5eRk9PD1h2a4858TNN9zAObD0/xMA/lWysMDtInjulJtRi3v7Xf8//2uiww8xcdp4A8MAn/glh/sBbjqU/9aP3+X7kG1YRMkRxx72fU3T/4vhmMple7ttO0DuYbnZwp2YA40FWXb7lLW/B7bffruq143H33XfjxIkTcDgceOGFF/Cxj30sNwSg+AMz0SCIeKVbKkvWgZczaGq8sITL1w8fPozq6mr+MdIRmbpAYPufra1tTX7FKQEvLy+jq6tr27AHeeMKn+uFhQW+2bq2tjbl+1SCTqeD3W6H3W5Hc3MzgsHg1qCH243JycmkNjPCEnYgEOCzJCRYCjNTwMsr6lZWVrD/H/+RF9Q6AH/15O/w7WuboGeKsYYiBA0RhIwRLMMMoByuZy6i448vId/gQdjE4faPfCbp95erAjCTJ2i9Xs//jMV9MN3d3TFZAofDEdcGpk5kebGTUfKaICIjPz8/afZUKXq9HpGItMQimzbkDqylIwA5jsP09DT2if5c6TtHPOxRVlbGt6Gsr69vO2iSITUlLQqElZUVdHd3o7GxUfH0tRTk/ajUhFr4vcfcw1vfijzm5Z9HHoA3/L/v4IW3vREBxgGvwQBWz8CrB7woBjjBgdewhhOv/kscPpZ4C0mi+CbVO0gqMyQ7mKoBfTYFoFoZQCE+nw8GgyHtDOn999+PT37ykwm/5sUXX8TJkydxzz338H929OjRLf/CtB5dRYQZrXinVKmVbqkiLDmm88MlRqVra2vblq+nY9YMANw//RMg+uFy//Iv/LXF9hBEhIqHPcTijzjrz8zM4NixY1nNtFgsFj57J9dmhtz/wsICWltbAcTf5ynsWxOHLR2Aq278K14w/uCRz8Ic4RBgSrBu0AuCpR1ggG888BCKsYn3fvYLvIcXC8AvMF/NRQGo1kEnVaT6YMh2gsHBQQDA1NQUysrKYLfbodfrs9ID+NnPfha/+MUv0NnZCbPZjLW1tYw+PrB1KOvt7UVDQwOam5vR3d2taqVCKrZyHIeRkRFMTU3J2iZCSFUAsiyLgYEBLC0toQmxdk1KvlPxZg9hjBP6XTY1NfEHzZWVFUxMTPADTuSgmSzDQ5wRDh06FNNDpSbxSsVE5Iqzg+LPFv1TT2275r45N5r+buvg2tf5Ai79/sfQRe3wohBBY+yB97e/ex4Xfv0szvzPd3Gmd5SPl5sNDUB3NwBl8U3N7GA2h0BYllX1EAa87AGYbky+88478ba3vS3h1zQ0NEj++dmzZ3NHAAqRClLxVrql8xjAlnBItedNbFQqVvPpZgDxsY8h/POfw3i5Jyba3g584AP8tclJnmVZ9Pb2wu124/Tp07DZbHH9r8gWkI2NDZw6dSqn+qzk2MyUlpbC5/Nhc3MTp06d4gdbkgVLnU4HFrHmqyyA4uJiLC0tYXh4GC3tt/CPPzsxgs4//CfAFsPLFSJkjCBojOD133485hp6ACa7HZHLYiGbgSoe2TRRFSPOEvj9fly4cIG3ONnc3MRDDz2Eubk5nDp1KqP3Fg6H8eY3vxnt7e34t3/7t4w+tnDo4qqrruIHx9RuVRHHJDKw5vP50N7erigepBLfiJ9gNBpFe3s7osEg9BYLDNgSf+zlHudkKDV3ljpoulwuDA0NIRQKxTgWCAfg4k36ak1CE+rLv45EInys0+v1wD33bNt0xAqyPoePnY7J8D32lY/DHNHBz5Rg3aADq2ewpkeM+AOAgslJ+Mj1Uoxv4vc98XwVZwdJ37D4s/RKywCqtepS6EeolI6OjtwUgOIScKKVbqkinBhLBY/Hg46OjoSTeao0ST/3HKSK4SRjSoY9iPG1eNhDGBzJTli9Xo/Tp0+rfqpRG7HNzMrKCu9Hp9PpMDY2ltBmRmxCveF2o9DphB5b4i+0vo56APX19fyKOmJjwzAMjr3m5ezg97/xSVgYI5okNh8YWZbvW8rVDCCQGwJQDHkftrS0ANgqQ54+fRrf/va38alPfQr/8R//gde+9rX43Oc+p7lpKimlPPbYY5o+jhjyviQmy8LMp5qrMcn1SGzY3NzEpUuXkJ+fn9KhWpitkvPaIv2FNpstxk+QDQbR1dMDi8WyrSQsRaqbPYT3Td7XxJDX5XJhaWmJz0yRzOD09DT8fv+2Sd9MI84OTk1NYXl5GYcOHXo53t9zD6I//SmK+voAAIHDh4GPfjTuNYUtLRcvPIP+Z34OsPZtXyd8dtWKbzGer4Ls4NzcHO8aIcwOXok9gJmscJw/fx4XLlzADTfcgOLiYrz44ou45557ckcASpWASalgcXExLV+oeI+XikATOvEfPHgwYe+cllYzOp0OoVAI58+flzXsQfqKSkpKZDvr5xIMw2BychIFBQU4e/YsQqHQNpsZUtJJZDMjXN+kj0Z5AZJsRV3rtW+E0+nESkUzau68M+beAseP87/ORQGYSxlAMWQAhDxnVVVVuP/++/Hb3/4W//AP/4Di4mL88Y9/3PGWMPFeE2tra/z7UiiKCAaDAeFwWPLfpgKJEWSIrq6uDvv27UvpNatEAJLe5Hj9hXLbZeJVNlJFp9OhoKAABQUF/L5ct9uNpaUl3jS3rKwMXq8XJpMp7cpTupBy/cLCAtra2lBcXBzrnPD005IrOJP9fNrOXssPvLGf/fy2Sonw8dWOb3Kyg1arFSzLIhwOZzxxoUUG0O/3Z3TVZV5eHn74wx/ik5/8JEKhEOrr6/He9743dwSgEIPBgEAggD/96U/gOA7nzp3TxIFcaXmFZVn09/djeXkZJ0+ehMPhSPj1WgpAMtzQ1NSEpqYmAPE3eywvL6O3t1e15uVMs7m5iY6ODjgcDl68ms1mVWxm4nlyxQtIXQ0NMNXXo+zyh4O/sBAQ9N7kogAkr/Fcuy9AOrgSs9Ty8nL82Z/9GW655ZYs3Z12CA+S+/btQ319veTPR4sSsN/vR1dXF98rnM61gO27d4VI9SbHu1ay62i52YNgMplQUFCA9fV1VFRUYM+ePfyAWl9fH4qLi3nHgoKCgoy+p0irz/r6ekxGUqnNDPl1PALr67DabNBjyy3B39vL/10m4ps4O7i+vo6JiQmsr6/j2Wef5TdrlJaWwmazaX4/WmQA1SoBy+XEiRO4cOHCtj/PSQHIMAympqZQWVmZdKVbOigJruJSqxxBqtfrVS3fAFtvwMnJSczPz6OoqAjNzc1xSyJkQwrxEZPb3J1LEBNc4U5iMenYzMjx5BIGJJZlsfHss+i+PLns8/lQ9NJLvODMxR5Asel3LiFlAQOo5wOoZEouUxCD9pWVFbS1taGkpCTu16opAKPRKKamphAOh3Hu3Lm0S+rJBCDpN15dXcWZM2dgs9niXiuRrZWwlYNk7LV6LZMd6PX19fzmE4fDEeNY4HK5MD4+DrPZzMcVrfZkEyKRCLq6usAwTML2nWQm1HJtZgKCwTYhmT7gkmEeMqhz4MAB/jBOHAWEO4u1yA5qNQWcC1WNnBKARNy43W6UlJSgtbVV0xeb3CZmr9eLS5cuwel04vDhw7Lf6ErXLiWDZVn+g6OhoQGbm5txSyKkfO52u3Hy5Mm4wddYUMCn+0NtbcDTT6t2v+mytLSE3t5eHDhwAHv27JH1b1KxmVEaLBOtqGMYBtPT0/wqvHRNtdUgm/0zydBaAKYzJacm5H1JVrrp9XpZK92Eu4DTgZjm6/V6WCwWVfop+eEqiRgXDAbR0dEBnU4nOSAndS0pexrhAU1OKXMbt9+OvCeeALBVyoz4fHG/dGZmBsPDwzh06JCkvZhwkIRhGH6QZGBgAOFwGCUlJXwbSqqr+qQgz6XFYsGxY8cUxRRxdlCJzYwU2apwkBgmlR10u92YnZ3FwMBAjN+oWtnBKyEDGI/sfzpdhmEYdHV1YW1tDVVVVTF9QVohR6CRAZTm5mbF5VM1S8Bkeo5hGLS3t8PlcmF9fV2yJELscqLRKE6fPh0/GDmdMS8Ay8WLkDeDpz1TU1MYGxvD0aNHJddQyUWpzYzSYCleUffcc8/BaDRiYmKCLxmRgJTpkhFhpwlAlmVVs4FJZ0pObVwuF7q7u1FVVYWDBw/K+pmokQEkBvV79uxBRUUF3yahBlIxjhyYS0tLcfjwYVnfp1QGMN1hDwDIe+IJfojBAIAtKAAjEoGkr25+fp43yk2GwWDgX1ukZcHlcsXtSU71fU8GdVI1nhYiVSoW+qrKyQ5mSwBK+ZgKrX727t0b06qjZnZQqx5AmgEU0N/fj3A4jPb2dszOzvJO2VqSKLiyLIuhoSHMzc3F3YWZjHinY6UIp+eOHj3KvznX1tYwODiIsrIyPkVOTvpFRUU4fvx4wpOLScpy4YkngDe/Wd6NtbYi77KTf+ixx+T/uwQQ24XFxUW+yVkt5NjMkKDtcDgSmlDHC5Y6nQ61tbUoLi5GIBCIWVFnMpn4vkStS0ZCdpoA9Pv94DhO86lfMdPT0/B4PHwmt7OzE8eOHVPl2qTvrqWlRdFWj3QEoJRBvfDQqAZiATg/P4++vj7FB2bxddQQf8B2Y2liN0MgPq4+n09y0tdcUAA9gAiwTTjyj6HTobCwEIWFhXF7kolYdDqdsgdJPB4Purq6UFdXp5r7BUGqVCznwJvtDGAitMoOajUFTDOAAogNhF6v12xPr5h4JWCyCzMUCiXchZkMNUrA5PReX1+P5uZmAFsvyLKyMphMJqysrGBwcBDhcBhFRUXY2NhAdXU1Dh48mPQFHrFaYRBvG5Er4l7xClgFa5yst9+OQJoCkPQMEY8/rW0XxDYzHo+Ht4EhJVwlNjMAYrIY8VbUESsbu93OByR7ZSVMuNx0LTBeVYOdJgDJ4S/TAfITn/gEHn/8cf73x48fT8vIXUhBQQFe8YpXKM5CpBoLo9Eoent7txnUq92WQoQbyaJNT0+ndGAWXkfNYQ8OsSJQ+EwKbbFOnTq17WdjKSjg/60ZQLSgIGEJmSDsSWZZlu9JnpiYQG9vL+x2e0zVQer7W1xcRF9fn6L2l3SQa0IdveycoDim3HUX8h9/HDps/QyCcXoM46G0t1oqO0i2EXV1dQGA7OygVj6AuVCZyBkBaDab+RdZolVwaiIVXIW7MM+ePZtWD1c6JWAywDEyMsKvvBOeioUliAMHDmB8fBwTExOwWq2Ym5uD1+tFWVkZysrKUFRUJP3mWVlBpKCAfxGE2ttl31+e1ML2hgZgcjKVbxfhcJg/LUsFY60xGo0xNjCbm5uKbWaWlpb4ABkOh/kPL/GKun379vHZwZWVFdSdPAmSE9Ah1nhVDXaiADQajaotkpfLY489pqkHYCqv6VQEoN/v3zJ5NRq39d8JhZYamRzSu9fR0YHNzU2cPXs2JeFORIXQw1SNYY/QHXcg79FHAWz1AJIsnpSzwLZ7Ev3eACjeU6zX6+FwOOBwOPj3PckOjo2NIS8vL2aQRK/Xq9b+kirxBkkikQhcLhfy8/P5z2e5vYNE/AFbz2OezYaQAhGYbhZOvI1ISXZQqwxgJnqPk5EzAlBIpjKA4tPw0tISuru7+TVMaux6TEUAErsZl8uFU6dOwW63xx32EDrVt7W1weFwIBwO80FmamqKH3wQlooJjM+naP0Sf4+IXeEEALj++hSu9PIHVmFhIVpbWzNWGo2HTqdDUVGRIpuZhYUFjIyM4OjRoygsLExqMyNcUZcnsfPZc+utCHzzm3A6nWk3lOeyAJQKrmRCLhenltMh0aRrPJQaQbvdbnR2dsbtMxR+qKv1Puvv70d+fj7Onj2b8sFNKAABFT0rv/51hL7+9Zg/Ij1iWpRWk2G1WlFbW4va2lowDAOPxwOXy8VXHcxmM8LhMI4cOZIV8ScFcbPo7u6G2WzGgQMHAGCbYBceeLf164muqfSVx7Ksah6M8bKDRBDqdDp+Z7HD4dBkjzrtAUyA2u73iR6HpLlHR0cxOTmZtjeWkFQEoHjYg2z2kCqJRKNR9PT0IBAIxPSvmM3mmMEEMvggXHuU7rRaZGAAhpYW/o3NAkAK2ROv14vOzk5UVFTgwIEDOfmhn8xmJi8vD+FwGAcPHkRZWVnMJLYcT65QURHyNzZiHnPjoYfgvryiLj8/nz+dFhcXKw5GuWhNQ5DKAG5ubuZEcMwFhDEq0c9QWDFoaWmJWzYUrsBMVwB6PB4Eg0GUlpbi+PHjKX9IchwHs9kMt9uNF198kT+sxq1cpMHs7CyGhobiTvoKCWOr9EsIKqiQyMFgMPBVGtJzur6+jvz8fHR1daGwsJCP05nwu4tHIBDgq2Ktra0xP2e5vqqJSvFy0EKEEZJlB4GtCfGysjLVfg60B1CE8ElVy/ogGeRk09HRgY2NDZw9e1bVxnOlAnBzcxMXL16EzWbDkSNHYoI/EFsSCQQC/NL6U6dOxT0dCQcf9u/fD5/PF1PaTDnI1NUh6PMBjzwCtLYC11wj+/skuFwu9PT0oKmpCXV1dTkrUoQIbWaamprQ39+PpaUlFBcXY2hoKGY9nVybGWZyEian8+UewMvGwOIVdb29vWBZlu9NlNqZKUUuZwCldnHnSnDMBeRk7IivoNvt5isG8ZBj3iyHmZkZDA4OwmKxoKamJi3xxzAMnE4nrr32WrjdbrhcLr5yQWKTuHKRyuMonfRlfD4EpqeBhx8GPv/5lB87GUKPv6uvvprPApLnYnp6Gnq9PmaQJFP2UmQKuaysTLKvXK4JdfSDH4Ttm9/kewCVlH/JtTMRw8TZwY2NDbz44osIBoPo6uris4NkZ3GqGe9ciXE5IwCFZKoEzLIslpaWYLPZ0N7ernrfmRIBSIY9yGomcn9SU3Aka1ZeXo4DBw7IfmMIp9UaGhokgwwJuE6nU17A/eu/lvXYYshJ/PDhw6plXDMJKdOvrq7i7NmzyM/PT8tmZlO4ok6vh/7yzz3eirq5uTnZk21a9LCoRbwp4EyuScoUqZaAgfgZu0AgwPv7tbe3J83ok4xMqvGVZVkMDg7yLScjIyMpiUkyXCCMcWJLJTKUNTg4iEgkElO5UNIfSobLNjY2cOrUKWXZ5bo6TcUf8fjLy8uL8fgTZqVYlsXa2hrfN9jT07MtrmiB1+tFR0cHamtrZZXKE5pQf/rTWPvUpwAoW1FHyFYVg9jRtba2gmVZPv7OzMygv78fNpuNF4RKEii0BJyATJSAV1ZWMD8/D6vVira2Nk1OF3ICrbB0Q6waElkgLC4u8r6EtbW1ab0ppIKMy+XC8PAwXyom5Ri1jE05jsPY2BhmZmZkn8RzDWIdEQgEcOrUKf65Scdmhlw3mc1M3BV1otOp0G5iJ5aAc+F0nAsIBaAYj8fDHwSV7PdOVQBGIhF0dnby7gj5+fkpXUso/Mj9SGWWhENum5ubcLlc/MFHvN0n3utbOOmbaINGNiCDKCUlJQk9/vR6Pd+Ttn///m1xxWq18s8VGSRJFxJTmpubUVdXl9I11DSh1rIEnAhh5lGv18vqHUyWHSS+kZm2uZIiZwSguASs5qSaELJtZHR0FOXl5QBUbDgWkSwDSLJIy8vLsoY9xsfHMT09rUmDsFSQcblcWFxcxNDQEAoLC/mAm2ofhDBrdurUqR35IU/KNSzL4uTJkwkbk5XazCgNlttW1G1sYGVlBdPT0/yHpNPpRCgU2lECMFfWJOUCZIJcbDU0PT2N4eFhHDhwQPEHdCpWMKQUWFhYGOOOoLTNRWgvQv59MoRDWXv37kUoFOJXsk1MTMBsNseUisk1icCy2+2yDakzBVlxmcogSrK4QgbUlGZKCWQDk5w+Sbmka0KdrTaWRNUTcQKF9A6Ks4OlpaXb+lm1LgF/9rOfxS9+8Qu+TWxtbW3b10xPT+eOABQiPPWq2esg7JU5ffo078umFYmCI7E9iUQifOkm3rAHwzDo7+/H2toaTp48qfnJQafToaCgAAUFBWhoaOCnYF0uFy5dusSfzslUsZyfUSQSQXd3NyKRCE6fPp08MLW2wjwxAQ5bAydI8RSqJuFwGJcuXYLZbE5qsi1Gqc2M2IRaypNL7oq6lZUV6HQ6DAwM8KfTXFhRB+yuDGCqIlwoAFl2ax2ky+XCyZMnU8qgK83aidtThN+HEgGolrlzXl4eampqUFNTE7OSrb+/nxdAVqsVs7OzqK+vz/ikbzKWlpbQ+8tf4rV33gkdgHBZWcr2WeK4Qg6BwhYRJUM1s7OzGB4e1tSCJl6pWMpXlQjHbFUx5HoA6vX6mN7wUCjEV2c6Ozv57GBeXh7y8/M1F4DhcBhvfvOb0d7ejn/7t3/b9vcMw+Dmm2/ObQEYjUZV+6AS9sqcO3cOeXl52NjY0LTXMF5wFJ6mT5w4kXDYIxQK8caVZ86cyUoJQ2xsSkrFIyMjCAaDcDgcvHixWq3b/r2wz+XkyZPJf6bNzbAuLPC/1be0IJSBzTCJIJNwNpst7WyC2GaGlBIS2cwoCZbifirSj2gymTA+Ps6vqCPXz2a/XbweQJoBfBkSH8j7iOM4WXuEE11PjmgTVktIe4oYuQJQeIhJ19xZiNAP9eDBg9jc3MTo6CimpqYAbJUySW9zLlgLTU9PY3R0FK+7807eRsvqciFQXQ3Mz6d1bZ1Ox7eIkBIlObgLB0mkDu7kZz05OYnjx49ntDUnkQm10IOQ/HlKO6FTJNX+6by8PMns4E9+8hN85jOfAcuy+Nd//Vf8n//zf3Dy5EnVv59PfvKTABDX1/S3v/0t+vv7c0cAik+V6TQqi1ldXUVHR8e2Xhmth030ej2ftSHfH/mQFw57xFt2vrGxgc7OTtjtdhw6dCgnGvmFpeIDBw7wOzCXlpYwNDS0LZPl8/kU77I0C8QfcNlvcHo6a1nAZJNw6SK2IRDbzNhsNv45LSwslDShTuTJxXEcrFYrmpub0dzcHLOibnx8HGazme8bzOSKOoCWgOVgMBjg9XrR1dUFp9OJw4cPp/UzkhP3SKZxZWUlZpOIGDkCMF5bixYsLi7C6/Wira0N+fn5vAAaHx+XNF3OFMIp5La2tm0eqnleL0IqP6bYDkx4cCcDamVlZXA6nZidncXi4mJGKkyJEGcHGYbB0NAQotEoioqK+Net0G9Qy5+jGltAhNnBv/3bv8XrXvc6nD17FhMTE7jxxhvR1taG3//+9yrdsTzOnz+P1tbW3BGAYtQaBCF2BQcOHNg2NJGqUbNchFkbvV7P9+0cOnQINTU1CUsiLpcLvb29qK+vR2NjY9ZPrvGQKhWvrKygo6MDwNYbqLy8HPv375f9RhLPSXJASuLPXFAAw+V/H7zjDkBkCCsHpZNw6SK0mWlubkYwGOSf04mJCd7UW47NDHltE4NZ8jpTsqJO63V88Yygc8UEV01Sfe0wDIORkRHs378f9fX1qhjUJxKAoVCIzzQmmyxOlE2UM+yhFvEmfYWvc6HpMrGeIe8lLSsrREx7vV7+3sS+eCktHLz9dlieeAI6AFEg4Zo6qYM7EcdDQ0PQ6XSoqqpCJBLJGdsojuMwNDTE2xtZLBZZB141710Nv0wxJLv6gx/8ACaTCfNpZn5TYXFxERUVFbklAIU2Cel6AbIsi4GBASwuLqKtrQ0lJSXbviYTGUBg6wN4dHQUS0tLfN9OPPFHGrzHxsZw6NChHWWRIiwVz8/Po7+/Hw6HAxsbG3jqqadipoqlSsWEyG9+A8NrXsMHSKXrlwDAdFn8AVuB1vroowgoFIBqTMKli8Vi4T/ElNrMcBzH20c0NTVtW98EQHJFHRGco6OjsFqtL+8rtttV/2CIlwFsbGxU9XF2IiSGBYNB1NfXq7Y6KpFoW19fx6VLl+BwOGRt5SEbPMSkMuyRKqRNRqfTxZ30FZouk145Uhrt7+9HcXExn2VXs1RMep+j0ShOnTrF9z5HAJiwFZs4AOEUTPStTzzB/9oIgCsoQFRmq0xBQQEsFgtWV1dRUFCAuro6eL1e9PT0gGXZjInjeJCBQSKahYeQZAfeeIMkqd6H2gLQ7/fDZDIhLy8Per1e9mfL/fffz5d24/Hiiy/i5MmTsq6n0+lySwAKSUeckdH/aDSKc+fOxRUbmRKAws0eiYY9iMeWy+VCW1tb3LJLLkN6SSYmJnDs2DF+4TU5cS4vL2N4eBgFBQW8GCwuLo4NuNdcs2Uy/eyzW5m/FMRXum9ZLSbh0iWZzYzYDmJjYwPd3d1obGzksyDJpu7EE4arq6twu90YGBhANBqFw+Hg7yFdayAStGkP4HaEMczhcCQ8MCklXgZwcXGRN2aXW3XQ6/XbKjVifz8ts+bCSV+5bTLCXrmmpiYEg0G4XK6Y/bxELKZz6BH2Pre1tcX03DE+H5jp6a3WlhRM9DE9ve2PjNjKBMpB6GZAFgns2bOH34SxsrISM80qx3JHLViWRU9PD/x+P06ePBl3YFCuCbUcm5lE96L24YVsOlL6PN55551429velvBr5B4SKysr8ac//Sm3BWAqJWBSsrPb7Th58mTCgKBmn6EUfr8fwNb3Qu5FmLYWDnuQk2I4HMbp06dVDfiZguM4DA4OYnl5GSdPnoTNZuP/jpSKyXYLYkDd0dEBnU7HB5gYl/tUAiO5F2zfPymXTEzCqUEiOwhSyiE2Mal4cpFNDCRr4vP54Ha7saTSijryuHQKOBYSw0gWrqenR9U4Jc4AEm/OiYkJXHXVVbw9ltxrhcPhmGupMekrB7LTt7a2Fk1NTSk/lsViidnPS2KTMBtGsoNy99HK8vhL8XDL/1sRcsvIidwMhJswyDQrOWROTk4m3CuvBgzDoLu7G6FQCG1tbbKzj8KKhhJfVTn3o5UAVAo53KtBe3s7PvvZz+aWAEy3BDw/P4++vj7ZJ9hU/LDkIpzobGlp4bONUsMefr8fHR0dyM/Px6lTp3LGokMJxBzZ7/cnFbAmkynGv87r9cLlcsW43BPhkaoQDg0MwCLYVRxO+NVbZHMSLl2EdhArKyvo6upCWVkZgsEgnn322aQ2M3I8ucgWGSLiic1Bb28vOI6LMUGV4z8mzIILyRWT1GwwNzfHG703NDRI+gCmi/DgS/aJr6+vp7QKU9hHnclhj7m5OQwODqKlpUVyOjlVDAZDjK3K+vo6XC4XJicn0dfXB7vdzgugeB/ixOMvXWGaDOGuYg5bMS8ZSt0MhJY7whYUslc+mQOEEsg+ZIZh0NbWJltsixEaNwPpmVBr0QNILGC0fH9MT0/D4/Fgenqaf14BoLm5GYWFhbjxxhtx6NCh3BKAQpRkADmOw/DwMGZmZnDs2DHZWRu5i9aVMj09zS8cHxgYiOlVEAdGj8eD7u5uVFdXb/PYEl00J7zwpCCehjqdLuFeYin0ej0cDgccDkeMATXZSJKfn8+LwW2l4kSQXcUyIa+hXJiESweSuRB+MGphM2MymVBRUYGKioqUV9TFs3Qgq+B2EyzLYmhoCPPz8zh+/HjMSV9tAUgOvkQMGI3GlFdhEjEZr61FETJiHMdxGB0dxezsLI4fPy7Z260WwmwYmZ4ngxOkP5aIH1IqJq0jBw4cwJ49ezS7N+DyrmIFX0/cDMgKUaU/I2ELinAjCXGAILGaHDKVZM7IlhmdTocTJ06omgRJx4Raqx5ArePbJz7xCTz++OP8748fPw4AePLJJ3H99dfDYDDgF7/4Re4KQLkZQNLLEAgE0N7erii1Sn6waglA0sNHRITD4cDQ0FDMZJXwccgpNmGw+NjHYHnoIT6TFbBYAA3Nq5Xi9/tjTpTpvlny8/NRX18fUyoWChfJUnGakIbjtbU1nDp1aseKj+XlZfT09Gzbr6yGzUwyE2rxirp4K5KEK+qkTte5tCYpU5ADVDgc5lesCVF7NabBYIDf78f58+dRUVEh255JCp1OB4ZhttlzKMFUUMB/ELFAXM9PYuS/vr6O06dPZ7xP1Gq18qXiaDTKx6bu7m7eamlzcxOHDx/Omb5hgtpuBsJlAcKKADEN5ziOL1mSQ2Y8IpEILl26BJPJhKuuukpTGyqlJtQMw6SciYxHJlpcHnvssbgegIS6urrcEoDCF6WcUy850RQUFODs2bOKf1DkxaBGnV+4J/Ps2bOwWq1gWRZmsxk9PT0oLy/nm4p1Op3sU2yeQPwBgCUYRDCtO1WPtbU1dHZ2Js9epohUqVi8EJ0Il1RFm3ivbyqrk3KBxcVF9PX14ciRIwl7uNSwmUmWHYy3Ikm8os5sNku+77R2yc8WUu8PMnVbXFwcN/NhNBoRCqnnEke20Bw8eBB1dXUpv285joPZbI7ZSVxWVqbsPfTIIzEfQnoARolpViKSAeTETl+j0chnwInNy/LyMiwWC/r6+jA/P88fVrN9oMyEm4G4IkBK5+SQSYznySFTuOjg0qVLyM/Px5EjRzJuP5NskMTv96O4uBjRaFQ1m5lc8jnNKQEoJNmpd3l5Gd3d3ZLriZQ8BoC0Vb7P58PFixd5ISoc9jh58iS/qog0FRsMBnAch7a2tphBCSnE31WuuAEuLy+jt7c3YxYpwlLxvn37+PKDuFRMyjFyXg9EtHMcl3Svby4zPz+PwcHBlIZW0rWZkePJJV6RRLKDbrcbHMfFrKgzGAwZFYCTk5P49Kc/jT/84Q9YXFxEdXU1/uqv/gr33Xef5iJjYWEBvb292Lt3b8KsjFolYKGvmsPhQH19fVrXIl56Z8+ejVlrWFRUhLKyMpSXlyefdvz+97f9kfjjdXNzE52dnapVGdRE6PF39uxZFBQUIBAI8G0sIyMjKcUmtSAHw0y6GYhL58JDJjGeJ2Xi8fFxFBcX58SuZmF2kMSlYDCIAwcOqGozk0sH3JwVgEajEYHA9g4HjuMwPj6O8fFxHDlyJC2fPPIDTCe4kl1/e/bswf79+wEgxv/KZDLxTcWk54bsOH7hhRdQUlKC8vJylJaWStpqRPByoy+wVSLJNjMzMxgZGcHhw4dRUVGRlXsQTsCKyw8AYsoPUsKOmN2azWZlZYdnn4XlskchByBYVQWMjqr3jSmETCxfddVVcDqdaV0rns0M+SAT28wYDAbFnlzCFXWLi4t81nF8fByPP/44fvaznyEQCGB+fh6HDh3S/MNycHAQLMviW9/6Fpqbm9Hb24v3vve98Pl8+NKXvqTJYwp7luVM3aohAIWtMg0NDdjc3Ez5WuJhDzIc1NDQgHA4zIufiYmJ5JYqTz8NrqAg5mAbbmvjf+3xeNDV1aX5QEUqCPebC6sHVqs1ZjqfTBULY5PabSxSkDit9GBoKCjgPQoTleTlIjxkkt3Ni4uL6O/vB7DlEDE3N4eysrK0raXUgLhZeDwenDx5kq/mJbOZIb9OBs0AykAq6JGJNa/XizNnziTNnskhnW0gZNijpaWF91CKN+zh9XrR2dmJ0tJSvueGrFFLdHJmfD6EiopgYlmwACIyJr20gjRgz83N4cSJE7Db7Vm7FyHi8gOZKh4fH0dvby+fxSLlmEAggIsXL6Z08swTGFTrAFgWFrJWkicBXquJ5UQ2M9FolDf2JocXpZ5cHMchLy8P+/btw759+1BZWcn73916660oLy/Hu971LnziE59Q/XsjvPa1r8VrX/ta/vd79+7F0NAQHn74YdUFoE6nixFiZ8+elZUJSFcAknWMVqsVZ8+exeLiItbX1xVfh/SBJhr2MJvN/NQo2b5BelNJX5hY/AT/+Z9h/pu/gQ5AqLYWePppAC/3SB88eBA1NTUpf/9aIHe/ubBULIxNajoeiOE4DhMTE5iamlIeG559NibhoMeWIGRU2sVuMBhgtVrh8XhQU1ODPXv2wO12Y3FxkV8lGtcfNgOQzJ/H40FbWxv/M4nXO5iKzQwVgHEQ9wAKS8Bk2MBsNuPcuXOqlWdSCa5k2GNhYYHfMiJ8EYgD49LSEvr6+rB3796YVU7CNWoJT85eL9gsp8el1hnlIsIeN3GpeGRkBBaLBeFwGE6nM2YvtOzrJ/l9piBm25kS4kKbGY7j+D4ycngR28zo9fqkwTISifAHML1ej4aGBrzrXe/CF7/4RczPz+PChQspCZV08Xq9mkyXRiIRnD9/XnHPcjoCkFgC1dTU8JOfqVQ9xJs95Ax7iLdviMUPX/24/Xbgr/865rHGxsYwMzOj+aRvKsjy+JNAKjap4nggIG03g/vv3/ZHBgBqzaBvbm7i4sWLqK6uRnNzM3Q6HYqKivhVolJDf4kqOWoiFH8nT55MmI1MxVeV4PP5slY5E5NTAlCIcAqYlFmrqqpw8OBBVXsFlAZX4bBHe3s7nx4mH27itW7kg7q1tTVhqSeVk3OmIFkLhmF23KCEMItFmqGtVitWV1fxzDPP8CavcgMMg9g3TUo7PNNkfHwc09PTsnpItYAE7aKiopip30Q2M+JgGQ6HsbS0hMLCwpiD0+bmJvLy8mCz2WIyc5libGwMX/va1/DP//zPql/bZDKhpaUFpaWlij7cU5kCJislhbvHhddTUvVQw9xZLH7iVT+cTicmJyf5nb650itFUNPjT8rxQGiOTw5UcmO+Km4G3/kOOIF/KgCEVYoxZOCprq5O0qdXOPQnPDBMTEygt7dXs3V9gDLxJ0apzQztAZQBCXqTk5MYGRnhy6xqo+Q0TEop+fn524Y9yLWEa936+/vh8Xhw6tQpRScx2SfnOH2DahIIBNDR0QGr1brNNX4nIZ6Ekwowdrs9JsBIEfH5gMt7hjkAoRR2eKYKyYzMzs6ira0tZ6xSlNrM6HQ69PX1wWQyYf/+/fw+WY7j0NfXxwfNdLL8qezNnJ+fx2tf+1q8+c1vxnve856UHzsRJIOqBKWHVBJ7yEYecQlQyfW02uwhVf1YWlrC2NgY9Ho9qqqqEA6HNVnFlSpaevzFM8cfHR3lY34iw2WyQSMYDKZ3SK+rQ/CGG5D35JPQAQjr9cDCQnrfHLYcIzo6OvgqWDLEBwbhjvKxsTGYzWb++SD9yKmSjvgTI1UqFv4XjUZx8eLFnGmf0nFKo5GGsCyLSCQCYMvQtrOzE0ajEcePH9fsCTt//jwaGxuTDpOQLCQppQCxwx7CIBUOh/k9i8eOHVM1Y0ZOzi6XC16vV9nEnUI2NjbQ0dGB0tJS1TOvmUTOJByZ3FtZWYHH45E0ec0mHMdhZGSEbzvIlRNkMoQTgB6PB0ajERzHwWQyoa2tLea9MTQ0hNe85jU4efIkfvnLX6b1uOQxE9HQ0MAH+/n5edxwww04c+YMHnvsMc1+3sQTVAnr6+t44YUX8OpXvzrp14bDYX73+PHjxyXFAtnect111yW8ViY3e/h8PnR0dKCoqAiVlZX8zy/b1Q/C9PQ0RkdHk1ZytIDsUXe5XFhbW+PbLcrKymCz2RCNRnk3g+PHj+ecmwGxCdq3bx9qa2vTvh6pkJHXCGnpEfYjy0VN8Sfnvu+77z58//vfx+OPP46bb75Zs8eSS04KwGAwiBdffBF+vx/XXXedpj+UF154gS+9xmNmZoZfO0SGPUitXxwYM2lZIOwbdLvdqi0xB17es9nQ0MCvpNqJkEGJI0eOyJ6EE5q8ulyuGFNTJftA1YLYd7hcLrS1tWXdVyxVIpEILl68iHA4DL1ej2AwiKKiIvzv//4vTpw4gbvvvhtvectb8KUvfSmjgntubg433HAD2tra8N3vflfT92wqAtDn8+HZZ5/Fa17zmoRft7GxwXsKtra2xhVLJBtzww03SP69eNgjFXNnJZBJ3z179vB9YeQ+SCbM5XLB7/dntPpB7oEMvh07dizrmZtIJMLHJbfbzT9XFosFJ06cyLo/ohhilH3w4EFVV/YRhP3IKysr8Hq9KCws5A8N8bYQkX+bKfHHcRzuv/9+fPe738Uf//hHPomUbXJOAC4vL6OzsxPFxcVYWVnBjTfeqOljXrx4EWVlZZJeduL1TGTYI15JZGVlBT09PVmxLCCnIhIsWZblxaDSk/P8/DwGBgZU37OZScSTcKkGbmFJ0+VywefzydoHqhbxptJ2GgzDoKurC9FolDc89vl8GBgYwIc//GF0dXWhuLgYt912G2655Ra88pWvzEi7wfz8PK677jrU1dXh3//932MeMx2LqXikIgCD/397Zx4XZbn+/w+iILuso6goKuaGrGp6cjvlggoztpysjmWn0/I1K+tbJ391SluszLZvi1nWMU+dVkHcd0DLNmUTVFRURARmGEBgFoZZnt8fnvtpBgYYYGaeZ5jr/Xr5etWwzD3DM/fzue7ruj5XczNycnIwd+7cdoWxXC7HyZMnER0d3ene09GJonn9EuB48cf2Gls6fdvLfoSHhztktqp541tCQoLoGt/UajVOnDjBn6rrdDq+M18MliosZd56MpEjMa9HViqV8PDw4N+PkJAQPnh3tvh7/fXX8emnnyI7Oxvjx4932HN1FVHVADY0NODEiROIiYlBREQEjh49avc5va1pzwam9Yg5X1/fDlMi7KRp7NixgowBsqVukH29vYvdXDTFx8fb5isXEgJPnQ7GM2dEM6vYnnN9W0/OsDYPlG0w9k4Vs1quhoYGh29SjsRkMuHkyZMW4g+4Xgc2aNAgNDQ0YNmyZUhLS8O+ffvwv//7v8jLy3PK2g4cOIDS0lKUlpa2qesSS2zM3i9rE4u644vaXhOIeXBrj4kHHWHe6WvrXtO6blCpVEKhUNjmN9hFDAYDCgsLMejVV5Fw4AAMMTHAfxucxACbgiWRSPjTJNZVzCxV/P39+TKWjk7CHEFVVRXOnDnTLXP6ntB6ClHr6VEseG9oaEBjYyMmTZrkcPH39ttv4+OPP0ZWVpaoxB8gwhNApVKJoKAgtLS0ICsrC3PmzHHoScDJkyfh5+eHkSNH8o9pNBrk5ubCx8cHcXFxfIRlLSViMpl4sSGGFIE1bImcmbWNUqlEQkKCTaKpfysDV+0XXwB33OGw12EL5p1wiYmJDk2XMm88VjtoMpn4ruKepopNJhOKi4uhUqna1Mq5Ekz86XQ6JCYmWrwn1dXVmDdvHm666SZ89tlnLttg1BUMBkO3LFj279+PWbNmWdysjEYjiouLUV9fj8TERJs7wrVaLY4cOYJ58+ZZpFsd0exhDaPRyH9GExISelzPas/sB/CHx9+UtDT4aTT84wb8twlMYNgIzo7m+rKTMJYq7tOnD/+esIk7jsKe5vT2hNV5l5WVQafToX///nw5QXBwsN0DHo7j8P7772P9+vU4cOCARcOZWBDVCSAbIQP8EfUaDAaHXqytO+Lq6uqQn5+PyMhI3jervWYPvV6PoqIiNDc3Y8qUKaJNz3UWOYeGhqKxsRFGoxGTJ0+2LSKaMaONB57XsmVoEVAA2q0TzkZae+Ox+ZdlZWX8/Eu26fr6+tp8U2WiSavVIjk5WXR1PbZiMpn4z0dSUpKF+FMoFFi4cCEmT57sNuKvu1jz7mMixcPDA1OnTu3StW7eocjGXjlL/LEGOY7jMHnyZLt8Ru2R/WAwj7/g4GD4mok/4PrNUt/j1fYMVlPX2QjO1idhbBzp2bNn+VQxC1TteQJWXl6OCxcuOMycvif0798fTU1N6NOnD6ZNm8Y31zBje/NGkp5elxzHYePGjVi3bh327dsnSvEHiFAAmv83E1+OxHxjraio4OtRhg4dalEP03pjZPYo/fv3x+TJkwXrTusqXl5e/Cguo9EIuVyOc+fO8UK7tLRU8I677sD8GQEIMtfX2vxLdiJx4cIFm1NUrFZOr9e79HxidoKp0WjaiD+lUonU1FTExsZiy5YtJP5swDxQZU0cYWFh3Zqhyt5vNuBeiE7fCRMmOOTv3p7fIEuLdlQ32NrjT2x0d66v+YhHjuP494TNEA8ICODLWAICArp9DVy6dAllZWVITEzkD3LEAsdx/KkzK6fx8/OzMLavqanB1atXcfr0aQQGBvJisKvpc47j8K9//Qsvv/wydu/ejRtvvNGBr6xniPYO7+HhYbch6B3h6emJlpYWlJSU8CPO2AelvaiYHcEPHDgQo0ePFtwipLs0NzfjwoUL/FSMpqYm2yNnazM8HWCeawvdnuvrQPr374+hQ4di6NChMBqNfDqmqKjIIlXMjJKB6+KvoKAARqOxTbrUlWB+fiqVqs0JZn19PaRSKUaOHImvvvrKpYIMe9DdmyvbCysrK3Hq1CnExMRYTBXqCmy/MhgMFjNMhej0dTS21g22tLTg9OnTGD16NF8L2uzjAx+zefSOvRN1THfn+rbGw8ODn93MTNxZTfPly5fRt29f/mTQ1lSxuT9pT2uuHYG5+EtKSmpzLzM3th8xYgT/niiVSpSXl6NPnz4WE0k62rM4jsOXX36J5557Djt37sRNN93k6JfXI0RVAwhcTxGwJeXk5CAuLs6hR8nnzp3D1atX0bdvXyQmJsLPz6/DZo+qqip+o7CHp5FQMBE7ePBgqxuyrR13fQIC0MdkgmH/fkCAi70nc32FgKWK2aarUqkQFBSEkJAQ1NTUwNPTEwkJCS4rjNhm29DQ0KZ2saGhAampqZBIJMjIyHDZusaeYDQauzzVAwCOHj2KwMBAKJVKxMXF9UgEcByHgwcPYsyYMZBIJA6/1linryMMlLuLed1gdXU1jEYjgoODMXToUMub/KJF6JedDX1ICHDlitPXaS83A1swTxXX1NTw/npMEFr7vJo33InRn7Qz8dcZJpMJ165d4wWhRqNpM1ve/Lm+/fZbPPHEE8jMzLTJt1NoRC0Af/zxR350kiPQaDT49ddfAQDTp0/vsNnDvGtt4sSJoipu7SpsNrGtxpzmUaJSqbR7x113YZ1wERERfL2mq9Hc3Ay5XI6LFy/CYDA4vDDZkTBrhfr6eiQnJ1vcMJqamiCVShEYGIgdO3a4bEdzT+mOADQYDMjJyYGnp2ePx6Ox/e3ixYu4evUqjEYjwsLCEBERYfeyD9ahXF5eLso9k3n8VVRU8NMmzP0Gba0bdOT6mLhKTEx06smaeVpUqVSisbGxzSEAAL5xUIz+pD0Vf9Ywny1fX18PHx8fXLt2DSaTCWq1Go8//ji+//57LFiwwA6vwPGIWgD+/PPPGDFihEM8hFizR0BAAPr06YOkpKR2h52zbrumpibEx8eLLsrpCpcvX8aFCxe6ZIxsjr077roLq4OKiopqtxPOFWhpaUFeXh68vb0xfvx4C+Nblipm6QcxN4NwHIeSkhLU1ta2saxRq9W47bbb4OnpiV27donOT82ZmE87sgWNRoO8vDw0Nzdj9OjRHRb+dwYTf+bWWqxxSaFQQKvV8sInIiKiR9cb89CzV6evvTF3C2jt8edsv8HO1udoNwNb0Ol0FgbUbL63wWBAcnKy6D7TjhB/rWEuEFu2bMFbb70FlUqFadOm4aGHHkJKSorTJ8Z0B9EJQHOjVFumdHQH1uxxww03wNPTk6/9s5by1el0KCgoQJ8+fRAXFyfqm3BHsGiyqqoKCQkJdinSbc+p39GRM+uEs9doIaFoaWlBbm4ufH19ERsba3Hax3EcX5Npnio2N6AWi+g1n1SSnJxs0Q2v1Wpx++23w2AwYO/evaITAs6mKwLQ3JFApVJBIpF0SwCyyR6dNXsw4aNQKNDY2IigoCBERES0SXV1hiNHYdoD5vGn1+uRkJDQ4fqEyH6YuxkkJiaK7v1jDXcqlYpvojRPFQt9j3SG+DNnz549uPfee/Hiiy+ipaUFu3btQmxsLD7//HOHPq89ELUA7GhKR3dgNyo21ic0NBRVVVU4f/48EhMT0b9/f4uNkc3CDQkJwbhx41wqHWeO+QmmI6NJZ0TO3e2EExvNzc3Iy8tDQECATbWLbKZuTU0N6urq4O3tzYtBIVPFLLBQKBRtxF9zczOWLFmCxsZG7N+/X3SdgUJgqwBk4yeZI0F+fj4GDBiA6OjoLj1fdyd76HQ6KBQK/npjHZMREREdfpad0enbE5h9jre3NyZOnNiljIUzsh/mbgbx8fGiawRj4tTc15OlimtqatDU1ITAwED+fXF2oMoa0Jh5vqPF86FDh3D33Xdj06ZNuOuuu/jHjUaj6K59a4haALKZuiNGjOjx72VRn1qtRlJSEt/sodVqcfLkST7iZekPlUqF4uJiREdHu/QsXLahcByH+Ph4p0VnjoiczTvhHFUX6gxY40pwcDDGjRvX5WvL/EakVCp5DytnR+Acx+H8+fP8xBXzwEKn0+Gvf/0r5HI5Dh48KDpPMKHgOA4tLS3tfp0ZsrOT+pCQEADXDet9fX0xatSoLj1Xex6mXcF8/qxSqUS/fv34k8Hg4GD++q2vr0dhYSEiIyMRExMjuj1TrVYjLy+P/9z1JGhyRPZDp9MhLy8P/fv3x8SJE0UnIMxdChISEqyKU51Ox18nLFXM3hNHB6rOFn9HjhzBX/7yF3z44Ye49957RXe924LoBKC5U35xcTG8vb0RExPTo9/J6mi8vb0RHx9vtdmjpaWFT3/U1tYCACIiIjBixAin1X3YG61Wi7y8PPj5+SE2NlawDcVa5NyVwnNndsI5Gq1WixMnTiA0NBRjx47t8XVlnipWKpVOi8BZU9TVq1fb1ADp9Xrce++9uHz5Mg4fPiy64n8h6UgAstQpO10xF9SnT5+Gp6enzUPk2ckfGx9nr2vA/LOsUCgAAOHh4ejbty+uXLmCMWPGiKbT1xzmejBkyBCHzGnvafZD7G4GBoOBNx5n99DOcGagysRfY2OjUyYnHTt2DLfddhvefvtt/P3vf3dJfQCIXACeOXMGADB27Nhu/776+nrk5+dj4MCBGDNmjIXxKdB2rNuZM2egVCoxdOhQNDU1WUQxERERGDBggEv8sRsbG5Gfn8/PihTLmrsaOfeoE27jRng8+yy4pUuBDz+08yvpOmq1Grm5uZBIJBg9erRD/iYsVezoCNzc98tc/BkMBjzwwAM4c+YMsrKyXKIQ2pm0JwBZR7u/v7/V1OTZs2dhNBoxbtw4m57DGZM9OI7DtWvXcP78eTQ0NPB+aayLXSzpS4VCgeLiYqfVDHc1+6FSqfh9oct79ahRgEYDVFba+VX8gV6vR15eHvr169dtn9X2apqZGOxJoOps8ffbb79BJpPhtddew/Lly0Vzb+0OohaA58+fh06nw4QJE7r1u5ir9+jRozFs2LAOh523tLTwA+vj4+N5IcKiGFYP4+HhYVH3IbZIDfijSWLEiBHdNot1FhqNhn9vW0fOvr6+OHPmTPc64UJC4KPT8f+rB2AQcI4n2+QjIyOdZoTLrl12M7JXBM6sPZKTky2aOoxGIx555BHk5eUhOzvbId37ro41AVhTU4PCwkJERUW1mzotLS2FVqtFbGxsh7+/Iw9Te8M6Vevr6xEfHw8A/GdZpVIhODiYTxULZaXCykYmTJggSDDSWfaDjZ7rjpuB+Sx2DkDzmTOAnerlGaxRzcfHBxMnTrTb/c5aTXN3SoScLf5yc3ORlpaG1atX44knnhD1vdUWRCcAzX2yLl68iKamJsTFxXXpd7BToytXriA+Ph5hYWEdRsW2Fi4zU0iW/tDr9RYRrxjMeysqKnD27FmMHz/e5W7A5pFzbW0tOI6Dp6cnxo4di/Dw8C5tPv1bTSkBAK1AArCpqQm5ubkdDm93NCwCZ++veao4LCzM5jKHsrIylJWVISkpyeI01mg04rHHHsOxY8eQk5Nj98793oTuv4EJx3EoKytDaWkpxo8fj8jIyHZ/5tKlS2hoaOCFVmtYp681D1NH0Fmnr1ar5cXgtWvXEBAQwDeROMMyhHn8sYY/MZSNMBN49r5oNBpwHMdnBLokksPD4dNqVrEBgN6OexxrVPP398eECRMcdtjBJiWxvcl8UlJHJ8nOFn+FhYVYuHAhVq1ahWeeecblxR8gcgF4+fJl3mTSVgwGA06ePAmVSoXExET4+/t3KP5qa2tx8uTJLo8oYjdUhUIBhUIBjUbDX7Q99dDqDuamq3FxcXzxuCui1+uRn58Pg8GAwMBA1NbWdrlu0MfKTUYIAdjQ0IC8vDwMHz68yx2cjsSarxfbcIODg60GQZcvX8alS5faiD+TyYQnn3wShw8fRnZ2NoYNG+bMl+JytLS08J35tbW1Ns1OLS8vR01NjdW90F7NHrai0WiQn5/PC4POUoKsvppda8zsPCIiostzVm3B/GSSTXcSG9XV1SguLoZEIkFzc3OX6wb7BATA+79lTAwjgBY77XE9bVTrLkwks+tFrVbzqWJW08y+z5ni79SpU0hJScETTzyBf/7zn71C/AEiF4BXr17F1atXMXnyZJt+ljU99OvXj2+hZ8XQzPzU/A/HTsvGjh3bYfRtC+15aEVERFhYYzgCVrtYV1cnStPVrmCtE85a5NxZx10/Pz+LQdf23BxthZlVs1S8WDEajfwIKKVSCb1eb2FA7e3tjfLycly4cAFJSUkIDAzkf9ZkMmHVqlXYsWMHcnJy7NKx39tpampCXl4eOI5DQkKCTSc/V69eRUVFBaZMmWLxuKOaPdqjp52+BoOBn4vNRh+yoNkeNapd8fgTCmtuBq2zH+ad1lZTouXl8GlVG699+23gkUd6vD7WLR0eHi54/bhWq7VIFfv4+CAsLAwqlQrNzc1O6fYtKSlBSkoKHnroIbz88su9RvwBIhSA5j5Z1dXVuHTpEqZOndrpz7FmD4lEwndXttfsYW6K7IhZw83NzbwYrK+vh7+/P7/J2bujmG14LS0tNt9MxIqtnXAajYZ/fxsaGuDv789vlhbvb3g4vDUa6Pv0gampyYmv5LqJb0FBgcuZVbceAdXQ0ID+/fujpaUF48aNw8CBAy2apl544QV8//33yMnJ6XG3vjtgMplw+PBhBAUFdcknr7q6GhcvXsS0adP4x5zV7MGw9xx0NnuWBXY9HUun0+mQn58PLy+vLnv8OQNb3Qxsdk346Sd4zZsHAGixk/gTolbZVljwcP78eWi1WvTt25f3Qg0NDXVI09H58+eRkpKCv/71r3jjjTdEWfPfE0QtAGtqalBSUoLp06d3+DOVlZU4deqUxaik9lIiBoMBRUVF0Gq1iI+Pd/iIHeahpVAo+I4wdjIYFBTUow8YMzX18vJCXFyc6Da8rtDdTjhrkbN5x7YQH9ja2loUFhbihhtucPlaOFajFhQUhKamJvTr1w+lpaXw8/PDyZMn8fXXXyM7O7tHnfo94fXXX0dGRgZKSkrg4+ODadOmYd26dTbbpQhBXV0dfH19u/TZb70XOrPZw1y4xMbGOsSDs/UpPxtLxwK7zkpq7Onx5wi662bQnexHd2lsbEReXp6gtcodwXGcxUAD80YStVqNAQMGWDQQ9pRLly5h/vz5uPXWW/Huu++K7pqyB6IWgCzdMGvWLKvfy4xoy8vL2zR7WEv5arVaFBQU8BGis20KWLEri+xYR3FERARCQkK6dIGx7rGQkBCMHTvWpS9OliodNmwYoqOju73x9NRv0B7U1NTg5MmTLj+pBLiedjx79iwSEhIQHBzMp4rff/99bNy4EWq1GrNnz8Y999yDhQsXCtJ0NH/+fCxZsgSTJk2CwWDA888/j6KiIpw+fVqUtV+Apdm9rdTV1eHkyZOYOXOmU5s9Wnf6dsmGqQeo1Wpe9HRWUuNoj7+eYs+5vjZnP7oI24PZ4AOxwWZLNzU1Wa3502q1/L5fX18PX19f/nQwKCioy/fH8vJyzJ8/HykpKfjoo49c+v7aEaIWgI2NjTh+/DhuvvnmNt/HTvJYNNBZs0dDQwMKCgoQERGBG264QfA/KOsoZk0kXUl/1NXV8bYRYozUuoKj5vo6M3JmyOVyFBcXY8KECZBIJHb//c6ksrISJSUliI+Pt2go4jgO7733Ht566y1s3LgRFy5cwM6dO7FgwQK88MILAq74OjU1NYiIiMCRI0cwY8YMoZdjle4IwIaGBpw4cYIXgIDjxZ9er0dhYSEMBoOg9XSspMbaWDqNRoNTp06JttTCkXN97ZX9EHu5SmfirzXmdaZKpRIA+HpmW1LFlZWVmDdvHmbPno1PP/1UcK3gSEQnAM19sjQaDX788UfM+2+dA6OjZg9r4q+6uhqnT5/GqFGjMHToUNEJJvPOJ4VC0WH6g83CHTNmjMunF50519dRkTODvZaJEyciPDzcTqsWhqqqKpw5cwZxcXEWUzw4jsNHH32E119/Hfv377dozmIn7kJTWlqKmJgYFBUVdds/1NGYe53aikqlwrFjxzBlyhSnTCZinb5CTxFqjXlJTU1NDTiOQ1hYGIYPHy46k35nzvVtL/vBOvvbO1BgAbhYy1XMxV9ycnKX3TWsDR4IDg7mDwJanyZXV1cjJSUFU6ZMwebNm0Vz3TsKUQtAnU6H7OxszJ07l1fh165dQ15eHiIiIvj29I6aPZg1iqNqVxwBS38oFAo0NTXxtQ0tLS24cuWKy8/CBYSd62vvukF2WtYb/i5yuZwXsuavheM4bNq0CatXr8bevXstmhHEAsdxkEqlqK+vx48//ij0ctqlqwKQ4zjo9XoUFRVBqVTyJ2ASicQho/5YSnXQoEEOm1jTE5jHX0VFBaKjo3kHBgAWJTVC3ryFnOvb+kChvewHm5DCmrvERk/FnzU0Gg2/97NUcUBAAKqrqzFhwgSkpaVh4sSJ+PLLL126pt5WRC0ADQYDDh06hD//+c/w8vLimz1iYmJ4W432mj2MRiNfd+HK1ijNzc1QKBQoKyuDTqeDr68vBg0axBuqim1z7gyxzfXtbuTMqKiowLlz59qkSl0RhUKBoqKiNqeYHMdhy5YtWLVqFXbt2iXa1Oqjjz6K3bt346effhLlPFpGVwRg62YPg8Fg0VRmb089li0RczrQmscfG0vHAmdmZSTEWDrmZjBgwABRNKSw7Acz5fb394ePjw+USqVoy1VMJhOKi4uhUqnsJv5ao9frUVtbi59//hn/8z//A61Wi8GDB2P9+vVYsGCBy2qGriA6AQhYOuXv378fM2bMQEVFBW9yHB4e3mG9n06nQ2FhIYDrR+/ONmW2J0ajEUVFRVCr1YiNjYVKpYJCoUBtba1dO4qdAcdxOHv2LORyedfn+joBWyNnBvPGi4+Pt7uVkLNhzSuxsbEWI7M4jsN//vMf/O///i927NiB2bNnC7jK9nnssceQmZmJo0ePispw2xq2CEBbJnuwpjKWDu3bty/Cw8MhkUi6nA5lgVlZWZloT7KZyT+zvGqvFoxZGTExqFarnTaWjnk8im0GO6OlpQXnz59HZWUl+vTp02bOvdBiFfhD/KnVaiQlJTn8/n3t2jUsXLgQPj4+mDp1Knbv3o2amhrI5fJefwooagEIAAcOHEBwcDA0Gg2SkpI6bfZoampCQUEBH325cg6/paUFBQUF8PDwaFND0nrz79OnDy8G7WGoam/s2QnnLKxFzuwmolQqUVZWZtMUB7GjVCpRWFjY5jSA4zj88MMPWLFiBdLT09vU4ooBjuPw2GOPYdu2bS7jRWhudm+N1jPLbWn2MJlM/MxyhUIBAPx+0JnDADOSr62tRUJCgugCM+APj79+/fp12fKKjaVj9b9sBKK9x9LZy83AkbDSm/j4eAQFBfUo++EInC3+GhsbkZaWhtDQUGzbto0PDqqrq0WZFrc3ohSALS0t4DgOzc3NOHLkCPz9/TFp0iR4eXl16H9VU1OD4uJiUX8AbUWj0SAvL6/T+cTAH4aq7OTKvKM4LCxMcBHsyE44Z2FeN8iKzyUSCYYMGSKayLk7MM9Ca3VA27Ztw0MPPYTvvvsOixYtEmiFHbN8+XJ8/fXX2L59u4X3X1BQkMMn8HSXjgRga/HXneuK4zjeYJntB0zwhIaGWuwH5p2+8fHxojSSt6fHHxtLp1Ao+MkS7L3pSQrdUW4G9qSsrAyXLl2yWnrT1eyHI3C2+FOpVJDJZPD19cXOnTudtl8cPXoU69evR25uLqqqqrBt2zbIZDL+6xzH4aWXXsKnn36K+vp6TJkyBR999BHGjx9v97WIVgCyyR5sYwoLC+uw2ePKlSsoLS0VbUFrV2hoaEB+fn63irDN7U8UCgWam5stamGcnQ53Zieco+E4DhcuXEBFRQVGjhyJpqYm0UTO3YHZP4wdO7ZNF/auXbtw//3346uvvsLixYsFWmHntPfZ2Lx5M5YtW+bcxdhIewLQEZM9zPcDuVwOnU7HB4d+fn4oLi6Gr6+vqDp9zWENKYMHD7b7ZApmF8LqKbs7lo45AIwfP16U9x7WDHnlyhUkJiZajHJsD2vZD0dNswKcL/40Gg1uu+02AMDu3budWu+3d+9eHDt2DImJibjtttvaCMB169Zh7dq1+OKLLzB69Gi8+uqrOHr0KM6ePWv303lRCsCysjIUFxcjJiYGFRUViImJQWhoqNVmD5PJhLNnz0KhUPDH2q4M68waOXKkXebHsrFe5h3FLDXk6KhOyE44e8Oc/OVyOZKSkiyKz4WOnLsDE39jxoxpMwd7//79WLp0KT7//HPceeedAq2w92Ludcpwxlg3juOgVqshl8tRVVUFrVaL/v37Izo6GhEREaKrlWZ7oTNO1czH0ikUCphMJv4z3FEWRUg3A1tgwxKqqqr4Eqqu0p5rQnh4uF3KjZwt/rRaLf7yl7+gubkZe/futUkQOwoPDw8LAchxHCIjI7Fy5Uo8++yzAK7fRyUSCdatW4eHH37Yvs8vNgHIcRx+/fVXDBkyBBERERb/3Xpj1Ov1fFFwfHy8aFM+tsI2k/HjxzukM4t1FCsUCouaNkd0FIutE64ncByHkpISKJVKJCUldVi/6OzIuTuw03Vr3l9ZWVlYsmQJNm7ciHvuuUcU6+1tmAtAW5o97A3r9I2KikLfvn2hUCjQ2Njo1OCwM9heOGHCBIumJGdgLYvS2pfV3GJMDG4G1mBNdzU1NRYd0z2hp64JrXG2+NPpdLjrrrtQV1eHAwcOCP53ay0AL168iJEjRyIvLw8JCQn890mlUgwYMABbtmyx6/OLLlfl4eGB5ORkmEwmcBwHb29vXLx4ERqNBhKJhI9gmFGpr68vJk2a5DJpN2swX6urV68iMTHRYRdl//79ERUVhaioKD6qUygUuHTpkl3tJFgn3MCBA0XpI9YVOI7jbSeSk5M7DTJ8fX0xbNgwDBs2zCJyvnz5st0j5+7AUmqjR49uI/6OHj2Ku+66C++//z6JPydgbl4POF78cRzH14HFxsbyVj/Dhw+3CA7PnTuHwMBAfj9wZsOWeZmFI/fCjvDw8EBQUBCCgoIQExPD+7JWVFTgzJkzfJZJrVZj0qRJorQL6eq+ZSssTc6cOFj249KlSyguLu5S9sPZ4q+lpQX33nsvFAoFDh06JLj4s0Z1dTUAtDkAkkgkuHz5st2fT7SqiW2MN9xwA1+nUVZWBh8fHwQEBECpVCIyMtLlBQYzu7x27RomTZrktPmlXl5eiIyMRGRkJIxGIy9U8vLyul0LA7hGJ5ytsL9NY2MjkpOTu3wq0vo9Zimm4uJiQeoGWW3pqFGj2vjk/fLLL/jLX/6C9evX4/7773fpv5vY8fDwsJhZDsDhwYB5p++kSZPa1BK1Dg6ZGCwtLXW48bT5GploceZe2Bl+fn6Ijo5GdHQ0NBoNioqKoFKpwHEciouLRXfC39pDz1GnueZCedSoUXz2Qy6X4+zZsx1mP0wmE4qKinh3D0eLP71ej7/97W+4fPkysrKyRO/Z2vo6ctSkJVEKwFOnTmHEiBG8TxG7iRoMBpw/fx4VFRXw8PCwsD+xhwmqszHvwJs8ebJg3bGenp6QSCSQSCQWtTBMqLTXQdgaV+iEsxW2QanVaiQnJ/f4b+Pp6cnPo+xp5NwdGhsbkZeXh5EjR7b52xw/fhy33XYb1q5di4cfftjlPkeuRnl5Oby8vODv7++wej9zWKmMXq/H5MmTO72+vLy8MGTIEAwZMsRi9FpZWZndjacZ5h5/Qu6FHWE0GnH27FmYTCbcdNNN6NOnj8V74+3tbeGpJ8TnyGQy4eTJk9BqtQ4zUG4PW7MfQUFBOHXqlNPEn8FgwMMPP4ySkhJkZ2eLslaTwZqIqqurLRrzFAqFQ8rCRFcDWFVVhVGjRmHQoEFIS0vD4sWLkZCQAI7jsH37dgQHByMuLg5BQUFtTFDZxiS2mZDWaG5uRn5+Pvr374/Y2FhRprDN5yi27igODw+36OitqqrC6dOnRdsJ1xXYJspsa5zRkebIusGmpibk5uZi+PDhGD58uMXX8vPzsWjRIvzzn//EU089JfrPTW9g5cqV2LhxI2655RakpaVh4cKFDtuztFot8vPz4ePj0+N9hmUKWNesvfbcnnj8OYvO3AxYbRy7H3l4ePCCx1lj6YxGIwoLC6HX65GYmCgaxwXz7EdNTQ30ej08PT0RExODgQMHOvTvbTQasXz5cvz22284cuSIw2fOd5X2mkCefPJJ/OMf/wBwPXUdERHhHk0gwPXO1b179yI9PR179uzBgAEDwHEcDAYDfv/9d4sB9cAfJqhyuZz/8LGUhRg92pqampCfn4+wsDCMGTNGdOuzBusgZKkhlUrFu+vr9XpRTxDoCkJvovbuuFOpVDhx4gSfkjenqKgICxYswNNPP41Vq1aR+HMSrD5r69atyMjIwJkzZzBr1izIZDIsWrQIoaGhdvlbsHrPgQMH2n0qRWvjaSZ4bDGeNseeHn+OoqtuBiaTCdeuXeMDZ71eb1Hu4Yg9xWAwoKCgABzHISEhQZQimgXWKpUK4eHhqKurg1qtdlj2w2Qy4fHHH8fRo0eRnZ0tmqyUSqVCaWkpACAhIQHvvPMOZs+ejZCQEERFRWHdunV4/fXXsXnzZsTExOC1115DTk6O+9jAmHP+/HnMmzcParUaWq0WAQEBSEtLg0wmw9SpU9tc6K3b+TmOs9kR3xnU1tbi5MmTLl8jx9z1y8vL0dzcDD8/P4sZxa6I0WhEfn6+aDbR1pFzV+sGVSoVcnNzMXToUIwYMcLia6dPn0ZKSgoeffRRrF692mWvQ1eH2XQwMVhYWIibbroJMpkMqampkEgk3frbyOVynDp1CqNGjUJUVJQDVv4HTPDYYjxtjiM9/uwFM+TvrpuBtbF0TPBERETYJdWt1+uRn58PT09PxMfHi9Juq72aP0dlP0wmE55++mns27cPOTk5bTIfQpKTk2N1pOZ9992HL774gjeC/uSTTyyMoCdMmGD3tYheAM6cORMxMTHYsGEDTCYTDh8+jIyMDGzfvh2enp5ITU2FTCbD9OnT20RW5gPC5XK5zRuTo6isrMSZM2cwduzYNt5rrob5XN+JEydCo9HY3V3fmRgMBuTn5/Nj94QWf60xrxusqanpNHJWq9U4ceIEf3M159y5c0hJScH999+PtWvXusTfxx1g83jT09Oxbds2/P7775g6dSqkUinS0tIwePDgTv9W7XX6OouOjKfDw8P5z5UzPf66iyPcDJjgMR9Lx96b7gTOLS0tyMvLg7e3t2i9Vpn402q1HZbU6PV6fn/rSfbDZDLhueeew7Zt25Cdnd1m/yP+QPQCsLa2FiEhIW0+fHq9Hjk5OUhPT0dmZib0ej1SU1MhlUoxa9asNpEV25jkcjkUCgVaWloQFhYGiUTi8HFpbFNmadLWKWxXg3XHNjQ0ICkpycJiwJq7vnmdkNAnsNbQ6/XIy8vja5DEuIm2pqPIuU+fPsjNzcWgQYPanKxcuHABKSkpuPPOO7F+/XpR/j2I63tGRUUFMjIykJGRgWPHjiE5ORlSqRRSqRTDhg1rsyeaTCberzI+Pl5Qg1vA+ulXaGgo7z0YGxvrdI8/W3GGm4G1sXRMDNoSOOt0OuTm5sLf3x8TJkwQ5WfZVvHXmu5mP0wmE9asWYOvv/4a2dnZFuMhibaIXgDagsFgwE8//YStW7ciMzMTKpUKCxcuhFQqxc0339zGA4njODQ1NfEbk1artZida88aDfNNWayD1rtCV+b6mtcJsfm57H0W4gTWGuYRdFxcnCg30c4w79RUKpUwmUwICAjAqFGjLMoeysrKkJKSgtTUVLz//vuCvdbOZmESlnAch+rqamzbtg3p6ek4evQoJk6cyIvBUaNGoba2FllZWRg6dCgSEhIEN3K2hlqtxpkzZ3Dt2jUA4GuIxTYxRwg3g/YC5/ZOv8yN9sePHy/KU3xz8ZeUlNTt+6q17Ie1a4fjOLz22mv47LPPkJWV5ZDZub2NXiEAzTEajfj111+xdetWbNu2DXV1dZg3bx5kMhnmzp1r9ZhdpVLxJ4MsSmWnVj0Rg0wssehHTJtcd+jJXF/WUcxEt3lqyFGF0Z3BirvZLFRXFH/maLVaHD9+HIGBgfDy8oJSqYTBYMCXX36JcePG4V//+hfmz5+Pjz/+WNDX2tksTKJ9OI6DUqlEZmYm0tPTkZ2djejoaMjlcsTGxmLnzp2i6f40h/kQ1tXV8fW15lOJhDKebo0Y3AxY4MxOB1tbcbGTP9ZE2JvFnzVaZz/OnDmDsrIy6PV6bNu2DVlZWYiLi7Pb8/Vmep0ANMdkMuHEiRO8GKysrMScOXMgk8kwf/58qykS807XpqYmBAcHQyKRIDw8vEsFuzqdDgUFBfD09ERcXJwoN+WuYM+5vuapoZqaGouOYmedBjQ3NyM3NxeBgYEYP368y4u/5uZmnDhxAmFhYXzHJxMLzz33HH744QcYjUb8+c9/hlQqxZIlS0TRsd3aBoGwHY7jcOjQIdx+++0ICgqCXC7HiBEjIJVKsXjxYtFc1+YefwkJCW32UXPj6bq6OoeOqOwIMc71bW3FpdVqAQAhISEYP368KP0SzW207C3+WqPX67Fnzx68+OKLKC0txcCBA3H77bfj9ttvx8yZMx32vL2FXi0AzTGZTCgsLOTF4MWLF3HLLbdAKpVi4cKFCAoKarPRsE5XuVzepVmZarUa+fn5CAoKEs0m3BN62gnXGex9Ni+MZhGvIzqKWfqEWU+IMYLuCkz8hYSEYOzYsRavRy6XY8GCBUhKSsLq1auxe/du7NixA++99x4mTpwo4KqvQwKw+2g0GowcORKrVq3C448/jsbGRuzatQsZGRnYt28fBg0aBKlUCplMhoSEBEH2oa56/LUuZ3CU8bQ5rjDXF7hu5p6bm4uAgAAYjUY0NTXx96Tw8HC7jXvrCc4Uf8D1v93GjRvx6quvYseOHVCr1di+fTsA4OOPP3boc/cG3EYAmmPNh2v27NmQyWRYuHChVR+u5uZmfsyNecpCIpFYfPBcwdqgKzh7ri87DWCdYL6+vvwNICAgoMfPr9FoRJ8+6Qo6nQ4nTpzgxbn561EqlViwYAHGjRuHr7/+WnSdzQAJwJ6iVCqtnlapVCrs2bMHGRkZ2LNnD0JCQnj7rEmTJjml/rangbCjjKfNMXczSEpKEuVcX+D6GMe8vDwMHz6c9/Nk9ySFQoH6+nrBTk4ZQoi/zz//HC+88AJ2796Nm266yaHP1x5r1qzBSy+9ZPGYRCLh5/qKGbcUgOZY8+GaPn06b70QERHR5oNkLWUhkUjg6emJ0tJSUVsbdAWh5/oaDAaLGwCzBehuR7FarUZubi4kEonLz5AG/ugCZGls89dTV1eHRYsWITo6Gt99951TR0J1BRKAjkej0eDAgQNIT0/Hrl274Ofnh7S0NEilUqteqvbA3oGwNbP/8PBwSCSSbhmks9/ZnpuBmKivr0dBQQFGjhzZrqejuYWKUqmEt7c3LwatZbfsjRDi78svv8QzzzyDnTt3YtasWQ59vo5Ys2YNtm7dikOHDvGPeXp6Ot2CqTu4vQA0x9yHKyMjAydOnMDUqVP5zTIyMtKqHU1NTQ3KysqgVqvRv39/REZGOnxwuqOpqalBUVGRaMSstY5i88kDnZ1oMFPkyMjIXnEy29LSYmEBYf56GhoaeBPhjIwMUdYJMUgAOpfm5mYcPnwY6enp2L59O/r164dFixZh8eLFuOmmm+xy42Yef44yoe6u8bQ5rEFPp9NZrUsUC7W1tSgsLMQNN9yAwYMH2/QzRqMRtbW1vCDs7pQWWxFC/H377bd44oknkJmZiVtuucWhz9cZa9asQWZmJt8g6UqQAGwHjuNw5coV3ofrl19+QVJSEl9TExUVBQ8PDxiNRpSUlKCmpgaxsbH86aB5/YpEIrFL+tJZiKETriPMDb5ramrQ0tLCd25b6yhubGxEXl4ePxHDVf4O7aHX63HixAn4+fm18f9qamqCVCpFYGAgduzYIfrOcxKAwsG8VJl9ltFoxKJFiyCTyTBr1qxunRpXVFTg3LlzGD9+vEOG17emPX9XthdYO93siZuBM2FB+NixY7s9w7a9sXRMLPf0tTtb/AHA1q1bsXz5cnz//fdYsGCBw5+vM9asWYP169cjKCgI3t7emDJlCl577bU205fECAlAG+A4jvcry8jI4H24FixYgKysLAwcOBCffPKJhX2Bef1KTU0N+vXrB4lE4rQj+e4ixk64jmhv1BIrjG5ubm5TO+PK6PV65ObmwsfHp411jVqtxq233op+/fph586doh3J19ksTML5MC/VH374AZmZmVCr1byX6i233NJpIMFxHC5cuIArV64gPj4ewcHBTlq55RqsGU+zvcDLy8uubgaOpLq6GqdOnbKrWba5/635NCH2/nT1FJQ1Vra0tDhtbvqOHTvwwAMP4JtvvkFaWprDn88W9u7dC41Gg9GjR0Mul+PVV19FSUkJTp06JfqhDyQAuwiz1vjqq6/wyiuvoL6+HmPGjMEdd9wBqVRqtbHAaDRa1K+YT8cIDg4WhRh0lU64zmAj6ZhHFACEh4dj9OjRgvqL2QM2sYSNfTIXf1qtFrfffjsMBgP27t0r2mJ2oPNZmISwGI1G/PLLL/xIurq6OsyfPx8ymQxz5sxpE1i09vgTy7XX2tIrMDAQGo0GwcHBovb9rKysRElJicODcPO9sqtj6YQQf3v27MF9992HLVu24Pbbb3f483UXtVqNkSNH4h//+AeeeuopoZfTISQAu0FtbS2mT5+OmJgYfPTRRzh06BDS09Nx8OBB3odLJpNZ7XwzmUyor6/nUxb2KGbuKawTTqFQIDExUTQbeE+oq6tDfn4+IiIioNfrUVdXBz8/P74WxpVS8sD1ExrzcXXm10lzczOWLFmCpqYm7Nu3D0FBQQKulOhNmEwmHD9+nBeDlZWVmDt3LqRSKVJSUmA0GvHpp59i+vTpop1AAvwx3aNv375oaWlp18VBaFgGJj4+HiEhIU57Xp1OZzGHtyP3BSHE36FDh3D33Xdj06ZNuOuuuxz+fD1lzpw5GDVqlOitaEgAdgPWgXTPPfdYpBAaGhqwa9cupKenY//+/YiMjERaWhoWL16M+Pj4NuKO4zh+3qE1x3dniEFX6YTrCmyzHzNmDCIjIwFcPz0zH7XUr18/u1tKOAqDwYD8/HzeVNz8mtPpdPjrX/8KuVyOgwcPCpJ6I9wDcy/VjIwMXLp0Cf369UNYWBgOHz4MiUQiys9RazeD1jN4ze1ThAx+L1++jIsXLwqegenIfSEwMBBFRUVOFX9HjhzBHXfcgQ0bNmDp0qWivMbM0el0GDlyJB566CG8+OKLQi+nQ0gAOgjmw5Weno69e/ciNDQUqampWLx4MSZNmmRVDDY0NPAngwaDAWFhYZBIJA6bm2s0GvlITsydcF2hpqYGJ0+exLhx49otnGYpeZb+ANCljmJnYjQakZeXhz59+iA+Pt5ibXq9Hvfeey8uX76Mw4cPi77ehOg9nD17FjfffDMvVM6fP49Zs2ZBJpNh0aJFCAkJEcWNujM3A2Y8LZfLUVtbCx8fH7v6jtoCc58oLy9HYmKi1QlVQtHafUGv16Nv374YPXo0b33mSH766SfcdtttePfdd/HAAw+I4ppqzdNPP43U1FRERUVBoVDg1VdfxZEjR1BUVIRhw4YJvbwOIQHoBDQaDfbv34/09HTs3r2b9+GSyWSYOnVqmw8R62xjJ4PNzc28GGyvs62ruEonXFeQy+UoLi7GhAkTbO5ANO8obt0lZ6/3ursYjUYUFBSA4zgkJCRYXCcGgwF/+9vfUFJSguzsbJfwnCJ6D2lpaRgzZgzeeOMNeHh44Ny5c7x9FvNSlclkSE1Nteql6gy66mZgrXHP0VkCjuNQWlqKyspKURtRm0wmFBQUQKvVIjQ0FEqlEjqdzsJ9wd5eo7/99htkMhlee+01LF++XJTiDwCWLFmCo0ePQqlUIjw8HDfeeCNeeeUVjBs3TuildQoJQCfT3NyMQ4cOISMjg/fhYieDf/rTn9oIMfPONrlczn8AWbFud4Sbq3TCdQW22U+cOLHbYsjeXXI9gYk/k8mEhIQECyFqNBrx8MMPIz8/H9nZ2aK06iF6N83NzVbr/VgzGasZPH78OKZNm8Yb61vzUnUE5eXlKC0t7XYjhclk4ktGmJeeeeOePcpzzGuvk5KSRNu1b63mj+M4iyYblUpl17F0ubm5SEtLw+rVq/HEE0+IVvy5OiQABUSv1yM7Oxvp6ek2+3CxD51cLodKpeIFSkREhE0RmKPn+grB1atXcfbsWcTFxdk1Dcq65BQKBRobGxEUFMSnih3ZUcyibYPBgMTExDbi77HHHsOxY8eQk5NjszksQTib1l6qP//8MyZNmgSpVAqpVMp7qdr7Oe3tZmAP42lr62Sd02Kuvba14aO5uZkXyz0dS1dYWIiFCxdi1apVeOaZZ0j8ORASgCKhtQ+XRqPBwoULkZaW1q4PV2uBEhwczH/orJ1WOXuurzNwVtecTqfjNzjWUWxeOG6v97KjDddkMuHJJ5/E4cOHkZ2dLfr6EoJgmHuppqen48cff0RcXBwvBkeOHNnjz5Az3AxYrTbbd20xnm4Na7xrbGxEUlKSaDun2bSUrjZ8tLS08Kn02traLo2lO3XqFFJSUrBy5Uo8//zzveIeJWZIAIoQ5sPFHPrr6+sxb948yGQyzJ071+rpE4vA5HI5GhoaEBQUxH/ofHx8+E644cOHY/jw4b3igyVU1xwrHGddct7e3hYzirv73ppMJhQVFUGr1bZx1TeZTHj22Wexc+dO5OTkuITLPEFYg3mpMjGYnZ2NsWPH8vZZN9xwQ5c/Q0K4GVgrzwkJCeFrta1lZNhnXKPRIDExUbSNd0z86fV6JCQkdLtGnI2lY3tlR2PpSkpKkJKSgoceeggvv/xyr7hHiR0SgCKH+XBt3boV27ZtQ3V1NebMmQOZTIb58+cjICCgzc+w0yqFQoH6+nr4+PhAq9VixIgRvUY4XLp0CWVlZUhMTBTU9651R3F3526aTCYUFxdDo9FYFX8vvPACvv/+e+Tk5CAmJsZRL4cgnAqzwtq+fTvS09Nx6NAh3kt18eLFNpWpiMXNoLXxdOuMDFunXq93moVKd2DrNBgMPRJ/rTFPpbOO4j59+qC0tBTx8fFYsmQJli5ditdff71XlCa5AiQAXQhWG8bEYFlZGW655RZIpVIsWLDA6vH6lStXcPbsWfj7+0OlUsHPz48fSSfWjrOOYDU+V65cQVJSklUBLBTWNjhb0kMcx6G4uBgqlQpJSUkWJwccx+GVV17BF198gZycHIwZM8ZZL4cgnE5DQwN27tyJjIwM7Nu3D4MHD+bFYGsDdOD6aXx+fj48PDxE5Wag1WpRU1PDZ2QCAgJ4CxVnzcztDo4Sf61hDXdZWVl49tlnUVFRgWHDhmHVqlVYvHixU+ZIEyIRgGVlZXjllVeQlZWF6upqREZG4q9//Suef/55u7eW9xY4jsOpU6d4U9azZ89i9uzZkMlkWLhwIUJCQrB582YMHjwYycnJCA0NbdfzSiKR2LWOzVG4imUCYNlRrFAo+PSQ+VxS9n2sHig5ObmN+Fu3bh0+/vhjZGVlITY2VqiXQxBOp6mpCXv27EFGRgb27NmDsLAw3j5r0qRJuHLlCvbv34/JkycjNjZWtG4GarUa+fn50Ov1MBqNojGebo25+GvdfOYoysvLMW/ePEybNg2JiYnIzMzEyZMnUVNTI9rayN6EKATgvn378N133+Guu+7CqFGjUFxcjAcffBBLly7FW2+9JfTyRA/HcbwPV3p6OgoLCzF48GDI5XJ8++23mDNnThtx19rt3cvLiz8ZDAwMFJ0YZK9RLpeL2jKhPVh6qKamxqKjuKGhASqVCsnJyRapK47j8O677+Ldd9/F4cOHER8fL9zi/8uGDRuwfv16VFVVYfz48Xjvvfcwffp0oZdFuAHmXqq7du2Cj48PHzTt2LFDtCdqLS0tFvO7TSYTP4VEKONpawgh/iorKzFv3jz8+c9/xieffMKf7jY2Ngpihu2O+5soBKA11q9fj48//hgXL14UeikuhdFoxLJly7Bjxw5ERUWhpKQEU6dO7dCHy7xQt6amBn379uVPBjvr2nIGzDKhtrYWSUlJDrVgcQasYaesrAw6nc4iLc8sEz788EO88cYbOHDgACZNmiT0kvHdd99h6dKl2LBhA/70pz/hk08+wWeffYbTp08jKipK6OURbsTvv/+OefPmYeDAgZDL5fD29saiRYva9VIVCua36uvri9jY2Dbpa4PBgNraWsjlcovxlM7ed4UQf9XV1UhJScGNN96If/3rX4Kf3rrr/iZaAfjPf/4T+/btw4kTJ4Reikvx5Zdf4pVXXsGBAwcwbNgwXLlyhXfo/+WXXzr14WKjf+RyuYUBqkQiwYABA5xenMtxHE6fPo36+npR+2V1BY7jUFJSgtraWsTFxfGdhIWFhXjllVcQFRWFoqIi7N+/H3/605+EXi4AYMqUKUhMTLQYbj527FjIZDK8/vrrAq6McCcMBgPGjx+PZcuWYdWqVTAYDMjOzsbWrVuxfft2mEwmLFy4EIsXL8bMmTMFKyFqbm5Gbm4ugoKCbG5kad1MZm/j6fae19niT6FQYMGCBYiLi8OXX34p6LQlhrvub6IUgBcuXEBiYiLefvtt/P3vfxd6OS6FyWRCQ0MDgoODLR7nOA6VlZXYtm0bMjIyeB8umUwGqVSKESNGWBWD9fX1fB0bx3H8ptSVDteevJZTp06hqakJiYmJvaImhHmV1dTUIDk52ULQqlQqPP300/jmm2/g6+sLX19fSKVSrF27VtA5vy0tLfD19cUPP/yAxYsX848/8cQTKCgowJEjRwRbG+F+1NbWWv08GAwG/Pjjj/jhhx+wfft23ktVKpXi5ptvdtr+odFokJubi9DQUIwdO7ZbljasmUwul8NkMvXYeNoaQoi/2tpaLFy4EDExMfj2229FcVrrzvubQ+/ga9asgYeHR4f/Wp/wVVZWYv78+bjjjjtI/HWDPn36tBF/AODh4YHBgwdjxYoVOHz4MK5evYoHH3wQP/74I5KSkjBt2jSsW7cOJSUlYDFBnz59+E1sxowZiIuLg6enJ06fPo0jR46guLiYd8a3N8wvi9XH9Rbxd/78eavij+M4ZGZmYtu2bThw4ABqa2vxn//8B76+voJ3OiuVShiNxjadeRKJBNXV1QKtqnezdu1aTJs2Db6+vu16XJaXlyM1NRV+fn4ICwvD448/jpaWFucuVADaC4b69u2L2bNnY8OGDSgvL8eOHTsQFhaGp59+GtHR0bj//vt5Yego1Go1Tpw4gYiIiG6JP+D6vhsSEoIxY8ZgxowZSEhIgJeXF86dO4cjR47g5MmTqK6uhsFg6PY6hRB/9fX1kEqlGD58OL755htRiD/Avfc3h54AKpVKKJXKDr9n+PDh/M29srISs2fPxpQpU/DFF1+QF5ATsObDNXLkSN6U1Vr6guM4NDY2Qi6XW7jhMwPUnkaozIRUp9MhMTGxV3SCsw7mqqoqJCcnW9QxchyHH374AStWrEB6ejrmzZsn4ErbUllZicGDB+Pnn3/G1KlT+cfXrl2LL7/8EiUlJQKurneyevVqDBgwABUVFfj8889x7do1i68bjUbEx8cjPDwcb7/9Nmpra3Hffffh1ltvxQcffCDMokWKyWTC77//zs8nrq6uxty5cyGVStv1Uu0ObNLS4MGD7TLZpDXMeJrtu+bG012ZC8/mjBuNRqeJv8bGRqSlpSE0NBSZmZmiMsB25/1NNCngq1evYvbs2UhKSsJXX30leFGou8J8uNLT07F//34MGTKEF4PWfLis2Z0w77vw8PAuby7O8qFyNqWlpbh69SqSk5PbdDBv27YNDz/8ML799lssWrRIoBW2jzunSITmiy++wMqVK9sIwL1792LRokW4cuUKIiMjAQDffvstli1bBoVCIUgXpStg7qWakZGBy5cvd+qlagsNDQ3Iz8/HsGHDEB0d7YCVt6X1XPjORoECf4g/k8mEhIQEp4g/lUoFmUwGX19f7Ny5U3R13O68v4lCAFZWVmLmzJmIiorCv//9bwvxN3DgQAFX5t4wH6709HTs3buX9+FavHgxkpOTrZ7QmkeoarUaoaGhNkeoBoMBBQUF4DjOaZuTM7hw4QIqKiqsir9du3bh/vvvx1dffWWx+YiNKVOmICkpCRs2bOAfGzduHKRSaa8ukhaa9gTgiy++iO3bt6OwsJB/rL6+HiEhIcjKysLs2bOdvFLXgxmwM2N9a16qtohBNmZzxIgRgs3n1mq1fBBubRQoIIz4U6vVuO222+Dh4YE9e/aI1r7LXfc3UdxhDxw4gNLSUpSWlmLIkCEWXxOBPnVbAgICcOedd+LOO++ERqPBvn37kJGRAZlMhoCAAN6U9cYbb+RFu7+/P/z9/TFy5Eg+Qr1y5QpOnz6N4OBgXgy2jlCZo7+npycSEhJ6zQnwpUuXcOXKFavib9++fbj//vuxefNmUYs/AHjqqaewdOlSJCcnY+rUqfj0009RXl6ORx55ROiluSXV1dVtapaCg4Ph5eXV6+uW7IWHhwdiY2MRGxuLNWvW4OzZs0hPT8emTZvw+OOPY/r06ZDJZEhNTUV4eLhVMVhbW4vCwkKMHj26zb3Lmfj4+GDYsGEYNmwYdDodP4Xk/Pnz8Pf3R3h4OGpra+Hh4eE08afVarFkyRIYjUbs27dPtOIPcN/9TRQngIRr0dzcjIMHDyIjIwPbt2+Ht7c3UlNTeR8ua5sLi1DlcjkaGxsxYMAAPkL19PREXl4e+vXrxzea9AbKyspQVlZmdWRdVlYWlixZgo0bN+Kee+4R3GvRFjZs2IA333wTVVVVmDBhAt59913MmDFD6GW5DGvWrMFLL73U4fccP34cycnJ/P+3dwL40EMP4fLly9i/f7/F415eXvj3v/+NJUuW2G3d7gYbN8lOBnNzczF16lTIZDKkpaVh0KBB8PDwQFFREWpqajB27FgMGjRI6GVbRa/XQy6Xo7S0FHq9Hr6+vrznqCONp3U6He666y7U19fjwIEDgs5rtxV33N9IABI9oqWlBdnZ2UhPT0dmZiY4jsOiRYsgk8na9eFqbm7mI9Rr167Bw8MDPj4+iIuLE3WU2BUuX76MixcvIikpqU091tGjR3HHHXfg/fffx7Jly1xC/BE9p6tNcQClgIWG4ziUl5cjIyOD91KdPHkyBg8ejJ07d+LQoUNITEwUepntYp72jY2NRUNDg8ONp1taWrB06VJcvXoVhw4dQkhIiF1+L2F/SAB2wtq1a7F7924UFBTAy8urzUZM/IG5D1dmZia0Wi0WLVqEtLQ0qz5cOp0OJ06cgKenJ/r164f6+nr4+/tbTMVwRcrLy3kvy9aR788//4xbb70Vb775Jh5++GESf0SHdNYEUlFRwZ8+fffdd7jvvvuoCcRBMC/V5557Dl999RUAIDExkTfWt+alKiQd1fw5ynhar9fj/vvvR2lpKbKyshAWFmavl0M4ABKAndCZHQNhHaPRiJ9//hlbt25FZmYmrl27hvnz50Mmk2HOnDmoqqrCd999h7S0NN5qRq/X8yeDdXV18PX15SNUNiJN7FRUVOD8+fNWxd/x48chlUrxyiuvYMWKFS7xeghhKC8vR11dHXbs2IH169fjxx9/BACMGjUK/v7+vA2MRCLB+vXrUVdXh2XLlkEmk5ENjAP5/vvv8cADDyAjIwMTJ05EZmYm0tPTkZOTwzcNyGQyjB49WtDPd1caPqwZ/jPj6ZCQEJtLcgwGAx588EEUFRUhJycHERER9no5hIMgAWgj7UXiROcwHy5WU1NVVQWO4xAbG4udO3da9eEyGAz80HSlUon+/fvzYlDIoekdcfXqVZw9exaJiYltzHvz8/OxaNEi/POf/8RTTz0lyvUT4mHZsmXYsmVLm8ezs7Mxa9YsANdF4vLly5GVlQUfHx/cfffdeOutt0TlsdbbqK6uxqVLlyz84jiOQ11dHe+levjwYd5LdfHixRg7dqxTPW170u3LcRwaGhr4em29Xs/beoWFhbX7u4xGI5YvX47ff/8dOTk5oq2JJCwhAWgjJADtw7lz5zBz5kwMGjQIKpUKFRUVuPnmmyGTybBgwQIEBga2EUdGoxFKpZJPV/Tr149PEztzaHpHVFZWoqSkBAkJCW0msRQVFWHBggV4+umnsWrVKlGslyBsYfjw4bh8+bLFY88++yzeeOMNgVYkfq5du4adO3ciIyPDwkt18eLFmDhxokPFoD2tXqx5vIaGhvIer8zWy2Qy4fHHH8fRo0eRnZ2NoUOH2uvlEA6GBKCNkAC0D3PmzEFcXBzWr18PALwPV0ZGBs6dO4c///nPkEqlWLRoEYKDg62Kwbq6OsjlctTU1MDT09OidkUIcVVVVYUzZ84gPj6+TcHz6dOnkZKSghUrVuDFF18k8Ue4FMOHD8cDDzyABx98kH+MWT0RndPU1ITdu3cjIyOD91JlaeL2vFS7i9FoRH5+vsN8VFUqFV+io1Kp8Msvv8Db2xvnz5/Hzz//jOzsbAwfPtyuz0k4FrcUgPa0YyC6RmNjo9UULsdxvA9Xeno6iouLMWPGDEil0nZ9uFjtCjOe9vDwQHh4OCQSSY8KmbtCdXU1Tp8+jbi4uDYzSs+ePYuUlBT87W9/w9q1a0n8ES7H8OHDsXLlSqxcuVLopbg8zEs1PT0du3fvRmBgINLS0iCVSi28VLsDE38AnOKjqtVq8emnn+Kdd96BUqlEUlIS7rnnHtx6662CmWETXcctBaA97RgI+8NxHC5cuID09HRkZGQgLy8P06ZNg1QqtfDhMsdkMuHatWt87Yp5IXNoaKhDxKBcLsepU6cwceLENt1uFy5cwPz583HXXXfhzTffpLnWhEsyfPhw6HQ6tLS0YOjQobjjjjvwzDPP9Ir53ELCvFTT09OxY8cOm7xU28PZ4g+4vt+uWbMGX3/9Nb777jucOnUKGRkZGDZsGDZt2uTw5yfsg1sKwO5AAlAYmA8XG+T+66+/YtKkSbz1wtChQ62eJjK/K4VCAYPBgLCwMEgkEoSGhtplg1QoFCgqKsLEiRMRHh5u8bWysjKkpKQgLS0N//d//0fij3BZ3n33XSQmJiI4OBi///47/t//+3+QSqX47LPPhF5ar4F5qW7duhXbt28HACxcuBCLFy/GjBkzOhTbQog/juPw2muv4bPPPkN2djbGjRtn8TUxZDqodtU2SAB2Qmd2DITzYD5czJT1p59+Qnx8PGQyGaRSKaKjo62KwcbGRv5kUKfT8SeDHXW1dURNTQ1OnjyJ2NjYNlYHFRUVmDdvHubNm4cNGzaQ+CNER3dKYBjp6em4/fbboVQq25Q8ED3HYDDg6NGjvH1Wc3MzFi5cCJlMhtmzZ1tkpYQSf2+99RY++OADZGVlYeLEiQ5/zu5Atau2QQKwE2yxYyCcD8dxkMvlyMzMREZGBu/DxcSgNR8ujuOgUql4MdheV1tHKJVKnDx5EuPHj28zi7Wqqgrz58/H9OnTsWnTpl4z0o7oXXSnBIZx9epVDBkyBL/++iumTJniqCUSuC7wjh07xmc/GhoakJKSAplMhsmTJ2PFihV48MEHccsttzhN/L3//vtYv349Dh48iKSkJIc/Z3eh2lXbIAFIuDytfbgOHTqEmJgYvtuuPR8utVrNp4lVKhVCQkIgkUgQHh5uNe3CBr+PGzcOAwcOtPiaXC5HSkoKkpOTsWXLFhJ/RK9k165dSE1NxeXLlxEVFSX0ctwGk8mE3377jW+SKy8vR2BgIN544w0sXrzY4SdbHMfh448/xquvvor9+/eLXvxT7aptkAAkehWs/m/nzp1IT0/HgQMHMHToUKSlpXXow6XRaHi/q8bGRgQHB/P2Mt7e3qirq0NBQYHVwe9KpRILFizA+PHj8Z///Mfu9gv2gEYaEl3ll19+wa+//orZs2cjKCgIx48fx5NPPonk5GS+Vo1wLmq1GgsWLIBGo8HMmTOxc+dOXLlyBbfccgukUmm7Xqo9geM4fP7553jhhRewZ88e/OlPf7Lb73YUVLtqGyQAiV4N8+FKT0/Hvn37EB4ezovBpKQkq2KwubmZTxM3NDTAz88ParUao0aNauNzVVdXh0WLFiE6Ohrff/+9TWlkIaCRhkRXycvLw/Lly1FSUgKdTodhw4ZhyZIl+Mc//gFfX1+hl+eW7Nu3D++88w4yMzPh6+sLjuNQXFyMH374Adu2bbPJS7UrcByHL7/8Es888wx27twpaNkT1a7aHxKALsSGDRuwfv16VFVVYfz48Xjvvfcwffp0oZflMqjVauzbtw8ZGRkWPlwymQxTpkyxmratqalBYWEhfHx8oNVqERAQAF9fX/Tp0weDBw9GamoqBg0ahPT0dJcYwUXd7IRYof3NNtrrtOU4DiUlJfzITealKpPJkJqairCwsC6JQY7j8M0332DlypXYvn07br75Znu+jC5DtasOgCNcgm+//Zbr168ft2nTJu706dPcE088wfn5+XGXL18WemkuiUaj4bZv387dd999XHBwMDdo0CDuoYce4vbu3cs1NDRwarWay8nJ4bZt28aVlJRwarWaq6+v586dO8etX7+e8/T05Pr378+NGjWKy8/PF/rl2MzmzZu5oKAgoZdBEBbQ/mZfTCYTd/78ee6NN97gJk+ezPXt25ebMWMG984773ClpaWcSqXi1Gp1h/+2bNnC+fn5cXv27BH65fSYnTt3cgDoemoFnQC6CFOmTEFiYiI+/vhj/rGxY8dCJpPh9ddfF3Blrk9LSwuysrKQnp6OzMxMeHh4YNKkScjKysKbb76JBx54wOL71Wo1Fi1ahIaGBsTExODgwYMYOXIkfvvtN9HbDNAJICFGaH9zHBzH4fLly7x9FjsFY16qQ4YMaXMyuGPHDjzwwAP45ptvkJaWJtDKuwfVrnYBgQUoYQM6nY7z9PTkMjIyLB5//PHHuRkzZgi0qt6JXq/nNm7cyHl7e3P+/v5ccHAwt3TpUm7r1q1cXV0dV1NTw82aNYubPn0619TUxHEcxzU1NQkSJa9evZoD0OG/48ePW/wMnQASYoP2N+dhMpm4iooK7v333+dmzpzJ9e3bl5s0aRL36quvckVFRZxKpeJ++OEHztfXl9u6davQy+0Wubm53JQpU7igoCCuf//+3A033MCtXr2aU6vVQi9NdIivXZFog1KphNFobOM7J5FIUF1dLdCqeieVlZV4/vnn8corr+Cpp57CsWPHsHXrVjz55JNoaGiAr68vIiMjkZ2dzZ/2+fv7IyUlxelrXbFiBZYsWdLh99BwdkLs0P7mPDw8PDB48GA89thjWLFiBe+lmp6ejpdeeglRUVGoqKjA5s2bcdtttwm93G6RmJiIX3/9VehluAQkAF0Ia8bGYhi705sYMmQI/vOf/2DevHkAgBkzZmDGjBl47733cOzYMfzjH//A1q1bERgYKPBKgbCwsDYziAnCVaH9zbl4eHhg4MCBeOSRR/Dwww+jrq4O69evh0ql6jSwJHoHJABdgLCwMHh6eraJhhUKRZuomegZffr04cVf68enT5+OX375RYBV9Rw20rC8vBxGoxEFBQUAaKQhITy0vwmPh4cHQkNDaVaum0GDSl0ALy8vJCUl4eDBgxaPHzx4ENOmTRNoVYQr8eKLLyIhIQGrV6+GSqVCQkICEhIScOLECaGXRrg5tL8RhDBQF7CL8N1332Hp0qXYuHEjpk6dik8//RSbNm3CqVOnMGzYMKGXRxAE0W1ofyMI50MpYBfhzjvvRG1tLV5++WVUVVVhwoQJ2LNnD22OBEG4PLS/EYTzoRNAgiAIgiAIN4NqAAmCIAi3Zc2aNfDw8LD4N3DgQKGXRRAOhwQgQRAE4daMHz8eVVVV/L+ioiKhl+Q2rF27FtOmTYOvry8GDBhg9XvKy8uRmpoKPz8/hIWF4fHHH0dLS4tzF9oLoRpAgiAIwq3p27cvnfoJREtLC+644w5MnToVn3/+eZuvG41GLFy4EOHh4fjpp59QW1uL++67DxzH4YMPPhBgxb0HOgEkeszRo0eRmpqKyMhIeHh4IDMzU+glEQRB2Mz58+cRGRmJ6OhoLFmyBBcvXhR6SW7DSy+9hCeffBKxsbFWv37gwAGcPn0aX331FRISEnDLLbfg7bffxqZNm9DY2Ojk1fYuSAASPUatViMuLg4ffvih0EshCILoElOmTMG///1v7N+/H5s2bUJ1dTWmTZuG2tpaoZdGAPjll18wYcIEREZG8o/NmzcPOp0Oubm5Aq7M9aEUMNFjUlJSBJmFSxAE0VPM967Y2FhMnToVI0eOxJYtW/DUU08JuDICAKqrq9tMhAkODoaXlxfNiu4hdAJIEARBEP/Fz88PsbGxOH/+vNBLcVmsdVa3/teVKUTWZkLTrOieQyeABEEQBPFfdDodzpw5g+nTpwu9FJdlxYoVWLJkSYffM3z4cJt+18CBA/Hbb79ZPFZfXw+9Xk+zonsICUCCIAjCbXn66aeRmpqKqKgoKBQKvPrqq2hsbMR9990n9NJclrCwMISFhdnld02dOhVr165FVVUVBg0aBOB6Y4i3tzeSkpLs8hzuCglAgiAIwm2pqKjAXXfdBaVSifDwcNx444349ddfaQydkygvL0ddXR3Ky8thNBpRUFAAABg1ahT8/f0xd+5cjBs3DkuXLsX69etRV1eHp59+Gg8++CACAwOFXbyLQ6PgCLvi4eGBbdu2QSaTCb0UgiAIQuQsW7YMW7ZsafN4dnY2Zs2aBeC6SFy+fDmysrLg4+ODu+++G2+99Ra8vb2dvNreBTWBED1GpVKhoKCAj9wuXbqEgoIClJeXC7swF6OsrAwPPPAAoqOj4ePjg5EjR2L16tXkeE8QvYjOfFM5jsOaNWsQGRkJHx8fzJo1C6dOnRJmsU7giy++AMdxbf4x8QcAUVFR2LVrFzQaDWpra/HBBx+Q+LMDJACJHnPixAkkJCQgISEBAPDUU08hISEBL774osArcy1KSkpgMpnwySef4NSpU3j33XexceNGPPfcc0IvjSAIO9GZb+qbb76Jd955Bx9++CGOHz+OgQMHYs6cOWhqanLySoneDqWACULErF+/Hh9//DFNJiCIXkjrkhmO4xAZGYmVK1fi2WefBXC9K1kikWDdunV4+OGHBVwt0dugE0CCEDENDQ0ICQkRehkE+oTMvQAABNhJREFUQTiBS5cuobq6GnPnzuUf8/b2xsyZM/Hzzz8LuDKiN0ICkCBEyoULF/DBBx/gkUceEXopBEE4ATbZorW/nUQioakXhN0hAUj0el5//XVMmjQJAQEBiIiIgEwmw9mzZ532/N1xxa+srMT8+fNxxx134O9//7vT1koQhPC0nnBBUy8IR0A+gESv58iRI3j00UcxadIkGAwGPP/885g7dy5Onz4NPz8/hz9/V13xKysrMXv2bEydOhWffvqpg1dHEIRYGDhwIIDrJ4HM9BgAFAoFTb0g7A4JQKLXs2/fPov/37x5MyIiIpCbm4sZM2Y4/Pm74op/9epVzJ49G0lJSdi8eTP69KFDeoJwF6KjozFw4EAcPHiQd1VoaWnBkSNHsG7dOoFXR/Q2SAASbkdDQwMAiK65orKyErNmzUJUVBTeeust1NTU8F9jJwMEQbg2KpUKpaWl/P8z39SQkBBERUVh5cqVeO211xATE4OYmBi89tpr8PX1xd133y3gqoneCNnAEG4Fx3GQSqWor6/Hjz/+KPRyLPjiiy9w//33W/0afUwJoneQk5OD2bNnt3n8vvvu402RX3rpJXzyySeor6/HlClT8NFHH2HChAkCrJbozZAAJNyKRx99FLt378ZPP/2EIUOGCL0cgiAIghAESgETbsNjjz2GHTt24OjRoyT+CIIgCLeGBCDR6+E4Do899hi2bduGnJwcREdHC70kgiAIghAUEoBEr+fRRx/F119/je3btyMgIIA3VA0KCoKPj4/AqyMIgiAI50M1gESvpz0D1c2bN2PZsmXOXQxBEARBiAA6ASR6PRTjEARBEIQl5DJLEARBEAThZpAAJAiCIAiCcDNIABIEQRAEQbgZJAAJgiAIgiDcDBKABEEQBEEQbgYJQIIgCIIgCDeDBCBBEARBEISbQQKQIAiCIAjCzSABSBAEQRAE4WaQACQIgiAIgnAzSAASBEEQBEG4GSQACYIgCIIg3AwSgARBEARBEG4GCUCCIAiCIAg3gwQgQRAEQRCEm0ECkCAIgiAIws0gAUgQBEEQBOFmkAAkCIIgCIJwM0gAEgRBEARBuBkkAAmCIAiCINwMEoAEQRAEQRBuBglAgiAIgiAIN4MEIEEQBEEQhJtBApAgCIIgCMLNIAFIEARBEAThZpAAJAiCIAiCcDNIABIEQRAEQbgZJAAJgiAIgiDcDBKABEEQBEEQbgYJQIIgCIIgCDeDBCBBEARBEISbQQKQIAiCIAjCzSABSBAEQRAE4WaQACQIgiAIgnAzSAASBEEQBEG4GSQACYIgCIIg3AwSgARBEARBEG4GCUCCIAiCIAg3gwQgQRAEQRCEm0ECkCAIgiAIws0gAUgQBEEQBOFmkAAkCIIgCIJwM0gAEgRBEARBuBkkAAmCIAiCINwMEoAEQRAEQRBuBglAgiAIgiAIN4MEIEEQBEEQhJtBApAgCIIgCMLNIAFIEARBEAThZpAAJAiCIAiCcDNIABIEQRAEQbgZJAAJgiAIgiDcDBKABEEQBEEQbgYJQIIgCIIgCDeDBCBBEARBEISbQQKQIAiCIAjCzSABSBAEQRAE4WaQACQIgiAIgnAzSAASBEEQBEG4GSQACYIgCIIg3AwSgARBEARBEG4GCUCCIAiCIAg34/8D1wwscLCt34AAAAAASUVORK5CYII=", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "506fb0143a734dfc9aa7a40d48700439", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADso0lEQVR4nOy9d3hjZ5n3/1WzJRdZstzG3WNP8cx4ZjyeZk9CkhdICCGbLO2FXVogC7uBXSBL3bAhCSEhCfACu0DCS0mWsD9K3oXdDYGQBUIS0mfce+9NxbLVyzm/PzzPydGxyjnSOZI8ej7XlQvG49E5sqVb3+cu31vFsiwLCoVCoVAoFErOoM70DVAoFAqFQqFQ0gsVgBQKhUKhUCg5BhWAFAqFQqFQKDkGFYAUCoVCoVAoOQYVgBQKhUKhUCg5BhWAFAqFQqFQKDkGFYAUCoVCoVAoOQYVgBQKhUKhUCg5BhWAFAqFQqFQKDkGFYAUCkV2enp6cN1116G+vh4GgwGlpaXo7OzEo48+uuN7r7zySqhUKqhUKqjVahQXF6OlpQXveMc78Nhjj4FhGFHX/MAHPoCioiJZ7n9paQl33HEHenp6dvzdE088gTvuuCPqv2tsbMQHPvABWe6BQqFQlESb6RugUCiXHhsbG6irq8O73/1u1NTUwO124yc/+Qne+973YmZmBl/4whcivn/v3r34yU9+AgBwu92Ynp7Gr371K7zjHe/A5Zdfjv/+7/9GSUlJ2u5/aWkJd955JxobG3H8+PGIv3viiSfw7W9/O6oI/OUvfwmj0Ziem6RQKJQUoAKQQqHIzpVXXokrr7wy4mtvectbMD09je9973s7BKDBYMDZs2cjvnbzzTfjRz/6ET74wQ/iwx/+MH72s58pfdsp097enulboFAoFFHQEjCFQkkbZWVl0GrFnztvuukmvPnNb8YvfvELzM7Opnz9iYkJ3HTTTdi3bx8KCgpQU1OD66+/Hv39/dz3PP300zh16hR3fVKevuOOO/CBD3wA3/72twGA+7pKpcLMzAyA6CXgjY0N/OM//iP27t2L/Px8VFRU4M1vfjNGRka47wkEArj77rtx8OBB5Ofno7y8HDfddBPW19dTfs4UCoUSDZoBpFAoisEwDBiGgcPhwC9+8Qs8+eST+Nd//VdJj/EXf/EXeOKJJ/Dss8+ioaEhpftZWlqCxWLBV77yFZSXl8Nut+ORRx7BmTNn0N3djQMHDuDEiRP40Y9+hJtuuglf+MIXcN111wEAamtr4ff74Xa78dhjj+GFF17gHnfPnj1Rr7e1tYXLLrsMMzMz+OxnP4szZ87A5XLhmWeewfLyMg4ePAiGYXDDDTfg2WefxWc+8xl0dXVhdnYWX/ziF3HllVfi1VdfhcFgSOl5UygUihAqACkUimLccssteOihhwAAeXl5+Na3voWPfOQjkh6DiL6lpaWU7+d1r3sdXve613F/DofDuO6663D48GE89NBD+PrXvw6j0YgjR44AAJqbm3eUpisrKwFgx9ej8Y1vfAODg4N46qmn8IY3vIH7+lvf+lbu///85z/Hb3/7W/y///f/Ir5+7NgxnDp1Cg8//DD+7u/+LrknTKFQKDGgJWAKhaIY//RP/4RXXnkFv/71r/HBD34QH/vYx/DVr35V0mOwLCvb/YRCIdxzzz04dOgQ8vLyoNVqkZeXh/HxcQwPD8t2HcJvfvMb7N+/P0L8CXn88cdhMplw/fXXIxQKcf8dP34cVVVVePrpp2W/LwqFQqEZQAqFohj19fWor68HALz5zW8GAHz+85/H+9//fpSXl4t6DNL7V11dnfL93Hrrrfj2t7+Nz372s7jiiitgNpuhVqtx8803w+v1pvz4QtbX17nnH4vV1VVsbGwgLy8v6t9brVbZ74tCoVCoAKRQKGnj9OnTePDBBzE1NSVaAP7Xf/0XVCpVROk2WR599FG8733vwz333BPxdavVCpPJlPLjCykvL8fCwkLc7ykrK4PFYsFvf/vbqH9fXFws+31RKBQKLQFTKJS08cc//hFqtRp79+4V9f0/+tGP8Jvf/Abvfve7E2bSxKBSqZCfnx/xtV//+tdYXFyM+Br5nmhZwXh/J+Taa6/F2NgY/vCHP8T8nre85S2w2WwIh8M4efLkjv8OHDiQ8DoUCoUiFZoBpFAosvPhD38YRqMRp0+fRmVlJaxWK37xi1/gZz/7GT796U/vyP55vV68+OKL3P+fmprCr371Kzz++OO44oor8OCDD4q6bjgcxmOPPbbj64WFhbj22mvxlre8BQ8//DAOHjyIo0eP4vz583jggQdQW1sb8f3Nzc0wGAz4yU9+gtbWVhQVFaG6uhrV1dVoa2sDANx333249tprodFocPTo0agl3E984hP42c9+hhtuuAGf+9zncPr0aXi9XvzpT3/CW97yFlx11VV417vehZ/85Cd485vfjI9//OM4ffo0dDodFhYW8Mc//hE33HAD/vIv/1LU86dQKBTRsBQKhSIzP/zhD9nLL7+cLSsrY7VaLWsymdgrrriC/fGPf7zje6+44goWAPdfYWEhu3fvXvbtb387+4tf/IINh8Oirvn+978/4nH4/zU0NLAsy7IOh4P90Ic+xFZUVLAFBQXsZZddxj777LPsFVdcwV5xxRURj/f//X//H3vw4EFWp9OxANgvfvGLLMuyrN/vZ2+++Wa2vLycValULAB2enqaZVmWbWhoYN///vdHPI7D4WA//vGPs/X19axOp2MrKirY6667jh0ZGeG+JxgMsl/96lfZY8eOsXq9ni0qKmIPHjzIfuQjH2HHx8dFPX8KhUKRgoplZRyxo1AoFAqFQqFkPbQHkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkEKhUCgUCiXHoAKQQqFQKBQKJcegApBCoVAoFAolx6ACkLIDlmURCoXAMAxYls307VAoFIqsMAyDUChE4xslp9Fm+gYo2QXDMAgGg/B4PAAArVbL/afRaKBW0zMDhULZnZDDrd/vRyAQgEajiYhvGo0GKpUq07dJoaQFFUuPQBRsB8ZwOMxl/gKBAPd1lmWhUqmgUqmg0Wig0+m4YEkFIYVC2Q2Qwy3J/oXDYe7rRPSp1WoqCCk5AxWAFLAsi2AwyAVEAAgEApzoI9/DsmxEWThasKSCkEKhZBMkbgWDQe4wSw67JF6R+Ea+FwBUKhXUajV34NVqtVCr1VQQUi4ZqADMccLhMHcqJsEtFAphdXUVxcXF0Ov1Uf8dFYQUCiXbER5uyaE2FApFCMBo/y6eIOS3xFBBSNmtUAGYo5BeGNIITQKZy+VCb28vfD4fgsEgCgoKYDabYTabYTKZkJeXF/PxhEMjKpUqQhBqtVoaLCkUSlogWb9wOLxDqJGDr9gDaixBKOwhpIKQspugAjAHEfbAkIC1uLiI4eFh1NXVoaGhAeFwGE6nEw6HAw6HA263G0VFRTCZTJwg1Ol0Ua/BF4T8HkLhUAkNlhQKRU6E/czRRJlUARjtGnxBuLS0BL1ej4qKCioIKbsGKgBziGi9MKQcMjg4CJvNhra2NpSVlXFDIPzgFQgEsLGxwQlCj8eD4uJiTgyaTCZotdEHy6MJQrVavWOohAZLCoWSLLFKvkJSFYBCBgYGUFRUhLq6Oi7GqdXqHW0xVBBSsgkqAHMEfskXeC0wOp1O9Pb2wmAwoK2tDXq9HizLRhWAQvx+PycGNzY24PP5OEFoNptRUlICjUYT836iCUI6gUehUJKBuBfEyvrxCYVCCAaDMeOTVAYHB1FUVISGhgYA2FEuBhA1xlFBSMkk1AcwB4jWC8OyLGZmZjA+Po69e/di7969kgNRfn4+qqqqUFVVBQDw+XycIBweHkYgEIDRaOQEodFo5AIu6Z8BwPUNkgDu9/upIKRQKKKI1c+cifsgkAO2cMqYlKb5tlrClhga4yjpggrAS5hYvTCBQAD9/f3Y2trCyZMnYTabZbmeXq/Hnj17sGfPHrAsGyEIl5aWEAqFdghCfrCOJwiXlpZQVlaG4uJiKggpFAqA1/qZX375ZTQ1NcFisWRlTIglCEkmkgpCSiagAvASRdgLQ4SWzWZDX18fTCYTzp07F3OII1VUKhUMBgMMBgOqq6vBsiw8Hg/XQ7iwsIBwOMz1DprNZhQXF8cUhEtLSygqKkJeXh5XnqYZQgolNxH2M/v9/ghD53Qj9bpSBCE13qcoBRWAlyDRemEYhsHExARmZmZw4MAB1NXVpTVYqlQqFBYWorCwEDU1NWBZFm63m+sfnJubA8uynBg0m80oKiqKOAETDy7+BJ7f748oGVPTVgrl0iZaP7Narc74Xt9Urp9IEALUZ5UiP1QAXkKQki85FRMB5PV60dfXh0AggLNnz6K4uDjTtwqVSoWioqKIyTmXy8WVjKenp6FSqThByPcY5ItCjUYTIQh9Ph/3PdS0lUK5tOD3M/MFE+lrvlSIJQiDwWBEBYRlWeTn53MHXyoIKVKgAvASIVbJd3V1FQMDA6isrERHR0dMm5ZMo1KpUFxcjOLiYtTX14NhGE4Q2mw2+P1+DAwMcNlBs9mMgoICLlCKEYTUtJVC2Z0k8vbLtABUOo5EE4QMw+CVV15Bc3MzSktLqfE+RTLZqQYooonl7RcOhzE6OoqlpSUcPnwYe/bskfS4mQ6oarUaRqMRRqMRDQ0N+POf/4z6+nqEQiGsr69jYmICWq02YkuJwWCIKwgZhqGCkELZZcQ63PKRGq+UeJ+nM17yXRRI/CKfA/w97lQQUuJBBeAuJpa3H1nnplar0dXVhYKCggzfaeqQkjGZWA6Hw9jc3ITD4cDy8jJGR0eRl5e3QxCSfxtLEPr9fvh8PmraSqFkIWK9/aQKwLW1NTidTpSWlnJuBLsV/sAIgZ8YIIKQGu9ThFABuEthGIabpt2/fz/XD7KwsIDh4WHU19dj3759uzqwxUOj0XBiD0DE2rrFxUWMjIwgPz8/omScn58PYOd2AL5HVzgcjulDSAUhhZIeYvUzx0KsAAyHwxgeHsbKygpMJhMWFxfBMEzU4bPdQKznLFYQUheF3IYKwF0G/43s9XqxurqKgwcPRqxzO378OMrLyzN9q2lFo9GgtLQUpaWlALad/okgnJ+fx9DQEAoKCrjsoNlsRl5eHgBq2kqhZBNiSr5CiNNBPFwuF3p6eqDVatHZ2cll/YkbAX/4LFqvcaLrZzPUeJ8SDSoAdxHCwEjKmfx1bl1dXdDr9Rm+08yj1WphsVhgsVgAAMFgEBsbG9jY2MDs7CwGBwdRWFgYUTImnojUtJVCyQwk6ydmnRufRBnAxcVFDA0NcZURAFwmjO9GQIbP7HZ71F5js9nMtZYIyVTPdDIehEB8430qCHMDKgB3CdHWualUKgSDQbz88stJr3PLFXQ6HcrLy7nMaCAQ4Eypp6am4Ha7uR5DIgjJxDQ1baVQlEXYzyy13SKWD2AoFMLw8DDW1tYiKiOxsoX84bPGxkYwDMNVEkivcbTWkkzFXTlEZzxB6Pf7qfH+JQwVgFlOrF6YQCCA0dFRhMNhnDlzRrZ1brlCXl4eKioqUFFRAQDw+/2cIBwfH4fX60VxcTEX5EtKSiQJwtXVVVRVVUGv11NBSKHEgRxuiShL5n0SLQO4tbWFnp4e5OXl4dy5c0lVRtRqdUSvcazWEpVKhYKCAgSDQcW2K8VCbhHGF4RCWy0iCF0uFxiGQXl5OTXe38VQAZjFJFrnVlRUxA1DUFIjPz8flZWVqKysBAD4fD5OEI6OjsLv98NoNHL9gyUlJdyJOZogHB0dRUlJScSHGnXxp1Beg9/PLLXkK4QvAMkw3MjICBobG9Hc3Czbey1Wa8nU1BQ2Njbw7LPPcpWE0tLSiIPjbiWai4LdbucOyeR7qPH+7mN3vzIvYaL1wgjXuZnNZrz44ouZvtW0kc5gotfrUVVVhaqqKgCA1+vl1tYNDw8jEAigpKSEKxeXlJTs+JDRarXc6rpEHl1UEFJyCWLSPjw8jP3796fsUUcEIH8Yrr29HWVlZTLe9U5Ia4ndbodGo0FdXR03UMI/OJIsotFojJjOTZVM9B2S31O01Zx0E9PuggrALCNWL0y0dW4ejyfh5BtFHgwGAwwGA6qrq8GyLCcIie1MKBTiBGFJSQmA1wJlPEsGsueTmrZScgX+a39+fh779u1L+bWuUqng8/nw/PPPw2Aw4Ny5c5ztUzog95+fnx/14OhwOLC0tBQRJ8xmM4qLi1M++GUiTpClA+T6dBPT7oQKwCxC2AtD3lix1rmRUy//zSgnSj3ubof0+xQUFKCmpgYsy8Lj8XCBfm5uDgAwNDSE0tJSLtCLEYTUtJVyqSJc50biWKpZLJZl4Xa74XQ60dLSkrFhuGjPQ3hwFMYJlmVT8iDM1ORxvM8GMZuYqPF+dkAFYBYQqxcm0To38mahQi2zqFQqFBYWorCwELW1tQgGg3j22WdhNpvhdDoxOzsLADCZTFyw5wd6KggplzrR+pkJqVQxgsEgBgYGsLW1hcrKSjQ3N6d8r0ohjBMsy3L7zokHoVqtjhCE2epBSAYSxRBLEFLj/cxDBWCGiTXoIWadG3/ogJJ91NXVcQFva2uLGyoRBnqTyYTCwsKogpBvyUBd/Cm7kXjefmI3eETD6XSip6cHhYWFqKqqSvv0LZ9k3nsqlQrFxcUoLi5GfX09GIbB1tYWHA6HZA/CdCNFAAqJZ7zPF4SkZMxviaExTl6oAMwg0bz9pKxz42cAKdkD+X3wBR3xFosX6Pknf4PBsOPkzH9satpKyXbEePup1WrJGUCWZTE7O4vx8XE0NzejqakJIyMjuz4OqtVqlJSUoKSkBI2Njdy+c7vdjqWlJYyOjkKv10cIwmwsAUuFGu9nDioAM4CwF4YERqnr3MgbJhcGQXZTcBcKQCHCQM8wDDY3N+FwOLC6uorx8XHodLodgpD/mNS0lZLNxOpnFiI1AxgIBDAwMIDNzU2cPHmSs8BSq9VcFSVTyB2jhPvOQ6EQV0Ug24wAYG5uDhUVFRHbjJRGybajRILQbrcDACorK6nxfopQAZhmYpV8k1nnRjOA2YnU3wcpB5tMJjQ1NSEcDsPpdGJjYyNi+wBfEJLXhxjTVnINEiypaStFKfj9q0QkxHudSckAOhwO9Pb2wmg0oquri9vlDaRWSt4taLValJWVcdY2wWAQf/7zn8GyLCYnJ+HxeCLM600mk6yWM3zS2XcuFIROpxMsy8JisURkCKmtlnSoAEwj0XphWJbFzMwMxsfHJa9zowIwOxHzwRcPjUaD0tJSlJaWAth+3ZCT/+LiIkZGRrhSEBGFxPJCrCUD9eiiyI3wcCvmPUD8TRM97vT0NCYnJ7Fv3z40NDTseNxMC8BMXF+n00GlUqGxsRFFRUXw+/1xPQijeZUmSyYHD1mW5Q6y5M/ktRevAkIF4U6oAEwD/F4Y4Tq3/v5+bG1tRZQzxEICrNwlYCoEUkPu4KjRaCK2D/BLQXNzc9w6Kv7Jn2RHqCCkpINo/cxiiLXDlxAIBNDX1we3243Tp09zHptClIiDUsmUAI3mQUje37E8CEtLS1FUVJS0KMqkAGQYJqLUHatkTI33E0MFoMIwDINQKBRznZvJZMK5c+eS7t1Q4uRJ9gyr1WqUlpYqWkq4FFE6OEYrBfEnjN1uNwoLCyMEIXl9xROEzz33HPbv38+tuaOWDJRExOpnFks84Wa329Hb2wuTyYSurq64MTLTGcBsQ6VSifIg5A+U8J0IEpFpARhPvEUThNR4PzpUACpErF4Y4Tq3urq6lF54cp98NzY2OGsFnU6HkZGRiLVnpaWlsrjXJ8NueYOmOziSdVRkaCgQCHCCUNgbRHoN+Wbi5F5DoRB0Oh3Xl0VNWynxiNXPLIVoGUCWZTE1NYWpqSnRMTJRJlFpMlkOFUM0D0LiRGCz2TA5ORkxdMJ3Ioh13Uw+ZymfP1J8VoVTxpc6VAAqgND+gHzIRlvnlipyBT6WZTE3N4exsTG0tLSgpqYGDMNw9+1wOGC32zE/P5/SyTEXyLQxd15eHioqKlBRUQEAEb1B4+Pj8Pl8Ec3iJOPHMExEaSSaaavP56OCkMLZECWT9eMjHALx+/3o6+uD1+vFmTNnYDQaRT1OLmcAk/UgJNZUDQ0NO5wIxsbGkJeXFxHn+YOJmc4Appo0ocb721ABKDOxemFirXNLFTkCXygUwsDAABwOB9eLyE+VC9eeuVwu2O127uRIzErJ2jMxE8yXMpkWgEKE+0n5vUHDw8MIBAIwGo0Ih8PY2tqCXq/nAmSs/hpq2pqbxOpnThZ+BcNms6G3txcWiwXt7e2SYmQ2CMBMXF+ua8ZyIog2eGY2mxEOh7O2BCwVviDMNeN9KgBlgnwoLi4uYm1tDW1tbVCpEq9zS5VkjFT5bG5uoqenh1ugzh8eiIZK9Zp7PTk5CgOFwWCIODlm0qE/E6R6QlUavV6PPXv2YM+ePVyzuN1uh9PpxPj4OEZGRiKmB41GIxdwE3l0kb+npq2XHqSf+aWXXuJ6RVP9nZL4NT4+jpmZGbS2tqKmpkby42ZaAGbyta3EtYVOBEIPQpfLBY/HA4/Hw7WWyJXUSITcApAPvz8a2Gm87/P5MDMzg4aGBhgMhl0vCKkAlAF+L0woFILX64VKJW6dW6okG/hYlsXi4iKGh4fR1NSE5ubmpF7AarWaEwp79+5FKBSK2G05MDDAlRtLS0u5cuOlTLZlAONBmsUrKysxOjqKM2fORAyVLCwsIBwOR+wx5veAShGE1LR1dyLsZ/Z6vbJlgIiHnUqlSqktJtMCELi07biEg2evvvoqiouLuZ52r9cbta1ECdLtQQi8JgjD4TAWFhZQV1d3SWxiogIwRYS9MFqtlnuRiFnnlirJDIGEQiEMDQ3BarXixIkTnL0In2SDmVarjRhIIP1ndrsdw8PDCAaDOwZKdsMbRQqp7MnMFOQ1pNFokJeXh8LCQq7k73a74XA4sLGxwU0P8k2pi4qKuN+hWEFILRl2B9H6mUm/aKqsr6/D6XTCaDTi1KlTKWWQpAhAIjoXFxdRUlKyq1tXMmk9U1JSErethMR5YRUhVZTMAIq5NgDOMmu3G+9TAZgkpORLTsV8Y2ePx4OxsTFR69xSReoQiMvlQk9PD3Q6neiNI6kg9Kbyer2w2+2cFQEAmEwmLggXFBRk5RtFCrspA0gggU0YWFUqFYqKilBUVIS6ujquB5Sf5VWpVBGCkD8UlMiji1yTCsLsg9/PzP8dptp2Qkq+c3NzKCoqQnV1dcrlQ7EH4UAggN7eXni9XjQ3N8PtdmNpaSmidYVYX+2W1pVMxBrhIVfYVkIGB0kVgWGYCEGYysE/GwSgsAIC7E6fVSoAkyDeOreRkREwDIPLLrssLSdKKSffpaUlDA4OoqGhAS0tLWl/E/EHSvhWBHa7Hevr65iYmIBWq+XEYGlpKbfhYjexWwWgmD49fg9ofX09GIbhBKHNZsPU1BTXUE6CPV/UJxKENEOYeRJ5+6UiAL1eL3p7exEKhdDZ2Ynx8XFZsoli4qDD4UBPTw9MJhPOnj3LfT9pXdnY2IDdbsfU1BTcbjfXB0taVxJ5z6WbTJac48W4aIODpIrgcDgwMzMT99CYiEwKQOFhSMhuE4RUAEqEn/Ujv2yWfW2d2549e2C1WtNWThBz8g2HwxgZGcHKygqOHTvG2YNkGr4VQWNj447Js+HhYRQUFKC0tJT7QNoN7FYBmEzPjlqt3mEnEU3U89fW8f3FognCaKatTzzxBAoKCnDjjTfK9pwpOxHj7ZesAFxbW0N/fz8qKyvR2trKffDJIWTiPQ7LspidncX4+Di3So5lWe7AAezscfP7/VylYnBwEKFQiHv9ki0awp9LpjeBpBMpMU5YReAfGq1Wa4STBN9yJtbjZzoDKCVOihWEfr8fX/nKV3DvvffCYDAocu/RoAJQJLG8/YTr3FQqFdbX19N2X4kCqMfjQU9PD1QqFbq6utL64pKKcPKMDCPY7XaEw2FuEXw6Go1TYbcKQDmCqlqtRklJCbeyKxwOc/5iKysrO/zFTCZTxGsylkfXb3/7W+zZs4cKQAUR6+0nVQAyDIPR0VEsLCzgyJEjEU4IyfQwRyNWBjAUCqG/vx9OpzNi3WYisZafnx9R0vR4PJwgnJmZiRh+I/Eql0glxkU7NJKD//LyMkZHR5Gfnx8hCPmVoEz2WBN7t2SJJQjtdju++c1v4v7775frVkVBBaAISEZCWP+Pts5tc3MzrTsp45U+VldX0d/fj5qaGhw4cGDXldH4Gy6sViv279/PTRkPDQ1xuy1JyThbBkpyWQAK4W8XABDVXyxesCeC0OPxoKioSPb7o8TuZ46FFAFIDqAA0NXVhcLCwh2PJUfmLFoc3NraQnd3NwwGA7q6ujiLq2Qem2zRIBkskuUmpslkyn1tbS1iF7eSZGsJWCp8MQ1sxwjiQjA/P79j13mmPQjlTDoQQej1epGfn582Kx0CFYBx4Jej+KdihmEwOTkZdZ1bqg3SUol2PXLiXlxcxJEjR7hJLSlkm4BhWRZ5eXkoLy+POJWTCePZ2VkAiDiVx1tlpPS9ZtvPLxGpnmzFEs1fjAhCfrDn9wfl5eXB7XYrKgDvvfde/Md//Ac3DNDV1YX77rsPBw4cUOya2UAy69zExriVlRUMDAyguroaBw4ciPrBKVe8FApA4sKQisVVLPhZ7qamJoRCIYyNjWFzcxMzMzNwuVxptb661GKcRqOBxWLh3CmEu87D4TAGBwdhsVjS7kGoVJx0uVwZ2ahFBWAMYgXGROvc0i0AhYGPNFmHw2F0dnbuOHFfKvBP5bW1tdyp3OFwYG1tDePj41ypkWQI0zVQshsFYKb6arRabdRgv7GxgdnZWfzpT3/C3XffDY/Hg8bGRtjtdkVKbn/605/w0Y9+FKdOnUIoFMJtt92Gq6++mjtYXIqQrJ/UdW6JYhzf/D7RAVTuEnA4HMbQ0BDW1tbQ3t7O9fQpiVarRUFBAViWxeHDhxEIBC5566t0xjjhrvM//OEPqKmpgdvtjrvaUgnkzgAS3G63Ij7BiaACMAqprHMjJY10vUH4AXR9fR19fX0RTda5Av9Uzh8oIfuLh4aGUFhYGGHzoNSpkQrA5BEG+3379sHv9+P222/H448/ju9973s4evQoHn/8cdTU1Mh23d/+9rcRf/7Rj36UNcNSciPsZ5Y6gRhPALrdbvT09Ig2v1er1dwhOxVUqu2tSy+++CI0Gg3OnTsXdxBPyfdnXl4eKisrUVlZGWGJYrfbOesrOSoVl0oJWArkdVdRUcEd6L1eL5chJK1B/AluvnF9qiiVASQVDpoBzCCx7A+krHMjLw6lTgrRrscwDMbGxjA7O4tDhw7J8sG42wSMkGgDJcSGgH9qJNnBRDYPUqACUD7MZjPe+9734lvf+hbuv/9+nDlzBn/6059QWVmp6HWdTqeij58pYvUzSyGWACQ2U3V1ddi/f7+ox5YrA+hwOODz+VBVVSXp2nIRqxc7miWKcEpep9NFWF9J7R+81ErAia4LRL5uDQYDDAbDjtYgvgdhLON6qSiZAcxEtY4KwIvEKvlKXedGXpjhcDgtApBhGMzNzUGtVqe0SulSR6fToaKigsvqkP23DocDS0tLomwexEIFoLyQoF5cXIzKykq8853vVPx6t956Ky677DJFr5NOYvUzJ4MwaxcOhzE8PIzV1VXJNlOpDoHwJ4y1Wi0OHjyY9GOlg1jWV8JKBRGE8SoVuZwBjOdByG8NimVczx86k7J8QOkMYLqhAhDRe2FYlk1qnRs/A6g0NpsNNpsNhYWFOHPmTNoniNKNnAFHr9ejuroa1dXVUY1K+ZNpQu+6RBBT5d1ENgtAIL0n5I997GPo6+vDc889l5brKU0ygx7xUKvVXPmYbBbSarVJ2Uyl0jPt8/nQ09ODcDiMtrY2DA0NJfU4cpDszzNWpcJut3OVCqPRyH1PtHJmpoRYJgWg2FgVzbie9IoLfUr5sT7e9WkP4CVCrF6YUCiEwcFB2Gw2yevc+JPCSsGyLKampjA1NQWj0QiLxSK7+CN9jLlANKNSoc0D36okUZmGZgDlJ10n5L//+7/Hf/3Xf+GZZ55BbW2t4tdTGoZhsL6+DqvVKts0LNkFvLi4iKGhoZQ2CyUbK61WK3p7e7l+Z7fbfUnEK2Glgt8/SMqZ/P26mSJbM4CJiNYrTnxKxXgQ0gzgJYKwF4b48TidTvT29nJWEMls9FByEjgQCKCvrw9utxunT5/G/Py8ItfJZYQ2D3xfqrm5uYRlGioA5SUUCsHv9ysaIFmWxd///d/jl7/8JZ5++mk0NTUpdq10wO9n9ng8WF9fR0tLi2yPb7fbYbVaU953LrUEzLIsJicnMT09jdbWVk6ki1kFpzRKXJ/0t5FKBX/t4uTkJABgZGQEFoslraszM9kDKOfaNKFPaTRbKjI8aDabEQwGFcsAUgGYBmL1wpB1bmNjY2hubsbevXtTOmUoIQAdDgd6e3tRUlKCrq4u6HQ6LC4uptV2JhcR+lIFAgFuQwm/TEOyg7u1BJytU+MulwsAFO1v/ehHP4p///d/x3/+53+iuLgYKysrAJCUh2amEZZ8tVqtLJO2wLa58uzsLFiWTThpKwYpGcBAIIDe3l54vd4d/c6ZFoDpcnzglzP9fj/+/Oc/Q6/Xc6bqBoOBO5iazeZLzulA6dgazZaKtAZNTk7C4/EgLy+P6yMsKSmR5WdMh0DSQKxeGP46t1OnTnGngWSRWwBG22XJ36Wa6ZNvrpGXl7ezTHPTTTC98ALOP/ooQqEQ8vLyMDc3l/LUWbrI5gyg2+0GAEVPyN/97ncBAFdeeWXE13fbeytaPzMp2aYC6YkeGRnhDjly7DsXmwEUHn6FH7q5GAfJ+7WpqQkajSbCMHlychJer1cRp4Nok7jpIt1xSliS7+/vh0qlQjAYxOjoKPx+/471pMncn9vtRnV1tdy3n5CcEYCxvP2irXNLFTkFYDAYxMDAAJxOJ06dOgWTyRTx90r3G1ISU1JZCWI3e8111+H8Bz8Iz3vfy02dkYESEoizcR8zwzBZO0Tkdruh1+sVzVDudvEQz9tPo9GklAEMhUIYGBiAw+HAiRMn4PP5sLi4KMt9J4qV8Q6/fLJBAKb7+sLrCT00fT4f1z/IdzogcSjZgym5bqYygJk+qBqNRtTX1wN4rUeT7yZBTL/JelIx90tLwAoRy9sv3jq3VJFLADqdTvT09KCwsDDmLku5jFQpycM/MqgAHP/hD9F/yy3Yv38/GIaJ2mTML9OkY29oIsLhcFbcRzQytSZptxCrn5mQSjwS9kTn5+djeXlZtkNnvANsKBRCf38/nE4nTp48GbcyQwTgbuy/TZVYz1ev12PPnj2cPx5xOrDb7SkdTHNZAApbZYQ9mnwPwrm5ObAsGyG6Y8Uxt9udEQu3S1oAEhd20jgqdp1bqqQqAFmWxfz8PEZHR7F37964/YjZcPKlRKLCa8FRrVbDZDLBZDJxe0NJmWZ2dhaDg4MoKiqK2FCSiV68TAfWeGTKIiHb4fczE+ETLU4kkwFkWRZzc3MYGxvbEYPkrHDEKgFvbW2hu7ubE56JDifk3jIlALNddEZzOhAeTPV6fcTBNFY1LJMCkHyWZ4p4U8DxPAjtdjumpqZi2ovJHeOeeeYZPPDAAzh//jyWl5fxy1/+EjfeeCP39yzL4s4777x0BSDphXn++edx8OBBLi0uZp1bqqQSIIkFjd1ux4kTJ7hmVCWuFY9sD2jZBAOAHxJWa2pi/vy0Wi3Kysq4HaX8vaGkp0S4NzQdAS/bBeBu6KNMJ8J+5ljiD3gtRogVR6TtZGNjAx0dHTt2L8sZc6JlAIn/alNTk2jrGvLazbQ58m65XryD6fT0NAYGBnb0D5KDaaYzgJmMA1KG5WJ5EPLtxZxOJ376059iZmYGgUBAtvt0u904duwYbrrpJrztbW/b8ff3338/vv71r196ApDfC8OyLNcALWWdW6okGyC3trbQ09OD/Px8rtySCJoBzDzezU1ojEZoAATOnMHKv/4rtCKDFH9vKLDdU0I2lPDXGCUqIaRKtgvATEzIZSux+pljQT6wxHx4bWxsoLe3F4WFhTh37lzMthMlMoDhcBhDQ0NYW1tDe3s7d0gSAz8DKOXfXAqxU454IDyY+v1+7mA6PDyMYDCIkpIS7lAq13Wlkuk4lYoPYDR7sbGxMezZswe///3v8Q//8A/4xje+gf/1v/4XHnjggZR8Hq+99lpce+21Uf+OZVl84xvfwG233XZpCUCGYRAKhSKmfDUaDdxuNyYmJkSvc0uVZAIkMVVtbGxES0uL6DdXrgyBZHugDm9ughTZ2JGRpIOjwWBATU0NtzdU6PvFd60vLS2VZRITyHxgjUemGqSzjVj9zIkQs56S2GCRYYvGxsaEGUU5IPHL7Xajp6cHGo0mKXuZZASgnGRyL64S5Ofno6qqClVVVRG9bXa7HTMzMwCAwcHBiP7BdPwMMh2n5LTL0mg0aG1txde//nU8+eSTePDBB8GyLJ577jlF49309DRWVlZw9dVXXxoCMFYvDMuyCAQCmJiYQENDg+h1bqkiJUDy92gmY6qa6i7NWCwvL2NjYwMWiyVjfWm7Fbn6kKKVEIhJqdS+nURksw8g7QFMbZ0bPwMYDak2WHJnAEOhEF544QXU1tZi//79SW8UAcSLIr/fj4mJCRQUFKC0tDRtAkYJlL5vYW+b1+vFCy+8gOLi4h2bkkgsUmqgLJt7AFPB7XajvLwcp0+fxlve8hbZH58P8TitrKzc/QJQaH9AxB/ppfN4PKitrcWBAwfSdk9iJ3P5p95k9mgC8pcxGIbB0NAQVldXYbFYMDIyEpH+Ly0tpf1YCVCqT4XfQAyA69shU32kb4d8jxThnumTdTxyPQPIMAwCgYCkrB8flUoVMyYRfz2j0Shq2AKQz3mAYRjMzc0hGAzi+PHjKZluSxGADocDPT09KCoqgsvlwvj4ODeZTwRMMgep3dQDmOp1VSoVGhsbuXVq6Rpsy3ScUnIXcLqngFUq1e4WgLF6YfjWBeXl5Wn3XRNzQl5ZWcHAwEBKp15A3hKw1+tFT08PAODs2bPQaDTc1LTdbufS/2q1mguW6Vw/tFtI1yRirL4dh8OBkZERBAIBTrgn8qTKdGCNR64KQGE/cyorsIQxiWVZTE9PY3JyMq6/npjHSgafz4eenh4EAgFotdqUN66IEYD8yeZ9+/ZxfeAMw0QcpAYHB7kBiNLSUhiNxqx9b2Sq9My/brRNSSQOyT3YlukhECUygMFgEIFAIG0CkLzXVlZWdqcAjNULQ0xD+evcBgcH0+6TFy9AMgyDkZERLC0toa2tjWv+T+VacpwEbTYbenp6uOXqZEOKSqVCQUEBCgoKUFtby9kH2O12LC4uYnh4mNuLm0kbk2wiU1YUwr4d/iJ54knF7x8sKCjg7lOp0oYc5KIAjNbPnMprim8F4/f70d/fz+0TLykpkfRYJOYk+zq3Wq3o7e1FZWUl6urq8PLLL0t+DCHkPmLF3XA4jMHBQdhsNpw8eRImk4lrGRIKGL/fzx14+/v7wTAM956JVS6+VAZKxJDo9x5vsG1+fp6LQ+Rgyo9DicjkQZVM0sv9+UZWXaYrxjU1NaGqqgpPPfXU7hOAUte5peqCnwyxVi+RDBvLsrINo6QaePiZAP5y9ViBlG8fsHfvXm5XIt/GhEytyl0u3i1l52wwo+ULdzJQsrW1BYfDAavVyg2UkCCc7QIw1fWMuwWx3n5SIWVbu92O3t5emM1mbp+4VKRMFfNhWRaTk5OYnp7mYo3H41HcU9Dj8aC7uxtarRadnZ3Q6/VxY2Z+fn6EgbLL5YLdbsf6+rps5WI5yHQJWCzRBtvIz3NiYgI6nS7iYBqvopRpAQjIvwKPrLqU0+nA5XJhYmKC+/P09DR6enpQWlqK+vp6fOITn8A999yzuwRgrF6YeOvcMrEpI1pZdm1tDf39/aiqqsLBgwdlO0Wk6jlInPaTyQQAkbsSSdZJlnLx296G/KeeQgjbE7a7iWwQgEJUKhWMRiOMRiMaGhoQDocjMrlk3ZfFYuEyuZn6YBOSKxlAUvKdnJyE2+3G4cOHZd1OtLCwgLW1tZQ3H5EPQCkCMBAIoLe3F16vN8J8X84NHtEOw+vr6+jt7UVNTQ0OHDgg+cObP4hF3jfCvluj0QidThdRkUoX2VAClkK0nycZbCP+j4WFhRH9g3yv3kwOgZDPWbkzgG63GwaDQdbHffXVV3HVVVdxf7711lsBAO9///vx8MMP4zOf+Qy8Xu/uEICk5EtOxVLWuWk0GlkNFsVAJtuA7RfN+Pg45ubmcPjwYdkXPiebAXS5XOju7oZerxfd/C3mXuKVi0dGRripu7jl4kOHULiwABW216yFjUbg179O+f7SRTYKQCEajSZioOQPf/gD6uvr4fF4MDk5CY/HE9MINt2Qe7mU4fczA9t9QXK9hvx+P3w+H0KhEM6cOZOSvxgQKQDFQAZNSkpK0NXVFfGBzjdwllMA8rONcsbdWOXixcVFuFwuPPvsswnLxbsdOeObRqPhflbNzc1cRcnhcGB8fBw+nw9Go5H7mYbD4Yz9PMm15b4+8TmV83GvvPLKuLpApVLhjjvuyH4BGKvkK3adW6ZKwIFAAD6fD729vQgGg+js7FQki5HMEMjKygr6+/tRX1+P/fv3K/aGSrZcbLgo/rjHAYC+PuD4cUXuU252gwDkQwJFWVkZ579GPtgcDkeEESy/kTtdz/FSNoKO1s+s1Wpli1lWqxV9fX3QaDRoaWlJWfwBifvtCKQnm3gLRhs04T9WqpkdIgCDwSD6+vrgdrsTrvpM9b1KysUAsLS0hP3790eUN/Py8hQrF++WErAU+BUlYHtYiMSh/v5+hEIh5Ofnc/ZX6dwRnuwUfiIyGd+yWgDys3585S1lnVsmBKBarYbX68Xzzz+PsrIyxVbOkWuJDQQkGzk/P4+jR4+mPIAiFbHl4pNpvSv52W0CMFppQ9gHJVxyDiBip6WURm6pXKol4FiHWzliFsMwmJiYwOzsLFpbW7G8vCzHLQN4zVYmQgD29QF//dfAZz8LvOc9Ee0lJ0+ejNnDKecKN5VKxVU2ioqK0NnZmbzgam/ffj6f+pSk68crFysxXSzqPdfVBZw7BzzwQErXIqQzvun1elRXV6O6uhosy6K/vx/hcJhbWcevZMhpjB8NpfqkXS5XWoUsn6wUgLG8/ZJZ55ZuAciyLHdiOXz4MGri7IWVA7El4EAggJ6eHvj9fpw9ezbjH6jxysW9r3sd2p95hssChgGwbW2ZvF1J7FYBKGXJOdlpmUwjt1RIgLyUiOftl2rM4lceSAZsbW1N1jgYIQBvuAG6J5+ECgB7880I3Hwznv/d72AwGBK2l0gtJ8eDYRgMDAxg7969oncI7+DTn0bhQw9tP5e77kLwrrsQENGDHO1ackwXp8Sjj6LgllugBsAODCD00EPwy9BPnak+PHI4MhqNaGxsjPjMIMb4BoMhon9QzoxrvE06qUAzgDxIL4zwQ8nlcqG3t1fyOrd0CkDS6Ly1tQWTycRN1CqJmCGQjY0N9PT0oKSkBCdOnFAsG5kK/HIxHn8cG+fPQ3vVVdisqcHgD36AkM+HkZERlJeXw2KxZLUZdabd6qVCXj9S1g+SgRJiBCts5Ca9nkQUJvuaI9nHS6UHMFY/Mx+NRsMdfqWyvr6Ovr4+VFRUoLW1lfu5x3ImSBZ+3NE8+WTE3+UBqK6uFiXC5FjhRqy1QqEQ9u/fj7179yb9WPqHHor4sw6A2A7yRM8h3nQxKRebzWZYLBZR5eJE19NfFH8ELQB/Xx9w9KjIZxT7upmKvfzYGvGZgUhj/KmpKbjdbq5/UI4+ZiVNoDOVkMkaJcC3PxB6+xG/ufr6esnr3ORcWxQP4i5vNpvR3NyMtbU1xa8JJM4Azs/PY2RkBC0tLXH3e2Ybuo4OYHMTJQC6ADzzzDMoLS3F5uYmZmdnuXJxOlL/UtmNGUBS1kuGaI3cJBBPTk7C6/VyG0pKS0tRUlIi6VqXyio4sevckjm08ofNDh06hJqamoi/l9sNgR9X+c9ABYAF0NLSIupxSHUn2RhNDKXD4TD0en1STgYR9yP4/0p12YmdLk70nokXZ8j9q/jP5Xe/29UCMJ4RdDRjfFKNGxoaQigUSmmjlVIT3pmMb1khAGMFRrLOzWazJbUnF1A+A0iWqE9MTGD//v2or6/H8vJyWkQnEHsIhOwYXltbw4kTJ7gyxG5FpVKhoqICxcXFYBgGW1tbsNlsWFpawujo6I6MUybNqHejAJQzsOl0OpSXl3PvV5/Pxw3/DA4OIhQKwWQycR9uiQJxJtYkyQ3J+olpJJcas4i/KMMwMYfNlMwAegDwC1hSr5KsACSehhaLBYcPH8bzzz+fci+hV69Hoc/H/Tk9UTx+uZgsMxCauCd6rt6KChTyEhEsIKmnMRaZFoBiY1W0PmYiCEnPOf9nmmhjmJJ7gHM2AyhmnVtXV1fSGR4lBWAwGER/fz82Nzdx6tQpLhWdrqwjuZYwEHi9XnR3d0OlUqX0s8tW1Go1SkpKUFJSwk0Xk9Pz2NgYt3qInPTSObEK7D4BqLQJtF6vjxuIVSpVxGYAfi9UIBBAMBhUVAA+88wzeOCBB3D+/HksLy/jl7/8JW688UZZHlvYzyxmilBKzFpdXUV/fz/27NkT119UqQzgysoKBh5/HJ1vfzuKfb5twcQTUGIfS4pw408X8+2/ZNnGsbYGd0MD9A4HGEBU/x8gvx+fULy43W7Y7XbOxF2n06G4uJhLnkQtF09MwN3eDv3k5PZzee45We5ttwhAPvw+5rq6Oi6JYLfbsbq6irGxMc7gm4hCYe+qUj2AHo8n9wSglHVucq1AkhOn08ktFBc2OqdTAAqDHlmzVFVVhdbW1l3VixaPeIFdmHEiE6t2u50rF/ObrZUWxLtNAKbTvDZWIHY4HFwgJtYZgUCAuy8lA6Tb7caxY8dw00034W1ve5tsjxurnzkRGo2Ga4mJt7t5dHQUi4uLogbiUukrjIZKpcLc3BwcDgeOHDmCwo2NpLNlUjKApCpkt9t3TBfLto5tdhbSJOw2StmyqFQqFBUVoaioCPX19VzP7crKCsLhMJ599tmI6eKIcnF3d1LPJR6Z3McrV2zlJxGampoiSvCzs7MYHBxEUVERJwhNJpNiPYAulyv3BCCZ6uU3Qsda55YKcp98+QvFm5ub0dTUtOMFmc7tIyR4xlrplovwV6DxT3r8STG+N5fcb+pMLyyXSibXK/EDMRko2djYgMPhwMMPP4wHH3wQAPDP//zPuPrqq3HFFVfIng289tprce2118r6mARhZUMMZHAjVmbW4/Ggp6cHANDZ2SlqglDOg7DP54PH4+H8TVOdYBSbAXS73eju7oZOp0NXV9eOSXMpAlBuQ990vt9Jz61Wq4XNZsPp06cjWizC4XCEv6rcFk27MQOYCGEJPhAIcD/TkZERBAIB5OfnQ6vVYnNzU9aqktvtzliLVkZLwPwP3njr3FK9RqLTtFjIuiyHw4GOjg6UlpZG/b5MlIB7enpSWul2qSI86fHLxcRpXu5yMc0AJg8/EN933324/vrrceONNyIQCOCTn/wkGhsb8dRTT2X6NkVBbCukQv5NOBzeEQdXVlYwMDAgebWZXDGJVBi0Wi327t0ri32FmAzg2toa+vr64j5v2TKAuwiVSoX8/HxUVVWhqqoqolxss9m4cjF/HWeqn62XogAUkpeXh8rKSlRWVnKetWNjYxGHL2H/YLI/k5zvAUy0zi0V+IvLU3nhbG1tobu7m+tJjOdzJrWnJRU8Hg+AbXEa13PLYgHcbuDll1OeAtvNCMvFfDPqubm5iH40yeXit70NmqeeguGaa6D6/vcVegbyk00CUAiZ7Pzud78LlUrFvd4vZchENj9jFw6HMTIyguXlZbS1tUk2cU81A8hfrdba2oqVlZWkH0tIvHjJsiwmJiYwMzODI0eOxC11pzJNLAfZID5jlYv5pc2Y5WKR5IIA5EM8awsLC1FQUIB9+/bF9EElVSUpPqiZtLnKqAAkwwqJ1rmlAv80nawXGfE2a2xsREtLi6xN3KlAVroBQHt7e8znp9XrOT8o9vRpBHNcBPIxGAyoqakRVS4WLibnozMaQd7yr3vySbjq6gAZTFfTgVK9LXIgNEndTXYwcvUuu91u9PT0SPZA5ZNKW0ogEEBfXx88Hg8Xp9fX12UTW7Gyk9GuG49cywCKea58iyZge7o41XJxrglA/rW1Wm1MH1S73Y75+XkMDQ2hsLAwon8wnvbIWSPolZUVFBYWKroqjb9FRCrhcBhDQ0NYX19He3s75y8k5ppKnkQZhsHY2BgWFhZw+PBh9PX1xf7m+voIM1AVANXp02AlTuplA0oHHWG5OBQKccEyUblYmHctBOBW9G7lI5szgC6XS9E1c0qTrCghAnBpaQmDg4Ooq6vD/v37U/JqTCYmORwO9Pb2oqSkBF1dXVycljPGRXuszc1NdHd3o7i4WPRKt3RWXoRk6vUp9bpSysXRJmGB7DGCTjfhcDjqz0Mosvk778nnhtFo5H6mwhWASg6B3HHHHbjzzjsjvlZZWcll8DMqAMn0jZJEK6eIweVyoaenh2s4llIKJCdaJd4ofr8fvb29CAQC6Ozs5FLNMYOxe6cMUdLg9FJCq9XGLRcD4N74+zJ5oymSzQLwUt0DnAi1Wo2JiQlsbm7i2LFjqKioSPnxpMRAvtXKvn370NDQEBHL5OxzFgq3xcVFDA0NYe/evZJcIKSKbbljc7rFZ6rXS7ZcnOkMYCavLaZSwt95D2x/bhBBuLCwAIZhYDKZkJ+fD7fbrfiqy8OHD+N//ud/uD/zn0NGBWC6fpFST7/Ly8sYGBhIavMIuR4g/0mJrHQzmUzcSjfyvGIGA5sNrF7POdyzAJi/+zvZ7imXiFcu3ovIN5PY9VHZQLYLQKXLIy6XCxMTE9yfp6en0dPTg9LSUtTX1yt67Vj34/P5oFKpcO7cOVlsi6TEwFAohP7+fjidzh1WK8k8XiKImCQr3ZaXl5My/pcqAHOpXCwGYSYrEAjsMKMmXrcsy2ZECGYyViXrl2owGGAwGFBdXc2tAHQ4HHj66adx6623IhQK4Zvf/CasVite//rXy+7godVqUVVVFf3vZL2SRNIpAMWcfkkAWlpaSunUzV9wLseLlWVZzM/PY3R0dMdpXMwuzeDLLwOnT29n/v7u74D/839SvqdcJ6JcfPnlAIAgtrOrLo0Gz/7Hf6DkwoWMmVFLQWkj6FRIhwB89dVXcdVVV3F/vvXWWwEA73//+/Hwww+n9NhSRAl/7WVeXh6amppk86wUGwOFw26xhsrkzACqVCr4/X68/PLL3DaTZPocpfysw+EwxsfHwbIsysrKkhqGEF47Eyh53by8vKjl4sXFRXi9Xjz//PMJy8Vyk8kSsBy90vwVgO973/vw9re/Hc3Nzairq8ODDz6IW2+9FWtra7L2ZI+Pj6O6uhr5+fk4c+YM7rnnHm5fdsangNOBmODHH+9OttGawBeAqcLvQ4xmPSNql+bRo4DPJ7nsm62CJatoaEAhb9iDAfDM//t/aD9+nNt4ISwXZ9vu4mzPACpdAr7yyiszng0KhUIYGhqC1WpFe3s7ZmdnFVvdFgsy7NbU1ITm5ua47385vU7D4TAmJiZQVVWFQ4cOJf3hJ1YAkuFDYDs7w1+1VlpaCovFknAtWDaQztcsv1wcDofh8XiwZ88eWaeLE0GyjrstAxgPg8EAv9+Pz3zmMzhw4AB8Pp+s4u/MmTP4t3/7N+zfvx+rq6u4++670dXVhcHBQVgsFioAgdfWKVVXV+PgwYMp/5LlEoBElCZa6abU9Bt5TCoEY5PvcET8WQ0ATz6JgnPnYDabUVNTA5Zlsbm5mdR0cTrIZgGYyTVJ6WJzcxM9PT3Q6/Xc+3xhYUHW/uh4MZDsDV9dXRU97KZWqxEMBlO6J9Jn6HQ6UVVVhSNHjqQUa8TEQbvdjp6eHlRUVGDfvn1cGdPlcsFut2NtbQ3j4+PQ6/WwWCySzOIzcYjIRGwmIixeuTgUCkXYackxyCV1o47cKOGWEAgEEAqFuAl3uRMDfIP7trY2dHZ2orm5GY888ghuvfXW3CgBxzqtkmna+fn5hB5TUhCVlUsAMVwlOz7jvehzzf4gmwgjMo3OAsA110S8tlUqlajpYrPZDIvFkvZycTbbwGRyTZLS8Fs7hFk3ua2kYg2mEYsZjUYjqd8w1RIw31SfWGWk+pqPF3P5P2viNxsKhRAOhyPKcg0NDQiFQtjY2IDNZuN2ixOrFIvFgsLCwqw4FGcq5kfLwsUqF/Oni/mCMJlyMfndZupnr0QG0OVyAVB21SWfwsJCtLW1YXx8HEAOl4B9Ph96eno4A2W5+4ySDZAsy2JqagpTU1M4dOgQampqFLsWJXVCm5vQGo3QYFv8eS9+PV6QijddPD8/DwBc5oG4zCsJwzCybd6RG7fbLXkYIJuI9TrgC6ATJ07sWAUltwDkG+KT/0+2itTW1kq2mEkl5pCVbnl5eejq6sLw8LAs8SvWQZhhGAwNDWFtbS3uBieCVqtFWVkZlwklrRw2mw0zMzPcthr+Zo1LsQcwFomGP+JNF8/NzWFoaAjFxcVcfDOZTKJee5diBpAIwHT5m/r9fgwPD+Pyi33rOSMA+QGGZNcqKipS6jmJRzIBMhgMcruQz5w5A6PRKOrfKZEBZFkWoVAoa4VBNuHj9QCGQiHgmWckBWb+dDHLstja2oLNZsPKygrGxsa4cjFZPSR3uTibS8CXog2M0+lEb29v3K1CSmQAAXAZL+IjeuTIkZgTgokeLxnRRla68UWnXP590R7H5/Ohu7sbLMuis7MzqcMU2S1eW1sLhmG4VZKk981oNMJgMCAUCu26NZDJIPU5xpsuHhoa4srFRBDGyrBeihlAMuSmVPz91Kc+heuvvx719fVYW1vD3Xffjc3NTbz//e8HkGNTwPy1Qq2trbKPW/ORGiDJ9F1BQQE6OzslpcjlNp4mJ+bFxUXO0dxisYg+qeUyqfZN8l3mSbmYfOBMTk7C6/VypqKlpaUwGo2y9NZkawk4k2uS5IZlWczNzWFsbCyhx51Go0EgIJ+ZEPn9er1eDA8PIxwOo7OzM+nKh9T4xrIsxsfHMTs7u6PdRq4KhvAgvLGxge7ublgsFhw+fHjHazyZ942w983v93O9vX6/H88++yz39xaLRdJKMKlkUwlYCsJyMcmw2u12TE1NQavVRgzMkc9Cct1s9wGUAhGASj2nhYUFvPvd74bVakV5eTnOnj2LF198EQ0NDQByKAPo9/vxyiuvwO/3K7Z2jo+UKTniOyh21Vy0a8kVDPx+P7q7uxEOh3Hy5EmuPDk8PIxgMMj1qZHGXkokcg/OCMtRfFNRUi7m99Ykk+HI9gxgptYkyQF5HQSDQQwMDMT11uMjdwaQ9CW/+uqrqKysRGtra0ofZlLiW6KVbnIdYPkCkEw0RzOxlpP8/Hzs2bMH+fn5GB0dxaFDh2C327G0tITR0VEUFBRwYrCkpER2AZGNJWApqFQqFBYWorCwEHV1dVyG1eFwcGvVioqK0tIKEw+WZRWJk0rHt5/+9Kdx/z7jAjAdAwyBQIBTwMRAWWnEnGoZhsHo6CgWFxdT8h2U62fodDpx4aJ33eHDh7nppMrKyojG3vX1dW5Sjp8dlPPnqr/YVwcAbrMZ7L/9m2yPrSRKT04LTUWJGfXq6irGxsa43wkpGYv5nWS7D+BuLwETA/fi4uK43np85BSALMticnISLMuioaEBLS0tKT+m2Kyd0+nknnuslW6iDrB6Pci/DAJAlFWWREgODQ1heXk5am+l0vCHvchKMJvNFnGALi0theWNb0T50hKAbeso7y7ZGw7E2MbR14eCyy7jFg64P/IR4IEHJD82P8Pa3NyMQCDAHXiXl5fBMAxn0h6vXCw35LWuRA9gJlddZlwAKgnLspiensba2hpKSkpw7NixtE4exwuQfr8fPT09CAaDKZVixFxLDGTnaEtLCxobGwEg4gNI2NjLn5Qjk6wmk4nLDqbyxsw3GiNemEUCq5VsJp19KsKl5MmWi7M1A0jKQ7s5A7i0tITe3l7ufSX2daHRaLb7SVOEn33T6XSi95knQoqvYKJyd8IMoMUSsWs7D0DgyiuBp5+O+DaGYbC2toa8vDxRZtJKv0f5K8H4B2ir1YrWi+IPADTYPvD6JIrATJaAhT+7gssui9g5X/jQQ3AnIQCF5OXlobKyEpWVldjY2EB/fz8sFkvCcrHckM9CueNkpm2uLlkBGAgE0N/fD5fLhdraWq75OV3EC5CkN6W0tBQdHR0pZ85SyQASK5yFhYWI9UuJHi/epNzU1BS3VNxiscBsNksaJol6xurrAzo6RD9GpshkE3iy5eJsFYDA9gl5N/cAWiwWnDp1iluhJRY5MoAk81hSUoLOzk48//zzsmUV48U3hmEwPDyMlZUVUb6CicrJ6ij7zPHiixF/dDqdWFpa4rYdpNtXM9F7XniAFqIBuOqLxWJBUVGRqDiSLSVg4V0ocVcsy0Kr1aKuro4rF5PpYmG5mJhRy5WxU2oCWek9wInIuABUogRMAp/RaERXVxcWFxfhSHMWKVqAjLfSLRWS7aEJBALo7e2Fz+dLOQsZa1Juenqam5QjwS2Rzx0DYMfb7OjRpO8tnWTTFKDYcnEgEMhaH0m3272re031en1SH0KpCEBisDw+Ph4RZ5TY3yuEP3Xb1dUlqm8rUTYx6t/U1XH/d3FxEUNDQygpKYHBYMiYqXoq7yEGQGVlJWw2G2ZnZ7lSKKmoRMtsZVMGkEWk6FPizoQHVbVazU0PC8vFpORO/BtTrUqRNhm5Y3ume5wzLgDlhB/4+CUXuRuqxSAMauFwGIODg7BaraK8qKReS2owIFPHRUVF6OzslDVo8vs4Wlpa4PP5uOzg/Pw8VCpVxKScMLj5NjdRYDRCje1A4pHtzpQnmwQgn3jlYjKgUFJSErG7ONNZQVI2280ZwGTRarVJxaxQKIT+/v6owyZyrm+LJtpsNht6e3tRXl4uyV4rYRLA50NIr+c+rIIAMD4e0UN9/PhxbGxswBelNzAWZLVYJnABKMS2aCI9gDUAampqoma2yJo1i8UCo9GY0fdmtBjn+c53UHjLLdv75gG4m5tlv27U3kMe/HKxlOlisddWwikh0z3Ol4wAJB9iGxsbOwJfJgQg/7Tt8XjQ3d0NjUYTd6VbskjNoq6urqKvry/pqWOp6PV6VFdXo7q6GgzDcGvRSI/QjuBWX88FEgAgOYRsFFZCslUACuGXi9fW1nDgwAEEg0FZp4tTxe/3IxwO72oBmOxrIZmYRQ51xF9Q+AEnZwaQ/1gsy2JmZgYTExM4ePAg6njZOTGIGpjz+cA3xQkEAujp6UEgEOCqF5ubm1mbyRby8N2fgi24nfmx6Nz4AO/vomW2yAG6v78fDMNwBtSZeL5RY9x73gP3e96j6HWltKpEmy5OpVys1KBczgtAOT4syS7NgoICnDt3bkfgy8SmDHLN9fV19PX1iVrplixiS8BkGnB6ehptbW1JGcCmilqthslkgslkwt69e6MGt2sEzdDZL6deY7cIQD4Mw8BgMKC8vFzW6eJUcV/s/drtU8DJIFUAksOUcKVcKo8ZDxLfyEaTjY2NpHodAektLJubm+ju7obRaIxwdcjkSkwlry30zXO5XJxRvMfjwYsvvhjhxqC0p2emYlwqvcqplouVzABm8oCbcQGYCizLYmFhASMjI3EnzTKRAVSpVFhfX8fExAQOHz6M6upqxa4lpgQcCoXQ19eHra2ttPggikUY3La2tqL2jxAfpmxntwpAfmCVOl2sVLnY5XJBpVLt6h7AZCEZtkSvp3A4jOHhYayuriYcuJC7BBwOh/HCCy8gPz9/O+P4jW8AX/0q8PWvAxKyQVJaWIhnarR4L6sI6+ra/t/nn5fn8WSCv7e4oKAAs7OzaGxshM1mw+joKAKBAEpKSl5zY/jlL6H6/OeBT3wC+NSnZLmHTMW4VA2o+cQrF09PT0dsLzGbzYpmADORiCHsWgEYCoUwNDQEq9Wa0O8p3QKQ+D+FQiFJK92SJVHg83g8uHDhAmePoNSofKoQ4eF/7jloeJ5SAWyLlPPnz7/mo2WxwGAwZJ3Y2m0CUIzBqXC6mPR0kjI+y7KKlIuVdslPB6mUgIFtgRcr2+p2u9HT0wONRoNz584lbC2RswRss9kAAOXl5dsr3YxG6Ihtzc03I3jrrcDamqjHElOhYVkWY2NjmJ+fj+mZKpcANFzsPwYAxmgU5dGXyV3AZK+4UMhUnTyJItITeddd2Pryl6GWYRhyN2YA4yGmXKzX68EwDOx2u6zTxTk/BJLMC8nlcqGnpwc6nU5UT106BSDpwwGA6upqxcUfED+Akr3H1dXVOHDgQMYb+0Vx9Ci+c/enYD8/CfboUVh0bjSq1Th8+DC8Xi+sVismJiaQn5/PnXTTVZZMhJyn1HRAPjCl3DO/p1PJcvGlIACTJZEAXFlZwcDAAGpqakS/r+XIAPJXugHAvn37oFaroRV4Fmo2NyH2SolKwMFgEL29vdwmkVgtAbIIQIslwoFAffFruCh4swnhcxUKGYNgIKYoHMaz58+LdmOId91MxLhEQyByISwXB4NBTE5Owmq1yj5dTH0AJUIMi4mjvZgXYroEILk3UjZLF9ECH78x+9ChQ6ipqUnb/cgFy7N+IaXA8vJy1NfXIxwOcz0cExMT8Pl8XOnDYrFkTDjstgxgqv5WYsvFZIWglHJxpk/HcpGMMCGWE8K4xfftPHLkiKTyUaoZQL5t1OnTp/HCCy/E7I2S8g6IVwImB+rCwsKYm0S4a8ogAFXBYNSviXnUTPQfxos10f5mz549EYNefKsZsXuLL7UMYCJ0Oh2KiooQCATQ1tYWs1xMqiBS9j/n/BCIWPi9LlLXppEMmVIv3Ggr3cbGxhCMEkyUQHiCJpYzNpst6cbsbEej0UQ1orbb7ZiZmYFGo+ECG5mYSwe7TQDK7XAfr1y8uLjITTCSgBmvvy/Ta5IyjfDg6vP50NPTg3A4nJRvZyoZQKfTie7ubs5UmrxeSNwJAeC/w6Qcf2NlAKW6FUgd9ov2eOxzz4HltZ+wF7+WjSQSnD685qAAbLfS8N0Ytra2YLPZsLi4iOHh4YipWJPJFDMm5JoABCJ9AGOVi8kgFvk5ms3mhEM5mT7kZlwAinkhERsVtVot2lyUj0aj4Tyf5H7hkpVuoVAIXV1d3AeanA3XieCfoH0+Hy5cuACVSoXOzs6ULGcyOVUnlVhG1DMzM5yPFskOJlv6EMNuE4BKr64TlovJBCMpF5MyPim58IV6Osoj3/nOd/DAAw9geXkZhw8fxje+8Q1cfvnlil5TLPx1cFarFX19fZI99mI9nhTIB1tzczOampoi4gIX43w+BC0WwO0GSksB3qqzRAgzgCzLYmJiAjMzM5LcCmSJV0ePwvOd70B7yy0AgNB3viPKhD4b3/PM5ibcDQ3IczgQKCwElpe5v1Or1dze4r1793IWUDabDUNDQwiHwxGrPfkHtUthCEQqsTLd0crFZP/zyMgIgsEgV5kym80RG15Iz2YmY1zGBWAikul1EcLvp5HzBeRwOLjF1EeOHIl4gaTTeoYEPofDge7ublRUVODQoUPbvTl6PdfTEgCiLlG/1BAaUfv9fthsNq70wTeilpqyj0tfHxouuwyNF//owXYQzmbIqTpdu4vJBGNjYyPC4fCOjTHEE9LtdsPpdCp6Ov7Zz36GT3ziE/jOd76Dc+fO4aGHHsK1116LoaGhqOu6kiVZYUIE28TEBKanp9Ha2ora2tqk70NqKwzDMBgaGsLq6uqOQTuVSrUzxiXZJ8fPAIZCIfT29sLlckl2K5D6cyYDUDs+2N/zHoSS8LTLthIwAGB2NsI/MRY6nS5iKtbtdsNms2F9fR3j4+NcX6/FYklbL56QTF0XEK8dhPufPR4P16pEysVmsxn5+fnQ6XSKr7pMFOOyVgDyy6pSe12E8AWgHKVAlmUxNzeHsbEx7N+/H/X19TtemMls50gWtVqNjY0NzMzMRNyPmif+gItL1Pv6ds1aNbnIz8+PWvrgp+zJSbekpCTpQ0IBr3QEAAXYdvzPZjJZViFleiIsfD4fFyw/9KEPYXJyEqWlpfjOd76Dq6++Oqa/XbJ8/etfx4c+9CHcfPPNAIBvfOMbePLJJ/Hd734X9957r2zXSRa1Wo2xsTGEw2FZ3ASkHEq9Xi96enrirnSTK8aRx3G5XOju7oZer0/KrUCKACQr67a2trj+VOIssFtQ6vOFv7e4oaEhoq93fHwcXq8XU1NTcLvdKC0tFb23OFWU8uJT6tr8cjGpTJElCL/5zW9w2223gWVZPPTQQ3C73bj88stlt7xKFOOyUgCS4MMwTMo7aoHXTqtylGT5/XXCjSN80lUCJqPpHo8HHR0dEaf0qB/rf/3XQH+/4vclN3IFO2HpgxhR2+12DAwMRPSoSbU0yb4iUGIyGVSF6PV67NmzB3v27MELL7yAv//7v0d/fz8ee+wxfPKTn8T3v/99vPe975XlWoFAAOfPn8fnPve5iK9fffXVeD4LvN82NjbgdrthNBpx+vRpWQ6uYjOAZKVbRUUFWltbY74+5IpxarUawWAQL774Iurq6rB///6kBIVYAeh0OnHhwgWUlpaiubkZTqcTa2trGB8fh8Fg4MRgvD64aNe+VBH29T7//PMwmUxwOp1cvzV/mESpfmuGYdLWyy0knh2TWPhLED760Y/irW99Kw4ePAi/348Pf/jD0Gq1mJyclOmOxcW4jAtA4RuHbM6orKyMG3ykIocHFulF1Gq1Cfvr0lECJv2Hfr8fVVVVO7wQQ9jO+kWwC8WfksRy2Sc9auQDgTRGx10XhCx4Q0kkkxnAeJAPlTNnznAnZDmxWq0Ih8OorKyM+HplZSVWVlZkvZYUccDfZ15QUICamhrZPvQSCTapK93kiHEsy2JpaQnBYBDHjh3Dnj17kn4sMQKQGEm3tLSgvr6es/QgmS6Hw8HZfYRCoR2+o9lGpoRneXk5zGYzNwRhs9kwOzuLwcHBCJN4OfcWZ2MPYCqUlJSAZVl861vfQmVlJdbX12V9fDExLms+rxiGwcTEBGZnZxXZnJHqaZUIU7F+ekoLQDKVZzKZYDQao1/r4hJ18rJVAdDp9QhqtYAr24uT6UfYo0Y+EPgNvcLGaBKADUYj93MmH0HuM2cy8jykkK0CENiekCspKQEAxXoBhR+gmRziCYVC6O/vh9PpxMmTJzEzMyNrDIl3COZf+/Tp09zPPR6pxjhyzY2NDWi12pTEHxDfT5D4F87NzeH48eMoLy/f8b1arTbCVJn0wYnNDqa7BzBTA3r89wh/CALYTkqQikp/fz9nEk9iZipDidkwBSwn/FWXKpVKkrOJFOLFuKwQgD6fD729vdxibyWmYpL1AuTvz5UiTJUUgMJ1SBMTE/D7/VG/l/H5dvQC6kIhpMegZncj/EDweDyw2Wyw2WyYnJxEXl4ePOubeON73wn+2VAFwKXXA089lalbF002C0CPx6PYCsWysjJoNJod2b61tbUdJ+Z0QPzuDAbD9lq1vDzMz8/L2kYSKwbye+/ItcWQSozjbyc6fvw4Xn311aQeh0+sDCBZg0kGS8R8vkTrgyNTsvzsIBE2mSLbvE7z8/O5Ng5iEm+z2bC8vIzR0VEUFBREWM1IyapleghE7gwgWXWpVGZZTIzLuAAMBAJ4/vnnYbFY0NHRodg2h2QEYDAYRF9fH9xut+SJNDnXLhFirUNK5KSvEvz/3WHskl3wG3qf+++foWRWA0uwHPsKqhGtQKf1+SR5oWUKpXZcyoGSHll5eXno6OjAU089hb/8y7/kvv7UU0/hhhtuUOSasVhcXMTQ0BCampoiBl3kNrCPJtiIy0IyvXfJxjjhdiKv1yvrMAkfIjTz8/Nx9uzZpNdgarXaiOlOkh3k2xmFw2HY7XZJvYOpkA0ZwHjwTeKbmpo4ixS73Z6wohKNTB5Wlbg2sYBRStSKiXEZF4D5+flob2+HyWRSVN1LDaZbW1u4cOECioqKEjrQR0PuDCBZh+T1enecYhNN4wlNWtNjTiM/mWy0fvT2O9GwVYk6TTnebLwCqpLXPkjIz5dvHvv0xz6G0qEhxRujUyWbM4BKu+TfeuuteO9734uTJ0+is7MT3/ve9zA3N4e//du/lfU6sV63fHP79vZ2rsmeILcA5D8ewzAYHx/H/Pw82traksp6So1xsbYTyWXUL8wA2u12dHd3Y8+ePTh48KBsr/No2cGlpSVMTk5yHnr87GA29g6mQrK/p2gWKcKKCum3jLZCMtMCUIkMoNIbqxLFuIwLQGB7HY3SpxkpwZSsdBOeyKUgpwB0uVy4cOECCgsLcfbs2R1iIlHzM+vzIXCxFzAMSPIC3G3GxnLx2A+/g/xRL+oDZdhjqMb1hTcAPLvAkNeBFfci2n9wC7S4uDHg4n9jJ0/i8Kc/zTVGEyNqEtyMRmPW/ExzWQD+7//9v2Gz2XDXXXdheXkZR44cwRNPPIGGhgbFrklwu93o6emBRqPBuXPnovZGaTSamK0dyUBiUiAQ4IbHxJZE4z2eGMLhMAYGBmC323f0GPKNceUSgPPz8xgZGcGBAwdk9XSMhlarRWlpKaanp3Hu3Dm43W5YrVYuO0jKnlIni8WQbSVgsfArKmS1Z7QVkkREFxcXZ/SzSKkeQKW3gCSKcVkhANOBmGDFMAxGRkawvLzMNQoreT0xrK2toa+vD/X19di3b1/UN0CiEjAAwOcTvZw9V/m3O25H/WYV6lXleL2xA2rja4qPZcLY2lzAQmgNc4Ur6HjnjTh89Cpof3BLxGOwAJzf+hbqojRGE+9BILkdnEqQ7QJQ6QB5yy234JZbbkn8jTKyurqK/v7+hOb2yW7uiAV5vOeffx4lJSU4ceJESi03YmOc1+uN2OQkfL2T55/yHt+LcXB4eBhLS0s7zKtFUVsL/eYmfBUVwMSEpGuT/yXZQTJIJtywYTabEZbh9yrl56UzGqEG4H/uuZR9YJUQYnxP0H379sHn83Hm/bOzs1yVy+l0orS0dLuU/8EPQv/YY/ADYBU23FeiB9Dtdqdl1WW8GJczAjBRBlC4ZzNVQ8ZUBSDLspiamsLU1BSOHDkSd0IunabTlxJP/PzHCF5YRp2vAjWGKtxQ9FaA93kR9m1ixT2PebUVS2YHbnrgDtQB6OQ9BovIHksWO/fqChujNzc3o+7gtFgsKRlRJ0O2CkBSIlLSJT9dkADPMAzGxsawsLAgytxe7hLw6uoqWJZFfX09t9ItFcTEOJvNhp6eHlRVVaG1tTXqa42/VziVD9lwOIxgMAibzZZUDNcbjdBi+/2sXVtD0GiEX4KwiBaDhb2DxGYqHA5yRq2hYCjp3kExv8Mio5GLUbrLLoPrO98Bkth0QkiHHYter0dNTQ1qamo4A+X+/n5up/hVN96IYlz8XQFgjEZ4FBSBSpSAla5wiCErBGA6ds7GC6ZkpZvFYsHhw4dl+UWnIgD5lgxiNgCIygAmQbp2GaeTR+64HfVblahDOTqLW6AubgMuagyWZeDeXMRCcBXzBWtoueFyHD/91zgU5/G8FRUwrK1xwzUjf/u3cYOySqWKuYNzcHAw7f1D2SoAge3Wh0wHSLkQHjDFZDblEoD8XkMAaGhokCXrEC/G8bclJfIU5JeAk8XlcqH/osfp2bNnk8psCv+FDoB8BfhIm6m8fAM4KwY2vKN30GKxpGSZQtDwxB+wLZgMt9wCb5ICkGXZtJdiiYGyTqfD/v37tzOswu/B9jCVUjFTiThJegAzSVYIwHQQLZjyTVdjrXRLlmQbm4nZtE6nE23JoEQGcGVlBf39/VxqvqysDGazOWuHGWLx/O9/i5Xf96DeW4Ga/CrcWPxWgOfaEPa7sOaax7xqHfNmKz54/12oASDawW9iAl7eH9mpKagCYrZvbiPcwRnNiJrfPyT3KTSbNoEIyYYTshw4nU68+OKLKC8vx6FDh0T/vLVabcoCkJRfVSoVzp49i2effVa2clYsARgObwsaq9Uad1sS/3EAJH2IXV9fR29vL6qqqrC0tKSYk0Q8Uvnc0Obl49y5c9x7f2VlhesdJGIwWmVATMyPdldyfMJlahewWq2O+ZkojJmlpaUwm80pv9ZZllWsBzDT8S1nBWAoFMLg4CDsdruoICUVfl+L2DcLKZdInVqTM4Mq9D1Uq9VwOByYnp7G4OAgSkpKuKCk5ATT333hq9BgO6u2XGTAhX9/neh/+8Mv/TPqNypQx5ajtbgOhwvfBPAOWu7NRSwGVjFvWEPV64+j6/XvxkGZ7juV03E8I+rR0VEEAgFJtgliyNYMICkBZ/qELAdFRUVobW2VbHScagaQ2K2Q8iu/FC0H0cz1yY5dAAm3JRGSvS/+Af7w4cMwGo1YWlqS9Bh8wkCEn2c6bZyE731imRKtMsDPDiZ6/4c2N8HysoAsAM9HPpL0fZLPmUwKQADwAeDn+VgAJ06c4GKm3W7H2NgY/H5/RMxM5jOLvC7lPihnQ3zLCgGYjhcT2TcJbCtvfpZNiSZ8/qk20QcsP5C1traitrZW8rXkCOrhcJhz5j9z5gz0ej0YhoHFYkFLSwu8Xi/sdjusViump6eh0+m4gBRtbD9Z8nlbNVQAql1eXIjz/T0vP4vJXz2LOm8lavMq8dbiv4Sq9LWfORP0wLo5jznVOuaNq/jAfV9CNYBTstxtJHKWR6IZUZNysRjbBDEwDJORjEkivF4vGIa5JHoAk91ykYp5/fT0NCYnJ3fEEzl3lAvjjsPhQHd3t+RMJ3ksKYdYhmEwODgIq9WKU6dOwWQywePxpHQQ9m5uQmM0Ih+AF9IHC+SswggtU6JlB3U6HViWTfgZ43ruOegvuwwqAN7bbwc+9amk7yvTApBcN7y5CVdDAwocDoQABC7+roQx0+v1csMkU1NT0Ol0EbvexVS0lBKA2dDikn2RXyFIMCVTtYkm8FJFbFlDarkkGnJkAMnJXaVSobOzE3l5efD7/QiFQpxAMBgMXGMuGdu32WyYmJiAz+eDyWRCWVkZLBZLSkM0UV+UfX3A6dPcH3/w5dtR5yhDPVOG+qI6NBW+OSLL591axqJvBXP6VRjP7cPrr//f2Jf0HYlHqf4Yvm1CXV1dVNuEkpISThCKNRjNViNo/pqkXCUZAZhopZvcApA81tzcHEZHR5NupZHSx+z3+9Hd3Q2GYSKyjMnEwXA4zL1n1Wo1wpub8Eh6BOWJlR2cnZ2F2+3Gs88+ywmaqL2DR4/CJ9OARKYFYESsmp2N+7tSqVQoKChAQUEB6urqwDAMFzNnZmY4ey6SHYxlz0Vel0qUgOWuPEolZwSgWq2G0+nE2tpawqlaua4HxB+kSKZcEo1UBeDm5ibOnz/PDcGQwE4ek1hRkCCpUqkixvYBRJh6TkxMQK/XR+zNlHJ6Ek7WAsBigQWPf/nrqPdUoVZXgbcV3wCV+bXHZIJe2LfmMc9aMWdcwfu+cheqAHQk/VNJjnT11AltE0h2lngPajSaiJNurL6ZbC0Bu1wuqNVqWRrhM02yH5ZSBaCYlW5ybihSq9Xw+/0YGBjA6uoqOjo6kl6LJioDWFEB1eYmggYD9H/8I9ra2iLea2L9BMkgA/k58H/GarWa+08KyfyOP3XnncgD0N9YA/zD7aL/HckO+nw+OJ1ONDY2SuodTAXyM9vxfPv6oLuYZQzIYDUTjVSnj9VqNRcPW1pa4Pf7uezg/Pw8AEQIaVIZJIdkuUWvx+ORXO2Tm6wQgEqfJgKBABYWFuDz+dDZ2ZmWspJKpYp7qt3Y2EB3d7csk8epTAGTYY/m5mY0NTUB2H7BMwwDnU4HrVYLhmG4/2IFS/5JKxQKYWNjA1arlVv5w+9fSTSl5WluRtHkJPdnBsCbZmugLTgM8BKLftcqFr0rmNevgT1swg3v/Rs0J/VTkI9MmZXys7MMw8DpdMJut2Nubg5DQ0MwGo1RjaizVQCS/phsvLd0QQSgmNcUeR83NDTE9AsF5M0AMgyD9fV1bn9xKtOXCdtY9HoQOVvq9eL42bM7DO3FCEAi/Mi18vPzuSZ/MrQX7cAr5nUo5RBOepwB4MTMIqyWUvzstk+L/vcAwASDYBgGF/gtTCzAMiGEQ2EwzPbvWa3WQKPWQKXRAqm+nRjA7/dgvuel177W14db/uPXEVYzbplFIBHtcsaD/Px8VFdXo7q6mrPnstvtWFpa4vYWk88rJWJ6OnxOE5EVAlBJNjc3uX4/kkZPF7GC2sLCAoaHh7Fv3z5ZLBmSmQLm+wwePXoUlZWVEUKPBD5+8CMBknxPrGCp1WpRVlaGsrKyiL2Za2trGB8fT3hCLeCJP2A7ZmnH5sAeMsCxOY85dh1zRWt4771fRAWA9qR/cvKTDZtT1Go1zBeNqJubm2MaUZeWliIUCmWlyMqG/hg5SSZLTw6F8bLK/JVu5H2c6DHlyABubGxgfn4eWq0WZ86cSTnrHe/nw7IshLlMHV5zUeE/Bvn+WI/Dr2yQ170wxok58KaK8KdVGgzhRu+1yT2YN8HfMxf/k3OqhXfN0v+4d4fVTN5ll3F9eXKgVBmWwLfnInuL7XY77HY7lpeXEQ6H0dvbyx2i5RCFdApYYciS9b1796KwsBBTU1Npvb5QAPI3jSTlUh8DqRlAspbJ4XDgzJkzKC4ujgh2sdLd5M3H/2ASEyz5ezOjTbeRNxU/7S7k2c3fY7NiHX/1xX9Ek+hnmn6yQQAKiWZETU66m5ub8Pl88Hg8GTGijkU2nI4zDXmfxbJt8fv96O3tRSAQSKu3IDnAWiwW2Voe4lnK9Pf3ixrYiicA+QfXeOU8vsATe+BVojy4m0jHCoKYpWeF4Ntz2Ww2jIyMwGw2w2q1YmJiAvn5+VzvYLIDeFQAXkTuX2q0lW5WqzXtxsb80zbZv0mCdaqbRvhIyQD6/X5cuLA9U0uGPfglEZL1E3tdYbAkJ+xYwVI43ba1tQWbzYalpSWMjIygqKgILTod6oJB7lQZBlD4mQ/gf50R7c6XMbJRAPIRnnRffvllmM1mBIPBCLsJ/kk3E6RrTVI2Q95boVBoRz/fxsYGenp6YDKZJK10S8UxgB9X29vb4fP5sLy8nNRjibkv4mGo0WgQQMQq7h3ZPyC2nQy/xCtFrEU78JL4Jjzwklgn9v0vtJxZ1qjwDd+/wqKxoNhoEnV/pASsTdbFggmDCW3/XMIsA7VKDbVaBY1GC8QS9QwLv9+LfAPv8+uOz+OWO+6NsJoJPPdccvcU61YVzgDGg2VZ6HQ61NfXc3uLidVMKgN42XDIzQoBKCfEcZ9MiBGhJfdaJTGQoEbK0EajMeX9m9EQW17a3NzEhQsXYDabceTIEa4fiIzXp9pgC4gLlvzsoNFohNFoRFNTEwKBAOx2O/ZctOshz0gNeS0WlCTbBaAQlmW5wBWtXE+GeeQyVRVLNpyO5SSZEjAZtuK/d1iWxfz8PEZHR9HS0oLGxkZJr7dk42AgEEB3dzeCwSAXV5eWlmQbKBH+fIilTEVFBQ4dOgSVz4dAWxswPg7U1W3/r4BoO4WjtbUkS6wDL4nxKpUKgUAAGo1mR/uMEO/mJmCxIC8YxGNte7HUehB7lt1YLveCDevx95++M+H9zMzMwOPx4NCheLuKxMHfSGSz2cAwTNTKjNvtxiuvvIIrr7wy4t+733AdNBeHQEIKDIFkcvpY6JSg0Wi4FicASQ3gZcuqy0tKANrtdvT09ET1ocqUACQviqamJjQ3NyvyAhZzql9dXUVfXx/27t2LvXv3AkBSp2Ip9xQrWPIzjvxew7y8vLj7UQcGBlBeXo6ysjLRp6x0s9sEIH8IhL/IvqGhYYepaiAQiDACVzJDd6kJwGThbwMhllHr6+tJt5AkMwTidDrR3d0Nk8mEjo4O7gArl/+o8LFI684OS5mLq95iwS8Bk/8StbWkcr/A9ufK3NwcJiYm0NraGjE0R+4p5iCJzYYAgL8AcPtXPovK6RnsWQfsvlE8cO9t+PTnvxz3HuT2HeRvJOJXZkZHR1FYWBi/InD0KMIK7+LNVKk9UZtDogG84uLiiAE88jpId4xrbGzE7OxsxNeyQgCm+kvlGykfOHAAdXV1Ox5Tzuk3sfcUCAQwMzOD48ePo6KiQrFrJWqgJsMebW1tqKqqSrokkiyxsoP8HhvyPNRqNbxHjqBoYCCiBAwAlZWV2NzcxNzcXIQNSmlpadaYGadjUbqcxJsCFmOqSn7+cv8OsmFPZjZADq4ejwc9PT1QqVTo6upK2h5H6hDI0tISBgcHOZcAfqzYIQBPn4a6rw8qXHzPCqZ040H6mEdGRrC4uIj29nYuwyIVfvWB3Kckzp6Frr9/O5sFgLnoSSmEZVmMjY1xPd0mk4m7Pj/GCqsf0bKDd33uPtx9720oWphA6ZYa7sAE7v7KbfjC5+KLwLi88Y3Qv/QS9zyCIgWaSqWKqMzws4OLi4tgGAb9/f0J+7blhG8CnW6keKUKB/ACgQAXM/v7+7kqy8jICDY3N9N+yL3rrrvwN3/zN9yfs+NTMwVCoRA30EAc4aNBAl86MjTBYBB9fX0IhULYt2+fouIPiD0EEg6HuXV3/GEP8nPI1IkqXnYwHA4DTz+N586dxZnRCYQAPPilz2K/SoWKigo0NDRwpyybzZb2FXWJ2M0ZwHgITVX5RtRTU1MYHByE0WjkfgepZmizYU2SnKTiBehwONDT08OtdEu1VUPMQZhhGIyNjWFhYYHro472WPy4o7ko/oDtD5aQXi9JBE5PT4NhGJw9ezap3z0RVqkebvMuij9ge9rYX1gICEQgMdz2er04ffp0RE+31AMv+d8vfP7LuP/ef4Z/bRzmLTXypidw+1c+h7s+95W4zzkWhovijzyPsNEIJoksHT876HQ60dvbi6Kioh3ZQWGGS04yaVeVyqBTXl5exADe1tYW/vjHP+Kxxx6D1+vFW9/6Vlx//fW47rrr8IY3vEHmO99JcXFxRJVtVwtAKSvdxFgqyHVPFy5cgMFggNFojGnAKyfRhkCIWz7Lsjh79izy8/OTHvZQkljB8uW/fhteHRjY/trFp8YP7OSURVbUkd4VsqKObCRJZ98acOkKQCGxjKjtdjtmZ2ehVqsjsoNS3we0BLz9WgoGg5iamsLhw4dRU1OT8mOKyQAGAgH09vZyvqmxxFiEAOSJP6m43W5sbW3BYDDg7NmzotZzRYO892ZmZlBVVQWTyZTUe1H4L7SIdFAhfeZarRanTp1KeL8JD7y87/vUZ+/Et+7/IlbyplBlA6onZ/D5ez6Be//pG1Gfr5TnoQPgj/svxKHRaNDU1MRlB4UZLr7nq1zZwUxWVuTalkQyqzfccANe//rXo7q6Gl/4whfwwgsv4Ec/+lFaBOB9992HL33pS6irq8M73vGO3SsAyUq32tpa7N+/P+EvKJGlghysr6+jt7cXdXV12L9/P86fPy9bj0w8hAaoZNjDZDKhrbcX6rNnUyuJpBESLPlxOxQIIC8vDxqNhpu24w+SGAwG1NbWora2NmJF3fj4OHw+X0RAknP6Ohq7SQCSDyI5Xg/CPpjNzU3YbDbMz89HrFyyWCwoLi5OeE2XyyWbTdJuJBgMor+/H4FAAE1NTbKIPyBxL/TW1hYuXLiA4uJidHZ2xi3rRwjAo0d3bvARIfptNht6enqQl5eHurq6pMUfOdy2tbVhbW0N/f39YJjtPebl5eWwWCyiDyHC5xHivZ+3trY4A/9ksrH8Ay/52QlNqG+59Z/xq58+jL7JF1C/6EPT1Co+/6UP4+3XvAcdp18n+lrC5xGQdKcxHlMQ33Q6HaqqqrjWoli9g6lmB3drBjAWZNXlO9/5TnzgAx+Q9bFj8fGPfxwnTpyA2WzGyy+/jM9//vPZIQClfGCyLIuJiQnMzMxIWulGXjxK9AHyl68fPnwY1dXV3DXT0XfIF4BEhL7++uvBdQl95CNwA1C5XLtGnPBhGRYnT56MyGLGspmJtaKO+DelsqJO1L3uMgEIyH8gUKvVMJlMMJlMO/pg+vr6IrIEpaWlUfvZ3G436uvrZb2vTCLlNUFERkFBQVLZ03io1WoEg9FMVF7bJiJ2YE1YAg5fcw3UTz75Wg9gnHIjy7KYm5vD2NgYWltbsb6+ntRQg3DYo7y8nLOY2tzchNVqxezsLNeiIGaILPCOd0D3i19srzUDAJcLAGC1WtHX14empibJ09fRIO+7aCbUf/num3Ck9yR+/OT30TTtQNPsFv7zv76Pnldewoc++mnuuce7B+9HPoL8hx6C+uLzYGUY0oh3zWi9g6QyQ7KD0VatiSGTAlCJfelutxsajSblDOkdd9yBO++MPzH+yiuv4OTJk/jkJz/Jfe3o0aPb/oUpXV1GxNgkBAIB9PX1wePx4OzZs5JGqKNZKsgBMSrd2NjYsXw9mQ0dyUBenFNTU5ienkZbWxsn/lTYPgkWAvDuEmECACz72uk1T58fYecDiLeZEa6oIybUZEUd3+pAjr2zu0kApstbK1ofjM1mw/LycsTKpdLSUphMJqjV6oz0AH75y1/Gr3/9ay4jtbGxkdbrA8Dy8jIGBgbQ2NiIlpYW9PX1yRqzosVAlmUxPj6O2dlZUdtECDuGQP7zPyGm3sEwDIaHh7G6uoqTJ09yBrvJbDPiVzb4bS18v8vm5mb4fD5YrVZYrVZMT09zA05lZWUoLS2NPAg+/DCCDz8cca35+XmMj4/j0KFDcZ0KUkFYKj508gTubv8X3H7/Z1A7tYjalSBW/Bfwta/8Ez7x6S8l/nk98AD8Dzwg6z1KiW9yZgczOQTCMIzsrVzEAzDV2Puxj30M73rXu+J+T2NjY9Svnz17NnsEYCKIlx4pTSRTKpA7I8c3Ku3s7Nyh5tOVASSBYH5+HqdPn4bRaIz+jX19iizplputrS0EfL7XRGyU930yJtTCqVbiebe6uirbEvWWv/ormJaXwSq0EF1OyId3Onsko2UJiCgfGhqCy+XCt771LSwuLuLUKTH7H+QjEAjgHe94Bzo7O/GDH/wgrdfmD10cO3aMGxyT+9AqjElkYM3tdqOzs1NS32Uy8Y34CYZCIXR2dnK2IlItZaQ6Gej1eq5NhGEYOBwOrK+vY3R0FH6/H6WlpZy3G9/qJNakr9LwS8Vf+cI3cPuXP4vSmUmUO9TY9E/i/vtvx403voeLdfx4qCTJCjHh+554vgqzg+QgKPwsvdQygHKtuuT7EUqlu7t7dwhA/kq3vXv3pjRRJ1dPnt1uR3d3d9zJPDl9smJBhj0AoKOjg5v0ZXHRQJn3vYbOTnhra4HRUUXvKRVsNhv6+vqg0Yl/aYo1oebbL6jV0VfUWa1WSSvq+BiMRnBv6csug+vtbwd++ENJzz+dpHu9UjSEm2FWVlZw+vRpfO9738Ndd92FH//4x3jTm96Ee+65R3HTVFJKeViQ/VEav9+Pnp4ezmSZn/nk973KAT8GulwuXLhwAQUFBUkdqvkHMDEfkKS/0Gg0RvgJAtLWWaZqY0UGlIj5ucfjwfr6OlZXV7nMFMkMzs3NwePx7Jj0TTd33XYfvnT35xFYHofRo4ZvbgI/+88f46Mf+mRMX1UlBJNcFQ7i+SrMDi4uLmJkZGRHdvBS7AFMZ4XjhRdewIsvvoirrroKJSUleOWVV/DJT34yewRgtBIwKRWsrKyk5AtFkOM0zXfiP3jwIOrq6mJ+r9ICcGtrC+fPn+dOpTqdjhM+nq0t6IuLdywd1y8sQLwxQ3pZWlrC8PAwWltbMdz9bNKPk4wJdaIVdfwhBqPRuDMI9vXt+FkXPPYYPFkuADNlBRQNlUqFPXv24I477sDvfvc7fO5zn0NJSQmefvrpXW8JE+tnvLGxge7ubpSWlu4QRcB2zAoE5Gjf34Zk7cgQXX19Pfbt25fUa0CKAFxbW0Nvb2/M/kKx7TJybvYAtn8vhYWFKCwsRGNjI9e3trq6ypnmlpeXw+l0QqfTJT2kIgf//IV78cDdn8W6bRrlG2pUTk3hG9+/D/f809dE2czIgRItLmKygwaDAQzDIHBxIDCdKJEB9Hg8aV11mZ+fj5/97Ge488474ff70dDQgL/5m7/JHgEoxOfzcTYmXV1dsuwkTVUAMgyDoaEhrK2tcb0r8VBSAAoD6srKCkKhEDQaDfemD7jdMET74Hz964Hf/16R+0oGYlY9NzeH48ePyzr9mawnV6yA1NvbC5VKFZEd1Ol00F52mWz3nC4yeaqOBynPV1RU4I1vfCPe8pa3ZPqWZId/kNy3bx8aGhqifhgoUQL2eDzo7e3ljOFTeSxg5+5dPvwBuXjXSxQrld7sQdDpdCgsLMTm5iYqKytRW1sLm82GmZkZzm+0rKwM5eXlafcbZRgG1/zFX+MPj/8CC/mTqF0NoWFyEZ+7+xbcfONHsf9oW0KbGeHgiVTS0eMszA5ubm5ienoam5ubeO6557jNGmVlZdEP4zKjRAZQrhKwWE6cOIEXX3xxx9ezUgDGW+mWCqkEU1JqZRgmonclHmq1WtbyDbD9BpyZmcHExAQ3BU08kqamplBVVYXS0lLuTcFguxTMR//ii/A98ADw6U/Lem/JQLK8NpsNp06dUvxNIcWTi/zHD0gMw2BrawtWqxVzc3MYHh7Gm264AVrstF3wyDBUoiTZKgAB+XwApUzJpQti0G61WtHR0YHS0tKY3yunAAyFQpidnUUgEEBXV1fKJfVEAjAcDnMm/WfOnIndm4zE24zI+5Nk7JX60Ldarejv70dDQwO3+YT4jZJBkvX1dUxNTSEvL48Tg0r7jQaDQfT29iIcDuOWT/0zXnzmD3j82Z+jac6Fpmk7fvjzB3B25A248Z3vAxD7wButN1pKDEj3kBsZ5iGDOgcOHOAO48RRgH8YVyI7qNQUcDZUNbJKAPLFzcGDB1FbWyv7/sZkMnJOpxMXLlyAxWLB4cOHRb/R5ew5BLbfzOSDg0wck3LIsWPHsLa2hqGhIYRCIc7/qszhgMFshrBwobrjDrAZFoChUAi9vb0IBAI4ffq0LFO4UkiUHYwVLPnThX6/P6L0Sz7C1i0W5I2PZ9cbTIASgU0u5BKAqUzJyQmJY2Slm1qtFrXSjb8LOBWIab5arYZer5eln5K8J6LFOFLBUalUUQfkoj1WNHsa/gFNqb42wvz8PMbGxnDo0KGo9mL8QZJwOMwNkgwPDyMQCKC0tJSbLJYzlpGfpV6vx/Hjx6HVavG6N7wJr3vDm/CZL30MDVOraFj0odv/BKYnR/FJ3g5h4YGX/1+sA288MuVyQA6r0bKDNpsNCwsLGB4eTtyqk+S1d3sGMBZZ8/kUDofR29uLjY2NuCvdUiGZ0zQZQGlpaZHs/SRnCZhMz4XDYS6gksAIABaLBWVlZWBZFi6XC+vr61hYWMDQ0BAuy8+HyR/pAc+muY9CCAlq+fn5OHXqVFbs8k0mWEb7YGMB9P/0p/A8+2zWrKiLRrZmABmGkc0GJpUpOblZX19HX18f9uzZg4MHD4r62cuRASTeoLW1taisrERPT09Kj8cnWowjB+aysjIcPnxY1POMlgFM185yYoOztLTEGeUmQqPRcK8t0rKwvr6O5eVlboiBiMGSkpKk750M6sQynr7/n/8V/3T3p1A1M4MqK+Dwj+Heuz+Hz39h5/q4aNWPRL6qwutlSgBG2wTCt/rZu3dvRKuOnNlBpXoAaQaQx9DQEAKBgKjTYrJICaYMw2B0dBSLi4sxd2EmQspkWzz403NHjx7lGrmjGfmqVCoUFxejuLgYe/fuhd/vh7W/H8X793OZqjAA6/g4zApuRUn0fFJx008HUoLlVnMzjJOT3L+1m0w4c+ZMVq2oi0a2CkCPxwOWZRWf+hUyNzcHu92Oubk5hMNh9PT04Pjx47I8Num7a21tlbTVIxUBGM2gfnNzU/aeQn6MW1pawuDgoOQDs/Bx0iX+iI+r2+1OetJXpVJxjgLE2oh4DhKxTcQi6RkWg91uR29vL+rr6+O6X9zzha/izi9/HkXz2zuEPYEJ3Pnlz+GLt8XeIRyt+iHmwJvpDGA8lMoOKjUFTDOAPFpbWwEoa0orNpiSXZh+vz/uLkwx10tVAJLTe0NDA1paWgC89mYVExjz8/NRU1ODoNsNP8//av1i2YJkDsvLyxUT3nzI6YzfY5PtJLSZeeklOC5+70svvYSjR49CD8RcUTc2NoZAIACTyZS2FXXRyFYBSNYkpTtA3n777XjkkUe4P7e3t8tm5F5YWIjXve51krMQyQrAUCiEgYGBHQb1crelEOFGsmhkkEvqgZn/OOkY9gBes99Rq9U4deqUbP1jOp2OMz5nGAZOp5MzoB4YGIDJZOIEYayqwMrKCgYHB3HgwAHU1tYmvOYXb7sX9979OfjXJmHeUkM3PYF/uvtTuOcLXxV1z2J9VUOhEJfYSGfskOo/GC07SLYR9fb2AoDo7KBSPoDZUJnIGgGYl5cn+8CEEDHBlL8L8+zZsymVJlMpAbMsi9nZWYyPj0cMe8jlf3XgwIEdZYuioiLOKLm4uFj2wMu3eSHr8nYjsYLl6uoqFyADgUCEzQx/Rd2+ffu47GC6VtRFI5sFoFarTcuBhM/DDz+sqAdgMgIjGQHo8Xi2TV612h0VFb7QkuP9TXr3uru74XK5cPbs2aSEOxEVfJsmJYc9XC4Xuru7YTabcejQIcXeB2q1GmazGWazmXvfk+zg5OQk8vPzIwZJ1Go1ZmdnMTk5iaNHj0oS0p//wlfwf+69DSv5k6iyAjWTs/jM3X+P+7/wL5LvGdh54A0Gg1hfX0dBQUHUnexKkmoWTriNSEp2UKkMYDp6jxORNQIwHZDSaSxWV1fR19fHrWGSY9djMgKQ2M2sr69z/ZBK+F/xyxbkhLS+vo65uTmo1Wquh8VisaT0BlDS5iXTkMC3vLyM8fFxHD16FEVFRQltZtK9oi4aSgQ2OSATcrshOywFMesuhUg1grbZbOjp6YnZZ8j/UJfrdz80NISCggKcPXs26SwaXwACylaCSBUiamn1wAHkLSyAARC6mImWE4PBgLq6OtTV1SEcDsNut2N9fR2Dg4MIhULIy8tDIBBAW1tbUm1Hn/z8l/Grn/8bXuz7HzQs+tA0uYqxmjIc2fAm/ZyIm0VfXx/y8vJw4MABANgh2JU0oWYYJrJ0/sY3wvDSS2AA+CXuOI6VHSSCkNh8lZaWwmw2R+0/TBXaA5gBYpmqsiyLiYkJzMzMpOyNxScZARht2IPfk6FUSYR/QmIYBhsbG1hfX8fY2FjcVUmJ4Nu8nDx5Mu19XUpDJtdnZmbQ3t4e0UAu1pMrHSvqopGtGUCXy5UVwTEbIBnARBk7fsWgtbU1ZtmQiL6wDP2/drsdPp8PZWVlaG9vT8lbLi8vDzabDa+88gqXEVOiCrGwsIDR0dHok74lJTBcFNsaANrCQvgUEIEEjUbDve9Jz+nm5iYKCgrQ29vLVWSk+t3d+M734dDBdnz/V9/Gnff9GMRkKNnn5PV6uarYkSNHIn7PYn1VUyVChB06hKKFhdeek9EIt0QRyCdRdhDYnhAvLy+XbbKY9gAKSMdpP1o5hZxstra2cPbsWVkFilQB6HK5cP78eRiNRrS1tUUEf0DZkggftVrNnYD4pWL+qiQxE26ZtnlRGrIndGVlJaq4TdZmJtaKuoGBATAMw4nxaDszpZCtAjBbgmM2ICZjR3wFiZdmPAcFMebNYpifn8fIyAj0ej1qampSEn/hcBgWiwWXX345V4WYnZ3lDkbktZ5qFSLRpK9ekGlNV/6Z7/F37tw5LgsorMjwB0kStSbtP9qG+48+CP19P474ugoAJHjAkink8vJyHDx4MOoGF6m+qsnAj1UFF8VfxHN64xuBp55K6rEjHkuQHdza2sIrr7wCn8+3YwlAaWlp0hnvbIlxWSMA04FQABJvrPz8fHR2dspuIilFAJJhD7KaCZA27KEk0VYlra+vc75i0QJTNtq8yAkp0zscDpw6dUrUEEcyNjOxVtQtLi6m7HuVrQIw3WuS0kWyJWAgdsbO6/Vy78POzs6EhyxyyEh2EphhGIyMjGB5eRkdHR0YHx9PSkyS4QJ+jMvPz0d1dTWqq6vBMAzsdjusVmtEWwQRhFIOPsSQemtrC6dOncqq7DI/ThKPPyB6RYb0Dfb398NsNkcMksRCaE4PAIjicRgNp9OJ7u5u1NXVxZ1CJiR74BVDwiGQOCtZU0Gj0UClUuHIkSPcEgCbzYb5+XkMDQ3BaDRyglBK/KUl4AzAF4BWqxW9vb2orq7GgQMHFPkgFBNo+aUbYtWQLguEZNDpdBFbMciEGz8wFRcXY3l5GWVlZUnbvHz8n+/jtmssPvFH4NbbZX8uyUKsI7xeL06dOpVUZlMoBsnjJgqWUlfUJXoe2SgAs8UkNRvgC0AhZGNSRUWFpEGGZAVgMBhET08P545QUFCQ1GPxhR+5n2iZJSJwDhw4wHmbkoOP0WjkSsVFRUUxYyR/0vf06dNxD/m+2loYeNkl5ba4b0MGUUpLS+PGSX5FZv/+/fB4PNwgyfj4OAwGA/ezIoMkBP/ZszDwVoAxAPCe9yS8NxJTWlpaUF9fn9TzS+bAGwt+Cdjz9rej6LHHXvs7AFBo5zr/kKxWq0X1DibKDpI2n2xoh8oaAZiuEnAoFML09DQmJiZw6NAhSZ5cUkmUASRZpLW1NcWGPZREOOHm8XgwOzuLubk5sCwLp9OJyclJrlQs9gNKW1jIvTBVAGpdHngVexbSIOUahmFw8uRJWZbD8wMMID5YJlpRZzQaOTEY7UMyWzOA2bImKRsgE+T81wDLspibm8PY2BgOHDgg+QM6GSsYUgosKiqKcEeQ2ubCtxch/z4RUb1NL65km56eRl5eXkSpmDwmEVgmk0mcIfXoKLwPPADNHXcgrFIBLpfo5yUVh8OBnp6ehB5/0SgoKEB9fT3q6+sRCoW4TCkZJCHWXmVlZcj//e/hffRRaD7yEYQBQET/3+rqKgYGBmJuREmGaKViKSbUEbHqhz+E6xOfQN5llyEIgE2h/y8R8VovhFla0jsozA6WlZXt6GdVugT85S9/Gb/+9a/R09ODvLw8bGxs7Pieubm57BGA6cLj8WBmZibCG0sp4gXHQCCAnp4eBINBrnSTjmEPJdnY2MDS0hIOHTqEiooKrlRMfJfIerpE2amoL8q+PuDoUWVuXCSBQAAXLlxAXl4e2tvbFZugFevJlWhFHTmdzs7ORtjQlJaWQqvV7pysyxIu1Qxgsu9nvgBkmO11kOvr6zh58qSorRVCpGbthO0p/OchRQCmXNn4x3+E7sEHkQcg/+xZ1Pz+9xEr2fhrMA0GAxYWFtDQ0CBNYH360wgrvCJzdXUVA//+77jmC1+AGkBAqwWczqQeS6vV7mgRsVqtES0iZZ2dKF9e3hYhCR5vYWEBY2Njki1o1BcP7SEATAKRGatUzN/5zP9e8hqL+B0ePYqAgsKPILZKolarYTKZYDKZuPhLqjM9PT1cdjA/Px8FBQWKC8BAIIB3vOMd6OzsxA9+8IMdfx8Oh3HdddfljgD0er0YGxsDwzC4/PLL0+IxFis48k/TJ06cyNiwh1zEsnmprKxEZWUllw0UmqGSU7sw28MA2CGtMiz+yCSc0WgUvd5KDpIJltH6qZxOJ2w2G6ampjA4OIiSkhKEw2EYjcaMufvHIlv6Y7IFEh9IvxjLsqL2CMd7PDGijb+bnbSnCBErAPmHmKTEX18f9A8+yAkY/YsvwveBD0Dz8MNctuvgwYNwuVyYmJjA7OwsgO1SJrG0ygZrobm5OUxMTODNF8UfsD184issFJWdi4dKpeJaREiJkmRK+YMk5eXl3CGQEM/NIBE6XsVGAyBYWCjJbibegZfvQUi+rvROaD7J2iXl5+dHzQ7+8pe/xN133w2GYfD9738ff/VXf4WTJ0/K/nzuvPNOAIjpa/q73/0OQ0ND2SMAlXxjOhwOrhQQCoXSZjCrVqu5rA15fmQ9EH/YI13LzpVAjM2LSqXiTkctLS2cGer6+jpngkwCU8wJxgxmABNNwqWTeFN38Ty5SKme/PxtNhtmZmawtLQEm83GZQezYUUdLQFHotFo4HQ60dvbC4vFgsOHD6f0OxJjLk0yjVarNW61RIwAlKWtpbMzInulAqD5xS8QFnzArayswOl0oqOjAwUFBVycmZqaimq6nC74U8gdHR3gX1kFIB+AP8a/TZa8vLyIQyCx9hofH4fX64XZbOYqMgsLCzHdDBIhfCWSTGAyCA+84XAYo6OjCIVCKC4u5l63/Nim5O9Rjj5pfnbwU5/6FN785jfj7NmzmJ6extVXX42Ojg78/ve/l+mOxfHCCy/gyJEj2SMAlYLYFRw4cAAmkwkvv/xy2q7Nz9qo1Wqub4f0HmbzsIcYkrV5EZqhko0Y/f39YBgGV0f7RxkSf1In4dJJoqm7WJ5cZEWd3W6HyWRCYWFhVq2oc7vdSZngZjvJvnbC4TDGx8exf/9+NDQ0yGJQH08A+v1+LtOYaLI4XjZRzLCHaEpLAbs94kv8ZxBr0pe/ipFvukysZ0j2UG4HCD5ETDudTu7ehNO58iwcjE00ay8ijkdHR6FSqbBnzx4Eg0HJvcHk3lUX/79cz4VlWYyOjnL2Rnq9XvSBVy7k8MsUQrKrP/3pT6HT6bC0tCTr44thZWUFlZWV2SUAk7FJiAXJTK2srKCjowOlpaXweDyyLkJPBHkhhkIhTExMYHV1levb2e3iTy6bF41GE9HDsrm5iZF/+iccvuceLkAG8Jo5cDp/TnJMwqUTqZ5c4XAYWq12x4o6MmE4MTEBg8EQsaIuHVkTt9uNpqYmxa+T7ZAY5vP50NDQINvqqHiibXNzExcuXIDZbMaRI0cSfviRDR5Ckhn2iMv8PMKFhVy2iT/Q4Pf7uSn4WJO+fNNl0itHSqNDQ0MoKSmJaEmRK84Eg0H09fUhFArh1KlTXPUpACAPr4mmwB13yHI9sRQWFkKv18PhcKCwsBD19fVwOp3cIVyKOPYXFkLPK/n6jcaU748MSBLRzD+ESD3wpnofcgtAj8cDnU6H/Px8qNVq0Z8td9xxB1fajcUrr7yCkydPino8lUqVXQJQLsjofygUQldXF7e5gpRk0zX9SK7B3+xxKQx7bG1tobu7GxaLJWmbl2hwJpy33QbfbbfB9/3vw1pdDWt1NWwvvZTWEo4Sk3DpJFF2MBgMRu2rEU4YkhV1w8PDCIVCMJvNiq+ooz2AkTHMbDZL2r6TiFgZwJWVFfT396O5uRlNTU2i4pJard6xqk7o7ydXfAu43dutIH19nJUJf9L30KFDoj6s+b1yzc3N8Pl8WF9fj9jPS8RiKoce/iG5o6Mj4pDMuN3wCZ5LOuG7GZw6dQo6nQ61tbXcIdxqtUZMs8a13Flbgw8AHn1UlufCMAz6+/vh8Xhw8uTJmC1bUg+8yfweldAKySYzPvaxj+Fd73pX3O8Re0isqqrCSy+9dOkJQFKyM5lMOHnyZERAEJZklcbj8XDXJffCT1vvtmEP4LU9mg0NDaI/JJJFf/PNqAVQC3AlHKHdATm1y1nCSXYSLpvhB0DSVxMMBrlhEOH3qdXqjK2oy/UpYBLDSBauv79f1sqFMAPIsiwmJycxPT2NY8eOoaKiQtJj8ddrKl7ZOHqUawchsaiurg7Nzc1JX0uv1+9oSVlfX4/IhpE4I3ZqXpTHH++5pJN4bgb8TRhkmpVUBGZmZqDVaiMGSSIEtwziLxwOo6+vD36/Hx0dHaLjOv/AK8VXVcz9KCUApUIysnLQ2dmJL3/5y9klAFMtAS8tLWFwcDDmCZbfWKr0Zgoy7AEAra2tXOP1bh32ALZ/vsPDw2htbY06Eagk/BIOmfZbX1/HwsKCuFOqCFKZhNstCPtq8vPzRXtyCVfUEZuDgYEBsCwbYYKayqBVtpikZoLFxUUMDQ2hpaUFjY2NUX0AU4WfAQyFQujv78fm5mZSqzD5QyDp9DBdXFzEyMiI7LEoWkvK+vo6ZmZmMDg4CJPJxMWZWB/ixOMvVWGqBFLdDPLz81FTU4OamhowDMOtpRwdHYXf7+cGSaTuiI8G2YccDofR0dGRtEVVsr6qse5J7hIwsYBR8nUxNzcHu92Oubk57ucKAC0tLSgqKsLVV1+NQ4cOZZcATBayk3V+fh7Hjx+PmbUhQUnpPsC5uTlu4fjw8HBE+W03lnxj2bxkimjGsOTUTk6pUneIJtrreynAsmzE+rp4fTWJbGZ0Ol2EzY+cK+rIKrhcgmEYjI6OYmlpCe3t7REnfbkFIMmSEDGg1WqTXoVJxGS62lpYlsXExAQWFhbQ3t6O0tJSRa4DRGbDorkXGAwGLs6QUjFpHTlw4ABqa2sVu7dkIG4GFRUVOHDggOTfkVqt5t7T/I0kZEd8QUFBxI54KUkOsmVGpVLhxIkTsiZoUjGhVqoHUOn4dvvtt+ORRx7h/tze3g4A+OMf/4grr7wSGo0Gv/71r3e/ACS9DF6vF52dnQlTq3IHUz4Ms70nk4gIs9nMldp2q/gTY/OSaYSed8QYdmRkBIFAIGKHaLS+NdJwvLGxIXqv726D31R98uTJmP17yZpQC1fUxVqRlMgEPJvWJKULYgofCAS4FWt8yAYjudBoNPB4PHjhhRdQWVmZUh8vOVAL7TmUIBwOY3BwEJubmzh9+nTa+0T57gWhUIhzL+jr6wPLsjAYDHC5XDh8+HDW9Q3L7WagUqm4HfH8igAxDWdZNmJHfLzDRTAYxIULF6DT6XDs2DFFbaik+qqGw2HZzfLT0eLy8MMPx/QAJNTX12eXAJT6oiQnmsLCQpw9e1bULyqZNUhi4O/JPHv2LAwGAxiGQV5eHvr7+1FRUZFyU3G6SdbmJZPwT6nE7mB9fR3Ly8sYGRlBUVERJwaNRiPXcEz2+qbLIzKdMAyDgYEBuFyuuE3VQpI1oY61IknsijqlXfIzRbT4RqZuS0pKYmY+tFot/H75XOJcLhesVisOHjyI+vr6pMUAy7LIy8uL2ElcXl6uyHuIiGQACXf6pgOtVstlwInNy9raGvR6PQYHB7G0tMSVijN9oEyHm4GwIkBK57Ozs5zxPBGE/Pe83+/HhQsXUFBQgLa2trR/NiYaJPF4PCgpKUEoFJLNZiabfE6zSgBKYW1tDX19fVHXE8UjkQdWMrjdbpw/f54Tovxhj5MnT3IZqf7+fu5kRAw4le5FTBa5bF4yiUql4vrW+JkpvjM+sB3MOzo6Llnxx5+oS+WDM1kTauGKpHgr6jQaTVoF4MzMDL70pS/hD3/4A1ZWVlBdXY33vOc9uO222xQXGcvLyxgYGMDevXvjZmXkqlrw+z/NZjMaGhpSeizipXf27FlYrVbukFVcXIzy8nJUVFTIYqnicrnQ09PD9a1l2qicD9/j7+zZsygsLITX68X6+jpnuswvjZpMprRWgVZWVjA4OJhWNwNh6dzn83GDJFNTU8jLy+PKxFNTUygpKUnrdqVY8A+8LMtyFkwHDhyQ1WYmmw64u+5TnfSjTU1Noa2tDVVVVZL+vdwlYLLrr7a2Fvv37weACP8rnU4X0VTsdDqxvr6OyclJ9Pf3o7S0FBUVFTHLk6nAX9ETAhAUuZ5HKZuXTMPPTHm9Xpw/f54rbf75z3+WtaE5G2AYBr29vZIn6sSQrAm1sFy/sbHBrah75JFH8N///d/wer3cTmmlPyxHRkbAMAweeughtLS0YGBgAH/zN38Dt9uNr371q4pck9+zLGbqVo6YxW+VaWxshMvlSvqxhMMe5JDV2NiIQCDAiZ/p6emULVXsdjt6e3uzcqCCePwFg8GI6oHBYIiwUhLuRE9XAmB+fh7j4+MZdzPQ6/URhtwOhwMrKysYGhoCsO1JuLi4iPLy8qyoMrEsi5GREdjtdpw8eZKr5iWymSH/PxHZlAFUsXI5L8tAKBSKG+jIxJrT6cSJEydgTMJw8oUXXkBTU5Nk4RgNMuzR2trKeShJGfYg5cn19XU4nU55T85FRTAIfrXe7YvG/WfptHnJFET88U+efGf8jY0NFBYWRjQ0i/45fOADwK23Znx3cTgcRm9vL4LBIE6cOCF7H0s8hMGSH2LiTd3NzMzg0Ucfxf333w+DwYCKigp88IMfxO233562eweABx54AN/97ncxNTUl+2O7XC5OiLW3t4vKBCwtLWF+fh5nzpxJ6pputxsXLlyAwWDAsWPHsLKywpnSS4EclsT2+xHrprW1NVitVsnVDzLpe/DgQdTU1Ei6V6XhV0iOHj0qSsjxEwDr6+vweDzcobO8vFy2QyfLspiensbs7CyOHz+edW4GpGJWXl6O2tpaTiA7nU4UFhZyrxFJcVcmSObPbrejo6Mj5u9EeOAlMU5MdvBzn/scAODb3/62Mk9CAlmVAYz3y/Z4PJx3UVdXV9LZDDlO02TYY3l5mdsywm+QFzvsQZpolTg550XR9QYAocLCmJnATNq8pItYk3DChmbS4E36jhJ+cD3wAPR33LG9veQXv5CUcZUboZ1Cusv3ibKDsQZJGhsb8cEPfhD3338/lpaW8OKLL2JzczOt9w5sN8wrMV0aDAbxwgsvSOpZBlKLWVarFb29vaipqeFe78m0wQg3e4gZ9hBu3xBb/SC+hPPz84pP+iaDKI+/KPB3ou/btw8ej4eL+cRXk/y8khU/2e5m4HK5cP78eVRXV6OlpYVzdGhsbIwZd8kgidKHWL74izcoB+xsh5FiM+N2u1FZWancE5FAVgnAWJAy6549e3Dw4MGUSpKp9gDyhz06Ozu59DD5cEt20jcvL4/zW+KfnJPtGwyoVDsygMD2LzzY1xeRoco2mxel2NjY4Py54vVc6XQ6VFVVoaqqCgzDwOl0clsC+vv7I0rFpME7j4i/i2gBBJV/SjsIhULo6ekBy7Ky2ykki5Rg6XK5kJ+fD6PRiDe96U1pv9fJyUn8y7/8C772ta/J/tg6nQ6tra0oKyuTFCOSmQJmWXbH7nH+40kZhJPD3FkofoTDWaT6YbFYMDMzw+30zZZeKYKcHn8FBQVoaGiIOHSur6+ju7sbKpWKizFiY362uxmQgaf6+vqo1SV+3OUfGKanpzEwMKDYuj5AmvgTItVmhvYAioRlWczOzmJ8fJwrs6ZKKlPApJRSUFCwY9gDkM//KtmTcwQuF0K8HsAIeAJwN9i8yEGyk3BqtRpmsxlms5k7tZNSMf/UfkTBexdLKBRCd3c31Gr1Dof/bCFRsBwcHOSCZio9i3cksTdzaWkJb3rTm/COd7wDN998c9LXjgfpBZaC1AwgEQJra2ucHVWyj6fUZo9o1Y/V1VVMTk5CrVZjz549CAQCadvaJAYlPf6iHTqJ3yCJ+fH6k8kGDZ/Pl5VuBhsbG+ju7sbevXtFDR8JDwz8HeWTk5PIy8vjfh5mszmlWJeK+BMSrfrB/y8UCuH8+fMwmUxJX0NOsqoHkGEYBIPbeRPi+WSz2dDe3i7bD6yvrw+FhYVobm6W9O9IFpKUUsg9yrbsXCSS+wbNZhj4q5oA+C6WJvk2L+3t7VnRgKsESk3C8b3AWk+fBr+tl/9zTgfp9NJSitHRUVxzzTU4efIknnjiiZQei3xYxKOxsZF7zS8tLeGqq67CmTNn8PDDDyv2fiaeoFLY3NzEyy+/jDe84Q0JvzcQCHC7x9vb26OKBbK95Yorroj7WOnc7OF2u9Hd3Y3i4mJUVVVxv79scU2Ym5vDxMQEjhw5ImlVnhzE6k8uLy+H0WiMyPq3t7entd9XDMQmaN++fairq0v58fhrQa1WKwKBACwWC1culvI5Jqf4E3Pft912G/793/8djzzyCK677jrFriWWrBSApMEWgOzCZHBwEDqdjpvYFcP8/Dy3dogMe5DyVSbNnfl9gzabLXbfYFkZ8r1eMACCL7wAHD2aVBPzboRMwrW1tSk6CceyLEIlJSgKh8EA+M2XvgTT616XcG2UHASDQZw/fx75+fk4duxY1mRMpDA1NYU3velNeOc734mvfvWraX0Oi4uLuOqqq9DR0YFHH31UUfGcjAB0u9147rnncM0118T9vq2tLc5T8MiRIzHf0yQbc9VVV0X9e6nDHqlCJn1ra2u5vjByH8KhCSVdE6JBNo8sLi7i+PHjGc/cBINBTgzabDbuZ6XX63HixImM+yMKIUbZBw8eVKSvnGVZztfSarXC6XSiqKiIi7vxthClU/yxLIs77rgDjz76KJ5++mkuiZRpsk4Arq2toaenB2VlZTh06JDswXh4eBjA9n5eMffDX89Ehj2yca0bORWRYMkwDCcGhSfnS9XmhQ9/Ek7ODLJY+CULu90OvV7PBSU5zcADgQDOnz+fMSNVOZidncWb3vQmXH/99fjWt76V1uewtLSEK664AvX19fi3f/u3iHgjh1OAkGQEoM/nw9NPP42rr7465s9mdXUVfX19aGpqStibFi+jyC/JA8qLPzJ4JmbSN1b1I5X93/Hge/y1t7dnjXUHwe1249VXX4VWqwXLsvD7/SgtLeXiTKYrOqRkfvjwYUXeS9EgXq8k9qpUKu7nUVpaymVH0y3+7r33Xnzve9/DH//4Rxw+fFixa0klqwSgw+HAn//8Z+zbtw8NDQ2KBJ6xsTEEAgEcORK/a4vvm9XR0YGCgoK0lkRSIdbJuby8HFqtFiMjI5e0zQt/Eu7EiRMZ72sMh8NcUCLinF+ySPbU7vf7cf78eRQVFeHIkSO7UvwtLi7i6quvxtVXX43vfve7aX8ODz/8MG666aaof6dEaExGAIZCIfzP//wPXv/61+8o7yXji+p2u/HnP/8ZV1999Y7HIodbOTYexIM/6Xv06FHJg2eBQABWqxVra2vxqx9JQtpjgsEg2tvbs66nTuhmACBiqphkwvhbj9IZ65eXlzE8PKx45SUe/AE+8jloMplQVlYGp9OJzc3NHTvR5YZlWXzta1/DN7/5TfzhD3/AsWPHFLtWMmSVAGQYBlarFSUlJYpdY3JyEm63G0fj+LR5PB6cP3+e880iJ6x0lUTkhpycFxcX4fF4YDAYUF1drdjJOZPwJ+FOnDiRdZNwLMtia2uLC9Qul4tbk0RKxWJ+Hz6fj/MyPHTo0K4UfysrK7jmmmtw2WWX4fvf//6u7FuUSiKv02iwLIsnn3wSV155ZcSHVTgcxsDAABwOhyRfVK/Xiz/96U+45pprIsqt6apshMNh7j0q1gsx0eOJrX6IIdvbY8S4GfC3HtlsNqjVau5nQjbuKMXCwgLGxsZw7NixrHKUIBtaZmZm4Pf7odfruXYCs9ksewxlWRbf+ta38MADD+B3v/udZN/NdJBVr2yyQkZJEk3A2e12dHd3o7q6mvPNysSwh5wUFBQgHA4jEAigra2NK7XL4TeYTWT7JByw/Ro3Go0wGo1obm6OuiaJ/D5iBSWfz4dXX30VZrM5LdsylGBtbQ3XXXcdTp8+nTPiL1miefcRkaJSqdDZ2Snptc6fUCRrr9Il/gKBAHp7e8GyLE6fPi3Le1SMawL5+0TZHuLxR95b2RYPSU9dIjcD4T5uso50dHSUKxWT7KCcGbC5uTlMTk6ivb096wyo9Xo9tra2oFar0dXVxQ3XDA4OIhQKRVRlUn1dsiyLBx98EPfddx9++9vfZqX4A7JQACpNPAG4sLDA9aPU1dVF9MNkc8k3HrFsXqqrqyNOzv39/SmfnDMJ8WcEgJMnT2bdJFwsoq1JWl9fx9DQEILB4I6g5PV68eqrr3L9m7vxNWm1WnH99dejra0NjzzyCBV/IuDHLTLEUVZWltQOVfLzJgvuMzHpe+TIEUV+77H8BldWVjA6Ohq3b5Dz+HM40Gw0QpVl4i9ZNwO1Wg3Lb34Dy3veA5ZluZ/J0tIS58FIKhDFxcVJvwamp6cxMzODEydOKJ7IQV/f9v+K3LjEsiyXdSY9f4WFhZwtk8vl4qpkQ0NDMBqNXNyVWj5nWRY//OEPcdddd+HXv/41zp49m8wzTAtZVQIGtvualCTaWiWyJJ1Melkslqwd9pCCFJuXeH2D2dBQHA+/34/u7m7k5eXtWgsUIfygZLVasbm5icLCQvh8Plgsll3b8+dwOPCWt7wFDQ0N+PnPf551U4tKEw6HJZs6A8DTTz+NY8eOwev1YnBwMKU+aVJSvvzyy7mff6YmfdNJvL7BQCCAoaEhXHv99SDvqnRbOcUjaTeDkhIYeK834TpQ8jMhpWKtVstlBsWWikk/58LCAjo6OhTvuc4vLOR+RwwAf4LfEV/8dXR0JPwsIz8Tq9XKlc/5G0niJUZYlsWPf/xjfPrTn8Z///d/48orr5T25NJM1gnAQCCgSPM1YWVlBVNTU+jq6gLwmkjyeDw4ceIECgsLd82wRzxS7WNJ98RdskTb63spQrITOp0OgUAgqUCdaZxOJ66//npUVlbiP/7jP7KyRK80yQrAZ555BkajEVarFceOHUupsZ5lWTz11FM4ePAgKisrFc/0k0lfJQyUk4Vf/VhZWUE4HMbrb7wRwjlfPwAmgyIwVTcDfWFhxIaieKKWXypeX1/n/PVInIn2fuUP3HV0dCi+4UJVWAihfIu3416q+BPCMAw2NjY4QUj2N5OMKb/HnGVZ/PSnP8XHP/5x/OpXvxLl25lpck4Akj6Iyy67jNsvnJ+fj+PHj+/6YQ+C3DYv/FOi1WrNmr7BWHt9LzWE+zNZluUCtdVqVbSnRy62trZwww03wGg04r/+67+y8h7TQTICMBQK4emnn4ZGo0l5PRqJb1NTU1hcXEQ4HEZZWRkqKipkb/vgr5hMZtJXaYjH38LCwnZG9cABCPPRmdzpLYebgSGKdY1XxPOJVoEQJgEAYGRkBFarlXPKUBpdlO1WQQChKM8pVfEXDf4mKIfDAYPBgI2NDTAMA7fbjX/4h3/Az3/+c7z5zW9O+VrpIOcEoN1uR39/P9ra2tDd3c3tFxYOe+xW8Wez2dDX16eYzYvcE3cxef3roXvxRTAAwlHe3KQPqr6+Pu5e393O1tYWzp8/H3Pij/T0kKCUafuHaLjdbrztbW+DRqPB448/nnV+aumEv+1IDOSQ6vP5sH//fklrDIUQ8ceyLPea2NzcxPr6OtbW1uD1ermDREVFRUrleeKhJ9ekr9zw3QI4j78HHoDhjjsivm+4rQ2r3/xm2qsfcrkZ5BUWgl8bEFMyjYbf748oFefl5UGtViMUCuHkyZPpe09/4AMw/OIXEV/y/u3fAoLd3UqIPyGhUAh2ux2PPPIIvvrVr8LlcqGrqwsf/vCHce2116Z9Y0wyZJ0ATMYnSwpOpxMvv/wyAODAgQOor6+/JPr9gNdKLa2trYq4rgtRrG9wzx4YNje5PwqDFpmEk2u1ULbCX56+d+9eUf8mmv0Df5VWukvFXq8Xb3/72xEKhfCb3/wm64RAupEiAPmOBC6XC5WVlUkJQLLZI1FbC2n7WFtbw+bmJkpKSlBRUbGj1JUIMunLMAyOHz+edaX+uB5/x44hf2ICAOAvLUVgcjLt1Q++m8GJEydS/vnpLorAMOTJZpKBO5fLxU2n80vFivf1NjUhf20NAOBvaQF6eyP+Oh3ij88TTzyB973vfbj99tsRCATw+OOPo62tDT/4wQ8Uva4c5JQAZFkWAwMDWFxcxKlTpy6ZYY9sKbXI1TfIb/IleC+usFNqr2+24XQ6ceHCBTQ1NaGxsTGpxyD9K+TDy+fzwWw2x10qLyc+nw/vete7sLm5iSeffFL5ycBdgFgBSNZPEkeC7u5umEwmNDU1Sbpesps9/H4/1tbWsL6+Drvdzk1MVlRUxH0vp2PSNxVS6Y1OR/WD72Zw/PjxrHMzIOLU7/fjxIkT0Ol0XKl4fX0dW1tbMBqN3M9FrK+pXLAsy21vOXnypOKHj//5n//BX/3VX+H//t//i3e/+93c18PhcNa99qORMwKQnPpcLhe8Xi+uueaaS87mpb29PeNbLwip9A3GEoDzZjPGx8dx9OhRlJWVKfsEMggpbzc3N6dU8hMSbak8yQ6WlJTI+vr3+/14z3veg9XVVTz11FNZ5wmWKViWRSAQiPn3DMNgZGQEy8vL3PpJAOjr60NBQQFaWlokXUsOD1P+/lmr1QqdTsdlBs1mM/e6cTgc6O3tRXV1Nfbt25d18dTtduPChQuyePwpUf3w+/24cOEC9Ho9jh49mnUCIhwOo6enB+FwGO3t7VHFqd/v514npFScyNdULtIt/v70pz/hne98J/71X/8V73vf+7Lu9S6GrBOAyTjlJ4I/7NHa2ornnnsOb3jDG3Z9v58Um5dMEu3kHLfx/PWvh+HFF7k/MgCG+/szttc3nTgcDnR3dyte3g4GgxE7MwFElIpTyWYEg0G8733vw+zsLH7/+99nXfN/JoknAEnplGRX+GXXoaEhaDQa0UvkyeE2HA7Lerjlv5fXLpbhyIrJ+fl5HDx4MGsmffmQ7Rm1tbUJdyUnQ6rVj2x3MwiFQpzxOBmYTAT/tWK1WjmzZSVKxUT8bW5uoqOjQ3Hx9+c//xlve9vb8LWvfQ0333zzrtQPQA4IQPKBWlVVhYMHDyIcDuP3v/89urq6YDAYdq34y/Z1RbEQfXLu64O6sxNhnQ5jL72UNXt9lcRms6G3txcHDhxATU1N2q7LsixndUB+J/xSsZT+r1AohA996EMYHh7GH/7wh13RCJ1OYglAMtFeVFQU9f08OjqKcDiMQ4cOibpGOtpayOtmfHwcTqeT6zcl67WypXy5traGgYGBtPUMS61+kCn/ysrKrHQzCAaDuHDhAnQ6XdI+q7FWYJIYk0qpON3i76WXXsKNN96Ie+65B7fcckvW/b6kcEkLQOLqvX//fjQ0NIBlWe4k43A4YDKZuL6WbM2eRUNum5dM4vF4uF4j4cm5oKAAw8PDWbvXV07IYMvBgwfTMsATD2J1YLVaYbfbUVBQEFEqjvV6C4fD+Nu//VtcuHABf/zjH1FVVZXmO89+ognA9fV19Pb2or6+PmbpdGJiAl6vF21tbXEfP50epmRS1eFw4Pjx4wDAvZddLhfMZjNXKs5UfCUGykeOHMnIYSRR9YOsnstWN4NAIIDz58/DYDDg6NGjsn3WkBWYpMc02eGadIu/8+fP4y/+4i/wxS9+ER//+Mez7vcllawTgMkapfIh/knz8/M4fvw4ysrKdpyK+U3ODsf/396dx0VZrv8D/yACiSLIrhiLioWIAoOZllu5sc7gUtbJtFPq+Xk6ZR0rW9VSy2Mn+7Zompa2l86A4L4AUqa5IQGKW7IJDKssw8Bsz+8Pv8/zHRBkgJl5npm53q+Xf5yx49wK3HM99/K5auHi4sJNVkK+qWjqmBc+tU2lZxgG9vb2CAkJgZeXl0UXundTWVmJP//8U5AXWzQaTautYvYDjP3FrvJotVr861//wokTJ5CRkWHWFUxLw3Y7YhgGBQUFuHbtGkJDQ+9a+N+4cQN1dXVcodUWe9PXXBmmnd30VSqV3Px669Ytbn719vY2S2QIm/HHdncSwrERhmFQX1/P/bs0NTWBYRj4+Phg+PDhgluEaG5u5lalTdl5SKvVcnMMWyTrbxV3tJJs7uIvOzsbsbGxWLFiBV555RWr+Oy1ugJQo9Hgzz//RGNjIyIjI9GvX79Ot0Tatgjq06cPl4UlhBw1lrljXviiVquRlZUFjUaD/v37o7q6uvNzgxaqoqICOTk5GDlyJHx8fPgezl2xH2DsaoZCoUB2djbq6urw119/ISsrCxkZGQgICOB7qIKmUqmg1WqRm5uL6upqg3qnFhUVobKyEiKR6I7fM9ZlD0M1NTUhKyuLKww62xJUqVTc90x1dTXuuecerhg0xfyqvzLJdncSmvLycuTm5sLHxwfNzc2C67bEnklkL8yYayztzTHsVjF7q5j978xZ/OXl5SE6Ohovvvgi3nrrLcHUBD1lVQWgUqnkziqwV+jZw9Bs+GlnXzh2xaOiogJVVVVcyy1vb2/eul4IJebFHNq7Cdfek7Ol9Cm+G7lcjtzcXISFhVnkWbnm5mb8/PPPeO+991BWVoaAgAAkJiZi3rx5rXptk9YaGhpw/vx5MAxj8OWtmzdvoqSk5I5/V1Nd9uhIT2/6svMr+wFvb2/Pza/GuCV614w/gWC3pfXTDNrufujftDb35w57W9rLy4v3M4lKpbLVVnGfPn3g6emJxsZGNDc3m+W2b35+PqKjo7F48WK8++67VlP8AQIsALualM9iL3v4+PggJCQEdnZ23cq/ajuWmpoarvBgGIabrMzVf1WoMS+mYOhNuKamJu4WItv5Qn/73hJ+QMvKynDp0qWuN3cXEJ1Oh7fffhu//PIL9u/fj6KiIqSmpiIkJAQvvfQS38MTJJ1Oh2PHjsHV1bVLOXlte5gD5rvswSorK+POVBvjMgXbe5adX3valq6lpQVZWVlwdHQU5MU4Q/v6djk1wYjatp0U0lzKPjxcvXoVSqUSvXv3bpVcYIpLR1evXkV0dDSeeuopfPDBB1Z3DMkqCsDS0lLk5eW1apVk7C0R9sYbO1mpVCrum89UN94sJebFGLp7E669J2e+V2w7U1paivz8fIwePdpiV3MZhsF7772HHTt2ID09HSEhIXwPyWKwF2u68uFaWVmJ/Px8TJgwAYB5L3voFy5hYWEmyeBsu8rPtqVjH+w6iwwxZsafKXS3r685dz/YzkMdtZ3kG9vIoaGhAZGRka0ukigUCri5ubW6QNhTN27cwMyZMzFr1ixs3LhRcN9TxmDRBSDDMLh69SqKioruuOxh6JZvd7CNsisqKlBRUQGFQtFqsjLGkrSlxrx0Bxt83NOLLXw+ORuqpKQEV65cQXh4OBfya2kYhsH69euxefNmpKWldXozlbTWnbD7mpoa/Pnnn5g0aZJZL3u0velrrh0IhULBFT36bem8vb3v6GBj6oy/njJWX1/AdLsf7Bzck85DpsT2lm5oaGj3zJ9SqeTm/draWoOTCzpSVFSEmTNnIjo6Gp9//rlVFn+ABReAGo0GOTk53NOAIZc9TIWNMmnbQ7O9ycoQ1hTz0hlT9fUV4rnB4uJiXLt2DeHh4RbbGYNhGHz88cf473//i2PHjiEiIoLvIVmc7hSAdXV1OHv2LFcAAqYv/tRqNbKzs6HRaHg9T9fc3Mx9uLdtS9fU1IS8vDzB9gU3dl9ffcba/aipqcGFCxcE+2/YWfHXlv45U/2Qe09PT4O2iktLSzFjxgxMmTIFW7duterPX8EVgJ21SgLuftmD77Zu7GRVUVGB2tpa7gmNjT/obFxGj3nZsAFYter2r1de6dmfZWTm7OvL97nBwsJC/PXXXxbdyYRhGHz++ed4//33cejQITzwwAN8D8kidSfrtLGxESdOnMDYsWPN8v3K3vTt27cvwsLCBNOWjG1Lp38u29PTE4GBgXBzcxPU6p85+/p2tPvBHlHqaPeDfQA3d/i8ofSLv6ioqC53D2mv8QAbcu/l5XXHAk15eTmio6MxduxYfP3114L5vjcViysAb926hfPnz8Pb25u7nt7Tyx6molaruW88NhHex8enw96rxo556dW3L/SflVoA6BSKHv+5xtDeTThzMfe5wRs3bqCgoMCguA+hYhgGX375JVauXIkDBw60uoxAuqarBSDDMFCr1cjJyUFVVRW3Aubj49OjDgodYbdUBw4ciOHDhwtmPmWxGX8lJSUICgri2rABMPslvY7w2ddXP0qloqKiw90PtkPKiBEjBBna3tPirz1syL3+VrGLiwvKy8sxcuRIJCQkYNSoUfj2228FcWTI1CyqAGQvewQHB3NZY+bMv+oJNuySfXLVjz9wc3NDQUGB0WNe+rSTf6XkuQA09CacuXT3ydlQbHyPSCSy2BvcDMNg586dWLFiBfbu3YuJEyfyPSSL1pUCsO1lD41Gw62AVVVVGT1Tr7y8HBcvXhT0dmB7GX/6l/QqKiqgVqvh4eHBS1s6Ns3Azc1NEBdS2N0PNpS7X79+6NOnD6qqqgSbP6rT6ZCbm4vGxkajFX9tsf3Qf//9d/y///f/oFQq4efnhw0bNiAmJkbQDSGMRXAFIPB/Sfks/cseo0ePhpeXF2/n/YxBP/6Anazs7OwwbNgwDB482GhPi0IrABmGweXLlyGXywXZ19fQJ2dD/6zr16/j5s2bEIlEFjuZMAyD77//Hv/+97+RkpKCKVOm8D0ki2dIAWhIZ4+2D5VsZqmPj0+Xt0PZB7OCggJeVuUNwYb8s6kIHZ0Fa++Snrna0rEZj0Lt66tSqXD16lWUlpaiV69ecHR0FFxqAlv8KRQKiEQikxR/+m7duoXY2Fj06dMH48aNw759+1BZWQm5XG71q4CCLwDZyx5s4jeflz2MTaPR4MKFC2huboaHhweqq6vR0tLCrUB5eXn16MnVsW9f6JeSWgAqngpAY96EM5f2npwNOTfIblGVlpZafPG3a9cuPP/885BKpZgxYwbfQ7IKnYXd689vbOHX2Rynn1laUVEBANzKoLu7+10/2C0ha5TN+HNwcMDo0aO79MHMtqVjz//279+fK3qM2SXEWGkGpsQevQkPD4erq6tJdz+6w9zFX319PRISEuDh4YGkpCTu4aC8vFyQ2+LGJsgCUKVSgWEYrhehvb09IiIi4OjoaNb8K1NqL+aFYRgoFArI5fI7Gqp7e3t36wZZr7594QBADf7O/5nyJpy5GHpukM37ksvlEIlEgmxDZaikpCQsXrwYP//8M+Li4vgejtW4WwHYtvjrzooMwzCtdhi0Wi33verh4dFqh0H/pm94eLggs0aNmfHHtqWrqKjgOksYo+2nqdIMjKmgoAA3btxo9+iNMXc/usvcxV9jYyMkEgmcnZ2RmprarcSO7sjMzMSGDRtw7tw5lJWVISkpCRKJhPt9hmGwevVqbN26FbW1tRg7diw+//xzhIaGGn0sgi0A2c4eXl5egr/s0VWGxry09+TKFoOWsIIGmPcmnLnc7dxgdXU1ampqIBKJLOZr1J69e/fimWeewXfffYfExES+h2NVOioATbGzoR+HJJfLuR0GdvUrNzcXzs7Ogrrpq4+9kOLn52f0zhRt2352ty0dm2YQGhoqyFUjtpVocXExIiMj0b9//07/P+3tfrD/Nqa4hW7u4q+pqQmzZ88GAOzbt8+suzQHDhzAiRMnEBkZidmzZ99RAK5fvx5r167Fjh07MHz4cKxZswaZmZm4fPmy0VfnBVkAFhQUIDc31yIve3SmuzEvLS0trZ5c9bOwhNr+jM+bcOai/wFbUlICjUYDNzc3+Pr6Wmyf4kOHDmH+/PnYvn07Hn/8cb6HY3Xayzo1x7EW/R2GsrIyKJVK3HPPPQgKCoK3t7fJP3S7ir2lao5VtbbnsnU6Hbf65enp2eHcxWeagSHY8/NlZWXdPo7S0e6Hl5eXUfo3m7v4UyqVeOyxx9Dc3IwDBw4YVBCbip2dXasCkGEYDBo0CMuWLcNrr70G4PbnqI+PD9avX48lS5YY9/2FVgAyDINTp05h8ODB8Pb2Nnuzc1MyVsyLfhZWdXX1HQd5hfBvJLSbcKbEMAzy8vJQV1eHESNGcFsp5nhyNra0tDTMmzcPX3zxBf72t78JfryWSL8ANOSyh7GxN339/f3Ru3dvLsDezc2Ne6jk+8GFLaxGjhwJb29vs763/kNdRUUFmpub72hLx66qFRUVCSLNoD3spbvKyspWN6Z7wtipCeYu/lpaWvDEE0+gpqYGhw8f5v3r1rYA/OuvvzB06FCcP3++Vci+WCyGm5sbdu7cadT3F9wVFzs7O0RFRUGn01nNZQ/9ySI8PLzHMS8ODg4YOHAgBg4cyP1AVlRUIDs7G3Z2dq2ysPgovNibcL6+voLMETOmtllVTk5OGDBgAAICAlo9ORcWFhr9ydnYMjMz8cQTT+CTTz6h4s8M9MPrAdMXfwzDcOfAwsLC4OXlBQAIDAxEc3MzV/BcuXKFt+Mm7O35kpISREZG8vIBbWdnB1dXV7i6uiI4OJhrS1dSUoJLly5xWZ4KhQJjxowR5CUvhmG4uJyoqCijnW9jt8nZJA72YffGjRvIzc3t0rlBcxd/KpUKTz/9NCoqKnD06FHei7/2lJeXA8Ad0Tw+Pj4oLCw0+vsJrgBkWctlD/0bdlFRUUbfw9f/gdTpdFwW1sWLF6HVas3eC9cSbsIZS9sJrO3lFkdHRwwaNAiDBg2CVqvltphyc3MFceNO38mTJ/HYY49hw4YNeOaZZ6z668Y3Ozu7Vj3LAdMfa9Gfh8aMGXPHPHTPPffA398f/v7+UKlUXDF47do1kwdP64+RLVrGjBkjmAtUffv2RVBQEIKCgtDU1IScnBw0NjaCYRjk5uYKboW/bYaeqVZz9QvlYcOGcecG5XI5Ll++fNfdD51Oh5ycHDQ1NZml+FOr1fj73/+OwsJCpKWlCb4Pe9vvI4ZhTPK9JcgCMC8vD0OGDEGvXr0suvjTaDTIzs6GSqXCAw88YPJtlV69esHd3R3u7u647777uG2Ma9euITc3t1Uwqil+4CzhJpyx6HQ67mazIROYvb0914+yp0/OxnbmzBnMnj0ba9euxZIlSyz2581SFBUVwdHREf369TPL/KZWq/Hnn39CrVYbNA85Ojpi8ODBGDx4cKvjJgUFBUYPnmbpZ/w98MADgkwK0Gq1uHz5MnQ6HR5++GH06tWr1b+Nk5MT70dx2HlJqVSaLEC5I87OzggICOh098PV1RV5eXlmK/40Gg2WLFmC/Px8pKenC/KsJou9RFReXt6qPWpFRYVJArsFdwawrKwMw4YNw8CBA5GQkIDExEREREQIbrusM+3FvPCpsbGRu0TS0NBg9PM+ZWVluHjxomBvwhkTG2ujUqkQGRnZ45vN5r5xpy8rKwtxcXF466238PLLL1PxZwbLli3DF198galTpyIhIQGxsbEmKxiUSiWysrLQp08fhIWF9Wge0mq1rbqQ9O7dm5tDejL+nmT8mUtnaQb6R3EqKyu5ozheXl5ma0un1WqRnZ0NtVptlHnJWPR3PyorK6FWq2Fvb4/g4GD4+vqa9Out1WqxdOlS/PHHHzh+/LjJe853VUeXQF566SW8+uqrAG5vXXt7e9vGJRDgdrFy4MABSKVS7N+/H+7u7oiPj0diYiLGjBkj+Nukhsa88EWpVHLF4K1bt+Di4sJN5N3ZdhH6TThjYidZjUaDiIgIo0+ypr5xpy8nJwcxMTFYvnw5VqxYQcWfmbDns3bv3g2ZTIZLly5h8uTJkEgkiIuLg4eHh1G+FmyEiq+vr9G7UrQNnu7u2WNjZvyZSlfTDNijOOwcq1arWx33MEVhxjYVYBgGERERgiyi2dXJxsZGeHl5oaamBgqFwmS7HzqdDi+88AIyMzORnp4umF2pxsZGXLt2DQAQERGBjz76CFOmTIG7uzv8/f2xfv16vP/++/j6668RHByMdevWISMjw3ZiYPQ1NTXh8OHDkEql2Lt3L5ydnZGQkACJRIJx48YJ7hu9uzEvfNEPRq2uroazszNXDLq4uNx1/JZwE86YtFotsrKyzDbJtn1yNua5wYsXLyI6Ohr//Oc/sXLlSt6+TzsLRbV2bEwHWwxmZ2fj4YcfhkQiQXx8PHx8fLr1tZHL5cjLy8OwYcPg7+9vgpH/H/2zx50FT+szZcafsTQ1NeH8+fPdTjNory0dW/B0N9y/LbVajaysLNjb2yM8PFyQCyQdnfkz1e6HTqfD8uXLcfDgQWRkZCAwMNCIf5ueycjIaLel5oIFC7Bjxw4uCHrLli2tgqBHjhxp9LEIvgDU19zcjGPHjkEmk2HPnj2wt7dHfHw8JBIJJkyYwPuSt7FiXvjSttG8g4MDF30wYMCAVj+M+n19LbndmaE0Gg2ysrJgZ2eHiIgIs0+y+ucGKysre/TkfOXKFURHR+OZZ57B2rVref3g7SwU1Zaw/XilUimSkpJw+vRpjBs3DmKxGAkJCfDz8+v0a9XRTV9zuVvwtJeXF/fQYs6Mv+4yRZoBW/C0Dff38vLq1u6LSqXC+fPnuaNGQi7+lEolIiMjOzzzp1arufmtJ7sfOp0Ob7zxBpKSkpCeno5hw4YZ869jVSyqANSnVquRkZEBqVSK5ORkqNVqxMfHQywWY/LkyWY9RKy/EjZq1Kgex7wIgU6nQ3V1NTdZAWh1wDk/Px91dXUQiURma6HDFyE+YXf3yfn69euIjo7G448/jg0bNghqy63teRhbxjAMSkpKIJPJIJPJcOLECURFRUEsFkMsFiMgIOCOr7FOp0N+fj6qqqoQHh7Oa8At0P7qF5tGUFFRgbCwMLNn/BnKHGkG7bWlY4tBQy7YtLS04Ny5c+jXrx9GjhwpqJ9llqHFX1vd3f3Q6XRYtWoVfvjhB6Snp+O+++4z5l/H6lhsAahPo9Hgt99+w+7du5GcnIzGxkbExsZCLBbj0UcfNWmBYgmN1HuKYZhWWzwtLS2wt7fnLusIbRvemNRqNc6fPw9HR0fBPmG3DQbv6Mm5oKAA0dHRiI+PxyeffCK4DwwqANvHMAzKy8uRlJQEqVSKzMxMjBo1iisGhw0bhurqaqSlpeHee+9FREQE70HO7VEoFLh06RJu3boFAFyfc6F1zOEjzaC9tnT6uy9tf1b1g/ZDQ0MFuX2uX/yJRKJu79C1t/vR3vcOwzBYt24dtm3bhrS0NJP0zrU2VlEA6tNqtTh16hR2796NpKQk1NTUYMaMGZBIJJg+fbpRs6X0Y16EOukaE7sSptVq4eHhgaqqKjQ1NcHDw4NbfRJaO6meYLdX2MPfQiuY2sMezmcnS41Gg2+//RYjRozAV199hZkzZ2Lz5s2C/LtQAdg5hmFQVVWF5ORkSKVSpKenIygoCHK5HGFhYUhNTeX9KEx72Aflmpoa7vws+0B569YtwfQ5F0Kagf7PsH5bOvZMJbvy5+npifvvv9+qi7/2tN39uHTpEgoKCqBWq5GUlIS0tDSMHj3aaO9nzayuANSn0+lw9uxZrhgsLS3FtGnTIJFIMHPmzB5tkQgt5sXUOroJx6bkV1ZWor6+Hq6urtxEbslbwyqVCufOnYOzszPCwsIEWTB1hi0W3njjDezatQtarRaPPPIIxGIx5s2bJ7gb21QAdg3DMDh69CjmzJkDV1dXyOVyDBkyBGKxGImJiQgNDRXE961+xl9ERMQdx3P0g6dramrQr1+/VqkE5ipwhJhmwDAM6urquGJQqVQCANzd3REaGirIvMS2GammfCBRq9XYv38/3nnnHVy7dg2+vr6YM2cO5syZg0mTJpnsfa2FVReA+nQ6HbKzs7li8K+//sLUqVMhFosRGxsLV1dXgycaoce8GJuhN+Gam5u5iaq2tpa3ibyn2CdsFxcXwXyIdpdcLkdMTAxEIhFWrlyJffv2ISUlBR9//DFGjRrF9/BaoQKwa5qamjB06FCsWLECL7zwAurr67F3717IZDIcPHgQAwcOhFgshkQi4S1LtasZf/rHGaqqqkwWPK3PUtIM6uvruXlJq9W2ynP18vISxAO3OYs/4PbX7osvvsCaNWuQkpIChUKBPXv2AAA2b95s0ve2BjZTAOprL4drypQpkEgkiI2NvWsOl6XFvPRUd2/CsXl27Lk0c0zkxtDc3Ixz587B1dVVsGdrDFVVVYWYmBiMGDECP/zwg+BXqakA7Lqqqqp2V6saGxuxf/9+yGQyLkuVjc8yV5aqQqFAVlYW97PU1QLUVMHT+iwlzaCurg7nz59HYGAggoKCAAjvgZuP4m/79u14++23sW/fPjz88MMmfb+OrFq1CqtXr271mo+PD9fXV8hssgDU114O14QJE7joBW9vb+4Hqbi4GFeuXLHYmJeuMtZNuLYTeWcHnPnCHqx2d3dHSEiIRRd/NTU1iIuLQ1BQEH7++WfBns3sLBSV9FzbLNW+ffsiISEBYrHYZFmqxs74Y8/FyeXyVp02fHx8uj2H6HQ65OXlCT7NoLa2FhcuXMDQoUM7/JnQj1CpqqqCk5MTVwx2ZXeru/go/r799lu88sorSE1NxeTJk036fnezatUq7N69G0ePHuVes7e3N3sEU3fYfAGoTz+HSyaT4ezZsxg3bhzi4+ORl5eHwsJCfPPNN1YR89KZyspK5OTkGP0mnE6nQ21tLTeRMwzD5YTdLTTW1JRKJc6ePSvog9WGqqur40KEZTKZIM8JsToLRSXGxWapSqVS7NmzBw4ODoiLi0NiYiIefvhho3xwsxl/pgqh7m7wtD62nWNLS0u75xKForq6GtnZ2bjvvvvg5+dn0P9Hq9VyEV76xXJXu7QYio/i76effsKLL76I5ORkTJ061aTv15lVq1YhOTmZaxVoSagA7ADDMCguLsauXbuwYcMGyOVyjBgxAk899RQkEgn8/f0tuki4G3PdhGMPOOvHy7DFoKlaJrVHoVDg3Llz8PHxMVrgK18aGhogFovRv39/pKSkWP3NdNJ9bJYqG5+l1WoRFxcHiUSCyZMnd2vVuKSkBFeuXEFoaKhJmte3xUaEyOVyVFRUQKVStZpD2lvd7Kyvr1CwD+EhISHd7mHbUVs6tlju6d/d3MUfAOzevRtLly7FL7/8gpiYGJO/X2dWrVqFDRs2wNXVFU5OThg7dizWrVuHIUOG8D20TlEBeBctLS0Qi8UoKyvDV199hVOnTkEmk3E5XBKJBGKxGEOHDrXookEfXzfhOmqZxG4Vm+oJXaFQ4OzZsxg4cCCCg4Mt+uuoUCgwa9YsODg4IDU11aiRR8S6sVmqu3btQnJyMhQKBZelOnXq1E4fJBiGwfXr11FcXIzw8HAMGDDATCNvPYb2gqfZOcTR0bHLfX35Ul5ejry8PKOGZTMMg4aGBi61oadzLHuxUqVSITIy0izFX0pKCp599ln8+OOPSEhIMPn7GeLAgQNoamrC8OHDIZfLsWbNGuTn5yMvL0/wu4VUAN4FwzDYtGkT5s+fz0XGsNEaSUlJkMlkSEtLw/33388Vg5a6fSi0m3BNTU3cRM7Gy7DbGMbKCWtsbMS5c+fg5+dn8UW8UqnEnDlzoNFocODAAcEeZifCp9VqcfLkSa4lXU1NDWbOnAmJRIJp06bd8WDRNuNPKN97bERVRUUFGhoa0L9/fzQ1NWHAgAGCjnYqLS1Ffn6+yR/C2Tm2srKyy23p+Cj+9u/fjwULFmDnzp2YM2eOyd+vuxQKBYYOHYpXX30VL7/8Mt/DuSsqAHuAYRjU1tYiJSUFUqkUR44c4XK4JBKJxUSIsDfhKioqEBkZKZgJnNXS0tKqZVLfvn25A87dbRje0NCAc+fOwd/f3yKW6u+mubkZ8+bNQ0NDAw4ePAhXV1e+h0SshE6nw5kzZ7hisLS0FNOnT4dYLEZ0dDS0Wi22bt2KCRMmCDoMn+3u0bt3b6hUKq7Y8fHxEdTlD3YHJjw8HO7u7mZ7X3aOZfvwOjs7c3Osi4tLqzmWj+Lv6NGjePLJJ/Hll1/iiSeeMPn79dS0adMwbNgwwUfRUAFoRHV1ddi7dy+kUikOHTqEQYMGISEhAYmJiQgPDxdkMWgpN+FYbXPCunPbjc3T0o9UsFQtLS146qmnIJfLceTIEV623oht0M9SlclkuHHjBhwcHODp6Yljx47Bx8dHkKvobdMM2vbg1Y9P4fPht7CwEH/99RfvOzAajabVHMu2lmQjvHJycsxa/B0/fhxz587lduOE+D2mr6WlBUOHDsXixYvxzjvv8D2cu6IC0ETYHC6pVIoDBw7Aw8MD8fHxSExMxJgxYwRRDGq12lat7IR6E64j7G03dhujV69e3ETeUTQEm6c1ZMgQBAQE8DBq41Gr1Xj66adRWFiIY8eOCf68CbEely9fxqOPPsoVKlevXsXkyZMhkUgQFxcHd3d3QXxQd5ZmwD5QyuVyVFdXo0+fPh2ufJkKmz5RVFSEyMjIHnWoMjY2foedY9VqNXr37o3hw4fDx8fH5Gcof/vtN8yePRsbN27Es88+K4jvqbaWL1+O+Ph4+Pv7o6KiAmvWrMHx48eRk5Mj+M8YKgDNoKmpCYcOHYJUKsW+ffu4HC6JRIJx48bxchDZUm7CGYqNl2Gf7NloCC8vL3h6esLe3p5bCbhbnpal0Gg0+Pvf/478/Hykp6dbROYUsR4JCQm4//778cEHH8DOzg5Xrlzh4rPYLFWJRIL4+PhWWarm1NU0A/280srKSjg4OBg9eLothmFw7do1lJaWCjqIWqfT4cKFC1AqlVwf+JaWFu6Sjaenp9GzRv/44w9IJBKsW7cOS5cuFWTxBwDz5s1DZmYmqqqq4OXlhQcffBDvvfceRowYwffQOkUFoJk1Nzfj6NGjkMlkXA4XuzL40EMPmaUQs5SbcN3FRkOwB8Cbm5vh4uKC+vp6BAcHC/6prDNarRZLlixBVlYW0tPTeWtaT2xXc3Nzu+f92Mtk7JnBM2fOYPz48Vyw/qBBg8zyQV5UVIRr1651+yKFTqdrtbtgZ2fX6e5CV+mfvRaJRIK9td/emT+GYVpdsmlsbDRqW7pz584hISEBK1euxIsvvijY4s/SUQHII7VajfT0dEilUqPlcHXG0L6+1oJhGNy8eRP5+flwcnJCS0sLBgwYwE1UQj203hGtVot//etfOHHiBDIyMgwOhyXE3NgsVZlMBplMht9//x1jxoyBWCyGWCw2SZaqKdIMjBE83d442ZvTQj57beiFj+bmZq5Y7mlbuuzsbMTGxmLFihV45ZVXqPgzISoABaJtDldTUxNiY2ORkJBgUA6XIbrb19eSsbf/2DBVpVLJTeRs9AE7mQv1CZyl0+nw0ksv4dixY0hPT7f4lUxiOxiGQVlZGZKSkiCVSvHrr79i9OjRXDFojBgmc6QZtA2vNyR4ui324l19fT1EIpFgH0LZbildvfDRtg98Vy7q5eXlITo6GsuWLcObb75pE59RfKICUIDYHC42ob+2thYzZsyARCLB9OnTu5WDx55/CwwMRGBgoE38YLEHwEeMGNHuNqlKpeKeWjuLPuCbTqfDa6+9htTUVGRkZFh8dA2xXfpZqlKpFOnp6QgJCeHis+67774u/+zxkWagHzwtl8uhVCrh7u4OHx+fDs/E6XQ65OTkoKmpCZGRkYK9eMcWf2q1GhEREd0+mqR/Ua+qququbeny8/MRHR2NxYsX49133xXU/GutqAAUODaHa/fu3UhKSkJ5eTmmTZsGiUSCmTNnwsXFpdM/gy2Ehg8fjsGDB5th1PyTy+XIzc01OEm/vegDUx8AN5ROp8Pbb7+NX375BRkZGQgODuZtLIQYE5ulumfPHkilUhw9epTLUk1MTDTomIpQ0gzaBk+zR028vb3h5OTEjVOtVpstQqU72HFqNJoeFX9t6W+lszeKe/XqhWvXriE8PBzz5s3D/Pnz8f7771v90SShoALQgrA3sdhisKCgAFOnToVYLEZMTEy7y+vm6usrJGwbpVGjRnXrdqxWq20VfQCAOzPo4eFh1smJYRi899572LFjBzIyMnD//feb7b0JMbe6ujqkpqZCJpPh4MGD8PPz44rB0aNH3/Gzp1arkZWVBTs7O0GlGSiVSlRWVkIul6Ourg4uLi5chIq5euZ2h6mKv7bYtnRpaWl47bXXUFJSgoCAAKxYsQKJiYlm6SNNqAC0WAzDIC8vjwtlvXz5MqZMmQKJRILY2Fi4u7vj66+/hp+fH6KiomwmI87YbZTae2rt6pmf7mIYBuvXr8fmzZuRlpaGsLAwk70XIULT0NCA/fv3QyaTYf/+/fD09OTis8aMGYPi4mIcOnQIDzzwAMLCwgSbZqBQKJCVlQW1Wg2tViuY4Om29Iu/yMhIk85trKKiIsyYMQPjx49HZGQkkpOT8eeff6KyslKwZyOtCRWAVoBhGC6HSyqVIjs7G35+fpDL5fjpp58wbdo0mzhPcfPmTVy+fBmjR482ScHLxsuwWYPsmR/9ZvPGfK+NGzdi48aNOHbsGMLDw432Z3fXpk2bsGHDBpSVlSE0NBQff/wxJkyYwPewiA3Qz1Ldu3cv+vTpg/r6ekRFRSElJUWwK2oqlQrnz5+Hk5MTRo0aBZ1Ox80ffAVPt4eP4q+0tBQzZszAI488gi1btnCru/X19byEYdvi/EYFoJXRarVYuHAhUlJS4O/vj/z8fIwbN87sOVzmVlJSgitXrpi1h2bbMz9sDpa3t3ePnl4ZhsFnn32GDz74AIcPH8aYMWOMOOru+fnnnzF//nxs2rQJDz30ELZs2YJt27bh4sWLFh+qTSzL6dOnMWPGDPj6+kIul8PJyQlxcXFmzVI1BJu36uzsjLCwsDu2rzUaDaqrqyGXy1udO/bx8TG4raUx8FH8lZeXIzo6Gg8++CC++uor3ldvbXV+owLQynz77bd47733cPjwYQQEBKC4uJhL6D958qTJc7j4UFRUhOvXr/PaQ5PNwaqoqMCtW7fg4uLCrQx2ZZuHYRhs3boVq1evxoEDBzBu3DgTjtpwY8eORWRkZKvm5iEhIZBIJHj//fd5HBmxJRqNBqGhoVi4cCFWrFgBjUaD9PR07N69G3v27IFOp0NsbCwSExMxadIkk2SpGqK5uRnnzp2Dq6urwRdZ9M8dmyJ4uqP3NXfxV1FRgZiYGIwePRrffvutWd6zM7Y6v1EBaGV0Oh3q6uowYMCAVq8zDIPS0lIkJSVBJpNxOVwSiQRisRhDhgyxyGKwoKAAN27cQGRkJFxdXfkeDgDc0Wy+T58+rZqpd/TvzDAMduzYgddffx179+7FxIkTzTzy9qlUKjg7O2PXrl1ITEzkXn/xxRdx4cIFHD9+nMfREVtTXV3d7hEPjUaDX3/9Fbt27cKePXu4LFWxWIxHH33UbGfKmpqacO7cOXh4eCAkJKRbkTbsuWO5XA6dTtfj4On28FH8VVdXIzY2FsHBwfjpp58EsVpry/Mb3bW2Mr169bqj+AMAOzs7+Pn54fnnn8exY8dw8+ZNLFq0CL/++itEIhHGjx+P9evXIz8/H5byTHDjxg0UFBRAJBIJpvgDAEdHR/j5+SEiIgKTJk3C0KFD0dzcjPPnz+PXX39Ffn4+ampqoNPpuP8PwzD4/vvvsWLFCuzZs0cwxR9wO0xbq9XecTPPx8cH5eXlPI3Kuq1duxbjx4+Hs7Nzh6vaRUVFiI+PR9++feHp6YkXXngBKpXKvAPlQUfne3v37o0pU6Zg06ZNKCoqQkpKCjw9PbF8+XIEBQXhmWee4QpDU1EoFDh79iy8vb27VfwBt+dwd3d33H///Zg4cSIiIiLg6OiIK1eu4Pjx4/jzzz9RXl4OjUbT7XHyUfzV1tZCLBYjMDAQP/74oyCKP8C25zf+116J2bHbC0uWLMHixYtb5XCtX78eQ4cO5UJZhdgujm33VFxcDJFIZFAWIl969+4NHx8f+Pj4QKfTcds8OTk5XHcE4Pbqxb///W9IpVJMmTKF51G3r+2HGcMwFrlqbAlUKhXmzp2LcePGYfv27Xf8vlarRWxsLLy8vPDbb7+huroaCxYsAMMw+PTTT3kYsbDY29tjwoQJmDBhAj766COcPn0aUqkUb7/9NhYtWoTp06dDLBYbnKVqCLbTkp+fn1E6mwC3f+bc3Nzg5uaG4OBgNDY2Qi6X46+//kJeXh4XPO3l5WVwQaXVanHhwgVotVqzFX/19fVcvMuuXbt425q/G1uc32gLmLTC5nBJpVIcOnQIgwcP5orB9nK4zI1hGFy/fh03b96ESCQSVIxCVzAMg1u3bmHbtm3YuHEj6urq8PDDD+Of//wnYmJieLkF1xFb3iLh244dO7Bs2TLcunWr1esHDhxAXFwciouLMWjQIADATz/9hIULF6KiokJQ3z9Cop+lKpPJUFhY2GmWqiHq6uqQlZWFgIAABAUFmWDkd2IvocnlcjQ2Nt4RPN0etvjT6XSIiIgwS/HX2NgIiUQCZ2dnpKamCq7vsS3Pb8Ja2iG8c3V1xVNPPYWkpCTI5XK89957KCwsxMyZMxEWFobXX38dp0+fbrV9aS4Mw+Dq1asoLS1FVFSUxRZ/wO2nzQEDBiAkJAQqlQoffvghHnnkEaxdu7bVJCQEjo6OEIlEOHLkSKvXjxw5gvHjx/M0Ktt28uRJjBw5kiv+AGDGjBloaWnBuXPneByZsPXq1QuRkZFYt24dLl26hNOnTyMyMhKffPIJgoKCMHv2bHzzzTeorq42+CjMrVu3cP78eQQFBZmt+AOAvn37IigoCA8++CAeeugheHp6ory8HL/++ivOnDmDwsJCKJVK7r/no/hTKBSYM2cOHBwcsGfPHsEVf4Btz2+0AkgM0tTUhIMHD0Imk2Hv3r1wcXHhQlkffPBBk1/jZxu9V1ZWQiQSdasfstAcPHgQ8+fPx9dff43HHnuMe12hUKBv3748juxObEzCF198gXHjxmHr1q348ssvkZeXh4CAAL6HZ7U6WgFcvHgxCgoKcPjw4VavOzk5YceOHXjiiSfMOErLx84vbGJCTk4OJkyYAIlEgvj4eHh5ebW7MlhdXY3s7GxBtdlsaWnhupDU1taiX79+8PLyQnV1Nezs7MxW/CmVSjz22GNobm7GwYMHBX1Ux1bnN1oB/F+GHLq2Zc7Ozpg1axa+++47lJeXY9OmTWhqasLjjz+O4cOHY9myZTh+/HiPDiZ3hGEY5Ofno7KyElFRUVZR/KWlpeHpp5/Gli1bMHfu3Fa/J7TiDwAef/xxfPzxx3j33XcRHh6OzMxM7N+/36onR2NbtWoV7Ozs7vrr7NmzBv957RUktnBuyRTs7Oxw//33480338TZs2dx6dIlTJ8+Hd9//z2Cg4MRHR2NL774AqWlpdzKYE5ODrKzsxESEiKY4g+4/RAwePBgiEQiTJo0CYMHD0ZxcTHq6uqgUqlQUFCA+vp6k172a2lpwd/+9jc0NjZi//79gi7+ANud32gF8H+tXLkSbm5uKCkpwfbt2+944ibtU6lUSE9Ph1QqRXJyMhiGQVxcHCQSiVFyuBiGwcWLF1FbWwuRSCTILYSuyszMxNy5c/HJJ59g4cKF9IFtI6qqqlBVVXXX/yYwMLBVXElHK4DvvPMO9uzZg+zsbO612tpauLu7Iy0tTbAXiSwNwzAoKiqCTCbjslQfeOAB+Pn5ITU1FUePHkVkZCTfw+yQ/rZvWFgY6urqTB48rVKpMH/+fNy8eRNHjx41WzA/6ToqANvoaMIlndPP4UpOToZSqURcXBwSEhK6lcPF9juuq6uDSCSyit6Qv//+O2bNmoX//Oc/WLJkCRV/5K46uwRSUlKCgQMHAri9jbVgwQK6BGIibJbqG2+8ge+++w4AEBkZyQXrCy1L9W5n/kwVPK1Wq/HMM8/g2rVrSEtLM0o/dmI6tAVMjEY/h6u4uBgpKSlwd3fvVg6XTqdDTk4O1+/TGoq/M2fOYM6cOVi7di0Vf+SuioqKcOHCBRQVFXEf5BcuXEBjYyMAYPr06RgxYgTmz5+PrKwsHDt2DMuXL8eiRYuo+DMROzs7nDhxAjKZDAcPHkRpaSmee+45ZGZmQiQS4aGHHsL69etx+fJl3rNUO7vwYW9vDy8vL4SGhmLixIkYOXIkACA3NxeZmZnIy8tDZWUltFqtwe+p0WiwePFi5Ofn4+jRo1T8WQBaAWyDVgCNT6fT4fTp09i9ezd3u3j69OmQSCSYOXPmHbd52eKvqakJIpFIkJlRXZWVlYW4uDi89dZbePnll6n4I3e1cOFC7Ny5847X09PTMXnyZAC3i8SlS5ciLS0Nffr0wZNPPokPP/ywwwgQ0nPl5eW4ceNGqxaNDMOgpqaGy1I9duwYl6WamJiIkJAQs8Zn9eS2L8MwqKur4+Jl1Go1PD094e3tDU9Pzw7/LK1Wi6VLl+L06dPIyMjgVqWJsFl1Abhq1SqsXr36rv/NmTNnEBUVxf1vKgBNS6fTISsri8vhKi4uxqOPPgqJRIKYmBg4ODjgo48+wqOPPmo1xV9OTg5iYmKwfPlyrFixgoo/YjECAwNRWFjY6rXXXnsNH3zwAU8jEr5bt24hNTUVMpmsVZZqYmIiRo0aZdJi0JhRLwzDoKGhgetxrlQq4eHhwfU4Z4OndTodXnjhBWRmZiI9PR333nuvsf46xMSsugA05qFrYnwMwyA3N5crBi9fvox+/frhnnvuwdGjRxEQEGDxxdLFixcRHR2N559/Hu+8847F/32IbQkMDMSzzz6LRYsWca/169fPojM4zamhoQH79u2DTCbDgQMH4OnpyQXrR0VFGbUY1Gq1yMrKAsMwJol6aWxs5OJlGhsbcfLkSTg5OeHq1av4/fffkZ6ejsDAQKO+JzEtq24F5+npSecQBMzOzg5hYWEICwvDq6++imnTpqGkpARubm4IDw/HxIkTIRaL75rDJWSXL19GXFwcFi1aRMUfsVguLi7w9fXlexgWycXFBfPmzcO8efO4LFWpVAqJRIL+/fsjISEBYrG4x1mqbPEH3L6YYopcVrbwDwoKglKpRF5eHj766CNUVVVBJBIhKSkJs2bNsvroFGtCl0D+V2eHrolpvf/++3BwcEBeXh6ys7Nx8eJFTJs2Dd999x2Cg4MRExNzRw6XkF2/fh1xcXF46qmnsGbNGir+iMVav349PDw8EB4ejrVr10KlUvE9JIvEZql+//33KC8vx+eff47GxsYeZ6nqF38REREmD+UHbmcNVldXw8HBAZmZmXjuuedw4MABrFmzxuTvTYzHqreAu8KQQ9fEdJqbm6HVau8IQWZzuKRSKZKSknDq1CmMGTOGi1649957BVdcFRQUIDo6GgkJCfif//kf3vsnE9JdGzduRGRkJAYMGIDTp0/j9ddfh1gsxrZt2/gemtVgs1R3796NPXv2AABiY2ORmJiIiRMn3vUcNB/FH8MwWLduHbZt24b09HSMGDGi1e8JYT6ms6uGoQKQWAw2h4sNZf3tt98QHh4OiUQCsViMoKAg3iefkpISzJgxAzNmzMCmTZuo+COC053LcSypVIo5c+agqqoKHh4ephqizdJoNMjMzMTu3buRnJyM5uZmxMbGQiKRYMqUKa3Oq/NV/H344Yf49NNPkZaWhlGjRpn8PbuDzq4ahgpAYpEYhoFcLkdycjJkMhkyMjIwYsQIrhgcPny42YvBsrIyzJw5ExMmTMCXX35plgmZkK7qzuU41s2bNzF48GCcOnUKY8eONdUQCW4XeCdOnOB2P+rq6hAdHQ2JRIIHHngAzz//PBYtWoSpU6earfj75JNPsGHDBhw5cgQikcjk79ldgYGBWLZsGZYtW8b3UASNCkBi8drmcB09ehTBwcHcbTtz5HDJ5XJER0cjKioKO3fupOKPWKW9e/ciPj4ehYWF8Pf353s4NkOn0+GPP/6AVCqFVCpFUVER+vfvjw8++ACJiYkmX9liGAabN2/GmjVrcOjQIcEX/4GBgWhpaYFKpcK9996LuXPn4pVXXrGKWDFjogKQWBU2yDQ1NRVSqRSHDx/Gvffei4SEBJPlcFVVVSEmJgahoaH4/vvvjR6/QAgfTp48iVOnTmHKlClwdXXFmTNn8NJLLyEqKoo7q0bMS6FQICYmBk1NTZg0aRJSU1NRXFyMqVOnQiwWIyYmBv379zfq7gfDMNi+fTvefvtt7N+/Hw899JDR/mxTobOrhqECkFg1NodLKpXi4MGD8PLy4opBkUjU42KwpqYGcXFxCAoKwi+//MKFoxJi6c6fP4+lS5ciPz8fLS0tCAgIwLx58/Dqq6/C2dmZ7+HZpIMHD+Kjjz5CcnIynJ2duSzVXbt2ISkpCVeuXMEjjzwCsViMuLg4DBgwoEfFIMMw+Pbbb/HKK68gNTWV1wuRdHbV+KgAtCCbNm3Chg0bUFZWhtDQUHz88ceYMGEC38OyGAqFAgcPHoRMJsO+ffu4HC6JRIKxY8d2edv21q1biI+Px8CBAyGVSqkFFyE9QPObYTq6acswDPLz87mWm7m5uZg4cSIkEgni4+Ph6enZpWKQYRj8+OOPWLZsGfbs2YNHH33UmH+NLqOzq8ZHBaCF+PnnnzF//nxs2rQJDz30ELZs2YJt27bh4sWLdBanG5RKJY4cOQKZTIaUlBTcc889iI+PR2JiIsaPH9/pNm59fT0kEglcXV2xZ8+edicdQohhaH4zLoZhcP36dUilUshkMpw/fx7jx4+HRCJBQkICfH19Oy0Gd+/ejaVLl2LXrl2Ijo4208hNg86uto8KQAsxduxYREZGYvPmzdxrISEhkEgkeP/993kcmeVTqVRIS0uDVCpFcnIy7OzsEBcXB4lE0m4Ol0KhwKxZs+Dg4IC9e/cKcjts7dq12LdvHy5cuABHR0dqbUgEjeY302EYBoWFhVx8FrsKxmapDh48+I5iMCUlBc8++yx+/PFHJCQk8DTy7qGzq4ajAtACqFQqODs7Y9euXUhMTORef/HFF3HhwgUcP36cx9FZFzaHa9euXUhOTkZLSwvi4uIgFovxyCOPQKvVYu7cudBqtdi/f79gc6VWrlwJNzc3lJSUYPv27VQAEsGi+c189LNUpVIpTpw4gYiICK4YDAoKwoEDB7BgwQJ88803mD17Nt9D7jI6u2o4KgAtQGlpKfz8/HDixAmMHz+ee33dunXYuXMnLl++zOPorBebw8WGstbV1cHZ2RmDBg1Ceno6+vfvz/cQO7Vjxw4sW7aMCkAiWDS/8UM/S1UqleL48ePw9/dHSUkJvv76azzxxBN8D5GYGLUpsCBtl+mF0nbHWtnb22PixIn45JNPUFBQgL179yIwMBApKSkWUfwRYklofjMvOzs7+Pr64h//+AcOHz6MsrIyzJkzB8899xzmzZvH9/CIGVBgmQXw9PSEvb09ysvLW71eUVEBHx8fnkZlW3r16oUJEybg5MmTfA+FEKtC8xv/7Ozs4OHhQb1ybQytAFoAR0dHiEQiHDlypNXrR44cabVlQqzbqlWrYGdnd9dfZ8+e5XuYhHQJzW+E8INWAC3Eyy+/jPnz5yMqKgrjxo3D1q1bUVRUhH/84x98D42YyfPPP9/p1kxgYKB5BkOIEdH8Roj5UQFoIR5//HFUV1fj3XffRVlZGUaOHIn9+/cjICCA76ERM/H09ISnpyffwyDE6Gh+I8T86BYwIVaoqKgINTU1SElJwYYNG/Drr78CAIYNGybY6BpCCCHmQ2cACbFC77zzDiIiIrBy5Uo0NjYiIiICERERdEaQkDbaO1vr6+vL97AIMTkqAAmxQjt27ADDMHf84rOZOyFCFRoairKyMu5XTk4O30OyGWvXrsX48ePh7OwMNze3dv+boqIixMfHo2/fvvD09MQLL7wAlUpl3oFaIToDSAghxKb17t2bVv14olKpMHfuXIwbNw7bt2+/4/e1Wi1iY2Ph5eWF3377DdXV1ViwYAEYhsGnn37Kw4itBxWAhBBCbNrVq1cxaNAgODk5YezYsVi3bh2GDBnC97BswurVqwHc3rVoz+HDh3Hx4kUUFxdj0KBBAID//ve/WLhwIdauXUuh/D1AW8CEEEJs1tixY/HNN9/g0KFD+PLLL1FeXo7x48ejurqa76ERACdPnsTIkSO54g8AZsyYgZaWFpw7d47HkVk+KgCJyWRmZiI+Ph6DBg2CnZ0dkpOT+R4SIYS0Eh0djdmzZyMsLAxTp07Fvn37AAA7d+7keWQEAMrLy+/oCDNgwAA4Ojre0T2GdA0VgMRkFAoFRo8ejc8++4zvoRBCiEH69u2LsLAwXL16le+hWCxjdy1qryc09YruOToDSEwmOjoa0dHRfA+DEEIM1tLSgkuXLmHChAl8D8ViGbNrka+vL/74449Wr9XW1kKtVlOv6B6iApAQQojNWr58OeLj4+Hv74+KigqsWbMG9fX1WLBgAd9Ds1jG7Fo0btw4rF27FmVlZRg4cCCA2xdDnJycIBKJjPIetooKQEIIITarpKQETzzxBKqqquDl5YUHH3wQp06dojZ0ZsJ2LSoqKoJWq8WFCxcA/F/XounTp2PEiBGYP38+NmzYgJqaGixfvhyLFi2iG8A9RK3giFnY2dkhKSkJEomE76EQQggRiIULF7Z74SY9PZ0Lri8qKsLSpUuRlpaGPn364Mknn8SHH34IJycnM4/WutAlEEIIIcRMOktHYBgGq1atwqBBg9CnTx9MnjwZeXl5/AzWDAzpWuTv74+9e/eiqakJ1dXV+PTTT6n4MwIqAAkhhBAz6Swd4T//+Q8++ugjfPbZZzhz5gx8fX0xbdo0NDQ0mHmkxNrRGUBiMo2Njbh27Rr3v2/cuIELFy7A3d0d/v7+PI6MEEL4cbd0BIZh8PHHH+PNN9/ErFmzANzOI/Tx8cEPP/yAJUuWmHOoxMrRCiAxmbNnzyIiIgIREREAgJdffhkRERF45513eB4ZIYQIz40bN1BeXo7p06dzrzk5OWHSpEn4/fffeRwZsUa0AkhMZvLkyaA7RoQQYhi2s0XbfDsfHx8UFhbyMSRixWgFkBBCCBGQth0uqOsFMQUqAAkhhBAB8PX1BYA7etxWVFRQ1wtidFQAEkIIIQIQFBQEX19fHDlyhHtNpVLh+PHjGD9+PI8jI9aIzgASQgghZtJZOsKyZcuwbt06BAcHIzg4GOvWrYOzszOefPJJHkdNrBF1AiGEEELMJCMjA1OmTLnj9QULFnChyKtXr8aWLVtQW1uLsWPH4vPPP8fIkSN5GC2xZlQAEkIIIYTYGDoDSAghhBBiY6gAJIQQQgixMVQAEkIIIYTYGCoACSGEEEJsDBWAhBBCCCE2hgpAQgghhBAbQwUgIYQQQoiNoQKQEEIIIcTGUAFICCGEEGJjqAAkhBBCCLExVAASQgghhNgYKgAJIYQQQmwMFYCEEEIIITaGCkBCCCGEEBtDBSAhhBBCiI2hApAQQgghxMZQAUgIIYQQYmOoACSEEEIIsTFUABJCCCGE2BgqAAkhhBBCbAwVgIQQQgghNoYKQEIIIYQQG0MFICGEEEKIjaECkBBCCCHExlABSAghhBBiY6gAJIQQQgixMVQAEkIIIYTYGCoACSGEEEJsDBWAhBBCCCE2hgpAQgghhBAbQwUgIYQQQoiNoQKQEEIIIcTGUAFICCGEEGJjqAAkhBBCCLExVAASQgghhNgYKgAJIYQQQmwMFYCEEEIIITaGCkBCCCGEEBtDBSAhhBBCiI2hApAQQgghxMZQAUgIIYQQYmOoACSEEEIIsTFUABJCCCGE2BgqAAkhhBBCbAwVgIQQQgghNoYKQEIIIYQQG0MFICGEEEKIjaECkBBCCCHExlABSAghhBBiY6gAJIQQQgixMVQAEkIIIYTYGCoACSGEEEJsDBWAhBBCCCE2hgpAQgghhBAbQwUgIYQQQoiNoQKQEEIIIcTGUAFICCGEEGJjqAAkhBBCCLExVAASQgghhNgYKgAJIYQQQmwMFYCEEEIIITaGCkBCCCGEEBtDBSAhhBBCiI2hApAQQgghxMZQAUgIIYQQYmOoACSEEEIIsTFUABJCCCGE2Jj/D9fwx5CttoB9AAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e8557bb0fd7e4b759d418908f3fc1087", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wjd33//xp1rXa10mp739u926u+XvaMsSnxDxdik4ADSRyaIXwJoRgwNhiwwdi0+OtAAEMSMAS+oThf+AYwBgeMMfhcb3vvvUrapq6Z+f2x9xmPZkfSjDQqe/t5Ph73AO/tzWi10luvz7u83gzP8zwoFAqFQqFQKLsGXa4fAIVCoVAoFAolu1ABSKFQKBQKhbLLoAKQQqFQKBQKZZdBBSCFQqFQKBTKLoMKQAqFQqFQKJRdBhWAFAqFQqFQKLsMKgApFAqFQqFQdhlUAFIoFAqFQqHsMqgApFAoFAqFQtllUAFIoVA0p6OjAzfccAPq6+thtVpRUlKCtrY2fP/739/2vddccw0YhgHDMNDpdCgqKkJLSwve9KY34dFHHwXHcYru+ba3vQ2FhYWaPP65uTncc8896Ojo2PZ3jz32GO655x7Zf9fY2Ii3ve1tmjwGCoVCySSGXD8ACoVy+bG6uoq6ujq85S1vQU1NDXw+H37wgx/g1ltvxcTEBO6+++6Y79+zZw9+8IMfAAB8Ph/Gx8fxs5/9DG9605tw1VVX4ec//zmKi4uz9vjn5uZw7733orGxEceOHYv5u8ceewxf+9rXZEXgT3/6U9jt9uw8SAqFQkkDKgApFIrmXHPNNbjmmmtivnbjjTdifHwc3/rWt7YJQKvVinPnzsV87bbbbsN3vvMdvOMd78C73/1u/OhHP8r0w06b48eP5/ohUCgUiiJoCZhCoWSN0tJSGAzKz51vf/vbcf311+MnP/kJJicn077/yMgI3v72t2Pv3r0oKChATU0NXv/616O7u1v4nt///vc4ffq0cH9Snr7nnnvwtre9DV/72tcAQPg6wzCYmJgAIF8CXl1dxYc//GHs2bMHZrMZ5eXluP766zEwMCB8Tzgcxn333Yf9+/fDbDajrKwMb3/727G8vJz2z0yhUChy0AwghULJGBzHgeM4eL1e/OQnP8Gvf/1r/Mu//Iuqa/z5n/85HnvsMTz99NNoaGhI6/HMzc3B5XLh85//PMrKyuDxePDd734XZ8+eRXt7O1pbW3HixAl85zvfwdvf/nbcfffduOGGGwAAtbW1CIVC8Pl8ePTRR3HhwgXhulVVVbL329jYwCte8QpMTEzgYx/7GM6ePYvNzU384Q9/wPz8PPbv3w+O43DTTTfh6aefxh133IHz589jcnISn/70p3HNNdfgxRdfhNVqTevnplAoFClUAFIolIzx3ve+F9/85jcBACaTCV/5ylfw93//96quQUTf3Nxc2o/nla98JV75ylcK/82yLG644QYcOnQI3/zmN/Hggw/Cbrfj8OHDAIDm5uZtpemKigoA2PZ1OR566CH09vbiiSeewGtf+1rh63/xF38h/P8f//jHePzxx/Ff//VfMV8/evQoTp8+jUceeQT/63/9r9R+YAqFQokDLQFTKJSM8fGPfxwvvPACfvnLX+Id73gH3ve+9+HLX/6yqmvwPK/Z44lGo7j//vtx8OBBmEwmGAwGmEwmDA8Po7+/X7P7EH71q19h3759MeJPyi9+8Qs4HA68/vWvRzQaFf4cO3YMlZWV+P3vf6/546JQKBSaAaRQKBmjvr4e9fX1AIDrr78eAHDXXXfhrW99K8rKyhRdg/T+VVdXp/14br/9dnzta1/Dxz72MVx99dVwOp3Q6XS47bbbEAgE0r6+lOXlZeHnj8fi4iJWV1dhMplk/35lZUXzx0WhUChUAFIolKxx5swZPPzwwxgbG1MsAP/7v/8bDMPElG5T5fvf/z7+7u/+Dvfff3/M11dWVuBwONK+vpSysjLMzMwk/J7S0lK4XC48/vjjsn9fVFSk+eOiUCgUWgKmUChZ48knn4ROp8OePXsUff93vvMd/OpXv8Jb3vKWpJk0JTAMA7PZHPO1X/7yl5idnY35Gvkeuaxgor+Tct1112FoaAi/+93v4n7PjTfeCLfbDZZlcerUqW1/Wltbk96HQqFQ1EIzgBQKRXPe/e53w26348yZM6ioqMDKygp+8pOf4Ec/+hE++tGPbsv+BQIBPPvss8L/Hxsbw89+9jP84he/wNVXX42HH35Y0X1ZlsWjjz667es2mw3XXXcdbrzxRjzyyCPYv38/rrjiCrz00kv40pe+hNra2pjvb25uhtVqxQ9+8AMcOHAAhYWFqK6uRnV1NY4cOQIA+MIXvoDrrrsOer0eV1xxhWwJ94Mf/CB+9KMf4aabbsKdd96JM2fOIBAI4KmnnsKNN96IV73qVXjzm9+MH/zgB7j++uvxgQ98AGfOnIHRaMTMzAyefPJJ3HTTTXjDG96g6OenUCgUxfAUCoWiMd/+9rf5q666ii8tLeUNBgPvcDj4q6++mv+P//iPbd979dVX8wCEPzabjd+zZw//xje+kf/JT37Csyyr6J5vfetbY64j/tPQ0MDzPM97vV7+ne98J19eXs4XFBTwr3jFK/inn36av/rqq/mrr7465nr/+Z//ye/fv583Go08AP7Tn/40z/M8HwqF+Ntuu40vKyvjGYbhAfDj4+M8z/N8Q0MD/9a3vjXmOl6vl//ABz7A19fX80ajkS8vL+dvuOEGfmBgQPieSCTCf/nLX+aPHj3KWywWvrCwkN+/fz//93//9/zw8LCin59CoVDUwPC8hiN2FAqFQqFQKJS8h/YAUigUCoVCoewyqACkUCgUCoVC2WVQAUihUCgUCoWyy6ACkEKhUCgUCmWXQQUghUKhUCgUyi6DCkAKhUKhUCiUXQYVgBQKhUKhUCi7DCoAKRQKhUKhUHYZVABSKBQKhUKh7DKoAKRQKBQKhULZZVABSKFQKBQKhbLLoAKQQqFQKBQKZZdBBSCFQqFQKBTKLoMKQAqFQqFQKJRdBhWAFAqFQqFQKLsMKgApFAqFQqFQdhlUAFIoFAqFQqHsMqgApFAoFAqFQtllUAFIoVAoFAqFssugApBCoVAoFApll0EFIIVCoVAoFMougwpACoVCoVAolF0GFYAUCoVCoVAouwwqACkUCoVCoVB2GVQAUigUCoVCoewyqACkUCgUCoVC2WVQAUihUCgUCoWyy6ACkEKhUCgUCmWXQQUghUKhUCgUyi6DCkAKhUKhUCiUXQYVgBQKhUKhUCi7DCoAKRQKhUKhUHYZVABSKBQKhUKh7DKoAKRQKBQKhULZZVABSKFQKBQKhbLLoAKQQqFQKBQKZZdBBSCFQqFQKBTKLoMKQAqFQqFQKJRdBhWAFAqFQqFQKLsMKgApFAqFQqFQdhlUAFIoFAqFQqHsMqgApFAoFAqFQtllUAFIoVAoFAqFssugApBCoVAoFApll0EFIIVCoVAoFMougwpACoVCoVAolF0GFYAUCoVCoVAouwwqACkUCoVCoVB2GVQAUigUCoVCoewyqACkUCgUCoVC2WVQAUihUCgUCoWyy6ACkEKhUCgUCmWXQQUghUKhUCgUyi6DCkAKhUKhUCiUXQYVgBQKhUKhUCi7DCoAKRQKhUKhUHYZVABSKBQKhUKh7DKoAKRQKBQKhULZZVABSKFQKBQKhbLLoAKQQqFQKBQKZZdBBSCFQqFQKBTKLoMKQAqFQqFQKJRdBhWAFAqFQqFQKLsMKgApFAqFQqFQdhlUAFIoFAqFQqHsMqgApFAoFAqFQtllUAFIoVAoFAqFssugApBCoVAoFApll0EFIIVCoVAoFMougwpACoVCoVAolF0GFYAUCoVCoVAouwwqACkUCoVCoVB2GVQAUigUCoVCoewyqACkUCgUCoVC2WVQAUihUCgUCoWyy6ACkEKhUCgUCmWXQQUghUKhUCgUyi6DCkAKhUKhUCiUXQYVgBQKhUKhUCi7DCoAKRQKhUKhUHYZVABSKBQKhUKh7DKoAKRQKBQKhULZZVABSKFQKBQKhbLLoAKQQqFQKBQKZZdBBSCFQqFQKBTKLoMKQAqFQqFQKJRdBhWAFAqFQqFQKLsMKgApFAqFQqFQdhlUAFIoFAqFQqHsMqgApFAoFAqFQtllUAFIoVAoFAqFssugApBCoVAoFApll0EFIIVCoVAoFMougwpACoVCoVAolF0GFYAUCoVCoVAouwwqACkUCoVCoVB2GVQAUigUCoVCoewyqACkUCgUCoVC2WVQAUihUCgUCoWyy6ACkEKhUCgUCmWXQQUghUKhUCgUyi6DCkAKhUKhUCiUXQYVgBQKhUKhUCi7DCoAKRQKhUKhUHYZVABSKBQKhUKh7DKoAKRsg+d5RKNRcBwHnudz/XAoFApFUziOQzQapfGNsqsx5PoBUPILjuMQiUTg9/sBAAaDQfij1+uh09EzA4VC2ZmQw20oFEI4HIZer4+Jb3q9HgzD5PphUihZgeHpEYiCrcDIsqyQ+QuHw8LXeZ5HOByGx+NBXV0djEajECypIKRQKDsBcrgl2T+WZYWvE9Gn0+moIKTsGmgGkAKe57G+vo6ZmRns2bMHDMPE/AGAzc1NTE1NoaqqCpFIBIB8sKSCkEKh5BM8zwvij+d5MAwDnU4HjuOg0+mg1+uFgy7P8wiFQgiFQsL3kQOvwWCATqejgpBy2UAF4C6HZVlEIhEEAgFMTU2hpaUF0WgUbrcbRUVFsFgsACAIO4Nh6yVDgmUkEhGyhVQQUiiUfILEKJLtEx9qxYi/LhWEwWBQ+B4iCMUtMVQQUnYqVADuUkgvDGmE1ul04Hkem5ub6OzsRDAYRCQSQUFBAZxOJ8xmMziOE/49CZhE4IlP2SRDyDBMjCA0GAw0WFIolKxA4hHLstuEWrI4pFQQSnsIqSCk7CRoD+AuRNoDwzAMNjY28Oyzz4JhGNTV1aGhoQEsy2JtbQ1erxdutxuBQACFhYVwOBxwOp1wOBwwGo2y9yCCkARNElClQyU0WFIoFC2R9jPLiTJS+Ui1QiEWhBzHYW5uDhaLBeXl5VQQUnYMNAO4i5DrhWEYBtFoFMPDw+A4DidPnkRpaSnC4TB0Oh3KyspQVlaGjY0NtLe3o7GxEV6vF6Ojo/D7/SgqKhLEoMPhEErE5HQsd+9wOCxkD/V6fcxQCQ2WFAolVaQl30wJMGmGcGNjQ4hxoVAIwWAQOp1uW1sMFYSUfIIKwF2CuOQLvBzA1tbW0NnZCZPJBIZhUFZWltAbq7y8HOXl5QCAUCgEr9cLr9eL4eFhBINBQRA6nU4UFxcLIlCpIKQTeBQKJRWIe0G8rJ8Ykr3TChJPSYwj12dZFizLxgyVUEFIyReoANwFyPXC8DyPiYkJDA8PY8+ePaisrMQf//jHuNeQC1JmsxmVlZWorKwEAASDQUEQ9vf3IxwOw263C4LQbrfLCkISiEkAjxcsqSCkUChS5PqZcxEnxIJSrkdaXJoWC0ZpSwyNcZRsQQXgZUy8XphwOIzu7m5sbGzg1KlTcDqdCAQCSU/Eyf7eYrGgqqoKVVVVQrM0EYRzc3OIRqPbBKE4WFNBSKFQ1ED6mZ9//nk0NTXB5XLlZUyIJwij0SgikQgVhJScQAXgZUq8Xhi3242uri44HA5ceeWVwhAHCTLxRJ7aIMQwDKxWK6xWK6qrq8HzPPx+P1ZXV+H1ejEzMwOWZYXeQafTiaKioqSCkDj4k3vodDqYTCY6VEKh7CKk/cyhUCjG0DnbpBIflQpCarxPyRRUAF6GyPXCcByHkZERTExMoLW1FXV1dbJBiwyHSCFl41RhGAY2mw02mw01NTXgeR4+nw9erxerq6uYmpoCz/OCGHQ6nSgsLNzWbC22ZIhEIvjTn/6EtrY2GI1GatpKoewC5PqZiY1Vrh9XqiQThAD1WaVoDxWAlxGk5EtOxUQABQIBdHV1IRwO49y5cygqKtr2b5UIJa2bpgsLC1FYWIi6ujrBg5CUjMfHx8EwTIwgtNlsMRtKSIaQBEJq2kqhXN6I+5nFgindA2q+EU8QSo33eZ6H2WwWDr5UEFLUQAXgZUK8ku/i4iJ6enpQUVGBkydPCjYtUsQl4HgZwEzCMAyKiopQVFSE+vp6cBwnCEK3242xsTHodLoYQWgymQBAsFsAqGkrhXI5kszbL9cCMBvxUc54/4UXXkBzczNKSkqo8T5FNVQA7nDiefuxLIvBwUHMzc3h0KFDqKqqSngdaQ+gNKBmO8DqdDrY7XbY7XY0NDSA4zhsbGzA4/FgeXkZIyMjgpidn5+Hy+WC1WrdtsNYLAg5jqOCkELZYSjx9lMbnzLxPs9mfBRXQEj8ktpqUUFISQYVgDuYeN5+ZJ2bTqfD+fPnUVBQkPRayYZAxPfMRRDR6XQoLi5GcXExgC0nf4/Hg+7ubiwuLmJkZAQmk0nIDjocDlitVgDx1zpR01YKJb9R6u2nVgAuLS1hbW0NJSUlghvBTkXaEgNQ432KMqgA3KGQNzfZz0v6QWZmZtDf34/6+nrs3btXcWDTego40+j1ejgcDgDAsWPHBFNrr9eL2dlZDAwMwGw2C4KQ7DMGti+Ep6atFEp+Ea+fOR5KBSDLsujv78fCwgIcDgdmZ2fBcZzs8NlOIFG8psb7lGRQAbjDEL+RxafiaDSK3t5euN1uHDt2DGVlZaquq1QA5ioDmAy9Xo+SkhKUlJQAAKLRqCAIp6en0dfXh4KCAiE7KO4hpKatFEr+kMo6N+J0kIjNzU10dHTAYDCgra1NyPoTNwLx8Jn44FhQUKDo/vmMWBBSn1UKgQrAHYTU74oERrLOzWq14vz587BYLKqvraYEnG/IBSmDwQCXywWXywUAiEQiWF1dxerqKiYnJ9Hb2wubzRZTMhZ7IlLTVgol+5Csn5J1bmKSZQBnZ2fR19cnVEYACJkwsRsBGT6T9hqLBSFpLZGSq9iYigchQI33KVQA7hhI1u9Pf/oT9u3bh/Ly8m3r3Pbs2ZPyG3SnlYDVYjQaUVZWJmRGw+GwYEo9NjYGn8+HwsLCGEFIhkyoaSuFklmk/cxq2y3i+QBGo1H09/djaWkppjISL1soHj5rbGwEx3FCJWF+fh6Dg4OyrSW5io9aiM5EglBsvE8F4eUHFYB5jrQXhpx05da5pUuiU7TSDGE2SeexmEwmlJeXo7y8HAAQCoUEQTg8PIxAIICioiIhyBcXF6sShIuLi6isrITFYqGCkEJJgFw/s1rkYtfGxgY6OjpgMplw5ZVXplQZ0el0QgwA4reWMAyDgoICRCIRoZKQLbQWYWJBKLXVIoJwc3MTHMehrKyMGu/vYKgAzGPkemF0Oh3W19fR19e3bZ2bVvdM5+93KmazGRUVFaioqAAABINBQRAODg4iFArBbrcL/YPFxcXCiVlOEA4ODqK4uDjmQ426+FMoLxOvnzkVxAKQDMMNDAygsbERzc3Nmr3X4rWWjI2NYXV1FU8//bRQSSgpKYk5OO5U5FwUPB6PcEgm30ON93ceO/uVeRkj1wtDUvJjY2M4cOBA3HVuqaIkA7hbsFgsqKysRGVlJQAgEAgIa+v6+/sRDodRXFwslIuLi4u3fcgYDAYYjUbZCTypRxcVhJTdBDFp7+/vx759+9L2qCOxSzwMd/z4cZSWlmr4qLdDWks8Hg/0ej3q6uqEgRLxwZFkEe12e8x0brrk4kBOfk9E8MUz3qeCMP+hAjDPiNcLI17n1tzcjPr6es3vreTNmY8ZwGwEFavVCqvViurqavA8LwhCYjsTjUYFQUi8CsnjSmTJQPZ8UtNWym5B/Nqfnp7G3r17036tMwyDYDCIZ555BlarFVdeeaVg+5QNyOM3m82yB0ev14u5ubmYOOF0OlFUVJT2wS8XcULsBhHPZ5VuYsp/qADMI6S9MOSNJV7nxjBMxgKbNAMofZNTtiD9PgUFBaipqQHP8/D7/UKgn5qaAgD09fWhpKRECPRKBCE1baVcrkjXuZHSaLqHSp7n4fP5sLa2hpaWlrSG4dJ9HFKkB0dpnOB5Pi0PwlwdyBPZgSUy3ieCkBrv5wdUAOYB8Xph5Na5vfTSSxl70++mIRAtYRgGNpsNNpsNtbW1iEQiePrpp+F0OrG2tobJyUkAgMPhEIK9ONBTQUi53JHrZyYk8+9LRCQSQU9PDzY2NlBRUYHm5ua0H2umkMYJnueFfefEg1C67zxfPQiJObcS4glCaryfe6gAzDHxTE/jrXNTYniaKsm8tMjjpSijrq5OCHgbGxvCUIk00DscDthsNllBKLZkoC7+lJ1IIm8/JTEnHmtra+jo6IDNZkNlZWXWp2/FpPLeYxgGRUVFKCoqQn19vbDv3Ov1qvYgzDZqBKCUeC4KUkFISsbilhga47SFCsAcQj7UWZYVAmOydW7x/K60YKdlAPMV8hyJBR3xFksU6MUnf6vVuu3kLL42NW2l5DtKvP10Op3qAy3P85icnMTw8DCam5vR1NSEgYGBHR+bxPvOGxsbwbIs1tfX4fF4MDc3h8HBQVgslhhBmI8lYLWo8VmlxvvaQgVgDpD2wqhZ55bLDGC+vtny7XFJBaAUaaDnOA7r6+vwer1YXFzE8PAwjEbjNkEoviY1baXkM/H6maWozQCGw2H09PRgfX09xv9Up9MJVZRcobUY0+v12zwISRWBbDMCgKmpKZSXl8dsM8o0mVwJmkwQejweAEBFRQU13k8TKgCzTLySr9J1brnKABJ2+ik7G6h9jkg52OFwoKmpCSzLYm1tDaurqzHbB8SCkLw+lJi2knuQYElNWymZQty/SkRCoteZmgyg1+tFZ2cn7HY7zp8/L+zyBtIrJe8UDAYDSktLBWsbshmK53mMjo7C7/fHmNc7HA5NLWfEZHMnvFQQrq2tged5uFyumAwhtdVSDxWAWUSuF0btOjeaAXyZfA34Sj74EqHX61FSUoKSkhIAW68bcvKfnZ3FwMCAUAoiopBMhiuxZJiamkJdXR2sVittuKZohvRwq+Q9oCSe8TyP8fFxjI6OYu/evWhoaNh23VwLwFzc32g0gmEYNDY2orCwEKFQKKEHoZxXaapkUwDK3ZscZMl/k9deogoIFYTboQIwC4h7YUjzLMMwKa1zy2QGkDzWROP9+Sq68gmtg6Ner4/ZPiAuBU1NTQnrqMQnf5IdkQpClmUxOTmJ6upqatpK0Qy5fmYlJItn4XAYXV1d8Pl8OHPmjOCxKSWTB2Ol5Co2ynkQkgNfPA/CkpISFBYWpiyKcikAOY6LKXXHKxlT4/3kUAGYYTiOQzQa3Vbydbvd6OrqUr3OLZOBjgTjcDiMwcFB6HQ6lJSUxJQS8lEA5ptQyXRwlCsFiSeMfT4fbDZbjCAkry/y+xNvKaGmrZRUidfPrJRE8czj8aCzsxMOhwPnz59PGCPp4TQWhmEUeRCKB0rETgTJyLUATCTe5AQhNd6XhwrADBGvF4bjOIyMjGBiYgKtra2q17llutl5c3MTvb29sNlsMBqNGBgYENaeETuTgoICenpKQLaDI1lHRYaGwuGwIAilvUGFhYUAXvZhi1cypqatlGTE62dWg1wGkOd5jI2NYWxsTHGMzHRlJBm5LIcqQc6DkDgRuN1ujI6OxgydiJ0I4t03lz+zms8fsa0W+ffxfFalU8aXO1QAZgCp/QH5kBWvczt37pywSFsNmcoAkmA+PDyMvXv3oqamBhzHCY/b6/VibW0NQ0NDGBoaSvnkqPVjzkdyGRwBwGQyoby8HOXl5QAQ0xs0NjYGAGhvb4/pDSIBMp4gJB5dwWCQCkKKYEOUStZPjHQIJBQKoaurC4FAAGfPnoXdbld0nd2cAUzVg5BYUzU0NGxzIhgaGoLJZIqJ8+LBxFxnANO5txpBeLkb71MBqDHxemHE69xOnjwpNLCqJRMn3Wg0ip6eHoTDYbS0tKCpqSkmVU7Wno2NjeGKK66ATqeDx+MRTo7ErJSsPYs3wbxbyLUAlCLuDfL7/Xj22WdRU1MDr9eL/v5+hMPhuAvr4/XXUNPW3Um8fuZUER9o3W43Ojs74XK5cPz4cVUxMh8EYC7ur9U94zkRyA2eOZ1OsCybtyVgtYgF4W4z3qcCUCPIh+Ls7CyWlpZw5MgRMIz8Ord00DoDuL6+jo6ODlitVhQWFsJmswn3kbs3w7zsXk9OjtJAYbVaY06OuXTozwXpnlAzCcdx0Ov1qKqqQlVVVdxmcakglJaMqWnr7oP0Mz/33HPYt28fiouL0/6dkgzg8PAwJiYmcODAAdTU1Ki+bq4FYC5f25m4t9SJQOpBuLm5Cb/fD7/fL/QZp5rUUIvWAlCMuPoBbDfeDwaDmJiYQENDQ4yLwk4VhFQAaoC4FyYajSIQCIBh4q9zUwJjsYDIpjAAiPqxtAh0PM9jdnYW/f39aGpqQnNzM5577jnVPoA6nU4QCnv27EE0Go3ZbdnT0yP0n5WUlMSUG7UgH990+ZYBFCPtn4nXLE6C/czMDFiWjdljXFRUlJIgpKatOxNpP3MgENAsA0Q87BiGSbktBsi9AATytyVFC6SDZy+++CKKioqEnvZAIBDjQah1nBeTbQ9C4GVByLIsZmZmUFdXd1lsYqICME2kvTAGg0F4kcRb55YUkfgDABOAsMUCBIOaBLpoNIq+vj6srKzgxIkTgr2I+Npy91DygjYYDDEDCaT/zOPxoL+/H5FIJMaKoKioaEe8UdSgtkk5myiZoCPN4jU1NeB5Hj6fD16vF6urq8L0oNiUurCwUPgdKhWE1JJhZyDXz6zX6zWpQiwvL2NtbQ12ux2nT59OK4OkJi4S0Tk7O4vi4uId3bqSS+uZ4uJiVFZWAkBMFYG0lZA4L60ipEsmM4BK7g1AsMza6cb7VACmCCn5klOx2NjZ7/djaGhoa53b294Gw29/CwYAC4C7lMlLhNxLmwHAI7XdmWI2NzfR0dEBo9G4beNIsiCaiviUelMFAgF4PB7BigAAHA6HEIQLCgpUWRHkI/mcASS9qUphGAaFhYUoLCxEXV0deJ7H5uZmTJaXYZgYQSgeCkrm0QVQ09Z8RdzPLP4dphuDSMl3amoKhYWFqK6uTrt8qLQ1JhwOo7OzE4FAAM3NzfD5fJibm4tpXSHWVzuldSVXA3ji96jFYolpKyGDg6SKwHFcjCBM5+CfDwIwmYuC1FYrX31WqQBMgXj2B2traxgYGADHcXjFK14Bi8UC4yXxB2w92VGLJakIlAtjROqk0wM4NzeH3t5eNDQ0oKWlZdubSInAS0d0iQdKxFYEHo8Hy8vLGBkZgcFgEMRgSUmJsOFiJ5HPAjDd7KS4B7S+vh4cxwmC0O12Y2xsTGgoJ8FeLOqTCUKe57G8vIzq6mqYTCYqCHNAMm+/dARgIBBAZ2cnotEo2traMDw8rEk2UUns8nq96OjogMPhwLlz54TvJ60rq6ur8Hg8GBsbg8/nE/pgSetKssx5tsnlATjZwgAS56VVBK/Xi4mJiYSHxmTkUgBKD0NSdpogpAJQJSz55WJLqDHBIHj+5XVuVVVVWFlZeXlXq+Tfk3+XkGAQUYtF+OVELn0NSC0Lx7IsBgYGsLCwgKNHjwr2IHJonQFMhNiKoLGxcdvkWX9/PwoKCgRBuFNO5fksALUOnjqdbpudhJyoF6+tE/uLSQVhMBjE4OAgysrKYlaKPfbYYygoKMDNN9+s2WOnbEeJt1+qAnBpaQnd3d2oqKjAgQMHhA8+LWJKouvwPI/JyUnB4qqhoUEwvCc/m7THLRQKCZWK3t5eRKNR4fVLtmhIn5dclmOzjZoYJ60iiA+NKysrMU4SYsuZeNfPdQZQTW+jUkEYCoXw+c9/Hg888ACsVmtGHrscVAAqhOd5RHU6iH/1JgC+665D9333CevcGIbB8vLyy/8OsSJQaYjggsGt4Q8JagOm3+9HR0cHGIbB+fPnE764kl0704FGOnlGNlx4PB7B0Fg8nWoymfJSaO0mAShFp9OhuLhYWNnFsqzgL7awsLDNX8zhcMS8JskENVllRwYQHn/8cVRVVVEBmEGUevupFYAcx2FwcBAzMzM4fPhwjBOCVq4G8Q6n0WgU3d3dWFtbi1m3mSyGms3mmJKm3+8XBOHExETM8BuJV7uJdGKc3KGRHPzn5+cxODgIs9kcIwjFlaBc9lirbaGREk8Qejwe/PM//zO++MUvavVQFUEFoAJILwwASLV/9MknodPphHVu6+vrMQEtAggDHTyA6LveldZjURN8FxcX0d3djZqaGrS2tip64WayBKwW6YYL8am8r69P6L+cnJxMu69ES3azAJQi3i4AQNZfTBzsSeM0gQwd+P1+YYsJRVvi9TPHQ00MIgdQADh//rxgMyW+lhYxRU4AbmxsoL29HVarFefPnxcOFalcmwxGkQwWyXIT02Qy5b60tBSzizuT5GsJWC1iMQ1sxQjiQjA9Pb1t13muPQi1drFgmK1lC2azOWtWOgQqABMgtj/gOE52OGOlrQ3Hjh0TXpDbgmMwuFXC1QglZVhy4p6dncXhw4eFSS01147nA5hLpKdyt9stnO4nJycBIOZUnmiVUSahAjA+cv5iRBBOT09jY2MDDMNgYGAgJtPr8/k0EYB/+MMf8KUvfQkvvfQS5ufn8dOf/nRXZxWVlHylKBWACwsL6OnpQXV1NVpbW2U/ONMdKCFI4yJxYSAWV1q+H8VZ7qamJkSjUQwNDWF9fR0TExPY3NzMqPWVlMstxun1erhcLsGdQrrrnGVZ9Pb2wuVyZd2DMOUMoMMBcBywvi7715ubmznZqEUFYBxkA2MwiJDFAnK22wRQ/+STMf9Oq4AWj2QlE9JkzbIs2tratp24k1072d/ny+Qt8a9jGAZXXHGFcCr3er1YWlrC8PCwUGokPYTZGiihAlA5BoMhJtgvLS0JGZXJyUk89dRTuO++++D3+9HY2AiPx5NWyc3n8+Ho0aN4+9vfjr/8y7/U6sfYkZCsn9p1bslinNj8PtkBVOsSMMuy6Ovrw9LSEo4fPy709GUSg8GAgoIC8DyPQ4cOIRwOX/bWV9mMcdJK0O9+9zvU1NTA5/NheHgYwWAwax6EqWQAC+x2IXnE2+3w/exnwKtfHfM9Pp9PlU+wVlABKEPCdW6//CUqKiqwf/9+WGROHaSkkak3SKKSyfLyMrq6umKarNWQ6SngTCI+lYsHSjwej1BGsNlsMTYPmTo1UgGYOgzDwGw2Y+/evQCAvXv3IhQK4VOf+hR+8Ytf4Fvf+hauuOIK/OIXv0BNTY3q61933XW47rrrtH7YOwqpt5/aCcREAtDn86Gjo0Ox+b1OpxMO2enAMFtbl5599lno9XpceeWVCX39Mvn+NJlMqKioQEVFRYwlisfjEayvtKhUXC4lYDWQ1115eblwoA8EAkKGsK+vL2aTERHcWsU81RnA1taYyiEDwHLzzQhKMoGkwkEzgDkknv2BmnVu5MWhda8AQe7ETNzYJycncfDgwZQ+GMm187kErAa5gRJiQyA+NZLsYDKbBzVQAZg6LMvGvG+cTiduvfVWfOUrX8EXv/hFnD17Fk899RQqKipy+Ch3LuKWFgApvRbiCUBiM1VXV4d9+/YpurZWGUCv14tgMIjKykpV99aKeIdnOUsU6ZS80WiMsb5S2z94uZWAk90XiH3dkk1G4oEdqQdhPON6taj+XF9c3PYluTv7fD5V1TqtoALwEvF6YdSucyMvTOkHmVZIM4ChUAidnZ0IhUJprVICMmMEnWmUvpGNRiPKy8sFC5xgMCgMlJD9t8lsHpRCBWDqyL1vSFAvKipCRUUFbrnllhw9up3Ltn7mNHzHpFk7lmXR39+PxcXFpDZTctdKJ6aIJ4wNBgP279+f8rWyQTzrK2mlQmx9Fa9SsZszgIk8CMnADvGalTOuF08Yq1k+oDoDuLoK3m6PEX0BmQSSVj3OaqECEPK9MDzPp7TOTZwBzATiE7Pb7UZnZydcLhdOnDihiZv+TioBp/NYLBYLqqurhf23UqNS8WSa1LsuGcTKJB/ZiQIQyN0J+XIglUGPROh0OqF8TDYLGQyGpDZT8a6VaqwMBoPo6OgAy7I4cuQI+vr6UrqOFqT6fMarVHg8HqFSYbfbhe+RK2fmSojlUgAqjWFyxvWkV1zqUyqO9Ynurzax4/vZz2C++WYwAIJVVcDg4PbvoT2A2SdeL0w0GkVvby/cbvfWOrdLzadKINfIlAAkAXN0dBRjY2PYv38/amtrNXkzigUg6WOU/v3liJxRqdTmQWxVkqxMk+8ZwGxbDagh3gk7VyfknQ7HcVheXsbKyopm07BkF/Ds7Cz6+vribhZSQqqxcmVlBZ2dnUK/s8/ny6vDaapIKxXi/kFSzhTv180V+ZoBTIZcrzjxKVXiQZjSFPCrX41QnOlfAs0AZhlpLwzx41lbW0NnZ6fgHZXKgvBMTgITwTozM4MzZ84IhrtasNMygJlCavMg9qWamppKWqbJdwGYr48NkM8ARqNRhEIhKgBVIO5n9vv9WF5eRktLi2bX93g8WFlZUX1AlqK2BMzzPEZHRzE+Po4DBw6gtrYWQH60p2Ti/qS/jVQqxGsXR0dHAQADAwNwuVxZXZ2Zyx5ALdemSX1KpbZU4uFBp9OJSCSSkdYuKgCzRLxeGLLObWhoCM3NzdizZ09ap4xMCECyyxLYMlXVei3aTuwBzAZSX6pwOCxsKBGXaUh2MJ9F1k4sAW9ubgJAWv2t4muNjIwI/z0+Po6Ojg6UlJSgvr4ed911F2ZnZ/G9730v7XvlCmnJ12AwaDJpC2yZK09OToLn+aSTtkpQkwEMh8Po7OxEIBDY1u+c69iUjfe7tJwZCoXwpz/9CRaLRTBVt1qtwsHU6XTmn9PBffeh4ItfBAMgDCCSJDMmJdOxVWpLJR4eJNuoyAYqMjyoxXNMh0CyQLxemHA4jO7ubmxsbOD06dPCaSBVtBaA4l2WjY2NGB0dzdhO3FyugkuFXDwmk8kUt0wzOzuLaDQKk8mEqamptKfOtCZT0+lawbLstvK6z+cDAE1OyC+++CJe9apXCf99++23AwDe+ta34pFHHsH8/Lxg1bETketnJiXbdCA90QMDA8IhJ13xByjPAHq9XnR2dqK4uBjnz5/f9qGbawGYC8hBrqmpCXq9PsYweXR0FIFAICNOB3KTuEqxXRJ/AGAGALtdlQjM9gFWWpLv7u4GwzCIRCIYHBxEKBSKWU+a6nPs8/lQXV2t9cNPyq4RgCTr94c//AEnTpwQPkzcbje6urrgcDiEdW7poqUAjEQi6OnpwdraGk6fPg2LxYLR0dGMpOBpCTg1pGWagYEBwYpgfHxcGCghgTiby76l5HN2EpDPAPp8PlgsFk2E6zXXXJPwNfzII4+kfY9ckMjbT6/Xp5UBjEaj6OnpgdfrxYkTJxAMBjE7O6vJ404WK8WH371796KhoSGuRVWuY1O27y+9n9QwORgMCgdTsdMBiUOpHkwTWYUlQ/ovTICqTVn5UMGw2+2or68H8PLhX+wmQUy/yXpSJY+XloAzhNTbLxqNgmVZYZBiYmICra2tqKur03S3oRYCcG1tDR0dHbDZbMIuy1AoBCAzPRg7rQScT4+FwDAMjEYjioqKsG/fPnAcJ9tkLC7TZGNvKCEfAmgi5DKUuVqTtFOI189MSCceSXuizWYz5ufnNTvgJioBR6NRYdXjqVOnElZmSGzK5/7bTBHv57VYLDGrM4nTgcfjSetgmo4A3HYtld+f6/gljU/Sw7/Yg3Bqago8z8eI7nhxzOfzadLiopbLWgDKlXx1Oh0CgQAGBgYQDofT9s6TI10ByPM8pqenMTg4iD179sT0I4ptZrR+IyTrx9ltgTVVxB9COp0ODocDDodD2BtKyjSTk5Po7e1FYWFhzIaSTJZocx1AkxEvA5gLi4R8R9zPTF5zcu/RVDKAPM9jamoKQ0NDsjFIKwEYrwS8sbGB9vZ2QXgmOySRx5YrAZjvsVHO6UB6MLVYLDEH03jVsHQEYAQAuSoPwP+zn6n692QIJFckmgJO5EHo8XgwNjYW115M6xiXbOc5z/O49957L18BGG/PJc/z6O7uRlVVFU6ePJmRJtl0AiSxoPF4PDhx4oTQjEogP0cmhkySbQIB8jPrlm8kClIGgwGlpaXCjlLx3lDSUyLdG6plwNupAjCf+ijzAenhNp74A16OR0rFEWk7WV1dxcmTJ7ftXtZSAModOon/alNTk2LrGvKazrU58k65X6KD6fj4OHp6erb1D5L3ZToCMLS+jlDKjzr3LSxqeqjjeRCK7cXW1tbwwx/+EBMTEwiHw5o9zmQ7z7/4xS/iwQcfvPwEoLgXRjwyTta5hUIhNDY2ZtQxPtUAubGxgY6ODpjNZqHcIndtIDPBZqeVgIH8PHmryUKI94YCWz0lZEOJeI1RshKCUnaqAKQm0C8Tb1d5PMjzqeTDa3V1FZ2dnbDZbLjyyitlM2+ZygCyLIu+vj4sLS3h+PHjwiFJCeIDvpp/k2/xLBW0iIHSg2koFBIOpv39/YhEIiguLhYOpVrdVy25jl8p+QBeQs5ebGhoCFVVVfjtb3+L97///XjooYfw6le/Gl/60pfS8nlMtPOc53k89NBD+MQnPnF5CUBxjx8gv86tqKgo4waaqQRIYqra2NiIlpaWhKtugNwJQEpy0ilDWa1W1NTUCHtDpb5fYtf6kpIS1ZOYuQ6gyUiUAdztxNtVngwl6ymJDRYZtmhsbEyaUdQCkgH0+Xzo6OiAXq9PyV4mk3FRzf2zSSZ/VrPZjMrKSlRWVsb0tnk8HkxMTAAAent7Y/oHs/Ec5Dp+aemioNfrceDAATz44IP49a9/jYcffhg8z+OPf/xjRuPd+Pg4FhYWcO21114eAjBeL4zcOreXXnopYybNBDUBUrxHU4mpKvnZMl0Cnp+fx+rqKlwuV0xfWrYCrNVuB3mb+wBAxiogX0/vWvUhyZUQiEmp2r4dQq4DaDLkTti0BzC9dW7iDKAcam2wtM4ARqNRXLhwAbW1tdi3b1/KG0UA5TEhFAphZGQEBQUFKCkpyZqAEbDbYcPWVCwHwK/SD09Mph+3tLctEAjgwoULKCoq2rYpicSiTA225XMPYDr4fD6UlZXhzJkzuPHGGzW/vpiFhQUAQEVFxc4XgFL7AyKQ4q1zS9cSQQnSZenxEJ961ezRzFTpggjLnp4eLC4uwuVyYWBgQEj/h8NhWCwWRQLHbLfDgEuNvkYj4HYrfhxmux3iM1YhgM1UfqAckak+FXEDMQChb4dM9ZG+HfI9cgMlO0EA0gxgLBzHIRwOq8r6iWEYJm5MIv56drtd0bAFoDy+JYPjOExNTSESieDYsWOorKxM+VpqBCAx1C8sLMTm5iaGh4eFyXwiYFKxA1MTk8WvZh22DrwBlSIwVwdgEv8bGxuFdWrZGmzLdfzKlI9qLqaAGYbZ2QIwXi9MonVuWgWvRCg5IS8sLKCnpyelU2+mMoDRaBRutxsFBQU4d+4c9C4XSOfVBoDnfvUrzMzMYGFhQQiWcuuHTHa7MOnFALBFIltZPIXIvr1+/GPgllvU/kg5IVuTiPH6drxerzDlTvp2iCdVrgNoIsigAhWAW8TrZ04FaUzieR7j4+MYHR1N6K+n5FqpEAwG0dHRgXA4DIPBkJb4A5QJQPFk8969e1FVVQVg63UnPkj19vYKAxAlJSWw2+0Zf8+kevVclZ7F95XblETikNaDbbkeAslEBjASiSAcDmdNAJL32sLCws4UgPF6YYhpaKJ1blq44icjUYDkOA4DAwOYm5vDkSNHhOZ/tdfX+vTndrsxOTkJk8mEM2fOgKmpgRkv+zQVAyj7m7+B8ckn4XQ6ha0X/f39wl5cctojmT/yzKt9u7KQCYhxxF8+9iXmyopC2rcj3lBCPKlYlsXS0hIYhkFBQUFePX/kYEYFYPx+5lQRVz5CoRC6u7vh8/lS2idO4k+qr/OVlRV0dnaioqICdXV1eP7551VfQ0oydwSWZYWK0KlTp+BwOISWIamACYVC8Hg88Hg86O7uBsdxgniJVy5OtyqT2U8kbUn2e0802DY9PQ2e52PKxWriUC4PsPEOqOlCVl1mK8Y1NTWhsrISTzzxxM4TgOmuc8tGCTieyAwEAujo6ADP8zh//nzKfU1a9uCIMwFlZWXCC5xbXQUQK95aPR6MAYJ9wJ49e4RdiWIbk9ch1utJLaH1degulYF5QFX2MB/IBzNaIvAKCgqEgZKNjQ28+OKLgkmpwWCI6R/UYrVXOpDXtJwATHc9405BqbefWkjlw+PxoLOzE06nM+V94mqmisXwPI/R0VGMj4/jwIEDqK2thd/vz7inoN/vR3t7OwwGA9ra2oQ2lniYzeYYA+XNzU14PB4sLy9rVi7eBGJ6ANWWf4Hcl4CVIjfYRp7PkZERGI3GmME2OfcLwjYBeKmXEhD5Cr761Sn9XMkgr1OtBShZdaml00Gynecf/OAHcf/99+8sARivF0bNOrdsCEC5Eu3S0hK6u7tRWVmJ/fv3p3WK0KoHUOy0f+bMGayursKdoFdvSkYgiHclkqzTaF8f9h48KGTxvADc8/NJ39xilATEy30IREtIIzcAHDlyBHq9Huvr60ImlyySF/ftZGrfdDyi0ahspmu3ZABJyXd0dBQ+nw+HDh3SdDvRzMwMlpaW0t58JDajVxrHwuEwOjs7EQgEYsz3tdzgIRcXl5eX0dnZiZqaGrS2tqr+8BYPYjU0NAj9buK+W7vdDqPRGFORSsr6uiYH23woAatB7vkkg21kYNNms8XEIbFXr3QIRCyZGACWm29GMI2BmkTEO6Cmi8/ng9Vq1fS6yXae33HHHQgEAjtDAJLSFTkVkw+JVNa56XQ6RCJqtg+qh0y2AVsvmuHhYUxNTeHQoUOaLHzWogdwc3MT7e3tsFgsQvP32traywHU74e/oABkLCUAYPOpp2BOYhNDsk6B9XV0fOi7aCo9itmVXvgviQwydZeNrRe5Ih8FIBB7gtXr9TEDJdJF8n6/P64RbCYfn9w9yGO5nBH3MwNbvw+tXkOhUAjBYBDRaBRnz55N2wZLLACVQAZNiouLcf78+ZgPdLGvqZYCUJxt1CruAtv73Ui5eHZ2Fpubm3j66aeTlot3OlrGN71eLzxXzc3NQkXJ6/VieHgYwWAQdrtdeE5Zlk1470wWh8m9tf59Ep9TLa97TZKd5wzD4J577sl/ARiv5BsIBNDV1aV6nVu2SsDhcBjBYBCdnZ2IRCJoa2vTLIuRbg/gwsICuru7UV9fj3379gkvPOkJml1dhV902mIGBlTdZ8a0giYAFbZq9Mys4BU3vGZbuZiYHJeUlFw22x7yVQCS361chkK6SJ58sHm93hgjWHEjt9Y/YzyfusvZCFqun9lgMGgWo1ZWVtDV1QW9Xo+WlhZNPFCVbiMiPdnEW1Bu0ER8rXRLayR+RSIRdHV1wefzJf1sSPe9SsrFADA3N4d9+/bFlDdNJlPa5eJ47JQSsBrEFSVga1iIxKHu7m5Eo1GYzWbB/qoAsW1KmUztpDqFn4xcxre8FoDirJ9YeS8uLqKnpwcVFRWq17llywYmEAjgmWeeQWlpqeYr51LNAJJs5PT0NK644optAyhabwKZsC3gFWwEBqsTcy/9HMabX7etXEyarScmJqDT6RJOF8d7TPlGvgpA8dqwZEj7oKRLzgHE7LTUYqAkkQC8HEvA8Q63WsQojuMwMjKCyclJHDhwAPPz81o8ZAAv28okikHi9pJTp07F7eHUcrMRMf1vb29HYWEh2trastrGkKxcnInp4p1WAlaLxWJBdXU1qqurhTWuLMsKK+v0H/kIXvvlL0OHLfEXyVD5F8icB+Dm5qbmGUCl5KUAjOftR9a5zc3N4dChQ8LJSw2ZtoHheV44sRw6dAg1NTWa/2JTyQCGw2F0dHQgFArh3Llzsh+oSgSemvu+71NfwtRHfopiZxPqNsu33YuUi2tra4Xl5OKetJ1aLs5XAZiOj5x0yTnZaZlKI3c84gVYEiAvJxJ5+6UrAMWVB5IBW1pa0jTuJRKAGxsbaG9vF2y4EnkLqi0nJ4J4mO7Zs0fxDmGtkLuXFtPF+UiuzJjJ4chut6OxsXHrM+PoUfT97d/C6/VifX0d1mefzVgfc6JNOulAM4AiSC+MdOJGvM4tnQnaTNrAkEbnjY0NOBwO1NbWZuQ+ajOAq6ur6OjoQHFxMU6cOBE3G6kkA6iWGXYFxWhCrT7xXk/xcvJ408XE087lcqGwsDCvh0Dy0WtPq8fFMAzsdrsQiOUauYl4J6JQSQZcLsCS7OPl0gMYr59ZjF6vFw6/alleXkZXVxfKy8tx4MAB4XnXOu7FE4Dk99/U1KRIhKnd4CEHsdaKRqPYt28f9uzZk/K10iHZz5BoupiUi51OJ1wul6Jy8eVYAlZybxLDxJ8ZQKwx/tjYGHw+n9A/qEUfcyZNoHNV4cgbASi2P5B6+xG/ObLOLZ0PsUyVgIm7vNPpRHNzM5aWljS/B0FNBnB6ehoDAwNoaWlJuN8T0D4DCADTtiUcAuAoqsXDn/043vPJ+xX9O2kviN/vF07Pk5OT0Ol0KCwsBMuyCAaDObcwEZPvGUCtkWvkJoF4dHQUgUBA2FBSUlKC4uJi2ceRqAR8OayCU7rOLZUYJR42O3jwIGpqamL+XuvKh1QAsiyLvr4+LC0t4fjx44I5eTJIdSdVcUoMpVmWhcViUe1pmCuUThcne8/Ixhm7HWYAIUB2hWa65DK+JTKCljPGJ9W4vr4+RKNRIYmQSs95puJnLuNbXghAnuexvr4OjuNgsViEwBhvnVs6aB0IyRL1kZER7Nu3D/X19Zifn8+o2bSSgEl2DC8tLeHEiRNCGSLZdbXsAQSAylMnwb60Dr3FjuqNElX/Voy0XLyxsYHZ2Vmsrq7iwoUL2zJOuSwX56sAzFQPixTpQEkwGBSyub29vYhGo3A4HMKHGwnEiQTgTs8AkqyfkjK8WgFI/EU5jos7bJbJDKB4peWVV16p+jCWqgAknoYulwuHDh3CM888k7dVgWQkKhf39vaCZdmYFouCggLZn9Vkt4MU3I0AgnY7ohqLwFwLQKUxTK6PmQhC0nMufk6TrWLN5B7gXZsBJFm/0dFR6PV67N+/H0DidW7poGUgjEQi6O7uxvr6Ok6fPi2korU0apYjWQYwEAigvb0dDMOofu60FoBX3/w6DPzhP1FlsaM2qCwrkAydTofi4mLwPI/V1VWcPn1aOD0PDQ3FlIszNbGaiHwVgLkqTVssloSBmGEYOJ1OQQCKn79wOIxIJKKJAPz617+OL33pS5ifn8ehQ4fw0EMP4aqrrpL93t///vd41atelbagkPYzK+nBVCMAFxcX0d3djaqqqoT+opnKAKaz0lJ8LTXPs3i6WGz/pZU/aipo/X6XihefzwePx4OVlRWMjo7CaDSiqKhIyCqTcrG4aMwDMANIrZkgPjtFAIoR9zHX1dUJSQSPx4PFxUUMDQ0JBt9EFEp7VzPVA+j3+3efAJTaHxgMBmHnZbJ1bumgVQl4bW1NWCgubXTOtABMFOjImqXKykocOHBA9Y7hZKQSYGeYFVQBqLaoX3un5LFIM05kYlVcLhY3W2e6XJyvAjAf9gDHC8Rerxezs7MIhUJ45plnUFJSgnA4LDzedAPkj370I3zwgx/E17/+dVx55ZX45je/ieuuuw59fX2or6/X4kfbRrx+5mQQEZzo98VxHAYHBzE7O6toIC6dvkI5GIbB1NQUvF4vDh8+nNYuXzUZQFIV8ng826aLcykAgcz15DEMg8LCQhQWFqK+vl7ouV1YWADLsnj66aeF6eIrMvIIYsnlPl6tYitJIhQXF6OpqSmmBD85OYne3l4UFhYKgtDhcGSsB3Bzc3P3CUBS8iFZCYPBAL/fj4sXLyZd55YO6QpAnn95oXhzczOampq2vSAzPWksJzDFK93ImiW1JAvEqb7xJooWcBqAtagK377nbrzjnvtSuo5SxCvQxCe9+fl5DA4Owmq1xnhzaf2mzvXC8njkgwCUIg7EoVBIsALyer145JFH8PDDDwMAPvnJT+Laa6/F1VdfnVI28MEHH8Q73/lO3HbbbQCAhx56CL/+9a/xjW98Aw888ICmP5MYUjZS83oggxvxSk5+vx8dHR0AgLa2NkUThFr2PgeDQfj9fsHfNN0JRqUZQJ/Ph/b2dhiNRpw/f37bpLkaAai1oW823++k59ZgMMDtduPMmTPCgTeMrawfwQ/tD6Q7MQOYDGkJPhwOC8/pwMAAwuEwzGYzDAYD1tfXNa0q+Xw+RS1amSCnJWDxB28wGMTy8jLKysqSrnNLByKeUnkRR6NR9PT0wOv14uTJkygpke9py3YGULrSLdVGaCUTe6mccm+753NYuPMxWIuqUb+hbRYwGdKTnnhAgTjNa10uphnA1GBZFmazWQjEX/jCF/D6178eN998M8LhMD70oQ+hsbERTzzxhKrrhsNhvPTSS7jzzjtjvn7ttdfimWee0fJHiIHYVqiF/BuWZbfFQVJyVbvaTKuYRCoMBoMBe/bs0cS+QkkGcGlpCV1dXQl/7lxnAHMBwzAwm82orKzEHx7/vyj7x5/C9LV3ooTzoH/vXsz90z/BeCmjTv6k+9l6OQpAKSaTCRUVFaioqBA8a4eGhmIOX9L+wVSfk13fAzg6OoqZmRkUFBTg2LFjGX1xkfKK2hex1Nsqkc9Zups6kiEO5nIr3VIlE1PAhLngEpqLqlHLa9MHmCrScrHYjHpqakroR0unXEwFYGrI9diQyc5vfOMbYBgGfr9f9XVXVlbAsuw24/OKigosLCzI/puqqip861vfUn0vLSBGy+KMHcuyGBgYwPz8PI4cObLtZ0mGFpUPslrtwIEDcZ+3VEgUL3mex8jICCYmJnD48OGEpe50pom1INfi09EThcnpAvuB7+Prxsfw93ffj+ZL5WJxaVNsRh1vujgRu0EAiiGetTabDQUFBdi7d29cH1RSVVLjg5pLm6ucCkAyrBAOh7F3714sLS1l/IUlPl0rfSERb6vGxka0tLRo2sSdCkSokZVuDQ0N2Lt3b9rPXSamgAkzlmU0AygvrMFTP3scV9/8uhQf5fbHlA5WqxU1NTWKysXSxeTxoAIwNeTek1KT1HTsEqS/k0S/p9bWVrS2tqZ8L7n7qUEcQ8iUbToeqOm0pYTDYXR1dcHv9wvG0svLy5qJrXjZSbn7JmK3ZQDFP+vF3/8RRwwtAICR9UH8/f/estsSWzQBW9PF4ol8lmVj1nEq2eiz2wSg+N4GgyGuD6rH48H09DT6+vpgs9li+gcTfW7sWiPohYUF2Gw2nDx5Eh6PB3Nzcxm/J3nxyJVXpBBvq+XlZdXeVpk+iS4vL2NiYkJ2pVuqZDKAztm84KMh6M12LL7wNKCBANT6sUrLxdFoVAiWasrFVACmhlwGcHNzM+01c6WlpdDr9duyVktLS5q9d+KR6nuKCMC5uTn09vairq4u5Slbcr1UYpLX60VnZyeKi4tx/vx54YNMyxgnd6319XW0t7ejqKhI8Uo3uUyizmKBDgAHgAsGNXm8cuTq/U7uO/urZ9Fsfy14Nowu5zjOxPl+Ui6urKyMmS52u93CdLG4P1quopQvRtDZhmVZ2edDKrLFSwzI54bdbheeU+kKwEwOgdxzzz249957Y74mrnzkVACS6RsAmi5ATwRpyE4WvDY3N9HR0SE0HKspBabTZ5iMUCiElZUVwfNLy5NDJjOA7/nk/Zj4yH/B6WxGnT99P8dsYDAYEpaLAcT01pDXCBWAqSEnALXojzGZTDh58iSeeOIJvOENbxC+/sQTT+Cmm25K69qZQqfTYWRkBOvr6zh69KhgiJ7O9dTEV7HVyt69e9HQ0BDzmtayz1kq3GZnZ9HX14c9e/aocoGQxie9xQLyatIBYC0WsCIRqPV7NNvZR/H9rmC3tp9Mewdx2/9WNmQXb7o4Wbk41xnAXN5bSU+vdIlBIBAQBOHMzAw4joPD4YDZbIbP58v4qstDhw7hf/7nf4T/Fv8MORWA4l9kpsumYpLda35+Hj09PSlvHiFPsNZvFLLSTa/Xo7y8XPMXTSZWwYmZYVfgRDNqDDtDAEpRWi7mOC6nvUjxyNfpZEI8AajF6/z222/HrbfeilOnTqGtrQ3f+ta3MDU1hfe85z0AgLvuuguzs7P43ve+B2BrSrixsRE333xz2vdWy+bmJoLBIBiGSclYWQ41GUDxUJnUaiWV6yWDiEmy0m1+fj4l439p/JJGbR0AcdS/XMrFP7n7c7jWeQN4jkVn0SiOpHgdaSYrHA5vM6MmXrep9NFrQS4PsakaQVutVlitVlRXVwsrAL1eL37/+9/j9ttvRzQaxT//8z9jZWUFr3nNazRfIWswGOLaNOWVANTSpyoR8QQgCUBzc3NpnbrFC861eLHyPI/p6WkMDg5i7969CAaDGREYmcwAAsB04RKOALAX1eJr934M//DpL6R8LfFjSoubboLhyScBANF3vAN46CFF/yymXHz0KKzYMl7tPHUK/N1346WXXlI/XWy3g0idMICIxg7+mfKx0opMCsC/+qu/gtvtxmc+8xnMz8/j8OHDeOyxx9DQ0ABg69BHsrrA1offRz7ykbQFoJr3jHjtpclkQlNTk6YG+EoO2NJht3hDZVpmABmGQSgUwvPPPy9UNlLpc1TzXLMsi+HhYfA8j9LS0pSGIaT3zgUMw+AKfzNgBZa8w/jbB+/R7Nomk2mrXNzXB+PNN0MHYBPAi7/+NQKBgODXmahcrDW5LAFrET/FKwD/7u/+Dm984xvR3NyMuro6PPzww7j99tuxtLSkaZweHh5GdXU1zGYzzp49i/vvv1/Yl53zKWCCwWDIWNlUilw5RDzenWqjtfj6ADQJkOI+RGI9MzQ0lDGxLA6g8frbUqX65GlEX/TCYHWicT29kpYmfPCDsD75JMhPafz2txE4fx645Rbl1xCJNgA4/uKLmAVw7NgxYeNFonKx+LGIC51mABG7XdNdnru1BEx473vfi/e+972yf/fII4/E/Pcdd9yBO+64Q5P7KiEajaKvrw8rKys4fvw4JicnM7a6LR5k2K2pqQnNzc0J47CWXqcsy2JkZASVlZU4ePBgyh9+UgEY0elg5Dgw2DqcRS59nQwfAlvZGfGqtZKSErhcrqRrwfIBnucx9vivcdD55wCALusY9mXgPpZL4g8AigGc+v/+PwxduICqqipNp4uTQbKOOy0DmAir1YpQKIQ77rgDra2tCAaDmoq/s2fP4nvf+x727duHxcVF3HfffTh//jx6e3vhcrnyRwCKp3OVTFqmey9xMCTrlKqrq7F///60f8laCUAiSqUr3TJlMyMNoOT/kw+CdIX51Te/Dn1P/QA1Vidqw7m1gwEAfPvbEP9EDADcdpsqASjNzzAA8M//jIIf/xhOpxM1NTXCruuE08Xf/rbstbVsW8/nDCDZfCF9fLlck5Qt1tfX0dHRIVg5WSwWzMzMaNoSkygDSPaGLy4uKh520+l0iEQiSb8vEaTPcG1tDZWVlTh8+HBaMWZbBtDvh/QRejwedHR0oLy8HHv37hUSDpubm/B4PFhaWsLw8DAsFgtcLpcqs/hclJSv2GgGU6rHmnccb/zyxzNyD+mnYSEgGLbHKxdHo9EYO610B7mAlz9Pd3IGUEo4HEY0GhUm3LXeUnXdddcJ///IkSNoa2tDc3Mzvvvd7+L222/PrxIwsHUSzoYAZFkWHMdhaGgI09PTST2m1EBc5tMRgMRwlez4FL/oMzVlnEkfQMKMfgU1ACotqa+O0uqxaAEHYFtI+MAHYl7bDMMknS6ucTpxwuuNuYzWOd58zgCS073cFPDlKgDFrR3SrJvWPdHxBtOIxYxer1fVb5huCVhsqk+sMrSwsYr3mMTPNdkfHI1GwbJsTFmuoaEB0WgUq6urcLvdwm5xYpXicrlgs9nyopf2v776T3jjpexfp34MmVlouJU9Ff+0HLaLMKFcnGC6WCwIUykXk99trp77TGQANzc3AaS/6lIpNpsNR44cwfDwMIA8KgHrdLqMr1AT3ysYDOL5559HNBrF+fPnNR+oSDVA8jyPsbExjI2N4eDBg6ipqZG9dqYygMn+Pt37ThTO4wzPwVJYge9++lN4672fSet6abG+DtZuFwRc9NLX1BBeX4febhdOySRjl+i5lJ0ufuYZhA8cgBFbwZYFMNnfj5JAQLNyVD4LQPK+lysBqx0GyCfivQ7EAujEiRPbVkFpLQDJ8yrOYpCtIrW1taotZtIRgGSlm8lkwvnz59Hf36/JgTZefOI4Dn19fVhaWkq4wYlgMBhQWloqZEJJK4fb7cbExISwNky8WSMXouQKbxOYUhP8G3Ooue5sxu4TAGDFVlziAPR/+csJf95E08VTU1Po6+tDUVGRIAgdDoei197lmAEkAjCdljM1hEIh9Pf346qrrgKQRwIQyN4gCGkATrfnJBGpBMhIJILu7m5sbGzg7NmzsNvtst+XKb8+8XV5nkc0Go3x39IiyL37ns9j7mO/gM1ei/rN9D3Y0n1MofV14IMf3PoPhQMgUgIi0RiNRoE//EHV4yLTxeH1dYR4HhsbG3C73fAsLGBoaEgoF5PVQ6lmyHeCAJQzgr7cMoBra2vo7OxMuFUoExlAAELGa2hoCDMzMzh8+HDcCcFk10tFtJGVbmLRqdWBVu46wWAQ7e3t4HkebW1tKR2myG7x2tpacBwnrJIkvW92ux1WqxXRaDRrk7H/ev8n8ZdF/x8AoDs6gmuveX/mbra+joDoP/nhYaj5CRNNF/f19QnlYiII42VYL8cMIBlyy1Rc/shHPoLXv/71qK+vx9LSEu677z6sr6/jrW99K4A8mgIGMu8FSNYKbWxsoKKiAkeOpDownxy1AZJM3xUUFKCtrS1hijxTu4aJACQn5tnZWcHR3OVyCSWkdJkLL2EvalHD52YB9jZSFH5ySPsm1SJ2mSflYvKBMzo6ikAgIJiKlpSUwG63K75XvgtA4tEpJpdrkrSG53lMTU1haGgoqcedXq9HOBzW7N7kkBsIBNDf3w+WZdPyEVUbg3iex/DwMCYnJ7e122gVz6QH49XVVbS3t8PlcuHQoUPbDvqpvEelvW+hUEjo7Q2FQnj66aeFv3e5XKpWgqlh/3IN9KWFiPjdWD2c3Y/xdAcxpOVikmH1eDwYGxuDwWCIGZgjn4XkvvnuA6gGIgAz9TPNzMzgLW95C1ZWVlBWVoZz587h2WefFdwP8i4DmCkBGAqF0NnZiVAohNLS0ox/qKgpZxPfQaWr5jLdA/j888+DZVmcOnVKMD/u7+9HOByGwWDAzMyM0NibCtPmJewFUFpUi0d/+B9445tv1fYHySHpCkAp0nKU2FR0enoaAGJ6axJlOPJdAMoF11yuSdIC8jqIRCLo6elJ6K0nRutYSPqSX3zxRVRUVODAgQNpfZipiW/JVrppFc/EApBMNMuZWGuJ2WxGVVUVzGYzBgcHcfDgQWGr1eDgIAoKCgQxWFxcrImA+PEjX8erC7bWFPb7h3HL2+Qn2zOFlllOhmFgs9lgs9lQV1cnZFi9Xq+wVq2wsDBpbMs0JDGSqQxgpvjhD3+Y8O9zLgDFb9pMlYA9Hg86OzvhdDpx4sQJDAwMZNyoV8mpluM4DA4OYnZ2VpXvYKZ6ADc2NgBslSQPHTokTCdVVFSA53lMTExgYWEBy8vLwqQcCW5K9+QCwFJJCJw/AL2pEEzXNPDm1B5vPgyBSNFaAEqRmooSM+rFxUUMDQ0JvxNSMhb/TnaqANzpJWBi4F5UVJTQW0+MlgKQ53mMjo6C53k0NDSgpaUl7Wsqzdqtra0JP3u8lW5axTMiJPv6+jA/Py/bW6kZVVUo8PkAbA1J4B//EbjxxphhL7ISzO12o7+/H5FIZJvVTCpxwtEThdHpAhvaRLdjAldp+5MlJZOG8uIMa3NzM8LhsHDgnZ+fB8dx6OjoEL4nWwM55LWeiR5ALSakUyXnAlCM1iVgnucxPj6O0dFRYfKLYZisbB1JFiBDoRA6OjoQiURUl2Iy0QM4NzeHnp4eAMDhw4e3nfAZhoHFYoHZbMbx48djJuXIJKvD4RCaoxO9Mf/+jk9j9MM/QWnJXtQE8sAPUEOy2aciXUqerFyciR4WrZATgKQ8tJMzgHNzc+js7ERLSwsaGxsVvy60OgyLs29Go1HxPvNkqPEVTFbu1ioDyHEclpaWYDKZFJlJp/MeLfD5hD44BkD1V7+KwRtvjPke8Uow8WTsysoKRkdHYTKZYqxmlBygL/7+jzhi2BLwIxuDOPnmNyT5F9qTzQ0gJpMJFRUVqKiowOrqKrq7u+FyuZKWi7UmXo9yuuTa5iqvBKCWGcBwOIzu7m5sbm7izJkzKC4ujrlPuh5WyUgUIElvSklJCU6ePKm6qV/LHkBihTMzM4MjR46gs7Mz7veKhWeiSbmxsTFhqbjL5YLT6dx28p/l3SjF3h27Fi4eudyTmaxcHI1GMTU1hXA4nPOSipR4GcDNzc0d3QPocrlw+vRpYYWWUrQ4pJLMY3FxMdra2vDMM89odvBNFIM4jkN/fz8WFhYU+Qpq4f6wtraGubk5YdtBpq3ExEhtUuSQm4wlB2hyWCObg1wuFwoLC2XjyOyvnkOz/TXgoyF0OUZxBZO5PvZ45CrG8TwPg8GAuro6oVxMpoul5WJiRq1Vxi5TE8iZ3gOcjJwLQKmo0CJAkcBnt9tx/vz5beIjG3YzcgFSutIt1d4UrTKA4XAYnZ2dCAaDMeWZVK4db1JufHxcmJQjwa2oqAhThYs4CqDIXouH7/kY3nNPamvh8sGPS0wuBaAUabn4T3/6EwoKChSVi7NNohJwtiwSMoHFYknpQygdAUgMloeHh2PiTCb290oRT92eP39e0SEj3QPt7Ows+vr6UFxcDKvVmpXXMfH/JOIvDHVxk1jJkBI16bV2u92YnJwUSqEkQ0gyW0fZrRVeU6uDuOnjH8L4+LimP5cSchXjpC0sOp1OmB6WlotJyZ34NyotFxdcsvTiAfgAwRYs3pBauuS6xznnAlBMuqdeceBLVHLRMhDGQxrUWJZFb28vVlZWFHlRqbl2KpCp48LCQrS1tcFgMAjZ13iBTKnwFPdxtLS0IBgMCsFtenoaDMPg+F+9EeH/Mw9TQSka1tM3hc4X8kkAiiGPqbq6GsXFxUnLxUVFRVktF8tN2JGy2U7OAKZKqofhaDSK7u5u2WETLQ++cjHI7Xajs7MTZWVlquy1Uj3Qinuojx07htXVVQSDynfnEPPxVAj+7GcwX1qRFgawPDkJ9PendC3gZSuompoa2cxWUVERJn/2BP7MeT14jkVX0Si0WVugnlwKwET3FZeL1UwXE6wiP1cGWxtPNkX3zoRdXK57nPNOAKZaAiZTdqurq0mn7LLRAygWmX6/H+3t7dDr9TEr3VIl3Qzg4uIiurq64k4dJxKAqWCxWFBdXY3q6mpwHCesRVv0L6CuoBS10VKMjo7C5XLBbrcrFh75OgSSjwIQiD1BS8vFRKSnMl2sBdFodFuADYVCYFl2RwvAVF8LqcQocqgj/oLSDzgtD77ia5EBsZGREezfvx91dXWqrpXKgTYcDqOjowPhcFjooV5fX89eTHj1q7c8RAmSLT7pIJfZ8ng8KA7sAQqARe8wjr79jXC73TmJgfmSAUyE3HRxsnJxoitnqn961wtA8QvJYDAgEAgk+G55yC7NgoICXHnllUkbQbNZAl5eXkZXV5fsSrdUSbVpmkwDjo+P48iRI9sMYLOxCUSn08HhcMDhcOBXhv9GHYBKaxWWgkF0d3eD47gYHy2tdyNmmp0iAKWIRbra6eJMPTbfpSnLnT4FnApqBSAZuJCulEvnmokg8Y1sNFldXU2p1xFQH8/W19fR3t4Ou92OEydOCK/FTBnkKyGT9zaZTPifrz+MG0u21r51FYzidNE5LCwswO/349lnn41xY8j0vu+dIAClKCkXXweZtZ6ie2cqA5jLA27OBaAYtQGK53nMzMxgYGAg6aSZ9D6ZLgEzDIPl5WWMjIzg0KFDqK6uBoiYUVGmkCMV24RoNIquri5sbGzIenGRxwwkzqxpGeQmbYto41iYbKVo/9FP8Df3floQHguXtmBkwkcrk+SzAFRq4Kp2uliLcrFcD+Dm5iYYhtnRPYCpQmJUstcTy7Lo7+/H4uJi0oELrUvALMviwoULMJvNWxnH97wH+D//B7jrLuDTn1Z1LaVxhXimysX7XArATHN0oxlMqQ6r3jG86cufALDVdz05OYnGxka43W4MDg4iHA6juLhYkRtDquRyCESrLJxcuXiotxethw4JPYCrANwLC3A6nRnNAKayiUcr8k4AKi0BR6NR9PX1YWVlRbXfU6ZLwMT/KRqNbq10e/xxGP7u74QUM2exIKpEBN5wAwy//a2wG5a79G/Ulkz8fj8uXrwo2CPEy5AmE4Bav+nfc88DmLnjv1FUXI/azfJtwiOZj1Y+iq18fEwABDGRShBLVC6emZkBz/Npl4tZlt02rJVpl/xskE4JGNh6XuJlW30+Hzo6OqDX63HllVcmzZZrefB1u90AgLKysq2VbgUFEH57DzyAyAMPKD7oKolnPM9jaGgI09PTcT1Tc50BzBT/9pm78UbnpeyffgwNkvuSveJyfW/J3BhSYSdmABMhLhf719djysWeS+Vii8UCjuO2SvEaJiJ2/RCItASsRJhtbm6io6MDRqMxpZ66TApA0ocDbDXc2+12QCT+AGz9f4slaYA0XhJ/wNYvKmqxgAsGFQU6o8US829d7e1obW1N+AbKdgYQAOYiy2hFPeqY7ZmLRD5aIyMjMBqN4Hkey8vLOZ9iJWh5StUSLW0MMlEuZll22/v4chCAqZJMAC4sLKCnpwc1NTVJ39cELTKA4pVuALB3717odLptHyQGAEq7uZOVgCORCDo7O4VNIvFaAi7XDOAV3iYwpSb4N+ZQc9054evSn1Xa98ayLNbW1uB2u+O6MaTy3spVjMukAbUYabk4EolgdHQUKysrKU8Xx4P6AIpQIszm5ubQ29srONqn8kLM1C5d8thI2SxdpC8pPbbsB5IFTEYk/oAtwXng+HFFJ/JEQTQTAXbGuoxWACVFtfj2Q5/HOz54Z9x7S320JiYmMDc3h5GREQSDQaH04XK5ciYc8jUDSH5vWgdupeVip9MpfOjIPQa5EnCuT8dakcr7hlhOSOOh2Lfz8OHDqspH6WYAxbZRZ86cwYULFzTpjUpUAiYHapvNFneTCCHXAjAT9/7mfR/Hm+zXAwC6oyO49pr3x/x9olij1+tj9hbLDXqJrWaU7i2+3DKAyTAajSgsLEQ4HMaRI0disqzj4+PC80yqIGr2P+/6IRAxYisSKeJeFzVr0+TQOgMot9JtaGjoZbPpd70L/L/+qyDKeAD43vdU34eEl2Q9M3JvEUb07xORTABqjb/RDG7WB53JBseS8n+n1+tRVFQEi8WC06dPx7wpJyYmBJ8tEgC1KH0oIV8FYKaMTKUkKhfPzs7GDPk4nU6hvy9eD2Au1yTlGmmcCgaD6OjoAMuyqrcHAellANfW1tDe3i6YSpPXEXldRQGI32Fqjr/xDrTJ3AqkqD3Y74TX1UF3PfSlhQj73Vg9HPtxrVZwSt0YNjY24Ha7MTs7i/7+/pip2NLGRpBGDj8AXjTxvNsEIBDrAxhvupgMYpHn0el0Jh3KyfUhN+cCUPxCiifMiI2KTqdTbC6aCC0FIFnpFo1Gcf78eeEDLSbYfvWriIyNgfntb7dE2LveBdxyS9JrhwGQbj0eQPRd7wKQOAMYDAYRBCCVx/xrXqPo5xELQDkxqPUp92/f/SGMfPhHKCtpRV0aa+HiGVFPTEwIPlokO5hq6UMJ+SoAWZYFwzBZf2zScvHm5ibcbrdQLjabzXC5XLL+bVqWR77+9a/jS1/6Eubn53Ho0CE89NBDuOqq+FtUn3rqKdx+++146aWXNLl/Koh7oldWVtDV1aXaYy/e9dRAPtiam5vR1NQUExeEGBcMIiIu4asYdJMeaHmex8jICCYmJmTdCuJxufUA/viRr+PVtv0AgP7AMG5523s1u7ZOpxP2Fu/ZsweRSETwajU1NkI8dmUDsNnaCgwOArg8hkDUEi/TLVcuJn3rAwMDiEQiQmXK6XTGbHghPZuZzgAmin05F4Bi5AJUKr0uySAnxXRfyF6vV1hMffjw4ZgXyLbT6C9/qSgDF0MwiLDMl8lzIH38Xq8X7e3tKH/xRdhPnQJJREcu3V8p2SwBA8AM70YZgGqj+rVwcr8/qRF1KBSC2+0WSh8Mw8QYgqpJ2ScjXwVgPvQmMgyDoqIiFBUVobGxUViH5fF4EAqFMDAwgLm5OZSUlMDn82FtbU2T0/GPfvQjfPCDH8TXv/51XHnllfjmN7+J6667Dn19faivr9/2/ePj47j++uvxrksHrnRJ9X1D4uHIyAjGx8dx4MAB1NbWpvw41B58OY5DX18fFhcXtw3aMQyzPcal6G4gPtBGo1F0dnZic3MzrltBouuoeZ55ntfU3kPr2OjsjsJYUgI2tIGB0lm8UuZ7tIo1RqMRFRUV+MPjP8YJmb+3zM+jc3AQLpcra714UnJ1X0C5D6C0b93v9wt2M6Rc7HQ6YTabYTQaM77qMlnsyysBSIZAiEM7Kauq7XVJBnnDp/rm53keU1NTGBoawr59+1BfX7/thZmKVYtSxCcI8v+np6cxMDDw8uMJBpHKtuNEjztTb76pokUcB2Cz1+Abn/4Y/te9qa2Fi4fZbJYtfYhT9qRcXFxcnJZQylcBmMvySTzE67CWl5fR3NwsTNq9853vxOjoKEpKSvD1r38d1157bVx/u2Q8+OCDeOc734nbbrsNAPDQQw/h17/+Nb7xjW/ggQce2Pb9Dz/8MOrr6/HQQw+l+yOmhU6nw9DQEFiW3XITsNvTvp7SEmkgEEBHR0fClW5axThync3NTbS3t8NisSR0K4iHGgFIVtZtbGwI/akulytv9mNf/P0fccS4FwAwsjGEd3/ms9u+R8vPl4e/cAfsTAGWUYIwtmeGAth6foeHhxEIBDA2Ngafz4eSkpK4e4u1JlNefJm6t7hcTCpTZAnCr371K3ziE58Az/P45je/CZ/Ph6uuukpzy6tksS+vBCB5gn0+n2AKnEqvi9L7xNs/mgiy0s3tdifcOJJJs2lp/w1ZvK7WDice2c4A/t2992Lp47+B2VaOPb5qxf8ulcciLX0Ql32Px4Oenp6YHrVULE1yeUpNRD4KQDEcx8FqtcJut6OqqgoXLlzAP/7jP6K7uxuPPvooPvShD+Hf/u3fcOutt6q6bjgcxksvvYQ774wdLrr22mvxzDPPyP6bCxcu4Nprr035Z9GC1dVV+Hw+2O12nDlzRpMeVqUZQLLSrby8HAcOHIgbI7WKcTqdDpFIBM8++yzq6uqwb9++jO5IX1tbw8WLF1FSUoLm5masra1haWkJw8PDsFqtghh0OByqNk9oyeyvnkWz/bXgoyF0OUZxRtOrv8y3vvRhFHAuBHTV8OlYABH80yc/g0989lNCLzkLgFlfx75L//3MM8/A4XBgbW1N6LcWD5Nkqt+a47is9XJLSWTHpBTxEoR/+Id/wF/8xV9g//79CIVCePe73w2DwYDR0VGNHrGy2JdzASi1gQGA5557DhUVFQmDTzqQN7Xa4EV6EQ0GA9ra2hLaz2Rq0hh4+TkLBoPo7e1FNBpFW1ubJqeHZIEsU1nN+cACGm3lqGXjG9lmApPJhMrKSlRWVsr2qJEPhJKSEkUu+zQDmBrSwxj5UDl79qxwQk6FlZUVsCyLioqKmK9XVFRgYWFB9t8sLCxs+/50UPN6EO8zLygoQE1NjWYfeskEm9qVblrEOJ7nMTc3h0gkgqNHj6KqKvUNt0oEIDGSbmlpQX19vWDp0dDQgGg0Cq/XK9h9RKPRGN/RbGYHj3LNAICp1UHc9r/vj/t9qcaab3/po9BxZdjQ12LDwAFgYWCNKGM82OCC8IvX3MlQVlYGp9MpDEG43W5MTk7GWM2UlJSoWu2ZjHzsAUyH4uJi8DyPr3zlK6ioqMDy8rKm11cS+3IuAAkcx2FkZAQAsGfPHjQ1NWXsXqR/RY0AJCvdqqurFfUiZlIAknu/8MILcDqdOHnypGYeeNmeAibMGlfQCKDCVoWnfvY4rr75dRm7VzykPWrkA0Hc0OtwOARBKDehSgWgeniel+2x8fl8KC4uBoC0qwBqf0+5+B1Go1F0d3djbW0Np06dwsTEhKYxJJENjPjeZ86cEZ73RKQb48g9V1dXYTAY0hJ/QOLhOOJfODU1hWPHjqGsrGzb9xoMhhhTZZ/PB7fbrTg7qNXh+Cd3349rHdeD51h0Fo3jijjfl8r9vvtPH0MkUok1Q+WlT38O5qgRJfpF2Pe04sY3vj/ZJWLeO+IhCGBrKJJUVLq7uwWTeBIz01ntmQ9TwFoiXnXJMExaziaJSBT78kIABoNBdHZ2IhwOQ6/XJ1xnpBVKPbHE+3OFlW4KyKQAJOq9uro65XJJPJKdojOVAZywLeI8G4HRWoLZi/8PUCgAM/lBLf1A8Pv9cLvdcLvdGB0dhclkEgIbMTymAlA95H0iPWH7/X7F77d4lJaWQq/Xb8v2LS0txc3yVVZWxs0OZgrid2e1WrfWqplMmJ6e1rSNJF4JWNx7R+6thHRinHg70bFjx/Diiy+mdB0x8WIXWYNJBkuUTF2KfUdJdpBMyYqzg+T9ryXH/M2AFVj0DuPWBxOv1FMSa176/dMYePGX2GCr4DOUA8at31lhxACbYR4Hzt6Ak9fEn4iXkijGmc1mVFVVoaqqSjCJd7vdmJ+fx+DgoLDaU2lFRUyuh0C0zgCSVZeZyiwriX05F4DhcBjPPPMMXC4XTp48iT/+8Y+amCgnQ0k/TCQSQVdXF3w+n+qJtEzsGxavQwKAuro6zd8QucoAvvfTX8DUR3+GYkcj6jaUld+yafkgbuglRtSrq6uCGAwEAiguLo4ZZMonIZjPApC8DzNhBG0ymXDy5Ek88cQTeMMb3iB8/YknnsBNN90k+2/a2trw85//PK37qmF2dhZ9fX1oamqKGXTR2q9UTrARl4VUeu9SjXErKyvo7OwUqimBQEDTYRIxRGiazWacO3dO9WCJxW4HAyBw9CjKn346ZiuR1M6IZVl4PB5VvYNSvv+pe3FjyesBAJ3WEbQm+N5kz9lPvvtVRJcW4ebKETKUAYYowAOOKAODfgFvvfOLKT1GpbFNbBLf1NQkWKR4PB7FFRUxuYxhmbg3sYDJ1OeEktiXcwFoNptx/PhxOBwOMAyT8T29hGSn142NDVy8eBGFhYVJHehTub5ayDqkQCCAc+fO4ZlnnslIhjHbm0DEzEaXUYxG1Oqy2weYCuIJVmBrapKYqvp8PvzpT3/KSmO0UnaCAJQrAWvhkXX77bfj1ltvxalTp9DW1oZvfetbmJqawnve8x4AwF133YXZ2Vl875I5+3ve8x78y7/8C26//XY8+OCDad8/XoAXm9sfP358W+VD61govh7HcRgeHsb09DSOHDmSUs+j2hgn7jE8ePAgampqYq6T7qFJGp88Hg/a29tRVVWF/fv3q3792y6JPwAo7OwUvPDksoNzc3MYHR1FX18fWJaNyQ6qyfAc3dgDplSHVe8Ybvny3aoeL2FroteGZTgR1TsBXQQMr4OLDSPKePDOO9NzWUj19yRnkSKtqIj3FkvbmnItADORAcz0xqpksS/nAhDYWkdD3ripmpWqJVFwJSvdpCdyNWgpADc3N3Hx4kXYbDacO3cORqMxYzYz0iAqfbNnVAAWLOMgAIe9Fg9/7m685xP3ZexeWmO1WmNMqOvq6oTGaGJETYKb3W7PenYw3wWgXq/f9pxoJQD/6q/+Cm63G5/5zGcwPz+Pw4cP47HHHkNDQwOArcGAqakp4fubmprw2GOP4UMf+lDa946Hz+dDR0cH9Ho9rrzyStneKL1ej1AopNk9SUwKh8Po6OhAKBRSXBJNdD0lsCyLnp4eeDyebT2GcrZWqSCOXcQWq7W1VdbrMSki8UcomJ+HX+ZbDQYDSkpKMD4+jiuvvBI+nw8rKytCdpCUPZNNFn/7sx/HXzhvBgB0GkbRoOBhip8vuYleHadHOefDJrx468e+rOQnT0rKv6erroKlsxMAELzlFtj+7d+2VVSkKySJiC4qKsppVSVTPYCZ3gKSLPblhQAUQ0pomUZOAHIch4GBAczPzwuNwqmilQBcWlpCV1cX6uvrsXfvXuENkKlsXK5KwACAI3Vg+zagNxehaiM9z7NcQSbV5BqjifcgkNoOznTIZwEY73StZYB873vfi/e+V36TwiOPPLLta1dffTUuXryoyb2lLC4uoru7O6m5vdaHYXK9Z555BsXFxThx4kRaw2NKY1wgEIjZ5CR9vYuN7dOBDIH09/djbm5OM1sspfcm/0uyg2SQjLz3pdlBl8sVI/yPeFrAlJrgX59F7XVtSe9Jnq+tid5ybOhrsGHgETPRiwj+5mOf0/RnTUmI3XYbbJ2dgqi2/fjH8P31XwOvfjWA2IrK3r17EQwGBfP+yclJIeGxtraGkpIS1aX8dMlED6DP58vKqstEsS/vBGC2SsDJ9myma6mSrgDkeR5jY2MYGxvD4cOHt03IZWrIJJcl4De++VYM3v5DVJr3ozaoTHznU58dIG9VIG2MXl9fl93B6XK50jaijkc+C8BoNLotuJISUSZd8rMFeY1yHIehoSHMzMwoMrfXOhYuLi6C53nU19cLK93SQUkMcrvd6OjoQGVlJQ4cOCD7GhT7mqbzIcuyLCKRCNxud/oxfH0dvCQL6L/66oT/RC42GgyGmLInsZlaWFgQsoMulwu//c9/xy32GwEA3ewIrr3mA0kf4m9/9FXJRC+veqI3FeLZsbz41B/x1B9/Ab9ejyAfBsf5oQv7YQ6GcN+PfxHzXDIA9DffDDaO3YzFYkFNTQ1qamoEA+Xu7m5hp7iW5v1KyEQJWKsKRzrkhQAUC4tslYDFwYusdHO5XDh06JAmv+h0BJrYkiHeBoBsZADlPnwyPXgxw6ygEkC1JXlPUq72fiZCib1IvB2cvb29afUPJSJfDaqB+MF1c3Mz5wFSK6QHTCWZTa0EoLjXEAAaGho0eS0kinHibUnJPAXFJeBU2dzcRHd3NwDg3Llzmthi+dbXobfbYQAQ+tnPhGxVqkhtpsR7Yw96G6Bz2RD2r8B90IRgMCjbFhB/olcPm2FB9USvWh75xoNYWFvB75/9DcIIAlE/jKEArP4wCv08iqI6yB3Z5F7FSl/ZxEDZaDRi3759KCwsFKxmMhkzxWTiAE16AHNJXghAMdksAUejUUxMTGB4eDjuSrdUSbWxmZhNG43GhJYMmbSZ4XkeCwsL6O7uFlLzpaWlWTFCnbEt4hQAa2Elvv3Zj+Mdn4xvgpqPqP19kx2cFRUVcY2oxf1DqR5OcrlGKRnxyiv5cELWgrW1NTz77LMoKyvDwYMHFf8etIiFpPzKMAzOnTuHp59+WrNyVrwYxLIs+vr6sLKyknBbkvg6AFKOZ8vLy+js7ERlZSXm5uY080QFAHZ9XZFQSWco4vePPYpXF+wHAPQFhrHv6BlcuHBByA66XC785v99H+zyIjySiV4ny0CvS32iV44v3/cxBA0GBBFGlA1AHwnAHAjCFojCFmBQwsv9rMylP4DfzGGzQIeg1YyoqQA6vRWfvusf8fkHvhqzXQRJzKalEBGmxLyfWM04nc60X+vxfErTJR/iW94JwGxlAAEIDvRKgpRaxH0tSoMDKZcomVrLZDl2YWEBy8vLOHToEHQ6HbxeL8bHx+H3+4VNBS6XKyMTTG/9zGexcOfjsBZVos6r3f7nbJFOo3IiI+rBwUGEw2FVtgli8jkDKBdcSQk41ydkLSgsLMSBAwdUGx2nmwEkdiuk/CouRWuBnJk+2bELIOm2JEKqj0u8NeXQoUOw2+2Ym5tTdY18oKSbhbGkBGxoA4Olc3j3yZNCdvAn//5FOPVFWIbj5YleTgcXtzXRe/r6v8WRI0dU3e8H3/sGZmem4dfxCPFbWTxDKAhrIIwiPwd7RAf5Duyt92hUx2OzAPBbDQhZrICxAAadBVbegCIw+OBd8sN7/rs+Bxw/DhQWAk8/re5JgnwWLl7M9Hg8GBoaQigUiomZqXxmxfMpTZd8iG95IQCl6+C0nHyTg3g4xWtK1gLxqTbZyUEcyA4cOIDa2tqk10/kep8qLMsiEAggEAjg7NmzsFgs4DgOLpcLLS0tWF1dxcWLF7G6uorx8XEYjUbhhCo3tp8q88FF7CmqRC2X/3YwUrScVJMzoiblYiW2CWJ2WgYwEAiA47jLogcw1S0XqQpAnucxPj6O0dHRbfFEyx3l0gyg1+tFe3u76kwnuZaaAy3Hcejt7cXKygpOnz4Nh8MhHFBzRSr3vvj7P+KwsQUAMLwxhHd/5rMAgG8/eCdsjAthQy3mdSyAKHScAWXcBtZ5D/a/6q9gNBoRDodlP2MevP8u+HU6BPkIWD4AJuyHORiEzR9FYYCBg2fgkH1EW9fxmzn4CnQIWMxgzVbo9AUwMmZYecBmKsOH3v++1KytLh0OUkHJIVYaM4k9l8fjwdjYGIxGY8yudyU/Q6YEYD60uOSFABST6SEQMlVbUFAAh8ORsQlMpWUNteUS8fW1DHbk5M5xHPbt24eioiKEQiFEo1FBWJAS8BVXXCHYnbjdboyMjCAYDMLhcKC0tBQulwsFlZUgLdhBAJyKdP+MeQV7AJQX1iRdC5dvWa1MWRWIjajr6upkbROKi4sFQSg1GM3lIvVkyAlA8Zqk3UoqsTDZSjetBSC51tTUFAYHB1NupVFzoA2FQkKsEmcZU6mKiE3bczEkNfer59Bsfw24aAidzmH0ffkjYKIV2DTUYJMRT/S6sYEo/vZjn0MkEsGjP/w2pqcn4dfxePQ3PwBYPwyhAKyBMAr9HArDOsi/c7Z+RlbHY9PKw1dgRNhiAW8sgJ6xwsoYUcCx+NDHH5D919FoFH/4wx9yEnfV9uExDIOCggIUFBSgrq5O+MzyeDyYmJgQ7LlIdjCePRd5XWaiBKx15VEteSkAM1EC5nkeIyMjmJiYwOHDh7G5uZnRTCN5sSQKtqmUSwhaZgDX19fx0ksvweVyQafTCR88JJiS3wf5X5ZlYTAYYoyQxaaegXPncFx0fSsAn92uuOdjqnAR/Jf/BtXsNMqgTjzmmmxl2qS2CYFAQMgOTk5OQq/Xx5x083kKWE4Abm5uQqfTpbU7NF9I9cNSrQBUstJNyw1FOp0OoVAIPT09WFxcxMmTJ1Nei6b0QLu+vo6LFy/C4XDgyJEjMa8bpX6CPM+D53nheRA/xzqdTvijhlR+x4zdjr8EsGT5Vwy8807oiivgAQcYAYCHOWKAEcuY4UNY4ENgIn7cc9ffwuaPbGXxuMRZvKBpqxcvYDUharYC+gJYGAusHNDaegA3/eWtqh8zec5yIQDjTR8rRafTCfGwpaUFoVBIyA6S7Vrk710ul5AcIi0qWv/Mfr9fUbUvk+SFAJSWgLXOAIbDYXR1dcHv9wsr3UZHRzOaaWQYJqFIW11dRXt7e8qTx1plAMmwR3NzM5qamvDiiy+CZVkhY2QwGMBxHFiWxcLCgvChRAQF+SM+aTEbG9vuYwQwPjMDl8uVdJjkH770sHB6NQLg7Hb4ZUTgTpwCzhRWqzXGNmFtbQ0ejwdTU1Po6+uDwWBAOByG0+nMiRF1IuQEIOmPyVfRmg3EB7Fkvy/yPm5oaIjxC5WiZQaQ4zgsLy8L+4vTGRJTMtRGfsY9e/Zgz549235GJQKQCD9yL7PZLDT5k6E9ctAlWUGl2UE18chqt4O84muCczB/7f145tNbe391fh/03hkY1zfAANg+P32pusSQLJ4BYYsFnGkri2dhjLCyLM5efSNYlhUEjVjUpAr5GbMdP4ho1zIemM1mVFdXo7q6WrDn8ng8mJubE/YWk8+rTPy82TCCTkZeCEAxWpeA19fX0d7ejqKiopiVbpnY1SslXlCbmZlBf38/9u7dm7IlQ7oZQLHP4BVXXIGKigpB9A0PD8Pj8aCsrAwulwsGgwEDAwPweDw4ceIEjEZj4mBZXAysrcXcbwNb5ffh4eGY6TY5Dyepe5cOwD+faIP5ljfDxLAwIAw9EwbDRMAzEXT9z38iyHGwuarxt7fdLvw7s90OIwAeQAhANAuZxHzYASw2om5ubkYoFEJHRwei0Sg6Lznxy510cwXLstseQz70x2hJKuVJIooTZZXFK93I+zjZNbWIe6urq5ienobBYMDZs2fTznonen54nsfo6CjGx8cT/ozJ7GSI0CN/T+KOWOARcUj+aJEdlEP6bJUAMKy5YXIvQB8KCF8PGTlsCFk8CxhDAUyMBQUcA1exE9ddcz0OHToU9+clE7Lz8/MxoiZVz9FcCcBMlWEJYnsusreYWM3Mz8+DZVl0dnYKMVMLUUingGXQsgRMlqzLnRizYTgtFYDiTSPputSnkwEka5m8Xi/Onj2LoqIiIdgdPHhQMCqenJxET08P9Ho9DAYDDh06hOLi4pipPdlgOToKXWkpSPEuAsCyvo4TQIz3FfFwUnJCjRo5RI1RbHWGGS/9uQQDQAdsrvL431/8Zxh5Bv/4ubuF72AAWABsHjgA9Pen9JwpJR8EoBSz2QyTyYSKigpUVVVtO+nabLaMG1EnIl4PYK5Px7mGPCfxbFtCoRA6OzsRDoez6i1IDrAul0uzlodEljKkp5FUb+KRSACKM3+JynligUcOueTfJcoOavGeX9Itgq0ugEFXeimLx+HDn5DvxQOAiYkJoVdWDjnfQannqNrsYK4FYLbuK7bncrvdGBgYgNPpxMrKCkZGRmA2m4XewVQHIKkAvITWJWAlK92yIQDFp22yf5ME63Q3jaSaAQyFQsKKq7a2NphMppiSiDh7VFlZKXgSWiwWdHZ2wmAwoLS0FKWlpSgpKRFe+CRAkhN2yO1GUBQsdCwLhmG2LQTf2NiA2+3G3NwcBgYGthasA9gDCM7xLABz2zEwc+Pg9QZwBiM4kxUw2sAYzOB0DDgmCjAAp48iBECuc8w4O4uI6mdMHfkoAAHEfPDFO+mKTVXFJ91sPDY5AZiNNUn5DBEi0Wh0Wz/f6uoqOjo64HA4VK10S8c/VBxXjx8/jmAwiPn5+ZSupeRxEQ9DvV4vxKpExLOTEZd41Yg18vyLM7Ekvkmzg0QYKn3/s4jNAvpNJnzunn9X9LhSRc5zdGVlRcgOKjkI5iq+ZToDmAie52E0GlFfXy/sLSZWM0oG8OKRD4fcvBCAYtIVZsRxn0yIxRNamTRSlt6DlKHtdnva+zfF11abASQN1E6nE4cPHxb6gch4vfjNtbKygu7ubtTV1aG5uVkQnF6vFysrKxgeHkYgEIDT6RQEoc1mUxQsxaUUu90Ou92OpqYmhMNheDwerFy4gMG778ZrfvtbhAAsDQ0h9K8PwmPgYNhYQOVyFHqRGam7mMdGiQvl+kI4DRwM0COC7WWWSBamYPNdAEqRfigQiyRSrrdYLDEn3UwMuMTLAOb6dKwlqZSAGYbZFg95nsf09DQGBwfR0tKCxsZGVa+3VONrOBxGe3s7IpGIEFfn5uY0i6HS54dYypSXl+PgwYOKPvjldgqLKxTpZurksoMkfq6vr4NhGITDYej1eqEHPN7jDqyvA3Y7TADCV18N/PznKT0mLTxHxQdBt9uNnp4ecBwnmx3MVXzLVeYR2O5Tqtfrhc88AEkH8OQOLvmy6jLvBKDBYEi5BOzxeNDR0aHIhypbJWDyomhqahKElBao/UBZXFxEV1eXUA4HEPdUPD09LXgSiv3LdDqdEBBaW1vh9/uxsrIiCEKLxYKysjKUlpbC6XQK/ZbSYCnNOJJgGePw/n//L1bW17GysgL31BSOX/k62O12uFwu/N/vfwtuQxjm9QVUrLBwrTFwrXkAeDDjADZLynH/nf+AT3/+a4IIjACA253GM66MnSYAxYgX2Tc0NGwzVQ2HwyguLhZeA1pl6HaDAEwVcUWEWEYtLy+n3EKSyhDI2toa2tvb4XA4cPLkSeEAq+UhWnwt0rqj1lJGXAImf8jPqvUUpzg7ODU1hZGRERw4cEAYmhOXLOMOkqyvI5zGY9ByCE56EBRXZkh2MFsVATm0EPDp3DuRlkg2gFdUVCSIabvdLrwOsh3jGhsbMTk5GfO1vBCA0t48kjVSmu4VGym3trZuTaImeaFkWgDyPI9wOIyJiQkcO3YM5eXlml5fafAVD3scOXJEWJ8jJ/44bmtZ/cLCAk6cOAGHw5Hw2gUFBUJaPBqNbmXvVlbQ29uLaDSKkpIS4aRksVi2ZQfFPTbA9mBJSpVkkIHYzJx65eug1+thsVjw1P/8F1b4IKyri6hwcyhbZVC2ugQePD7+nhvhd5TDyVtwxyc+n94TrhCtJ9W0IhUbGCWmqiQ7KG4HUIvcJpB82JOZD5A45ff70dHRAYZhcP78+ZTtcdQOgczNzaG3t1dwCRDHVS0FIKkwDAwMYHZ2FsePHxcyLGoRVx/I48wEPM9jaGhI6Okm8VJ64JVWP5JlB3MNwzAxlRlxdnB2dhYcx6G7u1uzyWIl5HKTkZo1cNIBvHA4LMTM7u5uocoyMDCA9fX1rB9yP/OZz+Bd73qX8N95IQDFEJEg1/ciRzQaFQYaiCO8EjJZAo5EIujq6kI0GsXevXs1F3+Ash5AlmXR29sLj8cTM+xBApRY/EUiEXR3dyMYDOLs2bOqT3oGgyGmt0/cXzIwMACbzYbS0lKUlZWhuLg4bnYwXqlYPLJPTlkTExM41fY6cByH4uJi/O5Xj8LN+FDoXUKZl0GFhwc8i+AYHp+5828QLK6AkzPio5/4gspnWzk7OQOYCKmpqtiIemxsDL29vUKGVk0fDJDYBuZyIR0vQK/Xi46ODmGlW7peaEoOvuQwODMzE7ePWusYOj4+Do7jcO7cuZR+90RYpdLvpxZiuB0IBHDmzJmYVqN4vYPJDrypkI1YI84Orq2tobOzE4WFhduyg9IMl5bk0sc0nUEnk8mEqqoqVFVVCZnVJ598Eo8++igCgQD+4i/+Aq9//etxww034LWvfa3Gj3w7RUVFqKx8ecVq3gpAJUHK5/MJQwpqV7plKgPo8/lw8eJFWK1W2O12RSI2FZL1ABK3fJ7nce7cOZjN5m2lCRI8SLO1xWLBmTNn0u5RlOsvIaXijo4OAIDL5RK2hphMprjBMt7UndPphN/vh06nw759++B2u/FnN/4VvF4vjEYj/vSHx+Dl11HkXkHpGoPKFQ5YmQfL8Ljnrr9F2F6BEtaIj9ytbWbwchWAUuIZUXs8HkxOTgrtAon6YAi0BCwPz/OIRCIYGxvDoUOHUFNTk/Y1lWQAw+EwOjs7EQwGE04XayIALRaYALzy0n/6ABiDwZQuRd57ExMTqKyshMPhyMh7kfSZGwwGnD59OumGnUS9g+nYzOTKB1Wv16OpqUmI7dIMl9Pp1Dw7mMvKipoMYCJIZvWmm27Ca17zGlRXV+Puu+/GhQsX8J3vfCcrAvALX/gCPvvZz6Kurg5vetOb8k8AyjU+y0FWutXW1mLfvn2qf0GZEIDLy8vo7OxEXV0d9u3bh5deeiljWcZEPYBSt3xy6pcriZBpwsrKypSeRyUYjcaYU9Da2hpWVlYwOTkpZI5IdrCwsDAmO5jIk4s8t1arFbW1taitrRUyU2VlZXC73QgGg3juuSewxq6heMWNkg0G1csssDyHqI7Hpz5xK7jCSpSwDG6/+4tp/6y7RQBKkfbBECuh6enpmJVLLpcLRUVFMY8l3iaQdGySdjokIx8Oh9HU1KSJ+AOSx72NjQ1cvHhR8E1NdBjUQgBKpVMBkNKkPokRR44cwdLSErq7u8FxW3vMiZ+pFofxjY0NwcA/lWysODtInjstTKgJhkuDJQAQhvbep9L4ZjQaX+7bTtA7mG52cKdmAONB7HtuueUWvO1tb9P02vH4wAc+gBMnTsDpdOL555/HXXfdlR8CUPqBmWgQRLrSLZUl68DLGTQtXlji5euHDh1CdXW1cI9M9RnGKwEvLS2hs7Nz27AHeeOKn+v5+Xmh2bqubrvffKYet8PhgMPhQEtLC4LB4Nagh9uNiYmJpDYz4hJ2IBAQsiQkWIozU8BWKbGlpQUrKytYXV3FhWd/iw3WjZJlD4p9OtQuRoHFGUT0HD75ybcCtko4OR63fzw1MZivAjCbJ2idTif8jqV9MF1dXTFZAqfTGdcGpr6+PiuPNxuoeU0QkVFQUJA0e6oWnU6HSEReYpFNG0oH1tIRgDzPY2pqCnslX1f7zpEOe5SVlQltKOuXhsjEB00ypKamRYGwsrKCrq4uNDU1qZ6+loO8H1M1od4WaxoaIM63mQFEq6oAjax6ZO8pQq53kPRtk+xgqgb0uRSAWmUAxfh8Puj1+rQzpPfccw/uvffehN/zwgsv4NSpU/jQhz4kfO2KK67Y8i9M6+4aIs5oxTulyq10SxVxyTGdXy4xKl1dXd22fD0ds+ZkSMWlWIRKhz2k4o84609PT+PYsWM5zbRYLBYhe6fUZoY8/vn5eRw+fBhA/H2e4r61aDSKw4cPw+1247c/+zWW+CX4om6ULntR5Nehbj4MYAphA4e7P/U26AoqUaEvwD989FOKf558FIBaHXRSRa4PhmwnGBgYAABMTk6irKwMDocDOp0uYz2AXq8X73//+/Hf//3fAIA///M/x1e/+lXFvcOZZn5+Hj09PWhsbERLSwu6uro0PUTKxVae5zE8PIzJyUlF20QIqQpAjuPQ39+PxcVFNIMsNttCzU8q3ewhjnFiv8vm5mbhoLmysoLx8XFhwIkcNJNleIgzwsGDB2N6qLQkXqmYiFxpdlD62cJ4vduuyfh80PITSE180zI7mMshEI7jNG/lIh6A6cbk973vfXjzm9+c8HsaGxtlv37u3Ln8EYBi5IJUvJVu6dwD2BIOqfa8SY1KpWo+kxlA8Ume4zj09PTA7XbjzJkzsNvtcf2vyBaQjY0NnD59Oq/6rJTYzJSWlsLn82FzcxOnT58WBluSBUuGYWKmWls/1ip43v3mvx7HQngK/vASypfWYQvqUD8XAjCJoJHDJz79DhitFagucODd7/9Ywp8hl4EqHrk0UZUizRL4/X48++yzgsXJ5uYmvvKVr2B2dhanT5/W/P5//dd/jZmZGTz++OMAgHe/+9249dZb8fMUfdi0Qjx0cfToUWFwTOtWFWlMIgNrPp8PbW1tquJBKvGN+AlGo1G0tbUhGgxCZ7FAjy3xxyns/1Nr7ix30FxeXsbg4CBCoVCMY4F4AC7epG+mUWJCHYlEhFin0+mgO3oUuLTqUXj8R49q+rhSjW/S9z3xfJVmB0nfsPSz9HLLAGq16lLsR6iW9vb2/BSA0hJwopVuqSKeGEsFj8eD9vb2hJN5mZw0JhlTMuxBjK+lwx7i4Eh2wup0Opw5cyZjAypaIbWZWVlZEfzoGIbB6OhoQpsZqQm12H5Bp9MJnnfvuv3vhRV1j/6f/4P5wCJC4WWUL22gIKRDw2wAwAQCJg4fv/c2mMzlONjUilv+6q3bHnO+ZgCB/BCAUsjv5MCBAwC2ypBnzpzBt771LXzmM5/Bf/zHf+B1r3sd7r///rRNU/v7+/H444/j2WefxdmzZwEA//qv/4q2tjYMDg6itbU17Z8nFcj7kpgsizOfWq7GJNcjsWFzcxMXL15EQUFBSodqcbZKyWuL9Bfa7fYYP0EuGERndzcsFsu2krAcqW72ED9uctAkhrzLy8tYXFwUMlMkMzg1NQW/379t0jfbSLODk5OTWFpawsGDB1+O97/9LaKlpSDvkgAAPP20po9Dq/gW4/kqyg7Ozs4KrhHi7ODl2AOYTZeDCxcu4Nlnn8WrXvUqFBcX44UXXsCHPvSh/BGAciVgUipYWFhIyxcq3v1SEWhiJ/79+/cn7J3LtAAMhUK4cOGComEP0ldUUlKi2Fk/n2BZFhMTE7DZbDh37hxCodA2mxlS0klkMxPPhJqsqHvvBz8oBKTv/etXMBfxIRJcQsXiJqxhHRqnfQDGMTszio8P/hEWUzmuOnAVXnXT6wDkpwDMpwygFDIAQp6zqqoq3HPPPfjNb36DO++8E8XFxfj973+vSbC8cOECiouLBfEHbJVBiouL8cwzz2RUAMZ7TayurgrvS7EoIuj1eoTD6dgFx0JiBBmiq6+vx969e1N6zaoRgKQ3OV5/odJ2mXiVjVRhGAY2mw02m03Yl+t2u7G4uCiY5paVlWFtbQ1GozHtylO6kHL9/Pw8Tp48ieLi4ljnBLcbazIrOLV672civinJDlqtVnAch3A4nPXERSYygH6/P6urLs1mM370ox/h3nvvRSgUQkNDA971rnfljwAUo9frEQgE8Nxzz4HneZw/fz4jDuRqyyscx6Gvrw9LS0s4deoUnE5nwu/PpAD0+/1wu91obm5Gc3MzgPibPZaWltDT06NZ83K22dzcRHt7O5xOpyBeTSaTJjYz8Ty57HY73vfhuwFsla2+8U+fwwwTAudfROWSH7agDrapTQCbuDg7gt90/RQ2YylcTBVaWlpy8TTFRZwBzTfkgisxSy0vL8ef/dmf4cYbb9TkXgsLC7KenOXl5VhYWNDkHkoRHyT37t2LhoYG2d9PJkrAfr8fnZ2dQq9wOtcCtu/eFSPXmxzvWsmuk8nNHgSj0QibzYb19XVUVFSgtrZWGFDr7e1FcXGx4Fhgs9my+p4irT7r6+sxGUm1NjPk/6dCNg640uzg+vo6xsfHsb6+jj/+8Y/CZo3S0lLY7faMP55MZAC1KgEr5cSJE3j22We3fT0vBSDLspicnERlZWXSlW7poCa4SkutSgSpTqfTtHwDbL0BJyYmMDc3h6KiIrS0tMQtiZANKcRHTGlzdz5BTHDFO4mlpGMzo8STy2Qy4QN33Sv8m6888Aks6TnwvgVULgVRFNChaHIdwDrWbCP48jd6YdeX4K67PpeV5ygZUtPvfELOAgZQ5wOodBIOkBfB2c7aEoP2lZUVnDx5EiUlJXG/V0sBGI1GMTk5iXA4jPPnz6ddUk8mAEm/sdfrxdmzZ2G32+NeK5GtlbiVg2TsM/X7IjvQGxoahM0nTqczxrFgeXkZY2NjMJlMQlzJ1J5sQiQSQWdnJ1iWTdi+k8yEOl2bmWy/V8gwDxnUaW1tFbKDxFFAvLM4E9nBTE0B54PRfV4JQCJu3G43SkpKcPjw4Yy+2JQ2Ma+treHixYtwuVw4dOiQ4je62rVLyeA4TvjgaGxsxObmZtySCCmfu91unDp1KmHwzVcWFxfR09OD1tZW1NbWKvo3qdjMqA2WH/zEA8L9vvyZj2LeBOg2F1G5FEaxT4di3yqAVXzhQ2/GaqkLxXoH7rwzd2Iwl/0zydBCACqdhOvq6sLi4uK2v1teXs744Yi8L8lKN51Op2ilm3gXcDoQ03ydTgeLxaLJEnrynpCLccFgEO3t7WAYRnZATu5acvY04gNaSqXMujqYPR4AAAcgcsl/TY7p6WkMDQ3h4MGDsvZi4kESlmWFQZL+/n6Ew2GUlJQIbSipruqTgzyXFosFx44dUzW0KM0OqrGZkSNXLS4khsllB91uN2ZmZtDf3x/jN6pVdvByyADGI28EIMuy6OzsxOrqKqqqqmL6gjKFEoFGBlBaWlpUl0+1LAGT6TmWZdHW1obl5WWsr6/LlkSIXU40GsWZM2c0DUbZYnJyEqOjo7jiiitk11ApRa3NjNpg+Ykvf1N4E0UAfPSud8OwsYDK5SicGwycGx4AHjzw4bdgzVWKEjhwx8c/m/oTkwI7TQByHKfKBkbpJFxbWxvW1tbw/PPP48yZMwCA5557Dmtrazh//rz6B6+S5eVldHV1oaqqCvv371f0O9EiA0gM6mtra1FRUSG0SWiBXIwjB+bS0lIcOnRI0c8plwFMd9gDAMwej+AtqAfA2WxgJSKQ9NXNzc0JRrnJ0Ov1wuuOtCwsLy/H7UlO9bOMDOqkajwtRq5ULPZVVZIdzJUAlPMxFVv97NmzJ6Z3UMvsYKZ6AGkGUERfXx/C4TDa2towMzMjOGVnkkTBleM4DA4OYnZ2Nu4uzGTEOx2rRTw9d8UVVwhvztXVVQwMDKCsrExIkZOTflFREY4fP57RskQmILYLCwsLQpOzViixmSFB2+l0JjShjkajMJSWxryBjAA+/MC3oJ+exr995fNwG8Iwry+gYoWFa42Ba20FwAo+99G3YNNZDicKcMfHH5B7qJqy0wSg3+8Hz/OaZKnEHDhwAK973evwrne9C9/85jcBbNnA3HjjjTEDIPv378cDDzyAN7zhDZrdm/TdHThwQNVWj3QEoJxBvfjQqAVSATg3N4fe3l7VB2bpdbQQf8B2Y2liN0MgPq4+ny/lSV+GYQRHgXg9yUQsulwuxYMkHo8HnZ2dqK+v18z9giBXKlZy4M11BjARmcoOZmoKmGYARRAbCJ1Ol7E9vVLilYDJLsxQKJRwF2YytCgBk9N7Q0ODMFzAcRzKyspgNBqxsrKCgYEBhMNhFBUVYWNjA9XV1di/f39e9nwlgvQMEY+/TNsuSG1mPB4PVlZW0Nvbi2g0GuMNJmczIxfGHQA2AHz4ky8Lu3/6/F1Y4YMo8C6i3MOhzMugzLsEHjw+e8dfw+8ox4Of/7bwZvQBgIYrnHaaACSHv0wEyB/84Ad4//vfj2uvvRbAlhH0v/zLv8R8z+DgINbW1jS9r81mwytf+UrVWYhUY2E0GkVPT882g3qt21KIcCNZtKmpqZQOzOLraDnswSNWBIqfSbEt1unTpzXrHxP3JHMcJ/Qkj4+Po6enBw6HI6bqIPfzLSwsoLe3V1X7SzooNaGORqNCYiObMUWt/6BcdpBsI+q85JWoNDuYKR9ALV1NUiVvBKDJZBJeZIlWwWmJXHAV78I8d+5cyibRQPqrkiYnJzE8PCysvBOfisUliNbWVoyNjWF8fBxWqxWzs7NYW1sTTI+LioryXgyGw2HhtKxlMFaKwWBAeXm5sEZqc3Mzuc3MoUPge3uFDxgewFN/8zc4yTAIh8PCh9eH7vicEEC+eP9d8MKPQu8SyrwMKjw8/tfD3xbEJA/ABsD34x8Dt9yiyc+2EwWgwWDQbJG8mJKSEnz/+99P+D2Z2t6Tyms6FQHo9/u3TF4Nhm39d2KhpUVMIL177e3t2NzcxLlz51IS7kRUiG2atBj2CFVXwzw3B2CrB5CUf+WcBTKBTqeD0+mE0+nE3r17EQgEhOzg6OgozGZzzCCJTqfTrP0lnccMbB8kiUQiWF5eRkFBgfD5rLR3MF3SzcJJtxGpyQ5mKgMYb0NHNskbASgmWxlA6Wl4cXERXV1dwhomLXY9piIAid3M8vIyTp8+DYfDEXfYQ+xUf/LkSTidToTDYSHITE5OCoMP4lJxPkE+sAoLC3H48OGcPz6GYVBUVJTcZub//T+4DhxAwaXm9QvV1bjivvtQWFgY12bmI3eKxOADn4CXX4dYFpBX3Nptt2HzyivhcrlS6uE02O0wAAgC4EZG8lYAygVXMiGX74cWtSSadI2HWiNot9uNjo6OuH2G4g91rd5nfX19KCgowLlz51I+uIkFIKChZ+XwMEKSL5EesUyUVpNhtVpRV1eHuro6sCwLj8eD5eVloepgMpkQDodx5MiRnIg/OYibRVdXF0wmk9AukchXVet4w3FcbOm8tRXW+XlwAEIqqyXxsoNEEDIMI+wsdjqdGdmjTnsAE6C1+32i+5A098jICCYmJtL2xhKTigCUDnuQzR5yJZFoNIru7m4EAoGY/hWTyYTq6mpUV1fHDD6I1x5lYlotFdbW1tDR0YGKigq0trbm5Yd+QpuZRx+F2WxGOBzG/v37UVZWFjOJnchm5iMf2xoGCX3+uyDFbiIPVj/5SbgXFzE0NISCggLhdFpcXJw0GBXY7cJ+1UIAupYWTD/5pHZPiIbIZQA3NzfzIjjmA+IYlei9Ia4YHDhwIG7ZULwCM10B6PF4EAwGUVpaiuPHj6flLWcymeB2u/HCCy8Ih9VMVC5mZmYwODgYd9I3m+j1eqFKw7IsOjo6sL6+joKCAnR2dqKwsFCI09nwu4tHIBAQqmKHDx+O+T0r9VVNlxgRVlWFwkuZXD22Dru+NFpmkmUHga0J8bKyMs1+D7QHUIL4SdXK+iAZ5GTT3t6OjY0NnDt3TtPGc7UCcHNzEy+99BLsdjuOHDkSE/yB2JJIIBBAR0cHTCYTTp8+HbexWDz4sG/fPvh8vpjSZi6DzPLyMrq7u9Hc3Iz6+vq8FH9SxDYzzc3N6Ovrw+LiIoqLizE4OBiznk6pzQzrdsPocsX0ADZ89KNoAIQVdSsrK+jp6QHHcUJvotzOTACQhlsr8nMLCCC/iztfgmM+oCRjR3wF3W63UDGIhxLzZiVMT09jYGAAFosFNTU1aYk/lmXhcrlw1VVXwe12Y3l5WahckNiUbuUilUnfbCH2+LvyyiuFLCB5LqampqDT6WIGSdJpTVIDmUIuKyuT7StXa0Kd6utE3MZSIBkQZQCgtRUYHEzp2jHXkmQHNzY28MILLyAYDKKzs1PIDpKdxalmvPMlxuWNABSTrRIwx3FYXFyE3W5HW1ub5n1nagQgGfYgq5nI45ObgiNZs/LycrS2tip+U4mn1RobG2WDDAm4Lpcro6VYchI/dOiQZhnXbELK9F6vF+fOnUNBQUFaNjMbKyvCtXU6HXSXfu9kRR3pTRTvzFQz2Zbrsno84k0BZ3NNUrZItQQMxM/YBQIBwd+vra0taUafsVpxI7aGIfhgUNVjAbZetwMDA0LLyfDwcEpikgwXiGOc2WyOqVyQoayBgQFEIpGYyoWa/lAyXLaxsYHTp0/nVXaZePyZzeYYjz9xVorjOKyurgp9g93d3dviSiZYW1tDe3s76urqFJXKM2lCnXQIRGbDjxYQO7rDhw9vxelL8Xd6ehp9fX2w2+2CIFSTQKEl4ARkowS8srKCubk5WK1WnDx5MiMZEiVG0+LSDbFqSGSBsLCwIPgS1tXVpfUhKRdklpeXMTQ0JJSKSTlGq1Ixz/MYHR3F9PR03p3ElUKsIwKBAE6fPi08N+nYzJDrJguW8XZmik+np7BVGiGsIj/XwAHxS8D5cDrOB8QCUIrH4xEOgkoGGRiLBUZstRkYAbAWC1gVIjASiaCjo0NwRygoKFBspi9GLPwA+UlfccartbUVm5ubWF5eFg4+0u0+8V7f4knfRBs0cgEZRCkpKUno8afT6YSetH379m2LK1arVXiuyCBJupCY0tLSgvr6+pSuoaUJtbgE7D96FIWXJnmBS20zTz+d0mNMhjjzqNPpFPUOJssOEt9IrW2uUiFvBKC0BKzlpJoYsm1kZGRE2AuayQmwRKdjkkVaWlpSNOwxNjaGqampjDQIywWZ5eVlLCwsYHBwEIWFhULATbVULM6anT59ekd+yJNyDcdxOHXqVEJPL7U2M2qDpdj3ipxOV1ZW8NT//A+ueO1rUQRguLkZoR/+EIzMloV8IN4UcD6cjvMBhmG2VUR4nsfU1BSGhobQ2tqq+APagFhbFB1ibVESQUqBhYWFMe4IattcxPYi5N8nQzyUtWfPHoRCIWEl2/j4OEwmU0ypmFyTCCyHw6HYkDpbkBWXqQyiJIsrZA+62kwpgWxg0rJPMl0T6hgng6efxubvfgfTzTcjDGhqmSUlUeuFNIFCegel2cHS0tJt/ayZLgF/7nOfwy9/+UuhTWx1dXXb90xNTeWPABQjPvVq2esg7pU5c+YMVldX4Xa7Nbu+lETBkdieRCIRoXQTb9iDZVn09fVhdXUVp06dyvjJgWEY2Gw22Gw2NDY2ClOwy8vLuHjxonA6J1PFSn5HkUgEXV1diEQiOHPmTEYsPjJNOBzGxYsXYTKZVJtsq7WZkZpQy3lySYMlOZ02NzcjtLyMSbcbG243VubmwDAM+vv7hdNptnqIkrGbMoCpHmbFApDjttZBLi8v49SpU6oy6GLxp6YQLW1PEf8cagSgVubOZrMZNTU1qKmpiVnJ1tfXJwggq9WKmZkZNDQ0ZH3SNxmprLiMhzSukEOguEVEzVDNzMwMhoaGMmpBE69ULN75LP5e8hqLeeyvfjXCGRR+BKUegDqdLqY3PBQKCdWZjo4OITtoNptRUFCQcQEYDofxpje9CW1tbfj3f//3bX/PsixuuOGG/BaA0WhUsw8qca/M+fPnYTabsbGxkdFew3jBUXyaPnHiRMJhj1AoJBhXnj17NiclDKmxKSkVDw8PIxgMwul0CuLFarVu+/fiPpdTp07ljfhQA5mEs9vtaWcTpDYzpJSwzWbmUi+myWRSFSyl/VSkH9FoNGJsbAy9vb0oLi4Wrp/Lfrt4PYA0A/gyJD6Q9xHP84r2CEuJVlfDeMkTD9haXZgIcbWEtKdIUSoAxYeYdM2dxYj9UPfv34/NzU2MjIxgcnISwFYpk/Q254O10NTUFEZGRjIisBiGEVpESImSHNzFgyRyB3fyu56YmMDx48ez2pqTyIRa7EFIvp4Jm5l4pGqXZDabZbODP/3pT3HfffeB4zj827/9G/76r/8ap06d0vznuffeewEAjzzyiOzf/+Y3v0FfX1/+CEDpqTKV3pJ4eL1etLe3b+uVyfSwiU6nE7I25OcjH/LiYY94y843NjbQ0dEBh8OBgwcP5kUjv7hU3NraKuzAXFxcxODg4LZMls/n02yXZa5INgmXLlIbghibmd5e2O124TktLCwUys7Sqbt4nlw8z8NqtaKlpQUtLS0IBAJC78rY2BhMJpPQu+h0OrP6OqMl4OTo9Xqsra2hs7MTLpcLhw4dSu13NDaGCIALFy6gqakp4fAVyTSurKzEbBKRokQAxmtryQQLCwtYW1vDyZMnUVBQIAigsbExWdPlbCGeQtZ6xWU8pHZg4oM7GVArKyuDy+XCzMwMFhYWslJhSoQ0O8iyLAYHBxGNRlFUVCR8Xov9BjP5e9RiC4g4O/iRj3wE119/Pc6dO4fx8XFce+21OHnyJH77299q9IiVceHCBRw+fDh/BKAUrQZBiF1Ba2vrtqGJVI2alSLO2uh0OqFv5+DBg6ipqUlYElleXkZPTw8aGhrQ1NSU85NrPORKxSsrK2hvbwew9QYqLy/Hvn37dqT4UzsJly5im5mWlhYEg0HhOR0fHxdMvZXYzJDXNjGYJa8zq9WK2tpa1NbWgmVZoRViaGgI4XAYDodDEISZXscXzwg6X0xwtSTV1w7LshgeHsa+ffvQ0NCgiUF9ooNvKBQSMo3JJosTrZZTMuyhFfEmfcWvc7HpMrGeIe+lTFZWiJheW1vTdgq5rg4WjwcMgCiAiMQeRYzcwZ2I48HBQTAMg6qqKkQikdh+uxzC8zwGBwcFeyOLxaLowKvlY9fCL1MKya7+8Ic/hNFoxJwoK58tFhYWUFFRkV8CUGyTkK4XIMdx6O/vx8LCAk6ePImSkpJt35ONDCCw9QE8MjKCxcVFoW8nnvgjDd6jo6M4ePDgjrJIEZeK5+bm0NfXB6fTiY2NDTz11FMxU8VypeJ8Q4tJuHSxWCzCh5hamxme5wX7iObm5m3rm4Ct9wARe9JVVSMjI7BarcLfOxwOzT8Y4mUAm5qaNL3PToTEsGAwiIaGBs1WRyUSbevr67h48SKcTqeirTxkg4eUVIY9UoW0yTAME3fSV2y6THrlSGm0r68PxcXFQpZdy1Ix6X2ORqM4ffq0pr3PVo9H+P8GALzNhmgCESjGZrPBYrHA6/XCZrOhvr4ea2tr6O7uBsdxWRPH8SADg0Q0iw8hyQ68WppQp1oCToTf74fRaITZbIZOp1P82XLPPfcIpd14vPDCCzh16pSi6zEMk18CUEw64oyM/kejUZw/fz6u2MiWABRv9kg07EE8tpaXl7NWJtAa0ksyPj6OY8eOCQuvyYlzaWkJQ0NDsNlsghgsLi7OuwxnJibh0iWZzYzUDmJjYwNdXV1oamoSsiDJpu6kE4Zerxdutxv9/f2IRqNwOp3CY0jXGogEbdoDuB1xDHM6nZoemOJlABcWFgRjdqVVB51Ot61SI/X3y+R7Wzzpq7RNRtwr19zcjGAwiOXl5Zj9vEQspnPoEfc+nzx5Utve59/9btuXDNjKBCpB7GZAFgnU1tYKmzBWVlZiplmVWO5oBcdx6O7uht/vx6lTp+KK5ni9g1qaUGciG0o2Hal9Ht/3vvfhzW9+c8LvUXpIrKysxHPPPZffAjCVEjAp2TkcDpw6dSphQNCyz1AOv98PYOtnIY9FnLYWD3uQk2I4HMaZM2d2RIZMCs/zGBgYwNLSEk6dOgW73S78HSkVNzQ0IBKJCAbU7e3tYBhGCDDZdLmPRzYm4bQgkR0EKeUQm5hUPLnIJgaSNfH5fHC73VhMcUWdFHJfOgUcC4lhJAvX3d2taZySZgCJN+f4+DiOHj0q2GMpvVY4HI65lhaTvkogO33r6urQ3Nyc8r0sFkvMfl4Sm8TZMJIdTGT7JEapx1/KvPrV276kdLI7kZuBeBMGmWYlh8yJiYmM75VnWRZdXV0IhUI4efKk4uyjuKKhxldVyePJlABUCznca0FbWxs+97nP5ZcATLcEPDc3h97eXsUn2ESlkHQRT3QeOHBAyDbKDXv4/X60t7ejoKAAp0+fzrkASgVijuz3+5MKWKPRGONft7a2huXl5RiXeyI8simEczkJly5iO4iVlRV0dnairKwMwWAQf/zjH5PazCjx5CJbZIiIJzYHPT094Hk+xgRVSalLnAUXky8mqblgdnZWMHpvbGyU9QFMF/HBl+wTX19fT2kVpriPOpvDHrOzsxgYGMCBAwdkp5NTRa/Xx9iqrK+vY3l5GRMTE+jt7YXD4RAEULwPceLxl64wTUYYAJFHPIDQz3+e9N+odTMQW+6IW1DIXvlkDhBqIPuQWZbFyZMnFYttKWLjZiA9E+pM9AASC5hMvj+mpqbg8XgwNTUlPK8A0NLSgsLCQlx77bU4ePBgfglAMWoygDzPY2hoCNPT0zh27JjirI3SRetqmZqaEhaO9/f3x/QqSAOjx+NBV1cXqqurt3lsxfDjHwO33KLZY9QS4mnIMEzCvcRy6HQ6OJ1OOJ3OGANqspGkoKBAEIOZLBWT11A+TMKlA8lciD8YM2EzYzQaUVFRgYqKipRX1MWzdCCr4HYTHMdhcHAQc3NzOH78eMxJX2sBSA6+RAwYDIaUV2ESMRmvrUVreJ7HyMgIZmZmcPz4cdnebq0QZ8PI9DwZnCD9sUT8kFKxlh5/yWB9PgRUfD9xMyArRNX+jsQtKOKNJMQBgsRqcshUkzkjW2YYhsGJEyc0TYKkY0KdqR7ATMe3T33qU/jud78r/Pfx48cBAE8++SSuueYa6PV6/PKXv8xfAag0A0h6GQKBANra2lSlVskvVisBSHr4iIhwOp0YHByMmawS34ecYhMGi+pqWNbWtgxc3/72rTe8wkbfbOD3+2NOlOm+WQoKCtDQ0BBTKhYLl0yUiknD8erqKk6fPr1jxcfS0hK6u7u37VfWwmYmmQm1dEVdvBVJLpdLuL7c6Tqf1iRlC3KACofDwoo1MVqvxtTr9fD7/bhw4QIqKirSKlEyDAOWZbfZc2QCYuS/vr6OM2fOZL1P1Gq1CqXiaDQqxKauri7BamlzcxOHDh3Km75hgtZuBuJlAeKKADEN53leKFmSQ2Y8IpEILl68CKPRiKNHj2bUhkqtCTXLsilnIuORjRaXRx55JK4HIKG+vj6/BKD4Rank1EtONDabDefOnVP9iyIvBi3q/OI9mefOnYPVagXHcTCZTOju7kZ5ebnQVMwwjOJTrJmIv0tYAKhf4Z4ZVldX0dHRkTx7mSJypWLpQnQiXFIVbdK9vjtxQwmw1cDf29uLI0eOJOzh0sJmJll2MN6KpKmpKWGPK/lQkHvfZdolP1fIvT/I1G1xcXHczIfBYEAoFNLscZAtNPv370d9fX3K71ue52EymWJ2EpeVlWXkPUREMoC82OlrMBiEDDixeVlaWoLFYkFvby/m5uaEw2quD5TZcDOQVgRI6ZwcMonxPDlkihcdXLx4EQUFBThy5EjW7WeSDZL4/X4UFxcjGo1qZjOTTz6neSUAxSQ79S4tLaGrq0t2PZGaewBIW+X7fD689NJLghAVD3ucOnVKWFVEmor1ej14nsfJkydjBiXkkP5U+TIru7S0hJ6enqxZpIhLxXv37hXKD9JSMSnHKHk9ENHO83zSvb75zNzcHAYGBlIaWknXZkaJJ5d0RRLJDrrdbvA8H7OiTq/XZ0wAKtmPmU3m5+fR09ODPXv2JMzKaFUCFvuqOZ1ONDQ0pHUt4qV37ty5mLWGRUVFKCsrQ3l5uSaWKpubm+jo6NCsyqAlYo+/c+fOwWazIRAICG0sw8PDKcUmrSAHw2y6GUhL5+JDJjGeJ2XisbExFBcX58WuZnF2kMSlYDCI1tZWTW1m8umAm7cC0GAwIBDY3uHA8zzGxsYwNjaGI0eOpOWTR36B6QRXsuuvtrYW+/btA4AY/yuj0Sg0FZOeG7Lj+Pnnn0dJSQnKy8tRWloqa6sRwcuNvgCgZmTFYLOBSJoIoNgjKhnT09MYHh7GoUOHUFFRock11SKegJWWHwDElB/khB0xuzWZTBkvO2QSMrF89OhRuFyutK4Vz2aGfJBJbWb0er1qTy7xirqFhQUh6zg2Nobvfve7+PnPf45AIIC5uTkcPHhQ0w/LZPsxs4W4Z1nJ1K0WAlDcKtPY2IjNzc2UryUd9iDDQY2NjQiHw4L4GR8fT9tSxePxoLOzU36g4sorYb2UFeQBBK+5BvjlL1P+udQi3m8urh5YrdaY6XwyVSyOTdlwPCBxWu3BUH/pc4PB1udNKM3PDfEhk+xuXlhYQF9fH4Ath4jZ2VmUlZWlbS2lBcTNwuPx4NSpU0I1L5nNDPn/yaAZQAXIBT0ysba2toazZ88mzZ4pIZ1tIGTY48CBA4KHUrxhj7W1NXR0dKC0tFTouSFr1BKdnFmfD6FLb0gOQOQ731H24ETiDwCMAKI2W1r9g6QBe3Z2FidOnIDD4Uj5WloiLT+QqeKxsTH09PQIWSxSjgkEAnjppZfy5uSZKiTAZ2pi+f9v77zjorrS//+h9yrdAqgoikhVxESjiYmiUowpJrtJdLNG169r+5kYdzeJKWqMKW6KMRqTGJNNjAL2roDGEpWmICAqSJ9hAIGBYer9/cGeuzPDADMw5QLn/Xr52uzlzsyZcs/9nPM8z+fpymZGJpOxxt5k8aKrJxfDMLCxsUFQUBCCgoLg4+PD+t8lJibCy8sLf/nLX/D222/r5f101x9THX0Xh5mZmakIsUmTJmm1E9BbAUjaMdrZ2WHSpEmoqalBU1OTzs9D8kC7KvawtrZmq0ZJ9w2Sm0rywrQVPyRHOjg4GIMHD+7wdyL+yAhs09ONlh6jbX9z5VCx8txkSMcDhmFQUlKCBw8e6D43vP++yoaDOdoFoVxPmwcWFhaws7NDfX09Bg8ejCFDhqCurg41NTVsK1FT+sOSnb/6+npERUWx30lnuYM9sZmhArAT1HMAlUPApNjA2toakydP1lsOSE8mV1LsUV1dzXYZUf4RqE+MPB4P+fn5GD58uEorJ+U2al2unJubodBRpGgKZlqh+wbwXb1ng7Qz0jPKOW7qoeLi4mLY2tpCIpFg0KBBKn2h+xrEbNtYQlzZZoZhGDaPjCxe1G1mzM3Nu50spVIpuwAzNzdHQEAA/vKXv+Cjjz5CVVUVrl692iOhoi9KSkowfPhwvT2fVCrFlStXdM5Z7o0AJJZAgwcPZis/exL1UO/soU2xh3r3DXXx01n0g/gSlpeXd5sjbdbJfxuSnnr8aZqb9O140Gs3g48+6nDIAoC+atCFQiEyMzPh5+eHkSNHwszMDE5OTmwrUU1Ff11FcvSJsviLjo7ucjeyJ76qhJaWFpNFztThlABURrkKmIRZfX19ERwcrNebtq6Tq3KxR2xsLLs9TG5u6m3dyI163LhxXYZ69LlyBtqFnvpZOou/iRNhmZ8PEYDcjAzI5fI+VyihvItFkqHt7OzQ0NCAixcvsiavxphg9MX9+/dRVlamVQ6pISCTtpOTk0rVb1c2M+qTpUQiAY/Hg6Ojo8rCSSgUwsbGBs7Ozpg1a5bR35syNTU1ehWAVlZWGDNmDDw8PHS6ufekCpi0lFTuPa78fLpEPfRh7qwufjqLfgwaNAilpaVsT9/udkgZ/E/4aWuE3Bv06fGnyfFA2RyfLKi0nfP14mZw6BCY+HgVMS3p9GTdIAVPw4YN0+jTq1z0p7xgKCkpQV5ensHa9QG6iT91dLWZoTmAWkAmvdLSUhQXF7NhVn2jy2qYhFLs7e07FHuQ51Ju63b79m3U19djwoQJOq3EerpyVhsspGo5gDqFfx0cYIf2ydUKwCOPPYbWpqY+myunXgmnaYJxdXVVmWC4BtkZqaioQFRUFGesUnS1mTEzM0N+fj6srKwwatQotp8swzDIz89nJ01tdvn13R/T0JAdVF3QdZFK5h7SkUc9BKjL8xmqs4em6AePx8O9e/dgbm4OX19fSCSSLltxiaZNg216evs4AbR10yartxjS468zc/y7d++yc35Xhsukg0ZbW1vvFumPP442a2vYSCQww3/Fnx7Cvw8fPkR2djYbBesO9QWDco/ye/fuwdramv08SD5yT+mN+FNHU6hY+Z9MJkNmZiZn0qc4JQCVJxdzc3O0traipKQEEyZMMNgHpu1qmOxCklAKoFrsoTxJSSQSts9iTExMr3bMtF05a6q4k7W0aN0bUh31S8AcHVt29RU0VcJpmmBIP1BS8KBu8mpKGIZBcXExqqurER0dzZkVpDra2MwwDAMrK6sOrZ6Kioqwdu1aPPHEE1qneOizP6Y6vSkw6wzlbkfaootgk0gkKr3HNYkFbRe9xursYW1tDVdXV5SUlMDLyws+Pj4QCATdRz+OHTNazl9ZWRnu3r3brc2SPlA3xyd91InhMkm38PT0hLOzM2QymX7dDBoaoD/TIbA2QUFBQRg6dGiPnkPZg5FEyAQCAQoKCtiUHuV8ZG3Rp/jThPLuoFwuxz//+U80NTUhKSlJr6/TUzglAAltbW0oLCyEQqFAbGysQSuDtJlcy8vL2bZDpNijs4nR0JYFWucNckC0cAFtK+E0Ve4pm7ySyUWXfqD6gth31NbW9jmjauUKQKlUiszMTHZn5+LFi3BycsLZs2cRGRmJlStX4s9//jM+/vhjrZ9fn/0x1QkMDDTI8+qKtgKwubmZ9RQcN25cp2HD7ha92hR76BNS6TtkyBA2L6yzogmtoh96hAuFb+qGyySnOSsri/1ebG1tERkZybk0FjKHBgcH661ln3qETD0f2dHRkV00dNaFCDC8+FN/rffeew/79+/HpUuX2E0kU8M5AUhyLFxcXCASiQx+kXc1uSq3Z1Iu9ugsJEJWrYbuAUnQlDeo7DdILhJd7QaqqqrgB0B578AY+TX6RLkSTteJW1PlHmmGrm0/UH2hPkkZszeyPiGG2+bm5pg8eTIsLS3R0tKCgoICHDt2DJs2bYKLiwvkcjnOnTuHxx9/XO+Lp+76YwJAcHAwNm/ejHnz5hm9ArEziC9ZV+FQHo+HmzdvIjAwsNu5p6sdQOXFLWDYzh5A+1xTUFCgsdJX2+iHp6enQXqrcrHwzcrKik23aGlpwY0bN2BpaQmZTIaLFy+ylflcsFQhIXP1zkT6pKt8ZCKQyefh7u7OCmRji7/Nmzdjz549SEtL44z4AzgmABsbG3Hjxg0EBQXBy8sLFy5c0LsVgzqd2cCot5izt7fvMiRCdprGjBljkjZA2uQNkr939mNXFk02ZWUYNGwYbNBeAaYvD0FjoM++vuohTU39QMkEo+9dV5LL1djYaPBJypAoFArcvHkTMplMpduFg4MDfH190djYiIULFyIhIQEnT57E//t//w9ZWVl6H0d3/TGB9jB0Y2Oj3l+7N5DPS1PHop74ona2A6i8uNVHx4OuUK70DQ8P18rDUj36IRAIwOfzDRL9kMlkyM3NhW9iIiIaGtpTaTg0B5IuWN7e3qygIFXFxFLF0dGRTWPpaifMEFRXV6OgoKBH5vS9Qb0LkXr3KLJ4b2xsRFNTEyZMmGBw8ffJJ5/g66+/xvnz5xESEmKw1+oJZoyuCSkGRKFQQCAQwMXFBRKJBOfPn8eTTz5p0NyzmzdvwsHBASNGjGCPtba2IjMzE3Z2dggLC2PzljT1u1QoFKzYCA8P50xypzJk5VxbW4vGxkaNK2dibSMQCBAREcGZAgNdUa6Ei4yMNGi4lHjjkdxBhULBVhX3NlSsUCiQl5cHoVCIqKioPlV5rQwRf2KxuEOIqqamBjNnzsSjjz6Kb7/9ts/mmOqCTCbrkQXLqVOnMG3aNJWblVwuR15eHhoaGhAZGal1RbhIJEJGRgZmzpyp4lhgiGIPTcjlcvYajYiI6HU+q3L0o7a2tlfRD+B/Hn8xM2ZAec9PBkDKARFIWnB21deX7ITV1tairq4O5ubm7GdCOu4YCn2a0+sTkuddWloKsVgMW1tbNp3Azc1N7wsehmHw+eefY+vWrTh9+jRnCtGU4dQOIGkhA/xv1SuTyQz6Y1UPAdfX1yM7Oxt+fn6sb1ZnxR5SqRS3bt1CW1sbYmJiOBue627lPGjQIDQ1NUEul2PixIl9dqdJb5VwWqLujUf6X5JQMbEtIAbU2t5UiWgSiUSIjo42ed/TnqJQKNjrIyoqSkX88fl8zJkzBxMnThww4q+naPLuIyLFzMwMsbGxOv3WlSsUSXjZWOKPFMgxDIOJEyfq5RrVR/SDQDz+3NzcoL50tETPfVT1Bcmp664Fp/pOGGlHWlRUBLFYrFJVrM/5vqysDPfu3TOYOX1vsLW1RXNzM5uGQopriLG9ciFJb3+XDMNgx44d2LJlC06ePMlJ8QdwUAAq/zcRX4ZEeWKtqKhg81GGDh3aZbGHSCRCdnY2bG1tMXHiRIO29NEn1tbWbCsuuVwOHo+HO3fusEL77t27RmlTpG+IPyMAk/T11dT/kuxI3Lt3T+sQlVwuR25uLqRSaZ/uT0x2MFtbWzuIP4FAgPj4eISGhmLPnj1U/GmB8kKVWGp4eHj0qJMN+bxJg3tjVPoC7ZGI7OxsODk5Ydy4cQb53jvLGyRh0a7yBtU9/rhGT/v6Krd4ZBiG/UxID3EnJyc2jcXJyanHv4GSkhKUlpYiMjKS3cjhCgzDsLvOJJ3GwcFBxdi+trYWlZWVuH37NpydnVkxqGv4nGEYfPfdd3jvvfdw7NgxTJo0yYDvrHdw9g5vZmamtyboXWFhYQGJRILCwkK20otcKJ2tiskWvI+PD0aNGtVnq23b2tpw7949titGc3Nzj1fOpoSLfX1tbW1VbAtIOIYU6CgbUJMdPlKYIJfLOVnRpy3Ez08oFHbYwWxoaEBiYiJGjBiBn376qU8tMvRBT2+uZC6sqqpCfn4+goKCVLoK6QKZr2QymUoPU2NX+hoDbfMGJRIJbt++jVGjRrEef21QLYQz7J2oa3ra11cdMzMztnczKZogOc0PHjyApaUluzOobahY2Z+0tznXhkBZ/EVFRXW4lykXkgwfPpz9TAQCAcrKymBubq7SkaSrOYthGOzduxf/+Mc/cOTIETz66KOGfnu9glM5gEB7iIAMKT09HWFhYQbdSr5z5w4qKythaWmJyMhIODg4dFnsUV1dzU4UPfU04gJExA4ePFjjhKxN3iAX6Gt9fUmomEy6QqEQLi4ucHd3R21tLSwsLBAREdFnhRGZbBsbGzvkLjY2NiI+Ph7e3t5ISUnps3mNvUEul+vc1QMALly4AGdnZwgEAoSFhfVKBDAMgzNnziA4OBje3t4G/62RSl9DGCj3FOW8wZqaGsjlcri5uWHo0KGqN3k3N1hJJLob6esJ9b6+hswxVw4V19bWsv56RBBqul6VC+6ioqI450/anfjrDoVCgYcPH7KCsLW1tUNveeXX+vXXX7Fy5UocPHgQM2bM0Pfb0TucFoAXL15kWycZgtbWVly9ehUAMGXKlC6LPZSr1saPH8+p5FZdIb2JtTXmVF4lCgQCzvgNkko4Ly8vNl+zr9HW1gYej4f79+9DJpMZPDHZkBBrhYaGBkRHR6vcMJqbm5GYmAhnZ2ccPnyY0zvKhqQnAlAmkyE9PR0WFhZatUfrCjK/3b9/H5WVlZDL5fDw8ICXl5fe0z5IhXJZWRkn50zi8VdRUaFiBt/a2sqJ6IeyuIqMjDTqzppyWFQgEKCpqanDJgAAtnAwKiqKc/6kvRV/mlDuLd/Q0AA7Ozs8fPgQCoUCLS0tWLFiBX777TfMnj1bD+/A8HBaAF6+fBnDhw83iIcQKfZwcnKCubk5oqKiOm12TqrtmpubER4ezrlVji48ePAA9+7dQ2hoaI92EfRdcddTSB7UsGHDOq2E6wtIJBJkZWXBxsYGISEhbAI7+WyVE5O5XAzCMAwKCwtRV1fXwbKmpaUF8+fPh4WFBY4ePcoJPzVToVAoIJVqX0rQ2tqKrKwstLW1YdSoUV0m/ncHEX/K1lqkcInP50MkErHCx8vLq1e/N+Khp69KX32j7BYQERGh8pvkQvTDmG4G2iAWi1nhU1dXx/b3lslkiI6O5tw1bQjxpw5xgdizZw8+/vhjCIVCTJ48Ga+99hri4uIM3jFGH3BOAEqlUtaj6tq1a6zRsT4hxR6jR4+GhYUFm/unKeQrFouRk5MDc3NzhIWFcfom3BVkNVldXY2IiAi9JOkqV9zpfeUcHw+z8+fbDajVQi+kEq43rYW4gEQiQWZmJuzt7REaGqqy28cwDJuTqRwqVjag5oroVe5Uom5WLRKJ8Mwzz0Amk+HEiROcEwLGRhcBqOxIIBQK4e3t3SMBSDp7dFfsQYQPn89HU1MTXFxc4OXl1SHU1R3KrTDDw8M5F+onHn9SqRQRERFdjs+g0Q8imhYsAHbvZg8ruxlERkZy7vMjBXdCoZAtolQOFZv6HmkM8afM8ePH8fLLL+Ptt9+GRCLB0aNHERoait1K3ylX4bQAzMzMhKenZ69WvcqQG1VlZSVrPlpdXY3i4mJERkbC1tZWZWJsbm5GdnY23N3dMXbs2D4VjlNGeQfTkKtJva2c/fxg29gIcrYcgOS/IrCnlXBco62tDVlZWXByctIqd5H01K2trUV9fT1sbGxYMWjKUDFZWPD5/A7ir62tDQsWLEBTUxNOnTrFucpAU6CtACTtJ4kjQXZ2NlxdXXVuT9fTzh5isRh8Ph+1tbUY+uSTGNLW3nVXEBgIx1u3On0OY1T69gZin2NjY4Px48frFLHQZ/TD0sFBpQKzzc8PKC5WcTMIDw/nXCEYEafKvp4kVFxbW4vm5mY4Ozuzn4uxF6qkAI2Y5xtaPJ89exYvvvgidu3ahRdeeIE9LpfLOffb1wSnBSDpqTt8+PBePy9Z9bW0tCAqKoot9hCJRLh58ya74iXhD6FQiLy8PAQGBiIgIIAzuy26QiYUhmEQHh5utNVZb1bO1g4OUL90RN9/j/LYWLYSzlB5ocaAFK64ublh7NixOv+2lG9EAoGA9bAy9gqcYRgUFxezHVeUFxZisRh//vOfwePxcObMGc55gpkKhmEgkUg6/TsxZCc79e7u7gDaDevt7e0xcuRInV6rMw9TrZkzB3bp6SqHTr/wArxef51dfJDfb0NDA3Jzc+Hn54egoCDOzZktLS3Iyspir7veLJp6G/2wVQuZKgA019cjKysLtra2GD9+POcEhLJLQUREhEZxKhaL2XmJhIrJZ2LohaqxxV9GRgaee+45fPnll3j55Zc593vXBs4JQGWn/Ly8PNjY2CAoKKhXz0nyaGxsbBAeHq6x2EMikbDhj7q6OgCAl5cXhg8fzqmqV10QiUTIysqCg4MDQkNDTTahaFo5d5V4rkkA5r/1Fh7ExBi8Es7QiEQi3LhxA4MGDcKYMWN6/btSDhULBAKjrcBJUVRlZWWHHCCpVIqXX34ZDx48wLlz5ziX/G9KuhKAJHRKdleUBfXt27dhYWGhdR9RsvNH2sf19DdgpbZTBbSbId+8fh18Ph8A4OnpCUtLS5SXlyM4OJgzlb7KENeDIUOGGKRPu67RD00C8Px/d8m56GYgk8lY43FyD+0OYy5UifhramoySuekS5cuYf78+fjkk0/w17/+tU/qA4DjArCgoAAAMGbMmB4/X0NDA7Kzs+Hj44Pg4GAV41OgY1u3goICCAQCDB06FM3NzSqrGC8vL7i6uvaJL7upqQnZ2dlsr0iujFmrlbODA2wBlRDwmePHda+EmzgRyM8HXFyAqioDvBvdaGlpQWZmJry9vTFq1CiDfCckVGzoFbiy75ey+JPJZHj11VdRUFCA8+fP94lEaGPSmQAkFe2Ojo4aQ5NFRUWQy+UYO3asVq+hr84e5g4OUL+VigCgpQUMw+Dhw4coLi5GY2Mj65dGqti5Er7k8/nIy8szWs6wNtEPK7VFbrmdHep+/51TczVBKpUiKysLVlZWPfZZ7SynmYjB3ixUjS3+/vjjDyQlJWHTpk1YtmwZ574vXeC0ACwuLoZYLMa4ceN69FzE1XvUqFHw9/fvstm5RCJhG9aHh4ezW/hkFUPyYczMzFTyPri2UgP+VyQxfPjwHpvFGovW1lb2s1VZOT/7LFwKCyEFcOXUKd1zFx0cVExcJQDkJuzjKRQKkZmZCT8/P6MZ4ZLfLrkZ6WsFTqw9oqOjVYo65HI5li5diqysLKSlpRmker+vo0kA1tbWIjc3F8OGDes0dHr37l2IRCKEhoZ2+fxdeZj2FFsHB3YxxgBo++91RCpVGxoaEB4eDgDstSwUCuHm5sYWkZjKSoUYKI8bN84ki5Euox/Dh8MKwLXx4+H+00+cdDMghWp2dnYYP3683u53mnKae1JcY2zxl5mZiYSEBLzzzjtYuXIl574vXeGcAFT2ybp//z6am5sRFham03OQxPTy8nKEh4fDw8Ojy1WxtonLxBSShIqlUqnKipcL5r0VFRUoKipCSEhIn7sBK6+c6+rqwDAMLCwsMGbMGHh6euo0+SjftAgiEwnA5uZmZGZmdtm83dCQFTj5fJVDxR4eHlqnOZSWlqK0tBRRUVEqu7FyuRx///vfcenSJaSnp+u9cr8/IRaLAbR/J6Wlpbh79y5CQkLg5+fX6WNKSkrQ2NjICi11SKWvJg9TvTB+PODkBFy6BKD7Sl+RSMSKwYcPH8LJyYntm20MyxDi8UcK/riQNkJM4Mnn0traCoZh2IgA17wxSaGao6Mjxo0bZ7DNDtIpicxNyp2SutpJNrb4y83NxZw5c/Dmm2/i9ddf7/PiD+C4AHzw4AFrMqktMpkMN2/ehFAoRGRkJBwdHbsUf3V1dbh586bOLYrIDZXP54PP56O1tZX90fbWQ6snKJuuhoWFscnjfRGpVIrs7GzIZDI4Ozujrq6u27xBdbgiABsbG5GVlYWAgACdKzgNiSZfLzLhurm5aVwEPXjwACUlJR3En0KhwOrVq3Hu3DmkpaXB39/fmG+lzyGRSNjK/Lq6Oq16p5aVlaG2tlbjXKiXYg8daG1tRXZ2NisMugsJkvxq8lsjZudeXl4691nVBuWdSdLdiWvU1NQgLy8P3t7eaGtr41y3pd4WqvUUIpLJ76WlpYUNFZOcZnKeMcVffn4+4uLisHLlSvzrX//qF+IP4LgArKysRGVlJSZOnKjVY0nRg5WVFVtCT5Khifmp8hdHdsvGjBnT5epbGzrz0PLy8lKxxjAEJHexvr6ek6aruiAWiztUwmlaOXdXcWfp4ADldaOylYyxIGbVJBTPVeRyOdsCSiAQQCqVqhhQ29jYoKysDPfu3UNUVBScnZ3ZxyoUCrz55ps4fPgw0tPT9VKx399pbm5GVlYWGIZBRESEVjs/lZWVqKioQExMjMpxfRV7aEtvK31lMhnbF5u0PiSLZn3kqOri8WcqlPv6EjcD9eiHlZUVGz43drclUi3t6elp8pxEkUikEiq2s7ODh4cHhEIh2trajFLtW1hYiLi4OLz22mt47733+o34AzgoAJV9smpqalBSUoLY2NhuH0eKPby9vdnqys6KPZRNkQ3Ra7itrY0Vgw0NDXB0dGQnOX2v7MiEJ5FItL6ZcBVt+/q2trayn29jYyMcHR3ZyVLl83VwgDXa8/9608dTuSpZDEChxXPV19cjJyenz5lVq7eAamxshK2tLSQSCcaOHQsfHx+Voqm33noLv/32G9LT03tdrT8QUCgUOHfuHFxcXHTyyaupqcH9+/cxefJk9pg+iz20Qd990EnvWT6fj5DoaHbBVhYQgEG5uTqn1IjFYmRnZ8Pa2lpnjz9joG1fX11dE/SJKXKVtYUsHoqLiyESiWBpacl6oQ4aNMggRUfFxcWIi4vDn//8Z3z44YeczPnvDZwWgLW1tSgsLMSUKVO6fExVVRXy8/NVWiV1FhKRyWS4desWRCIRwsPDDd5iRyqVQiAQgM/nsxVhZGfQxcWlVxcYMTW1trZGWFgY5yY8XSATj65Vy5pWzsoV2729YM3+W5GsjGjIEKCoqNPH1NXVITc3F6NHj+7zuXAkR83FxQXNzc2wsrLC3bt34eDggJs3b+I///kP0tLSelWprw0XLlzA1q1bkZmZierqaqSmpiIpKanLx2RkZGDNmjXIz8+Hn58f3njjDSxdutSg49SG+vp62Nvb63Ttq8+Fhij26Axl4RIaGqp/D87/FmwxaK/8ZwAcO3wY7u7u7MKuu5QafXr8GYKe9vXtSfSjpzQ1NSErK8ukucpdwTCMSkMD5UKSlpYWuLq6sp+LPu7rJSUlmDVrFp5++ml89tlnnPtN6QNOKwZLS0s2qVkTxIi2rKwMERERKsUemkK+IpEIOTk5sLa2xoQJE4xiU2BlZQVfX1/4+vqyya61tbXIyclhK4q9vLzg7u6u0w9MKBSyXUrGjBnTp3+cJFTq7++PwMBAnSYea2tr+Pn5wc/PT2XlfOvWLb2snDXddswrKqDo5Pza2lrcvHmzz3cqAdrDjvfv30dUVBTc3NzYUPGZM2ewY8cOtLS0YPr06bh8+TLc3NwMWnTU0tKCsLAwLFq0CPPnz+/2/JKSEsyePRuLFy/GTz/9hEuXLmHZsmXw9PTU6vGGxMnJiY1MaIuFhQU7rykXexha/Cnn00VHR+tmw6Ql5BozU/rfSa2t4A8fjsrKShQUFHSZUmNoj7/eotzXd8KECTqJEzMzM7i4uMDFxQVBQUFs9KOmpgZFRUWdRz90hMzBpPEB1yC9pZubm9mcP1tbW7i6umLkyJEQiUTsjmlxcTHs7e3Z3UEXFxed749lZWWYM2cO5s6d22/FH8DxHcCmpiZcv34dTzzxRIfzyE4eWQ10V+zR2NiInJwceHl5YfTo0Sb/QklFMSkikcvlWouV+vp61jaCiys1XTBUX199rZwt/htGVqazHUAej4e8vDyMGzcO3t7eengXpqOqqgqFhYUIDw9XKShiGAbbtm3Dxx9/jB07duDevXs4cuQIZs+ejbfeessoYzMzM+t2B3DdunU4fPgw6yUKAEuXLkVubi6uXLlihFF2jnK3I21pbGzEjRs38Nhjj7GRDb1X+qohlUqRm5sLmUxm0Hw65XxdcjNqU0qzICk1JA/MwcGBFYOtra3Iz8/nbKqFIfv66iv6wfV0FU3iryuU80wFAgEAsPnM2oSKq6qqMHPmTEyfPh07d+40uVYwJJwTgMo+Wa2trbh48SJmzpypck5XxR6axF9NTQ1u376NkSNHYujQoZwTTMqVT3w+HyKRqNPwB+mFGxwc3OfDi8bs66t13qAGbBwcQKYAKQCZhhxA8l7Gjx8PT09Pw7wJI1FdXY2CggKEhYWpdPFgGAZfffUVNm/ejFOnTqkUZ5Edd2OgjQCcOnUqIiIi8O9//5s9lpqaiueeew6tra0mNSlW9jrVFqFQiEuXLiEmJsYoFaKk0tdYXYSsla6xNqDTnF3llJra2lowDAMPDw8EBARwzqTfmH19O8sbJJX9nW0okAU4V9NVlMVfdHS0zu4amhoPuLm5sRsB6rvJNTU1iIuLQ0xMDL7//nvOtePTN5wOAZMKUCLqgPat6qysLHh5ebHl6crFHsriT9kahcv9Y5W3+UeOHImWlhbw+XxUVFSgoKCAzW2QSCQoLy9HWFgYZ9+LtpBKOGO9F3t7e/j7+8Pf319l5VxaWtrtylncTdEH2S3rD98Lj8dDQUEBxo8f30H87dq1Cxs3bsSJEyc6VOZz6cYLtE/k6ruw3t7ekMlkEAgEfSo8zzAMrK2t4eHhgT/++IPdAfP29jZIqz8SUvX19TVYxxp1tK3Qt7Kygo+PD4RCISwsLBAYGIiWlhbk5uYCgEpKjSlv3prcDAwJqab29PRU2VC4f/8+8vLyNEY/SIcUUtzFNXor/oD2ecnV1RWurq5sCJ3M/Xfu3IG9vT2cnJxQU1ODcePGISEhAZGRkfjuu+/6vfgD+oAABNpXzNbW1myxR1BQEGur0Vmxh1wuV8m76EvWKA4ODggMDERgYCDa2trA5/NRWloKsVgMe3t7NDU1wdbW1mB9Xg2JckJ5ZGSkSQxatckb7G7lTKioqMCdO3c6hEr7IuSGoL5YYhgGe/bswdtvv42jR4+qVKJyGfVrQzl02ldQXtyGhYWxApbMCfr21CPREi6HA0lO4sSJE1V84UhKTWFhIWtlZIq2dMTNwNXV1SQFKeobCiT6wePx2LxBOzs7CAQCzqarKBQK5OXlQSgU9lj8acLe3h7Dhg3DsGHDIJVKUVdXh8uXL+Nvf/sbRCIRBg8ejHnz5qGtra1PaYaewjkBqDyBKQvA0tJSlJWVITw8nF3ldJbvJxaL2RVhTEyM0U2Z9YmVlRXq6+thYWGBmJgYCIVC8Pl8lJSU6LWi2BgwDIOioiLweDyDJZTrSk9WzgTijRcREaF3KyFjQwRwaGioSgibYRj8/PPPbE7d1KlTTThK7fHx8UFNTY3KMT6fD0tLS5WdTa7SWbGHpqIyPp+PrKwsWFpawtPTE97e3jqHQ8nCrLS0lLPREmLyL5FIMHHiRJVcMDMzM7i5ucHNzQ2jRo1i58nS0lLk5+cbrS0d8XjkUg929ehHcXExqqqqYG5ujjt37qChoUFvrgn6gIi/lpYWvYo/dchu8uOPP46RI0fCzs4OsbGxePvtt/G3v/0NPB6vTztraAPncgCB/7VKAoDTp0/Dzc0Nra2tiIqK6rbYo7m5GTk5Oezqqy9v40okErZaWD2HRHnyr62thbm5OSsG9WGoqm+UK+F07utrIsjKmbSzUs4bFAgEKC0t1aqLA9cRCATIzc3tsBvAMAz279+P5cuXIzk5uUMurqnQtgjkyJEjuH37Nnvsb3/7G3JyckxeBKJsdq8J9Z7l2hR7KBQKtmc5n88HAHY+6M5hgBjJ19XVISIighMLM3WIx5+VlZXOllekLR3J/yUtEPXdlq43bgbGgqTehIeHw8XFpUd5g4ZEWfxFRUUZfPOmqakJCQkJGDRoEFJTU9nFQU1NDSfD4vqGkwJQIpGAYRi0tbUhIyMDjo6OmDBhAqytrbv0v6qtrUVeXh6nL0BtaW1tRVZWVrf9iYH/GaqSIgflimIPDw+Ti2BDVsIZC+W8QZJ87u3tjSFDhnBm5dwTiGehpjyg1NRUvPbaa9i3bx/mzp1rohG2IxQKcffuXQBAREQEPv30U0yfPh3u7u4YNmwY1q9fj8rKSvz4448A2m1gxo0bhyVLlmDx4sW4cuUKli5dil9++cXkNjBdCUDG1hbWaLdCUaD7/FONz8EwrMEymQ+I4Bk0aJDKfKBc6RseHs5JI3l9evyRtnR8Pp/tLEE+m96E0A3lZqBPSktLUVJSotGEWr0Q0ZB+g51hbPEnFAqRlJQEe3t7HDlyxOAduwjdeZoyDIN3330XO3fuRENDA2JiYvDVV18hJCRE72PhrAAknT3IxOTh4dFlZ4/y8nLcvXuXswmtutDY2Ijs7OweJWEr25/w+Xy0tbWp5MIYOxxuzEo4Q8MwDO7du4eKigqMGDECzc3N+lk5r1wJfPst4OICVFUZZvAaIPYPY8aM6VAUcfToUSxatAg//fQT5s2bZ7QxdUZ6ejqmT5/e4fgrr7yCH374AQsXLkRpaSnS09PZv2VkZGD16tWsEfS6des4YQTdmQBkzp2DzZw5Ksc6qzrXFuX5gMfjQSwWs4tDBwcH5OXlwd7e3iiVvj2BFKQMHjxY750piF0IMenvaVs64gAQEhLCyXsPKYYsLy9HZGSkSivHztAU/TBUNyvA+OKvtbWVXQgeO3bMqPl+J06cwKVLlxAZGYn58+d3EIBbtmzBxo0b8cMPP2DUqFH44IMPcOHCBRQVFel9d56TArC0tBR5eXkICgpCRUUFgoKCMGjQII3FHgqFAkVFReDz+ey2dl+GJOKPGDFCL/1jSVsvPp+P5uZmuLq6sqEhQ6/qjF0JZ0iIkz+Px0NUVJRK8nmvVs5qnUYk0K7VXG8h4i84OLhDH+xTp07hpZdewu7du/H8888bfCwDDWWvUwLDMJDPmgX7jAzVc9GzXUBNMAyDlpYW8Hg8VFdXQyQSwdbWFoGBgfDy8uJcrjSZC42xq6bclo7P50OhULDXcFdRFE19fbkEaZZQXV3NplDpSmd+g56ennpJNzK2+BOJRHjuuefQ1taGEydOaCWIDYV6OgvDMPDz88OqVauwbt06AO33UW9vb2zZsgVLlizR7+tzTQAyDIOrV69iyJAh8PLyUvlv9ZCvVCplk4LDw8ONtoVrKMhkEhISYpDKLFJRzOfzVXLayG6APld1pq6E0ycMw6CwsBACgQBRUVFd5i/qunJW9j8jtBlYAJLddU3eX+fPn8eCBQuwY8cO/OlPf+rTaRRcRVkAqhd72Ds5QfkTFwG96mOtCVLpO2zYMFhaWoLP56Opqcmoi8PuIHPhuHHj4OXlZdTX1hRFUfdlVbYY66qvrykhRXe1tbWIjIzUS75jT/0GO8PY4k8sFuOFF15AfX09Tp8+bfLvTV0A3r9/HyNGjEBWVhYiIiLY8xITE+Hq6oo9e/bo9fU5V+JiZmaG6OhoKBQKMAwDGxsb3L9/H62trfD29mZXMMSo1N7eHhMmTOjT1ToMw+Du3buorKw0qDWKra0tWwJPVnWkolifdhKkEs7Hx8doPmKGgmEYlVZY3S0yOvMbfPDggcaVs7E/GRJSGzVqVAfxd+HCBbzwwgv4/PPPqfgzAsrm9UD73Nfm7g6b+nqYoT38q0/xxzAMmwemXO0dEBCgsji8c+cOnJ2d2fnAmAVbymkWprKJUm+/pu7LSqJMLS0tnLUY03Xe0pbOXBNKSkq6dU1Qx9jiTyKR4OWXXwafz8fZs2dNLv40QZwLNHmYPnjwQO+vx1nVRCbG0aNHs3kapaWlsLOzg5OTEwQCAfz8/Pq8wCBml8SvUJ9VaV2h7oVHhEpWVlaPc2GAvlEJpy3ku2lqakJ0dLTOuyLqnzEJMeXl5bEr52AAylkdndeG9h6SWzpy5EgMGTJE5W9XrlzBc889h61bt2LRokV9+nvjOmZmZio9ywGltJbycoi7eGxPUa70nTBhQodcIvXFIRGDd+/eNbjxtPIYiWgx5lzYHcq+rK2trbh16xaEQiEYhkFeXp5Bc+N6grqHnqF2c7XxG+zss1EoFLh16xbr7mFo8SeVSvGXv/wFDx48wPnz5znv2arJw9QQvy1OCsD8/HwMHz4c5ubmKjdRmUyG4uJiVFRUwMzMTMX+RB8mqMZGuQJP3dfKmFhYWMDb2xve3t4quTBEqHRWQahOX6iE0xYyQREvqt5+NxYWFmw/SuWV842zZzF6xgx4or0FlryuDr2arv/bu1gG1VzCpqYmZGVlYcSIER2+m+vXr2P+/PnYuHEjlixZ0ueuo75GWVkZrK2t4ejo2CGtxRCQVBmpVIqJEyd2Kwisra0xZMgQDBkyRKX1miGMpwldefxxBblcjqKiIigUCjz66KMwNzdX+WxsbGxUOgqZ4jpSKBS4efMmRCKRQT30NKFt9MPFxQX5+flGE38ymQxLlixBYWEh0tLSOJmrSSBFRDU1NSqFeXw+3yBpYZzLAayursbIkSPh6+uLhIQEzJs3DxEREWAYBocOHYKbmxvCwsLg4uKi4oNnaWnJTkxc6wmpiba2NmRnZ8PW1hahoaGcDGEr91FUryj29PRUqeitrq7G7du3OVsJpwtkEiW2NcaoSNNLxZ2DA5QDPaSAoLm5GZmZmQgICEBAQIDKQ7KzszF37lz861//wpo1azh/3fQHVq1ahR07dmDGjBlISEjAnDlzDDZniUQiZGdnw87OrtfzDIkUkKpZfc25vfH4MxbduRmQ3DhyPzIzM2MFj7Ha0snlcuTm5kIqlSIyMpIzjgvK0Y/a2lpIpVJYWFggKCgIPj4+Bv2+5XI5li1bhj/++AMZGRmcawHZWRHI6tWr8cYbbwBoD117eXkNjCIQoL1y9cSJE0hOTsbx48fh6uoKhmEgk8lw7dq1Dk7+xASVx+OxFx8JWXDRo625uRnZ2dntIcDgYM6NTxOkgpCEhoRCIeuuL5VKOd1BQBdMPYn2puLO1sGhQ05hLY+HGzdusCF5ZW7duoXZs2dj7dq1ePPNN6n4MxIkP+vAgQNISUlBQUEBpk2bhqSkJMydOxeDBg3Sy3dB8j19fHz03pVC3XiaCB5tjKeV0afHn6HQ1c1AoVDg4cOH7MJZKpWqFEoYYk6RyWTIyckBwzCIiIjgpIgmC2uhUAhPT0/U19ejpaXFYH6DCoUCK1aswIULF5CWlsaZqFR3nqZbtmzB5s2b8f333yMoKAibNm1Cenr6wLGBUaa4uBgzZ85ES0sLRCIRnJyckJCQgKSkJMTGxnb4oauX8zMMo7UjvjGoq6vDzZs3+3yOHHHXLysrQ1tbGxwcHODr66t3d31jIpfLkZ2dzZlJVH3l3F3FnY2GiuKTx49j6NChGD58uMrx27dvIy4uDv/3f/+Hd955p8/+Dvs6xKaDiMHc3Fw8+uijSEpKQnx8PLy9vXv03fB4POTn52PkyJEYNmyYAUb+P4jg0cZ4WhlDevzpC2LI31M3A4Zh2LZ0fD5fRfB4eXnpJdQtlUqRnZ0NCwsLhIeHc9Juq7OcP0P5DSoUCqxduxYnT55Eenp6h8iHKenO05QYQX/zzTcqRtDjxo3T+1g4LwAfe+wxBAUFYfv27VAoFDh37hxSUlJw6NAhWFhYID4+HklJSZgyZUqHlZVyg3Aej6f1xGQoqqqqUFBQgDFjxnTwXutrKPf1HT9+PFpbW/Xurm9MZDIZsrOz2bZ7phZ/6ijnDdbW1mpeOf/XU5B82lIAhbm5GDlypMpz3blzB3FxcVi0aBE2btzYJ76fgQDpx5ucnIzU1FRcu3YNsbGxSExMREJCAgYPHtztd9VZpa+x6Mp42tPTk72ujOnx11MM4WZABI9yWzry2fRk4SyRSJCVlQUbGxvOeq0S8ScSibpMqZFKpez81hu/QYVCgX/84x9ITU1FWlpah/mP8j84LwDr6urg7u7e4eKTSqVIT09HcnIyDh48CKlUivj4eCQmJmLatGkdVlZkYuLxeODz+ZBIJPDw8IC3t7fB26WRSZmESftCM/quINWxjY2NiIqKUrEY0OSur5wnZOodWE1IpVJkZWWxOUhcnETV6XTlnJ4O2xUrkDN4MFyPHeuws3Lv3j3ExcXh+eefx9atW7X7PpYtA77+Gti3D3juOQO+KwqBYRhUVFQgJSUFKSkpuHTpEqKjo5GYmIjExET4+/t3mBMVCgXrVxkeHm5Sg1tA8+7XoEGDWO/B0NBQo3v8aYsx3Aw0taUjYlCbhbNYLEZmZiYcHR0xbtw4Ts6t2oo/dXSNfii/3oYNG/Cf//wHaWlpGD16tD7fTr+D8wJQG2QyGX7//XccOHAABw8ehFAoxJw5c5CYmIgnnniigwcSwzBobm5mJyaRSKTSO1efORrKkzJXG63rgi59fZXzhEj/XPI5m2IHVhPKK+iwsDBOTqLdoVypKRAIoFAo4OTkhJEjR6qkPZSWliIuLg7x8fH4/PPPtXuvmm5COkwZ27dvx9atW1FdXY2QkBBs27YNU6ZM0XhuZ6GRgoICBAcHa/2a/Q2GYVBTU4PU1FQkJyfjwoULGD9+PCsGR44cibq6Opw/fx5Dhw5FRESEyY2cNdHS0oKCggI8fPgQANgcYmP1mtUWU7gZdLZw7mz3S9loPyQkhJO7+MriLyoqqsf3VU3RD02/HYZhsGnTJnz77bc4f/68QXrn9jf6hQBURi6X4+rVqzhw4ABSU1NRX1+PmTNnIikpCU899ZTGbXahUMjuDJJVKtm16o0YJGKJrH64NMn1hN709SUVxUR0K4eGDJUY3R0kuZv0Qu2L4k8ZkUiE69evw9nZGdbW1hAIBJDJZNi7dy/Gjh2L7777DrNmzcLXX3+t/XvthQDct28fXnrpJWzfvh2PPPIIvvnmG3z77bdsFwp1iAAsKipS2b3y9PTkxGKBCzAMA4FAgIMHDyI5ORlpaWkIDAwEj8dDaGgojhw5wpnqT2WID2F9fT2bX6vclchUxtPqcMHNgCycye6guhUX2fkjRYT9WfxpQj36UVBQgNLSUkilUqSmpuL8+fMICwvT2+v1Z/qdAFRGoVDgxo0brBisqqrCk08+iaSkJMyaNUtjiES50rW5uRlubm7w9vaGp6enTgm7YrEYOTk5sLCwQFhYGCcnZV3QZ19f5dBQbW2tSkWxsXYD2trakJmZCWdnZ4SEhPR58dfW1oYbN27Aw8ODrfgkYuEf//gH9u/fD7lcjscffxyJiYlYsGCBdhXbvRCAMTExiIyMxNdff80eGzNmDJKSkrB58+YO5xMB2NDQwEmXfq7BMAzOnj2LZ555Bi4uLuDxeBg+fDgSExMxb948zvyulT3+IiIiOsyjysbT9fX1Bm1R2RVc7OurbsUlEokAAO7u7ggJCeGkX6KyjZa+xZ86UqkUx48fx9tvv427d+/Cx8cHzzzzDJ555hk89thjBnvd/kK/FoDKKBQK5ObmsmLw/v37mDFjBhITEzFnzhy4uLh0mGhIpSuPx9OpV2ZLSwuys7Ph4uLCmUm4N/S2Eq47yOesnBhNVryGqCgm4RNiPcHFFbQuEPHn7u6OMWPGqLwfHo+H2bNnIyoqCu+88w6OHTuGw4cPY9u2bRg/fnz3T95DASiRSGBvb4/9+/dj3rx57PGVK1ciJycHGRkZHR5DBCBpTTZ27Fj861//0hgWprRflyNGjMCbb76JFStWoKmpCUePHkVKSgpOnjwJX19fJCYmIikpCRERESaZh3T1+FNPZzCU8bQyfaGvL9Bu5p6ZmQknJyfI5XI0Nzez9yRPT0+9tXvrDcYUf0D7d7djxw588MEHOHz4MFpaWnDo0CEAUFl4UjQzYASgMpp8uKZPn46kpCTMmTNHow9XW1sb2+ZGOWTh7e2tcuH1BWsDXTB2X1+yG0Aqwezt7dkbgJOTU69fv7W1lfPhE10Qi8W4ceMGK86V349AIMDs2bMxduxY/Oc//+l5ZbPyZ6TldFFVVYXBgwfj0qVLmDx5Mnt806ZN2LNnD4qKijo8pqioCBcuXEBUVBTEYjH27t2LHTt2ID09HVOnTu3Z2Ps5AoFA426VUCjE8ePHkZKSguPHj8Pd3Z21z5owYYJRQuq9XQgbynhaGWU3g6ioKE729QXa2zhmZWUhICCA9fMk9yQ+n4+GhgaT7ZwSTCH+du/ejbfeegvHjh3Do48+atDX64wNGzbg3XffVTnm7e3N9vXlMgNSACqjyYdrypQprPWCl5dXhwtJU8jC29sbFhYWuHv3LqetDXTB1H19ZTKZyg2A2AL0tKK4paUFmZmZ8Pb27vM9pIH/VQGSMLby+6mvr8fcuXMRGBiIffv2GbUlFPA/AXj58mXExsayxzdu3Ii9e/eisLBQq+eJj4+HmZkZDh8+bKih9ntaW1tx+vRpJCcn4+jRo3BwcEBCQgISExM1eqnqA30vhDWZ/Xt6esLb21vnfuXKz9mZmwGXaGhoQE5ODkaMGNGpp6OyhYpAIICNjQ0rBjVFt/SNKcTf3r178frrr+PIkSOYNm2aQV+vKzZs2IADBw7g7Nmz7DELCwujWzD1hAEvAJVR9uFKSUnBjRs3EBsby06Wfn5+Gu1oamtrUVpaipaWFtja2sLPz8/gjdMNTW1tLW7dusUZMaupoli580B3OxpCoRCZmZnw8/PrFzuzEolExQJC+f00NjayJsIpKSkmyRPqSQhYExs3bsRPP/2EgoICQw11QNHW1oZz584hOTkZhw4dgpWVFebOnYt58+bh0Ucf1cuNm3j8GcqEuqfG08qQAj2xWKwxL5Er1NXVITc3F6NHj8bgwYO1eoxcLkddXR0rCHvapUVbTCH+fv31V6xcuRIHDx7EjBkzDPp63bFhwwYcPHiQLZDsS1AB2AkMw6C8vJz14bpy5QqioqLYnJphw4bBzMwMcrkchYWFqK2tRWhoKLs7qJy/4u3trZfwpbHgQiVcVygbfNfW1kIikbCV25oqipuampCVlcV2xOgr30NnSKVS3LhxAw4ODh38v5qbm5GYmAhnZ2ccPnzYpJXnMTExiIqKwvbt29ljY8eORWJiosYiEE0888wzqK+vx/nz5w01zAEL8VIl9llyuRxz585FUlISpk2b1qNd44qKCty5cwchISEGaV6vTmf+rmQu0LS72Rs3A2NCFuFjxozpcQ/bztrSEbHc2/dubPEHAAcOHMCyZcvw22+/Yfbs2QZ/ve7YsGEDtm7dChcXF9jY2CAmJgabNm3q0H2Ji1ABqAUMw6C6uhqpqalISUlhfbhmz56N8+fPw8fHB998842KfYFy/kptbS2srKzg7e1ttC35nsLFSriu6KzVEkmMbmtr65A705eRSqXIzMyEnZ1dB+ualpYWPP3007CyssKRI0dM3pKP2MDs2LEDsbGx2LlzJ3bt2oX8/Hz4+/tj/fr1qKysxI8//ggA2LZtGwICAhASEgKJRIKffvoJH374IZKTk/H000+b9L30d4iX6v79+3Hw4EG0tLSwXqozZszodiHBMAzu3buH8vJyhIeHw83NzUgjVx2DJuNpMhdYW1vr1c3AkNTU1CA/P1+vZtnK/rfK3YTI56PrLigprJRIJEbrm3748GG8+uqr+OWXX5CQkGDw19OGEydOoLW1FaNGjQKPx8MHH3yAwsJC5Ofnc77pAxWAOkKsNX766Se8//77aGhoQHBwMJ599lkkJiZqLCyQy+Uq+SvK3THc3Nw4IQb7SiVcd5CWdMQjCmj3kRs1apRJ/cX0AelYQto+KYs/kUiEZ555BjKZDCdOnOBMMvv27dvx0Ucfobq6GuPGjcNnn33GFnQsXLgQpaWlSE9PBwB89NFH2LlzJyorK2FnZ4eQkBCsX7+eE6v8gYRcLseVK1fYlnT19fWYNWsWkpKS8OSTT3ZYWKh7/HHlt6du6eXs7IzW1la4ublx2vezqqoKhYWFBl+EK8+VuralM4X4O378OF555RXs2bMHzzzzjMFfr6e0tLRgxIgReOONN7BmzRpTD6dLqADsAXV1dZgyZQqCgoLw1Vdf4ezZs0hOTsaZM2dYH66kpCSNlW8KhQINDQ1syEIfycy9hVTC8fl8REZGcmYC7w319fXIzs6Gl5cXpFIp6uvr4eDgwObC9KWQPNC+Q6Pcrk75d9LW1oYFCxagubkZJ0+ehIuLiwlHSulPKBQKXL9+nRWDVVVVeOqpp5CYmIi4uDjI5XLs3LkTU6ZM4WwHEuB/3T0sLS0hkUg6dXEwNSQCEx4eDnd3d6O9rlgsVunD25X7ginE39mzZ/Hiiy9i165deOGFFwz+er3lySefxMiRIzlvRUMFYA8gFUh/+tOfVEIIjY2NOHr0KJKTk3Hq1Cn4+fkhISEB8+bNQ3h4eAdxxzAM2+9Qk+O7McRgX6mE0wUy2QcHB8PPzw9A++6ZcqslKysrvVtKGAqZTIbs7GzWVFz5NycWi/HnP/8ZPB4PZ86cMUnojTIwUPZSTUlJQUlJCaysrODh4YFz587B29ubk9eRupuBeg9eZfsUUy5+Hzx4gPv375s8AtOV+4KzszNu3bplVPGXkZGBZ599Ftu3b8dLL73Eyd+YMmKxGCNGjMBrr72Gt99+29TD6RIqAA0E8eFKTk7GiRMnMGjQIMTHx2PevHmYMGGCRjHY2NjI7gzKZDJ4eHjA29vbYH1z5XI5u5LjciWcLtTW1uLmzZsYO3Zsp4nTJCRPwh8AdKooNiZyuRxZWVkwNzdHeHi4ytikUilefvllPHjwAOfOneN8vgml/1BUVIQnnniCFSrFxcWYNm0akpKSMHfuXLi7u3PiRt2dmwExnubxeKirq4OdnZ1efUe1gbhPlJWVITIyUmOHKlOh7r4glUphaWmJUaNGsdZnhuT333/H/Pnz8dlnn+HVV1/lxG9KnbVr1yI+Ph7Dhg0Dn8/HBx98gIyMDNy6dQv+/v6mHl6XUAFoBFpbW3Hq1CkkJyfj2LFjrA9XUlISYmNjO1xEpLKN7Ay2tbWxYrCzyjZd6SuVcLrA4/GQl5eHcePGaV2BqFxRrF4lp6/PuqfI5XLk5OSAYRhERESo/E5kMhn+8pe/oLCwEGlpaX3Cc4rSf0hISEBwcDA+/PBDmJmZ4c6dO6x9FvFSTUpKQnx8vEYvVWOgq5uBpsI9Q0cJGIbB3bt3UVVVxWkjaoVCgZycHIhEIgwaNAgCgQBisVjFfUHfXqN//PEHkpKSsGnTJixbtoyT4g8AFixYgAsXLkAgEMDT0xOTJk3C+++/j7Fjx5p6aN1CBaCRaWtrw9mzZ5GSksL6cJGdwUceeaSDEFOubOPxeOwFSJJ1eyLc+kolnC6QyX78+PE9FkP6rpLrDUT8KRQKREREqAhRuVyOJUuWIDs7G2lpaZy06qH0b9ra2jTm+5FiMpIzeP36dUyePJk11tfkpWoIysrKcPfu3R4XUigUCjZlhHjpKRfu6SM9Rzn3OioqyuRV+52hKeePYRiVIhuhUKjXtnSZmZlISEjAO++8g5UrV3JW/PV1qAA0IVKpFGlpaUhOTtbah4tcdDweD0KhkBUoXl5eWq3ADN3X1xRUVlaiqKgIYWFheg2Dkio5Pp+PpqYmuLi4sKFiQ1YUk9W2TCZDZGRkB/H397//HZcuXUJ6errW5rAUirFR91K9fPkyJkyYgMTERCQmJrJeqvp+TX27GejDeFrTOEnlNJdzr7Ut+Ghra2PFcm/b0uXm5mLOnDl488038frrr1PxZ0CoAOQI6j5cra2tmDNnDhISEjr14VIXKG5ubuxFp2m3yth9fY2BsarmxGIxO8GRimLlxHF9fZZdTbgKhQKrV6/GuXPnkJaWxvn8EgqFoOylmpycjIsXLyIsLIwVgyNGjOj1NWQMNwOSq03mXW2Mp9UhhXdNTU2IioribOU06Zaia8GHRCJhQ+l1dXU6taXLz89HXFwcVq1ahX/+85/94h7FZagA5CDEh4s49Dc0NGDmzJlISkrCU089pXH3iazAeDweGhsb4eLiwl50dnZ2bCVcQEAAAgIC+sWFZaqqOZI4TqrkbGxsVHoU9/SzVSgUuHXrFkQiUQdXfYVCgXXr1uHIkSNIT0/vEy7zFIomiJcqEYNpaWkYM2YMa581evRona8hU7gZaErPcXd3Z3O1NUVkyDXe2tqKyMhIzhbeEfEnlUoRERHR4xxx0paOzJVdtaUrLCxEXFwcXnvtNbz33nv94h7FdagA5DjEh+vAgQNITU1FTU0NnnzySSQlJWHWrFlwcnLq8BiyW8Xn89HQ0AA7OzuIRCIMHz683wiHkpISlJaWIjIy0qS+d+oVxT3tu6lQKJCXl4fW1laN4u+tt97Cb7/9hvT0dAQFBRnq7VAoRoVYYR06dAjJyck4e/Ys66U6b948rdJUuOJmoG48rR6RIeOUSqVGs1DpCWScMpmsV+JPHeVQOqkoNjc3x927dxEeHo4FCxbgpZdewubNm/tFalJfgArAPgTJDSNisLS0FDNmzEBiYiJmz56tcXu9vLwcRUVFcHR0hFAohIODA9uSjqsVZ11BcnzKy8sRFRWlUQCbCk0TnDbhIYZhkJeXB6FQiKioKJWdA4Zh8P777+OHH35Aeno6goODjfV2KBSj09jYiCNHjiAlJQUnT57E4MGDWTGoboAOtO/GZ2dnw8zMjFNuBiKRCLW1tWxExsnJibVQMVbP3J5gKPGnDim4O3/+PNatW4eKigr4+/vjzTffxLx584zSR5piAgG4ceNGHDt2DDk5ObC2tmbbdXUFwzB49913sXPnTjQ0NCAmJgZfffUVQkJCDD9gjsIwDPLz81lT1qKiIkyfPh1JSUmYM2cO3N3d8f3332Pw4MGIjo7GoEGDOvW88vb21msem6HoK5YJgGpFMZ/PZ8NDyn1JyXkkHyg6OrqD+NuyZQu+/vprnD9/HqGhoaZ6OxSK0Wlubsbx48eRkpKC48ePw8PDg7XPmjBhAsrLy3Hq1ClMnDgRoaGhnHUzaGlpQXZ2NqRSKeRyOWeMp9VRFn/qxWeGoqysDDNnzsTkyZMRGRmJgwcP4ubNm6itreVsbmR/wugC8J133oGrqysqKiqwe/durQTgli1bsHHjRvzwww8YNWoUPvjgA1y4cAFFRUWc2gEyFQzDsD5cycnJyM3NxeDBg8Hj8fDrr7/iySef7CDu1N3era2t2Z1BZ2dnzolB8h55PB6nLRM6g4SHamtrVSqKGxsbIRQKER0drRK6YhgGn332GT777DOcO3cO4eHhRhnn9u3bsXXrVlRXVyMkJATbtm3DlClTOj0/IyMDa9asQX5+Pvz8/PDGG29g6dKlRhkrZeCg7KV69OhR2NnZsYumw4cPc3ZHTSKRqPTvVigUbBcSUxlPa8IU4q+qqgozZ87E448/jm+++Ybd3W1qajKJGbauc19/wGQh4B9++AGrVq3qVgAyDAM/Pz+sWrUK69atA9Ce4+bt7Y0tW7ZgyZIlRhht30Eul2PhwoU4fPgwhg0bhsLCQsTGxnbpw6WcqFtbWwtLS0t2Z7C7qi1jQCwT6urqEBUVZVALFmNACnZKS0shFotVwvLEMuHLL7/Ehx9+iNOnT2PChAlGGde+ffvw0ksvYfv27XjkkUfwzTff4Ntvv8Xt27cxbNiwDueXlJRg3LhxWLx4MZYsWYJLly5h2bJl+OWXXzB//nyjjJky8Lh27RpmzpwJHx8f8Hg82NjYYO7cuZ16qZoK4rdqb2+P0NDQDuFrmUyGuro68Hg8lfaUxp53TSH+ampqEBcXh0mTJuG7774z+e6trnNff4HzAvD+/fsYMWIEsrKyEBERwR5PTEyEq6sr9uzZY+CR9i327t2L999/H6dPn4a/vz/Ky8tZh/4rV65068NFWv/weDwVA1Rvb2+4uroaPTmXYRjcvn0bDQ0NnPbL0gWGYVBYWIi6ujqEhYWxlYS5ubl4//33MWzYMNy6dQunTp3CI488YrRxxcTEIDIyUqWB+ZgxY5CUlITNmzd3OH/dunU4fPgwCgoK2GNLly5Fbm4urly5YpQxUwYWMpkMISEhWLhwId58803IZDKkpaXhwIEDOHToEBQKBebMmYN58+bhscce03t3Cm1pa2tDZmYmXFxctC5kUS8m07fxdGeva2zxx+fzMXv2bISFhWHv3r0m7bZE0HXu6y9wXgBevnwZjzzyCCorK+Hn58cef+211/DgwQOcOnXKwCPtWygUCjQ2NsLNzU3lOMMwqKqqQmpqKlJSUlgfrqSkJCQmJmL48OEaxWBDQwObx8YwDDsp6VLh2pv3kp+fj+bmZkRGRvaLnBDiVVZbW4vo6GgVQSsUCrF27Vr88ssvsLe3h729PRITE7Fx40aD9/mVSCSwt7fH/v37MW/ePPb4ypUrkZOTg4yMjA6PmTp1KiIiIvDvf/+bPZaamornnnsOra2tnNmJofQv6urqNF4PMpkMFy9exP79+3Ho0CHWSzUxMRFPPPGE0eaP1tZWZGZmYtCgQRgzZkyPLG1IMRmPx4NCoei18bQmTCH+6urqMGfOHAQFBeHXX3/lxBzRk7mvv6CXO/iGDRtgZmbW5b8bN2706jXULyKGYUwemuQi5ubmHcQf0P75DR48GMuXL8e5c+dQWVmJxYsX4+LFi4iKisLkyZOxZcsWFBYWgqwJzM3N2Uls6tSpCAsLg4WFBW7fvo2MjAzk5eWxzvj6hvhlkfy4/iL+iouLNYo/hmFw8OBBpKam4vTp06irq8PPP/8Me3t7o+S5CgQCyOXyDtV33t7eqKmp0fiYmpoajeeT/FJKz9m4cSMmT54Me3v7Tj0uy8rKEB8fDwcHB3h4eGDFihWQSCTGHagJ6GwxZGlpienTp2P79u0oKyvD4cOH4eHhgbVr1yIwMBCLFi1ihaGhaGlpwY0bN+Dl5dUj8Qe0z7vu7u4IDg5mF1nW1ta4c+cOMjIycPPmTdTU1EAmk/V4nKYQfw0NDUhMTERAQAB++eUXTog/oGdzX39BL9/68uXLsWDBgi7PCQgI6NFzkz6nNTU18PX1ZY/z+XxaKt5DSHhhyZIleO2111R8uLZs2YIRI0awpqwkfGFmZgY3Nze4ublh1KhRaGpqAo/Hw507d1g3fGKA2tsVKjEhFYvFHWxR+iqkgrmmpkaj+Nu/fz/WrFmD5ORkTJ8+HQDw+OOP4/HHHzfqOHVdaGk6X9Nxim5IJBI8++yziI2Nxe7duzv8XS6XY86cOfD09MTvv/+Ouro6vPLKK2AYBl988YUJRswtLCwsMGXKFEyZMgWffvoprl27huTkZLz11ltYvHgxnnrqKSQmJnbqpdoTSKelwYMH66WzCdB+Hbm6usLV1RVBQUEQCoXg8Xi4f/8+8vPzWeNpXfrCkz7jcrncaOKvqamJtXfZv38/J+f0gbjJpJdv3sPDo0cNt7UhMDAQPj4+OHPmDJsDKJFIkJGRgS1bthjkNQcSZmZmcHd3x6JFi7Bo0SLWhys5ORnbtm3DkCFDWDFIfLjMzMzg4uICFxcXBAUFsXYn9+7dQ15eHut95+npqfPkorwy5bJflq7cu3cPVVVViI6O7lDEcvDgQSxfvhy//vorZs6caZLxEeGuvuLtaqHl4+Oj8XxLS0uDh6z7O++++y6A9lQZTZw+fRq3b99GeXk5mxrzySefYOHChdi4caNJqii5irm5OSZNmoRJkyZhy5YtrJfq5s2bsXTp0m69VLWhsbER2dnZ8Pf3R2BgoAHeRftc7eTkBCcnJ4wcOZJ1FigrK8Pt27e7bQUK/E/8KRQKo4k/oVCIp59+Gs7OzkhJSeFc95OezH39BaPbbZeVlSEnJwdlZWXsjzEnJwdCoZA9Jzg4GKmpqQDaf/SrVq3Cpk2bkJqairy8PCxcuBD29vZ48cUXjT38fo+Liwv+/Oc/IzU1FTweD++//z4ePHiAWbNmITQ0FOvXr8e1a9egUCgAtH8/zs7OGDlyJCZPnoyYmBg4OjqitLQU6enpyM7ORlVVFaRSabevLZPJkJ2dza5M+5P4q6ysRHR0dAf7mqNHj+K1117D3r17MXfuXBONELC2tkZUVBTOnDmjcvzMmTOYPHmyxsfExsZ2OP/06dOIjo7uN98dV7ly5QrGjRunkhc9c+ZMiMViZGZmmnBk3Mbc3ByRkZHYtGkTCgoKcO3aNURGRuLzzz9HYGAg5s+fjx9//BF1dXXQNj3+4cOHyMrKQmBgoMHEnyYcHBwQGBiISZMm4ZFHHoGHhwdqampw8eJFXL9+HQ8ePIBIJGLPVxZ/ERERRhF/LS0teOaZZ2BlZYVDhw5xsoivJ3Nff8Ho5Tdvv/22SuUu2dVLS0vDtGnTAABFRUVobGxkz3njjTcgEomwbNky1gj69OnT1APQwDg5OeH555/H888/j9bWVpw8eRIpKSlISkqCk5MTa8o6adIkNuzr6OgIR0dHjBgxgl2hlpeXsytUEq5QXwUSR38LCwtERESY3BZAX5SUlKC8vFyj+Dt58iQWLVqE77//XiX52FSsWbMGL730EqKjoxEbG4udO3eirKyM9fVbv349Kisr8eOPPwJor/j98ssvsWbNGixevBhXrlzB7t278csvv5jybQwINOVfurm5wdraut/nLekLMzMzhIaGIjQ0FBs2bEBRURGSk5Oxa9curFixAlOmTEFSUhLi4+Ph6empcWewrq4Oubm5GDVqFIYMGWKCd9GOnZ0d/P394e/vD7FYzHYhKS4uhqOjIzw9PVFXVwczMzOjiT+RSIQFCxZALpfj5MmTnPZu7W7u66/QVnAUnWlra8OZM2eQkpKCQ4cOwcbGBvHx8awPl6bJRSQSsVVtTU1NcHV1ZcMVFhYWyMrKgpWVFVto0h8oLS1FaWmpxpZ158+fx4IFC7Bjxw786U9/4kyuyfbt2/HRRx+huroa48aNw2effYapU6cCABYuXMju7BIyMjKwevVq1gh63bp1/X7S7CkbNmxgQ7udcf36dURHR7P/vzO3hM5cEKytrfHjjz92m5NN6RzSbpK03MzMzERsbCySkpKQkJAAX19fmJmZ4datW6itrcWYMWNU8tO5hFQqBY/Hw927dyGVSmFvb896jhrSeFosFuOFF15AQ0MDTp8+bdJ+7drS1dzXX6ECkNIrJBIJ0tLSkJycjIMHD4JhGMydOxdJSUmd+nC1tbWxK9SHDx/CzMwMdnZ2CAsL4/QqURcePHiA+/fvIyoqqkM+1oULF/Dss8/i888/x8KFCzkj/iiGRSAQdFsdHRAQoFLx3pkAfPvtt3Ho0CHk5uayxxoaGuDu7o7z58+zhUSU3sEwDMrKypCSksJ6qU6cOBGDBw/GkSNHcPbsWURGRpp6mJ2iHPYNDQ1FY2OjwY2nJRIJXnrpJVRWVuLs2bNwd3fXy/NS9A8VgGifOFesWIHDhw8DABISEvDFF190ar8AtO+GqJtQx8TE4OrVq4YcKqdR9uE6ePAgRCIR5s6di4SEBI0+XGKxGDdu3ICFhQWsrKzQ0NAAR0dHla4YfZGysjLcu3cPkZGRHVa+ly9fxtNPP42PPvoIS5YsoeKP0iWdCcATJ05g7ty5qKioYHef9u3bh1deeQV8Pp8WgRgA4qX6j3/8Az/99BMAIDIykjXW1+Slakq6yvkzlPG0VCrFokWLcPfuXZw/f95gxaEU/UAFIIC4uDhUVFRg586dANrDKwEBAThy5Einj1m4cCF4PB6+//579pi1tTVd7fwXuVyOy5cv48CBAzh48CAePnyIWbNmISkpCU8++SSqq6uxb98+JCQksFYzUqmU3Rmsr6+Hvb09u0IlLdK4TkVFBYqLizWKv+vXryMxMRHvv/8+li9f3ifeD8U0lJWVob6+HocPH8bWrVtx8eJFAMDIkSPh6OgIuVyO8PBweHt7Y+vWraivr8fChQuRlJREbWAMyG+//YZXX30VKSkpGD9+PA4ePIjk5GSkp6dj7NixrGPCqFGjTHp961LwocnwnxhPu7u7a52SI5PJsHjxYty6dQvp6enw8vLS19uhGIgBLwALCgowduxYXL16FTExMQCAq1evIjY2FoWFhRg9erTGxy1cuBAPHz7EwYMHjTjavolCocC1a9fYnJrq6mowDIPQ0FAcOXJEYzGPTCZjm6YLBALY2tqyYtCUTdO7orKyEkVFRYiMjOywe5ydnY25c+fiX//6F9asWcPJ8VO4g6YIA6BaLFdWVoZly5bh/PnzsLOzw4svvoiPP/6YczYb/YmamhqUlJQgNjaWPcYwDOrr61kv1XPnzrFeqvPmzcOYMWOM2kKzN9W+DMOgsbGRzdeWSqWsrZeHh0enzyWXy7Fs2TJcu3YN6enpnM2JpKgy4AXgd999hzVr1nQIsbi6uuKzzz7DokWLND5u4cKFOHjwIKytreHq6orHHnsMGzdupKuebrhz5w4ee+wx+Pr6QigUoqKiAk888QSSkpIwe/ZsODs7dxBHcrkcAoGADVdYWVmxYWJjNk3viqqqKhQWFiIiIqJDJ5Zbt25h9uzZWLt2Ld58801OjJdC0YaAgAA8ePBA5di6devw4YcfmmhE3Ofhw4c4cuQIUlJScOrUKdZLdd68eRg/frxBxaA+rV4YhmE9Xvl8PkQiEQYNGsR6vBKrJ4VCgRUrVuDChQtIS0vD0KFD9fV2KAZmwAvATZs24YcffsCdO3dUjo8aNQqLFi3C+vXrNT5u3759cHR0hL+/P0pKSvDWW29BJpMhMzOTrsC74Mknn0RYWBi2bt0KAMjLy8OBAweQkpKCO3fu4PHHH0diYiLmzp0LNzc3jWKwvr4ePB4PtbW1sLCwUMldMYW4qq6uRkFBAcLDwzukANy+fRtxcXFYvnw53n77bSr+KH2KgIAAvPrqq1i8eDF7jFg9UbqnubkZx44dQ0pKCk6cOAEPDw82TBwdHa1XMSiXy5GdnQ2GYQxi9SIUCtkUHaFQiCtXrsDGxgbFxcW4fPky0tLSetzxi2Ia+q0A1NZy4fTp09izZw+KiopU/hYUFIRXX30Vb775plavV11dDX9/f/z66694+umnezzu/k5TU5PGEC7DMKwPV3JyMvLy8jB16lQkJiZ26sNFcld4PB74fD7MzMzg6ekJb2/vXiUy60JNTQ1u376NsLCwDt0vioqKEBcXh7/85S/YuHEjFX+UPkdAQABWrVqFVatWmXoofR7ipZqcnIxjx47B2dkZCQkJSExMVPFS7QlE/AEwio+qSCTCzp078emnn0IgECAqKgp/+tOf8PTTT8Pf39+gr03RH/1WAGprufCf//ynRyFgTQQFBeGvf/0r1q1b15MhU/4LwzC4d+8ekpOTkZKSgqysLEyePBmJiYkqPlzKKBQKPHz4kM1dUU5kHjRokEHEII/HQ35+PsaPH9+h2u3evXuYNWsWXnjhBXz00UdGzQGiUPRFQEAAxGIxJBIJhg4dimeffRavv/46J3u59iWIl2pycjIOHz6slZdqZxhb/AHt8+2GDRvwn//8B/v27UN+fj5SUlLg7++PXbt2Gfz1Kfqh3wpAbSFFIH/88QcmTpwIAPjjjz8wadKkLotA1Kmrq8PgwYOxc+dOvPzyy4Yc8oCC+HAlJycjNTUVV69exYQJE1jrhaFDh2rcTSR+V3w+HzKZDB4eHvD29sagQYP0MkHy+XzcunUL48ePh6enp8rfSktLERcXh4SEBPz73/+m4o/SZ/nss88QGRkJNzc3XLt2DevXr0diYiK+/fZbUw+t30C8VA8cOIBDhw4BAObMmYN58+Zh6tSpXYptU4g/hmGwadMmfPvtt0hLS8PYsWNV/saFSAfNXdWOAS8AgXYbmKqqKnzzzTcA2m1g/P39VWxggoODsXnzZsybNw9CoRAbNmzA/Pnz4evri9LSUvzjH/9AWVkZCgoKaIs6A0F8uIgp6++//47w8HAkJSUhMTERgYGBGsVgU1MTuzMoFovZncGuqtq6ora2y4xaOwAAFCtJREFUFjdv3kRoaGiHop+KigrMnDkTM2fOxPbt26n4o3COnnQkISQnJ+OZZ56BQCDokPJA6T0ymQwXLlxg7bPa2towZ84cJCUlYfr06SpeqqYSfx9//DG++OILnD9/HuPHjzf4a/YEmruqHVQAAqivr+9gBP3ll1+qWHmYmZnh+++/x8KFCyESiZCUlITs7Gw8fPgQvr6+mD59Ot5//31aAWUkGIYBj8fDwYMHkZKSwvpwETGoyYeLYRgIhUJWDHZW1dYVAoEAN2/eREhISIderNXV1Zg1axamTJmCXbt29ZuWdpT+RU86khAqKysxZMgQFdssimGQy+W4dOkSG/1obGxEXFwckpKSMHHiRCxfvhyLFy/GjBkzjCb+Pv/8c2zduhVnzpxBVFSUwV+zp9DcVe2gApDS51H34Tp79iyCgoLYarvOfLhaWlrYMLFQKIS7uzu8vb3h6empMexCGr+PHTsWPj4+Kn/j8XiIi4tDdHQ09uzZQ8UfpV9y9OhRxMfH48GDBxg2bJiphzNgUCgU+OOPP9giubKyMjg7O+PDDz/EvHnzDL6zxTAMvv76a3zwwQc4deoU58U/zV3VDioAKf0Kkv935MgRJCcn4/Tp0xg6dCgSEhK69OFqbW1l/a6amprg5ubG2svY2Nigvr4eOTk5Ghu/CwQCzJ49GyEhIfj555/1br+gLbSlIUWfXLlyBVevXsX06dPh4uKC69evY/Xq1YiOjmZz1SjGpaWlBbNnz0Zraysee+wxHDlyBOXl5ZgxYwYSExM79VLtDQzDYPfu3Xjrrbdw/PhxPPLII3p7bkNBc1e1gwpASr+G+HAlJyfj5MmT8PT0ZMVgVFSURjHY1tbGhokbGxvh4OCAlpYWjBw5soPPVX19PebOnYvAwED89ttvWoWRDQVtaUjRJ1lZWVi2bBkKCwshFovh7++PBQsW4I033oC9vb2phzcgOXnyJD799FMcPHgQ9vb2YBgGeXl52L9/P1JTU7XyUtUFhmGwd+9evP766zhy5AjbhcYU0NxV/UMFIMfYvn07tm7diurqaoSEhGDbtm2YMmVKp+dnZGRgzZo1yM/Ph5+fH9544w0sXbrUiCPuO7S0tODkyZNISUlR8eFKSkpCTEyMxrBtbW0tcnNzYWdnB5FIBCcnJ9jb28Pc3ByDBw9GfHw8fH19kZycbFIDcNrSkNLX0XXuG6h0VmnLMAwKCwvZlpvESzUpKQnx8fHw8PDQSQwyDINffvkFq1atwqFDh/DEE0/o823oDM1dNQAMhTP8+uuvjJWVFbNr1y7m9u3bzMqVKxkHBwfmwYMHGs+/f/8+Y29vz6xcuZK5ffs2s2vXLsbKyoo5cOCAkUfe92htbWUOHTrEvPLKK4ybmxvj6+vLvPbaa8yJEyeYxsZGpqWlhUlPT2dSU1OZwsJCpqWlhWloaGDu3LnDbN26lbGwsGBsbW2ZkSNHMtnZ2aZ+O8zu3bsZFxeXDsddXFyY7777rtPHvfLKK4yLiwvj6enJBAUFMX/9618ZHo9nwJFSKB3Rde6jdI1CoWCKi4uZDz/8kJk4cSJjaWnJTJ06lfn000+Zu3fvMkKhkGlpaeny3549exgHBwfm+PHjpn47vebIkSMMAPp7UoMKQA4xceJEZunSpSrHgoODmTfffFPj+W+88QYTHByscmzJkiXMpEmTDDbG/ohYLGZOnDjB/PWvf2U8PDwYT09PZvbs2YytrS3z+eefd5gY+Xw+M3HiRGb06NHM3LlzGRsbG2bs2LFMc3Ozyd7Dxo0bmaCgoA7Hg4KCmE2bNnX6uF9//ZU5evQoc+vWLebw4cNMWFgYExISwrS1tRlyuBSKCrrOfRTtUSgUTElJCfPJJ58wjzzyCGNhYcFMnjyZ2bJlC1NYWKhRDP7yyy+Mvb09c+jQIVMPX2cuX77MfPrpp0x2djZz//59Zt++fYyfnx+TkJBg6qFxDioAOYJYLGYsLCyYlJQUleMrVqxgpk6dqvExU6ZMYVasWKFyLCUlhbG0tGQkEonBxtqfkUqlzI4dOxgbGxvG0dGRcXNzY1566SXmwIEDTH19PVNbW8tMmzaNmTJlCiv4mpubDbZKfueddxgAXf67fv06s3HjRmbUqFEdHj9y5Ehm8+bNWr9eVVUVY2VlxSQnJ+vzbVAondKTuY/SMxQKBVNRUcF8/vnnzGOPPcZYWloyEyZMYD744APm1q1bjFAoZPbv38/Y29v32UhSZmYmExMTw7i4uDC2trbM6NGjmXfeeYdpaWkx9dA4h2nKFSkdEAgEkMvlHbzlvL29UVNTo/ExNTU1Gs+XyWQQCAQdqlUp3VNVVYV//vOfeP/997FmzRpcunQJBw4cwOrVq9HY2Ah7e3v4+fkhLS2NtV5wdHREXFycQcazfPlyLFiwoMtzAgICcPPmTfB4vA5/q62t7fAb6QpfX1/4+/ujuLhY57FSKD2hJ3MfpWeYmZlh8ODB+Pvf/47ly5ezXqrJycl49913MWzYMFRUVOD777/H/PnzTT3cHhEZGUldDLSECkCOocm8uKvEXU3nazpO0Y4hQ4bg559/xsyZMwEAU6dOxdSpU7Ft2zZcunQJb7zxBg4cOABnZ2ejjMfDw6NDn2FNxMbGorGxEdeuXVNpadjY2IjJkydr/Xp1dXUoLy+niweK0dF17qP0DjMzM/j4+GDp0qVYsmQJ6uvrsXXrVgiFwm4XnZT+Ae1TxRE8PDxgYWHRYcXL5/M73cHx8fHReL6lpSUtde8h5ubmrPhTPz5lyhRcuXIFgwcPNsHIumbMmDGYNWsWFi9ejKtXr+Lq1atYvHgx5s6dq1IBHBwcjNTUVACAUCjE2rVrceXKFZSWliI9PZ2tFpw3b56p3gplgNGTuY+iX8zMzDBo0CB8+OGH+PLLL6nwHiBQAcgRrK2tERUVhTNnzqgcP3PmTKc7OLGxsR3OP336NKKjo03qR0cxDT///DNCQ0Px1FNP4amnnsL48eOxd+9elXOKiorQ2NgIALCwsMCtW7fY1nmvvPIKRo0ahStXrtB+1hSj0ZO5j0Kh9B7qA8gh9u3bh5deegk7duxAbGwsdu7ciV27diE/Px/+/v5Yv349Kisr8eOPPwIASkpKMG7cOCxZsgSLFy/GlStXsHTpUvzyyy99Nn+DQqEMPLqb+ygUiv6hOYAc4vnnn0ddXR3ee+89VFdXY9y4cTh+/Dg7AVZXV6OsrIw9PzAwEMePH8fq1avx1Vdfwc/PD59//jkVfxQKpU/R3dxHoVD0D90BpFAoFAqFQhlg0BxACoVCoQxYNmzYADMzM5V/Pj4+ph4WhWJwqACkUCgUyoAmJCQE1dXV7L9bt26ZekgDho0bN2Ly5Mmwt7eHq6urxnPKysoQHx8PBwcHeHh4YMWKFZBIJMYdaD+E5gBSKBQKZUBjaWlJd/1MhEQiwbPPPovY2Fjs3r27w9/lcjnmzJkDT09P/P7776irq8Mrr7wChmHwxRdfmGDE/Qe6A0jRie3btyMwMBC2traIiorCxYsXOz03PT29Q2jFzMwMhYWFRhwxhUKhdE1xcTH8/PwQGBiIBQsW4P79+6Ye0oDh3XffxerVqxEaGqrx76dPn8bt27fx008/ISIiAjNmzMAnn3yCXbt2oampycij7V9QAUjRmn379mHVqlX45z//iezsbEyZMgVxcXEqlcmaKCoqUgmvBAUFGWnEFAqF0jUxMTH48ccfcerUKezatQs1NTWYPHky6urqTD00CoArV65g3Lhx8PPzY4/NnDkTYrEYmZmZJhxZ34cKQIrWfPrpp3j11Vfx17/+FWPGjMG2bdswdOhQfP31110+zsvLCz4+Puw/CwsLI42YQqFQuiYuLg7z589HaGgoZsyYgWPHjgEA9uzZY+KRUQDNPe/d3NxgbW1Ne0X3EioAKVohkUiQmZmJp556SuX4U089hcuXL3f52IiICPj6+uKJJ55AWlqaIYdJoVAovcLBwQGhoaEoLi429VD6LJoqq9X/3bhxQ+vn09SajvaK7j20CISiFQKBAHK5vMNKzNvbu9NVmK+vL3bu3ImoqCiIxWLs3bsXTzzxBNLT0zF16lRjDJtCoVB0QiwWo6CgAFOmTDH1UPosy5cvx4IFC7o8JyAgQKvn8vHxwR9//KFyrKGhAVKplPaK7iVUAFJ0Qn3F1dUqbPTo0Rg9ejT7/2NjY1FeXo6PP/6YCkAKhcIJ1q5di/j4eAwbNgx8Ph8ffPABmpqa8Morr5h6aH0WDw8PeHh46OW5YmNjsXHjRlRXV8PX1xdAe2GIjY0NoqKi9PIaAxUaAqZohYeHBywsLDrs9vH5fJ1WYZMmTaKhFQqFwhkqKirwwgsvYPTo0Xj66adhbW2Nq1ev0jZ0RqKsrAw5OTkoKyuDXC5HTk4OcnJyIBQKAbSnGY0dOxYvvfQSsrOzce7cOaxduxaLFy+Gs7OziUfft6Gt4ChaExMTg6ioKGzfvp09NnbsWCQmJmLz5s1aPcczzzyD+vp6nD9/3lDDpFAoFEofYeHChRoLbtLS0jBt2jQA7SJx2bJlOH/+POzs7PDiiy/i448/ho2NjZFH27+gO4AUrVmzZg2+/fZbfPfddygoKMDq1atRVlaGpUuXAgDWr1+Pl19+mT1/27ZtOHjwIIqLi5Gfn4/169cjOTkZy5cvN9Vb4ATaON+rwzAMNmzYAD8/P9jZ2WHatGnIz8837EApFIreuXDhAuLj4+Hn5wczMzMcPHhQ5e8D7Vr/4YcfwDBMh39E/AHAsGHDcPToUbS2tqKurg5ffPEFFX96gApAitY8//zz2LZtG9577z2Eh4fjwoULOH78OBsqqa6uVvEElEgkWLt2LcaPH48pU6bg999/x7Fjx/D000+b6i1wAuJ8/7e//U3rx3z00Uf49NNP8eWXX+L69evw8fHBk08+iebmZgOOlEKh6JuWlhaEhYXhyy+/1Ph3eq1TjAUNAVMoJuKHH37AqlWr8PDhwy7PYxgGfn5+WLVqFdatWwegvVLR29sbW7ZswZIlS4wwWgqFom/MzMyQmpqKpKQkAPRapxgXugNIoXCckpIS1NTUqHgw2tjY4LHHHuvWg5FCofQd6LVOMSZUAFIoHIdUXuviwUihUPoe9FqnGBMqACn9hu6SqzWRkZGBqKgo2NraYvjw4dixY0ePXlvfzvea0MWDkUKh9F3otU4xBtQImtJvIMnVixYtwvz587s9v6SkBLNnz8bixYvx008/4dKlS1i2bBk8PT21erwy+nS+V8fHxwdA++4AMUIFdPdgpFAo3IZe6xRjQgUgpd8QFxeHuLg4rc/fsWMHhg0bhm3btgEAxowZgxs3buDjjz/WWQDq0/lencDAQPj4+ODMmTOIiIgA0F5JnJGRgS1bthjkNSkUivGh1zrFmNAQMGXAcuXKFZVkawCYOXMmbty4AalUarDX7c75HgCCg4ORmpoKoD0ctGrVKmzatAmpqanIy8vDwoULYW9vjxdffNFg46RQKPpHKBSy1zzQHokg8wG91inGhO4AUgYsNTU1GpOtZTIZBAKBSghGn7z99tsqzvdkpa/sfF9UVITGxkb2nDfeeAMikQjLli1DQ0MDYmJicPr0aTg5ORlkjBQKxTDcuHED06dPZ///mjVrAACvvPIKfvjhB3qtU4wG9QGk9EvU/bU0MWrUKCxatAjr169nj126dAmPPvooqqur2XwcCoVCoVD6GzQETBmw+Pj4dLBW4PP5sLS0xKBBg0w0KgqFQqFQDA8VgJQBS2xsLM6cOaNy7PTp04iOjoaVlZWJRkWhUCgUiuGhApDSb+gquRoA1q9fj5dffpk9f+nSpXjw4AHWrFmDgoICfPfdd9i9ezfWrl1riuFTKBQKhWI0aA4gpd+Qnp6uklxNIMnVCxcuRGlpKdLT09m/ZWRkYPXq1cjPz4efnx/WrVuHpUuXGnHUFAqFQqEYHyoAKRQKhUKhUAYYNARMoVAoFAqFMsCgApBCoVAoFAplgEEFIIVCoVAoFMoAgwpACoVCoVAolAEGFYAUCoVCoVAoAwwqACkUCoVCoVAGGFQAUigUCoVCoQwwqACkUCgUCoVCGWBQAUihUCgUCoUywKACkEKhUCgUCmWAQQUghUKhUCgUygCDCkAKhUKhUCiUAQYVgBQKhUKhUCgDDCoAKRQKhUKhUAYYVABSKBQKhUKhDDCoAKRQKBQKhUIZYFABSKFQKBQKhTLAoAKQQqFQKBQKZYBBBSCFQqFQKBTKAIMKQAqFQqFQKJQBBhWAFAqFQqFQKAMMKgApFAqFQqFQBhhUAFIoFAqFQqEMMKgApFAoFAqFQhlgUAFIoVAoFAqFMsCgApBCoVAoFAplgEEFIIVCoVAoFMoAgwpACoVCoVAolAEGFYAUCoVCoVAoAwwqACkUCoVCoVAGGFQAUigUCoVCoQwwqACkUCgUCoVCGWBQAUihUCgUCoUywKACkEKhUCgUCmWAQQUghUKhUCgUygCDCkAKhUKhUCiUAQYVgBQKhUKhUCgDDCoAKRQKhUKhUAYYVABSKBQKhUKhDDCoAKRQKBQKhUIZYFABSKFQKBQKhTLAoAKQQqFQKBQKZYBBBSCFQqFQKBTKAIMKQAqFQqFQKJQBBhWAFAqFQqFQKAMMKgApFAqFQqFQBhhUAFIoFAqFQqEMMKgApFAoFAqFQhlgUAFIoVAoFAqFMsCgApBCoVAoFAplgEEFIIVCoVAoFMoAgwpACoVCoVAolAEGFYAUCoVCoVAoAwwqACkUCoVCoVAGGFQAUigUCoVCoQwwqACkUCgUCoVCGWBQAUihUCgUCoUywKACkEKhUCgUCmWAQQUghUKhUCgUygCDCkAKhUKhUCiUAQYVgBQKhUKhUCgDDCoAKRQKhUKhUAYY/x+kdpksQ5SQOgAAAABJRU5ErkJggg==", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_lattice(simple_cubic);\n", - "plot_lattice(graphite);\n", - "plot_lattice(fcc);" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "c6512444-6c86-4e31-bc6a-2c8b1e00c28d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 0.92, '3D Lettuce')" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "89c74caa7562461eb89e90d8eae93974", - "version_major": 2, - "version_minor": 0 - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhkV3nf/zl3r6XXWaXRviAJSUYLSMwMGGxsMMJ2SGIC8aYYg4MVSBwM/hlCYifkwfYTbBMvQhATYyCxQXZwsCWDcRAYkMSqWTUaaTT7PtNrbXc95/fHqXurqrtn1Pv0TJ8P9KPu6qp7z723pu+33uX7CqWUwmAwGAwGg8GwarAu9AIMBoPBYDAYDMuLEYAGg8FgMBgMqwwjAA0Gg8FgMBhWGUYAGgwGg8FgMKwyjAA0GAwGg8FgWGUYAWgwGAwGg8GwyjAC0GAwGAwGg2GVYQSgwWAwGAwGwyrDCECDwWAwGAyGVYYRgAaDwWAwGAyrDCMADQaDwWAwGFYZRgAaDAaDwWAwrDKMADQYDAaDwWBYZRgBaDAYDAaDwbDKMALQYDAYDAaDYZVhBKDBYDAYDAbDKsMIQIPBYDAYDIZVhhGABoPBYDAYDKsMIwANBoPBYDAYVhlGABoMBoPBYDCsMowANBgMBoPBYFhlGAFoMBgMBoPBsMowAtBgMBgMBoNhlWEEoMFgMBgMBsMqwwhAg8FgMBgMhlWGEYAGg8FgMBgMqwwjAA0Gg8FgMBhWGUYAGgwGg8FgMKwyjAA0GAwGg8FgWGUYAWgwGAwGg8GwyjAC0GAwGAwGg2GVYQSgwWAwGAwGwyrDCECDwWAwGAyGVYYRgAaDwWAwGAyrDCMADQaDwWAwGFYZRgAaDAaDwWAwrDKMADQYDMvCtm3beMMb3sBVV11FqVRieHiYzZs385nPfGbac1/96lcjhEAIgWVZ9PX1ccMNN/CmN72Jv/zLv0RKOat9/qt/9a+oVquLsv7HH3+c3/zN32R8fHza7x588EE++clPLsp+DAaDYTkwAtBgMCwL4+PjXHnllXzoQx/i0Ucf5VOf+hTXXHMNP/dzP8d//a//ddrzr7vuOp544gkef/xx/vqv/5pf//Vfp9Vq8aY3vYlXv/rVTExMLOv6H3/8cf7zf/7PRgAaDIZLAudCL8BgMKwOXv3qV/PqV7+657Ef//Ef58CBA3z84x/nAx/4QM/vSqUSL3/5y3see9vb3saf/umf8ta3vpVf+qVf4rOf/exSL9tgMBguSUwE0GAwXFDWrl2L48z+s+gv/MIvcN999/Hwww9z6NChRVnDP/zDP/Ca17yG/v5+yuUyW7du5f/9v/9X/P43f/M3ee973wvAtddeW6Snv/rVr3LNNdewe/duvva1rxWPX3PNNQB88pOfRAjBwYMHe/b31a9+tXh9N1/84hd5zWtew8DAAOVymVtuuYXf+q3f6nnOd7/7XX7yJ3+S4eFhgiDgzjvv5HOf+9yinAeDwbB6MALQYDAsK1JK0jTlzJkzPPjgg3zpS1/i//v//r85beMnf/InUUrx9a9/fcHr+cxnPsNrX/ta+vv7+bM/+zM+97nPMTw8zOte97pCBL7tbW/jXe96FwD/5//8H5544gmeeOIJ7rrrLj7/+c9z3XXXceeddxaPf/7zn5/zOj7xiU9w3333IaXkoYce4m/+5m/4t//233L06NHiOY899hhbt25lfHychx56iP/7f/8vd9xxB29+85tNCtpgMMwJkwI2GAzLygMPPMDHPvYxADzP4w/+4A/41//6X89pG1dffTUAx48fX9Bams0m/+7f/Tt+/Md/vEe03Xfffdx11128//3v51vf+hZXXHEFV111FQB33nlnEeHLfy6VSvT3909LWc+Wer3Ou9/9brZu3cpXvvIVhBAAvOY1r+l53gMPPMCtt97KV77ylSJq+rrXvY6zZ8/y/ve/n5//+Z/HsszneoPB8MKYvxQGg2FZef/73893vvMdHnnkEd761rfyzne+kw9/+MNz2oZSalHW8vjjjzM6Osr9999PmqbFl5SSH/uxH+M73/kOjUZjUfb1QuuYnJzkgQceKMTfVPbt28czzzzDz/zMzwD0rPe+++7jxIkT7N27d8nXajAYLg1MBNBgMCwrV111VRFNu++++wB43/vex/3338+6detmtY289u/yyy9f0FpOnToFwE/91E+d8zmjo6NUKpUF7eeFOHPmDABXXHHFOZ+Tr/U973kP73nPe2Z8ztmzZxd/cQaD4ZLECECDwXBBueeee3jooYfYv3//rAXgF77wBYQQ/OAP/uCC9r127VoA/vAP//Cc6dsNGzbMe/tBEAAQRVHP41OFWn7c3fV+51rr+973Pv7ZP/tnMz7npptumvdaDQbD6sIIQIPBcEF57LHHsCyL6667blbP/9M//VP+7u/+jp/+6Z8uIonzZevWrQwODvL000/zzne+87zP9X0fgFarNePvZno8rxXcsWNHjzj7whe+0PO8LVu2MDAwwEMPPcRb3vKWGdPAN910EzfeeCPbt2/nQx/60Asem8FgMJwPIwANBsOy8Eu/9Ev09/dzzz33sGHDBs6ePcvDDz/MZz/7Wd773vdOi/61Wi2efPLJ4vv9+/fz13/91/zt3/4tr3rVq3jooYdmtd8sy/jLv/zLaY9XKhVe//rX84d/+Ifcf//9jI6O8lM/9VOsX7+eM2fOsH37ds6cOcNHP/pRAG6//XYA/vt//+/cf//9uK7LTTfdRF9fH7fffjt/8Rd/wWc/+1muu+46giDg9ttv52Uvexk33XQT73nPe0jTlKGhIT7/+c/zjW98o2ct1WqV3/3d3+Vtb3sbP/IjP8Lb3/52NmzYwL59+9i+fTt/9Ed/BMDHPvYxXv/61/O6172Of/Wv/hWbNm1idHSUPXv28P3vf5+HH354bhfFYDCsXpTBYDAsA//zf/5P9cpXvlKtXbtWOY6jBgcH1ate9Sr16U9/etpzX/WqVymg+KpUKuq6665TP/VTP6UefvhhlWXZrPZ5//3392yn++vqq68unve1r31NveENb1DDw8PKdV21adMm9YY3vEE9/PDDPdt73/vepy6//HJlWZYC1GOPPaaUUurgwYPqta99rerr65u27WeffVa99rWvVf39/WrdunXqXe96l3rkkUd6Xp/z6KOPqle96lWqUqmocrmsXvziF6vf+Z3f6XnO9u3b1b/4F/9CrV+/XrmuqzZu3Kh++Id/WD300EOzOicGg8GglFJCqUVqpzMYDAaDwWAwXBQYGxiDwWAwGAyGVYYRgAaDwWAwGAyrDCMADQaDwWAwGFYZRgAaDAaDwWAwrDKMADQYDAaDwWBYZRgBaDAYDAaDwbDKMALQYDAYDAaDYZVhBKDBYDAYDAbDKsMIQIPBYDAYDIZVhhGABoPBYDAYDKsMIwANBoPBYDAYVhlGABoMBoPBYDCsMowANBgMBoPBYFhlGAFoMBgMBoPBsMowAtBgMBgMBoNhlWEEoMFgMBgMBsMqwwhAg8FgMBgMhlWGEYAGg8FgMBgMqwwjAA0Gg8FgMBhWGUYAGgwGg8FgMKwyjAA0GAwGg8FgWGUYAWgwGAwGg8GwyjAC0GAwrCiUUqRpipTyQi/FYDAYLlmcC70Ag8FgyJFSEscxrVYLIQSO4+A4DrZtY9s2lmU+sxoMBsNiIJRS6kIvwmAwrG7yqF+apiiliOO4eFwphRDCCEKDwWBYRIwANBgMFxQpJWmakmVZ8Vgcxz3iTimFlNIIQoPBYFgkjAA0GAwXhFzUJUnSI+ryNPD5xJwRhAaDwbAwjAA0GAzLjlKKJEmKqF8u4IBZCcCZtmcEocFgMMweIwANBsOykkf9sizDsqxC+HX/fq4CcCpGEBoMBsP5MQLQYDAsC0opsiwrLF5mEn+wOAJwpn1PFYR540l/f78RhAaDYdVhbGAMBsOSMzXley7xl3O+380HIQS2bfesZ3x8nN27d3PvvfeaCKHBYFh1GAFoMBiWlCzLSJLkvFG/qeSJicUWgjndgtB13Z6GlDiOjSA0GAyXPEYAGgyGJaHb2w9eOOp3IZkpQmgEocFguJQxAtBgMCw6uXjKx7mtVKF0rhJoIwgNBsOljhGABoNh0cineJw6dYo1a9Zg2/aKjfrNBSMIDQbDpYb562QwGBaFvNEjDEOeeuopYOlq+BaDhawtF4SO4+C6biEOkySh2WxSr9eZnJykXq8ThmFPNNRgMBhWAiYCaDAYFszURo/VhokQGgyGiw0jAA0Gw7zpbvRQSmFZVlFXN1+L0eWMGi6VDaoRhAaDYaVjBKDBYJgXUkrSNJ3m7ZcLuIWIq5WcOp4P5xKEURTxzW9+kzvvvBPP84wgNBgMy4YRgAaDYU50R7O6x6zlLIYAXA4upMjsFoRhGPbUEJoIocFgWA6MADQYDLNm6kSPqeIvfyx/ruH8dBtezzVl7DjOJRcpNRgMy4cRgAaDYVbkgiTLsvOaOhsBuHCMIDQYDEuNEYAGg+G8KKXIsow0TWc9zk0IcVEIwJWyxtmcTyMIDQbDYmIEoMFgOCdTU76zHecmhDC+d7NgIZ3SRhAaDIaFYASgwWCYkanefnMRDxeD0LgY1jhbjCA0GAxzxQhAg8HQQ7e3H8w+6tdNtx/gXInjmMOHD1OpVBgcHMRxLv0/U4stxIwgNBgML8Sl/5fVYDDMmu5GDyHEvG1H5psCHhsbY/v27Xiex7Fjx4iiiL6+PoaGhhgaGmJgYKBH2CyUC10DuFz7fyFBGEURtVqNyy+/3AhCg2GVYASgwWCYV6PH+ZhrE4hSiv3797N//35uvPFGNm7ciBCCMAwZHx9nbGyMPXv2EMcxAwMDhSDs7++/JLzxlltoTRWEY2NjHDlyhHXr1pkIocGwSjAC0GBY5cy30eN8zEUARlHEjh07aLVa3HPPPfT39xPHMQClUolSqcRll12GUopWq8XY2BhjY2McPXqULMt6BGFfX9+sBeFKEDMXOgLZTS74wKSMDYbVgBGABsMqJssyzp49y5EjR7jtttsW7YY+WwF49uxZduzYwZo1a7jzzjtxHOecrxNCUC6XKZfLbNq0CaUUzWazEISHDx9GKcXg4GAhCKvVqhEpsyCf6JJjaggNhksfIwANhlVId6NHHMeMj48v6s37hQSglJJ9+/Zx6NAhbrnlFjZt2jRNgLyQgBRCUKlUqFQqXHHFFSilqNfrhSA8cOAAQgiGhoYKUVipVFakSLnQa5oqAKdiBKHBcOlhBKDBsMrIb9x5k4Zt24vu2Xc+Addqtdi+fTtpmrJ582aq1eqi7bOvr4++vj6uuuoqpJSFIBwZGeH555/Htu0iOhgEwQX3KlwpKeAXEoBTMYLQYLj4MQLQYFgldN+k8xt+3um72ELkXALw1KlT7Nq1iw0bNnDLLbcsakfvVCzLor+/n/7+fq6++mqklExOTjI2NsapU6eYmJgAYPfu3YUoLJVKS7ae83GhhdFcBeBUjCA0GC4+jAA0GFYBUxs98hsyLMyz71xMFYBSSp555hmOHz/OrbfeymWXXbao+5sNlmUxODjI4OAg1157LfV6nW9/+9uUSiVOnDjB3r178X2/EINDQ0P4vr+ka7pYI4AvhBGEBsPKxwhAg+ESp9vbb6YO36UY29YtABuNBtu3bwdgy5YtlMvlRd3XfLFtGyEE1113HQBpmjIxMVFYojz99NOUy+VCDA4ODuJ53gVe9dKw2AJwKkYQGgwrDyMADYZLlNzbL0/5nsveZSkF4PHjx9m9ezdXXnklL3rRi1acZ193BM5xHNasWcOaNWsASJKE8fFxxsfHOXjwIPV6nUql0iMIXddd8BpWgshZagE4lXMJwjiOeeKJJ7j99tsJgsAIQoNhCTEC0GC4BJmLt99SpYAPHTpEvV7nJS95CevXr1/U7S8Hruuybt061q1bB1B0S4+NjfH888/TbDanTSmZ69i6SzUFPFdyQSiEoNlsFuLQRAgNhqXDCECD4RKiO7U224keix0BrNVqTE5OUiqV2Lp1K0EQLNq2F5O5igfP81i/fn0hZqMoKixnnn32WcIwXNKxdUvJhRaA3esAnZ43KWODYWkxAtBguETo9vaD2U/0yNOyCxUBSimOHDlSNFNcc801K1b8LQa+77Nx40Y2btwIQBiGhSCcOrZucHCQgYGBGVPgK0G0rBQBmH8QmalO1QhCg2FxMQLQYLgE6G70yK1dZkt+k1yICEiShN27dzM2NsZdd93FgQMH5rWdi5kgCLjssstmHFt37Ngx0jSdNrbOpICnrwN4wfevEYQGw8IxAtBguIjJGz3SNJ11yncq+c02f/1cmZiYYNu2bVQqFbZs2YLv+xw8eHDB4ma5RMlS7Ge2Y+tyEVir1S7o2LqVIgDPFQF8IYwgNBjmjhGABsNFylwaPc5H/pq51gEqpTh48CD79u3jhhtu4Jprrim2NdtZwBeS5e56nWls3alTpxgfH+f73/8+QoieOcbLObZuJQnAbo/K+WIEocHwwhgBaDBchOT2LvON+nXTXQM4W+I4ZufOndRqNV72spcxODjY8/uLQQBeSPKxdUIIjh07xitf+crzjq3Lp5QslUBZKQIwtytabIwgNBimYwSgwXAR0d3ocT5vv7nQXQM4G0ZHR9m+fTuDg4Ns3bp1Ri+8i0kAXmjxk9dsnm9s3XPPPYfjONME4WJxoc9BznzLEObKbAQh6A9alUqlEIYr4RwZDIuFEYAGw0WClJJms8n27du54447Ct+0hZJHP14oBayU4vnnn+fAgQPcdNNNXHnllefc/8UkAC8k5zpHU8fWZVlWCMKlGFu3kgTghVjHTIKw1Wrx5JNP8opXvKL4oGUihIZLCSMADYYVTnd0Issyzp49CyxuDdsLCcAwDNmxYwdhGHLvvffS39//gttb6QLwYrp5d6eD4fxj6/I6wrmMrVuq1OtcWSnr6K5l9TzPpIwNlyRGABoMK5ipjR75pInFHt12vmkgZ86cYefOnaxdu5a77rprVtMuLgYBuFKYj2iYOrYuTdNiSsmhQ4fYvXv3nMbWraQI4EoQgKDXkkcFTQ2h4VLECECDYYXSHfXLU1Dz7dh9IWaKAEopee655zh8+DAvfvGL2bRp05y2d7EIwAu5zsXat+M4rF27lrVr1wLnHluXRwcHBwd7hPxKEoArYR1wfjFqBKHhUsAIQINhhZF7+yVJMq3RY7b1enNlagQwrzWUUrJ582aq1eqctzffNS6GDcjFxFIc67nG1o2Pj/Pcc89NG1u3UoTXSkkBA8UHr9lgBKHhYsQIQINhBTEbb7+FiKtz0R2xO3nyJLt27eLyyy/npptumtc824spArgaeKGxdVEUEQQBSqlijvGFEGIrRYjCwtLRRhAaLgaMADQYVgDdN4g8HbecHbaWZZGmKbt37+bEiRPcdttthViYDxeDAFwJN9sLdY6mjq3bvn07tm3TarU4fvz4jGPrlkMQrtQawIUyW0H4gQ98gH/37/4dN95446Ls12A4H0YAGgwXmG5vP3jhFOhSRACVUjz99NN4nseWLVsol8sL2t5SpKkvVS60EM3FycDAAFddddU5x9Z11w/mJtaLzUqpRYS5pYDnyrkE4f/+3/+b+++/f0n2aTBMxQhAg+EC0t3okRsCvxCLLQCPHTtGq9Viw4YNvOQlL1mUm97FEAHMuRSaQBZKt/A619i6vIbwwIEDSza2bqVFAJdrLfm//WazOed6W4NhvhgBaDBcAPJGjzRN5zzObbEEYJqmPP3005w5c4ZSqcRll122aDe8hQrAlRIFWi2cL/KWj63r6+vjqquuQkp53rF1g4ODlMvleV3DldQEspgp4NmQZRlRFFGpVJZtn4bVjRGABsMyM5tGj/OxGAJwcnKSbdu2EQQBW7duZdu2bYsajboYIoArQWSulJTnXNaxlGPrLpUmkPlQr9cBTATQsGwYAWgwLCO5vctco37dLEQAKqU4cuQIe/fu5dprr+X6668vag5XkgBc6eLxUmMhQnQuY+vytHEQBDNuayWlgJeyBnAmms0mwILrbw2G2WIEoMGwDHQ3ekz19psr8xWASZKwa9cuxsfHufvuuxkeHl7wNs/FxRABzLlY1rmULGYk8nxj644ePcqePXsolUo9EcJ8bN1KSwEvtwB0XXdOI/wMhoVgBKDBsMTkjR65wFqI+MtfP1exNj4+zrZt2+jr62Pr1q3TbjKL3bV7MQnAC8nFmAKeK3MZWxeG4XlH1i0ny10D2Gw25107aTDMByMADYYlotvrayEp36nMRQAqpThw4ADPP/88N9xwA9dcc82MazjfLOD5YATgxcVyCtGpY+uSJCksZ8bHx0nTlFqt1tNUMpv504uNlHJZ99toNEwDiGFZMQLQYFgClFJMTk6SJAmVSmXRxB/MXgBGUcTOnTtpNBrcc889DAwMnPO5SxEBXOk+gCsl0rIS1nEhI5Gu6/aMrRNCMDAwwNjY2Ixj6wYGBpYlMpdl2bKmY/MIoMGwXBgBaDAsMnnU7/Dhw0RRxO23376o25+NABwZGWHHjh0MDQ2xZcuWF0yrmQjghWGlnKOVkoqWUuL7Phs2bGDDhg3A9LF1cRzT39/fIwiXolbvQtQAmhSwYTkxAtBgWCRyb798nJtt20sSBTtfdE1KyfPPP8/Bgwe5+eabueKKK2Z1Q1lswbYQQZllGfv27SNJEtasWcPg4OCS1oWtFBF2IVkpAnCmJpCpY+tarVZRQ7iUY+uWuwaw0WiYCKBhWTEC0GBYBKSUpGna4+23VALwXBHAMAzZvn07cRzz8pe/nL6+vgVvc77MV1A2Gg22bduGZVlUq1Wef/55ms1mEfEZHh6mv79/yW7M39//fVpxi4//v4/zx7/4x1SDpfdkWynCayWs44WibkIIyuUy5XKZyy+/fNrYuiNHjiClLGxpckE4n2NbbhsYIwANy40RgAbDAuhu9MhvovnNxrbtQhAuJjOJtdOnT7Nz507Wr1/P3XffPefi9ZXQBXzq1Cl27tzJpk2buP766wsxEEURo6OjjI2NsXv37iLiMzw8zPDwMNVqdV43+Kmvefixh/nQX34IGUgSmfCLH/1F/uJX/mJJhdFKiT6uJAE4l3Wca2xdHiE8ePDgvMfWXYgUsGkCMSwnRgAaDPOk29sP6BF/sPhRtZm2K6Vk7969HD16lFtvvZXLL7983tu8UDWAUkqeffZZjh49ym233cbGjRuLEXkAvu/3pACbzWYhCA8ePIhlWdOmTsxVzBw/c5z/9Mf/CYnE7reJKzG7Tu3ijx/7Y975w++c8/HPhZUgvFaKAFyoD2D32Lorr7wSpRS1Wq0YW7d///7CuDp/v5yr7m65U8CtVssIQMOyYgSgwTAP8qhflmXFIPepWJa1ZBHALMtoNpts27YNgC1btizo5nGhJoGEYci2bdvIsozNmzcXx3C+ubR5xOfKK69ESkmtVmN0dJRTp07x7LPPFlMnhoeHe0yGz4VSigf/+kHiJCYoB4QjIQNDA0Qi4uFvP7wkAvBbT3+LHft28MbNb1z0bc+HlSIAF3sUnBBi2ti6/P1y5swZ9u3bN21sXRAERUTcRAANlzJGABoMcyBv9MgjVOezd1nKGsCJiQkef/xxLr/8cm6++eYF36gsyyJJkkVa4ewE4NmzZ9mxYwfr1q3jxS9+8byiLZZlMTAwwMDAQDGGbKrJcLVaLQTh4ODgjPv5zu7v4NgOru0SEsIkiMsEY60xdhzdwQ9c8QNzXttMtKIWn/rKp/jQpz+EU3X49FOfJokTbtp2Ey9a9yLe98b3XRAhtlIE4FJPAul+vwDnHFs3ODhIHMdFdH85MD6AhuXGCECDYZYopYqoH7zwRI+lSAFnWcaZM2eo1WrccccdhVXGQlnOCKBSiueff54DBw5wyy23cMUVVyzafm3b7pk6EccxY2NjjI6OsnfvXqIoKjpGBwcHAZhoTDAyOkImM6I4ouSViGoRcq0ECx7Z+ciCBOBEfYKv7PwKX3jyC3x777c5FZ0iLacgYezoGEEp4OzBs3z94Nc5PHmYj/78R5ddjK0UAbjcUbepY+u6P0Ckacru3bvZv3//jGPrFptms1msw2BYDowANBhmQW7vMpeJHovdBFKv19m2bRtpmrJ27dpFE3+wfF3AcRyzY8cOms0m9957L/39/TO+Xim1KILU87weT7lWq1XUDx45cgSA3//k73N27CyO7RBHMQBDa4dohS1iP+bJ/U/Oe/87nt/BL//uL/P8wefJBjMSL0EJBRIEAiUUTdUkakQMlAf4+v6v8+6H383v/4vfX/Cxz4WVJAAv5Dq6P0AcP36cH/iBHyBN0xnH1uV1hItlUWSMoA3LjRGABsN5mNroMZeJHoslqpRSHDt2jD179nD11VfjeR6jo6ML3m43y9EFnM8jHhgYYPPmzRdk5mupVGLTpk1s2rQJKSWPPfYY39r9LZRUpCJFphJhCWIVo8YUcoPkyNkjtJIWJbc0p309c+AZfuUjv8LzB58nFjGpler3D72NQmmakrkZYRJSckt8YdcXuPuqu/nZl//sYh/+OVkpAnCpU8BzQUqJ53kMDg5OG1s3Pj7OgQMH2LVrV1FisNCxdaYG0LDcGAFoMJyD7jm+ML3L94VYDAGYp6FGRka48847Wbt2beF1tpgsZRewUopDhw7x3HPPceONN3L11VcvidhoxS3CNGSoPLs0mhCC7zzzHeqtOo7j4AUeUStCSkmURcT1GHvYpt6o85ff/Uve8tK3zFq07tm/h7f+57dyonmCUIWodQpLaWGj0OdFWEJHiG1AQitp0S/7EZbgj//xj/mXL/uXy9aFulIE4IWOAObk9k5TxejUsXVRFBUp46lj63IvwtleQ1MDaFhujAA0GKbQ7e03l5TvVBaaAp6YmGD79u2USiW2bt2K7/vA0tQWLsUkkNwce9euXYyNjfHSl7500WucnnjmCf7uO3/Htue3cWzsGJ7rIRxBNahy+7W38+atb+aeG+6Z8bVCCL705Jd0ShYtyIQQ2I6NZVtYjsWANcC4HOfLO7/MFeEVxc19eHj4nCPI9uzfw1t/862MNceYbE2i1rfFleoSfwgQ6H0rIAVlKWpRjb6BPsbiMT72jY/xwKseWNTzdS5WkgBcCRHA/N/XC63lfGPrnnnmmWlj685nYm5sYAzLjRGABkMXc230OB95VG2uN9fuiNl1113Hddddt+T+gktRA5hlGY8//nghYBezeP7Q6UO875Pv41u7v1U85vkek41JsOGUPMXzx57nr7/x16wZXMPW27fyW2/5LQIvKJ6vlOLwqcMMrR8q1gxgCQslFQhojbZQaxXjjLN58+bi5p4bUud1YLkh9TMHn+Gtv/lWTo6cpCEbsJ6elG/xvTWDCbSEhmzgJA6O5fBXO/5q1QnAlZICzv8tzDUCO3VsXbcg7B5bNzg4yPDwcM/YuoWmgP/xH/+R//bf/hvf+973OHHiBJ///Od54xvfeN7XfO1rX+Pd7343u3fv5vLLL+fXfu3XeMc73jHvNRguLowANBjaSCmJ43hBUb9u8j/sczGUjeOYXbt2MTk5ec6I2WLX6+XbXMwI4JkzZ0iShKuvvprrr79+UcXFp/7+U/zOX/wOiey1rZGZPs+e65FmKZnKyGTGyPgIX/rel3hyz5P8mzf8G35m688ghODZg88SJzFJprfjWPrPoSUsZKbPb9SMWFtdS61Vw/O88xpSK6V4/yfez4mRE8QyJh7UDSUKhVCdCKBAzHy+25e0mTTp9/s5OnGU/SP7uW7NdYt27mYiX8dKEIArJQU82wjg+RBCUCqVKJVKM46tO3r0KFJK9u3bx6FDhxgZGaFUmludaTeNRoOXvOQl/MIv/AL//J//8xd8/oEDB7jvvvt4+9vfzmc+8xm++c1v8sADD7Bu3bpZvd5w8WMEoGHVk3v75ePcFkP8QSd6kGXZrATg2NgY27dvp7+/ny1btpwzYraSI4BZlrFnzx5OnjyJbdvccMMNxe8mGhP8x8/8R0peiZ+45yfY+uKtHBs5xhe+/QV+4mU/wZXrrnzB7f/5V/6cD/7PDyJtSeAHZFmG53gIWxBnMUoosjRD0Ym8+q5PNahSa9T4jf/9G/yvf/xffPwdH+fJHbq717ZsXMcllSmu4+LYDlEadXaawvjkOE+ffZrb1t8GzGxI/Zsf/U3OjJ8hkQkNrwF+18JF+6v9fS508vQzbZ0hpCDJElKpm44+t+1z/Pprfn0+l2LWrCQBuFIigLnB+2KbUk8dW9doNDhx4gTf/e53OXXqFG9605v44R/+YX7oh36If/pP/ylXX331rLf/+te/nte//vWzfv5DDz3EVVddxUc+8hEAbrnlFr773e/y4Q9/2AjAVYIRgIZVjZSSsbExpJRUq9VFE3/QGwE8H0op9u/fz/79+2fVJLFUNYAL3Waz2eSpp57Ctm3uuOOOYkoJwKf+36f4vb/6PSabkyQk/O+v/W/WDawjVSmRjPjvf/ff2TC8gbuuv4s3v/zNvOy6l03b/he++QV+4+O/oSOqnk2SJFTKFRppA9qllq7jkqQJgRMQpiEKRZRGWKlFqlJKbonnjj7HT3zoJ7ipfBOu49KIGih0k0aSJVi2hStcErRlS2OigaxKvn/s+4UAnMqB4wf44pNfRDmKVtiCgelRVSXb34tOKlgIAXanNpAUlKtrAYdKQzx5cP4WNLNlJQnAlVQDuNQNOEIIqtUqb3nLW3jzm9/M5ZdfzkMPPcTx48f50pe+xLXXXjsnAThXnnjiCV772tf2PPa6172OT3ziEyRJckG69A3LixGAhlVJd6PH4cOHsSyLm2++eVH3kUcQziesoihix44dtFot7rnnnmJCwflYqgjgQlLAp06dYufOnWzatImbbrqJZrOJUorTY6d55397J0/uepJc41jCIugPaNQbyJIkkhGBF3Dw7EEOnjnI57/1ee6+/m7e+aPv5BU3vQKA8fo4/+lP/hOZ1Eqv5JcIZUicxT3rsB2bJE06gqqNlJIk60R4kzjhK6e/gtPvQAoo8EoetmPjOA6NtIHneFiBRTKZ4FZdDo4ePOfxv/8P389ka5Jms0m2Juup+8sRln5MobQYbO+XFlrAKsDTQjH1U1I/5cjEkSWvz1spAnA+9bJLxXILUaVU8Tfgxhtv5L3vfe+S7/PkyZPTvEQ3bNhAmqacPXuWyy67bMnXYLiwGAFoWHVMbfRYbMPmbs637XwU2po1a7jzzjtn7R+22JYtMP8aQCklzz77LEePHuW2225j48aNxfZOjZ3ih3/ph7Fci8AJSLKETGbaWzFJsZVNmqYE1YBW3MJ3fKSSpFnKd/Z9h3ccfAdveOkb+NCbPsQH/uQD1Bo1ABzbQXmKtJWCgsDV0T6gEJlRGmFbdiEYZSqL14ZJSJqlpElK7MVkdkZfvU+njoXC8z0aaYM4jRl0BwknQzw8Dpw5MOM5+PMv/jn7j+8nSRJCLwS3LarygJ/oEn6Zgjpa9FkUkctcL6qGgnGgDBPlCWxsDoweWNI6wJUkAGFhdXeLRZZly7qOMAyLLMRyMvWar5T3gmF5MALQsKrIo375H3ghBLZtE8fxC794HswUresu/L7lllvYtGnTsvsLLsY2wzBk27ZtZFnG5s2bezoYhRB84kufII5iVKaIYl1TZ9s2gRcgLUlMTJZkZGMZXslDWpJMZVRLVRKp6+C+vPPLfPvpb3PyuZNFVM1yrZ4Zrd0CO0s733u2R0u2AO2niKAQZc2oiRQSoQSRFyHKgiE5hEylbtSwBSpThGlI4AQIKTg5cXLaOag1anzi/36C0foojbRBNpQVli/d+5OZ1MIv7Hrx1BLPXH9bQApyUjK6Z5Sf//DP88h/fISB8gtHh+fDSrnpL0bjxWKx3BHAVku/T5fTBmbjxo2cPNn7nj59+jSO4xSjFA2XNhf+X5rBsAzkEz3iOO4Rf7C0EUDLsnq23Wq1+Pa3v83p06d5+ctfzhVXXDHnG+9K8AEcGRnh8ccfp1Kp8PKXv3zajetbu7/FMweeoRW1SNJOt26WZaSkRYrWd3SnRNJKSEdTSnaJelhHKEGapkw0J9i5cycnR08SJiFBEBDLmCRMCsGUSF3zB5DGHWGYZp3vlVTYjk2cxQghCkGqhEIlikhETHqTxbnwSm11JiBKIgIVMNmcJE56Pyj89p/+NkfPHEUIQeiFOs0r2g1ASgsJ2ZAwQq/4g070LydvFOkqvVJKsef5PbzqV1/Flx//MmfOnOkRv4vBShOAF3odsDw1gN00Gg2AZR0Ft3nzZr785S/3PPb3f//3vPSlLzX1f6sEEwE0XPK8kLffUqeA8xvbqVOn2LVrFxs2bOCWW26Z9w3mQkYAuxtWbrnlFq644ooZn/fFJ76IVBLHc4o0bI6wBViQSW3T4ru+TsnKlKgV4Xs+URLh2i5xGJPUExDQaDUIRUjFr+Dg4AYuSaLFZX79lFQ6mqgkCKg6VZphEyklju3QSlr6vSDaEzi6NG9TNlElxbAYJqpH+FVfW7cohaxLwsGQZ0ae4Qc2/gAAoxOjPPa9x8hURj2uo9a0U5hCi36pJEwCvW41Ghdt+3IuraM6v5NIxhvjvOsT7+JXfuxXuGntTfT19TE8PMzQ0NA5Dalny0oRgKs5BZzPAV7IPuv1Ovv27St+PnDgANu2bWN4eJirrrqK973vfRw7doxPfepTALzjHe/gj/7oj3j3u9/N29/+dp544gk+8YlP8Od//ucLPh7DxYERgIZLmtze5XzeflOjdItJPut1z549HDt2jFtvvXXBxdXzNZg+H7OJAMZxzI4dO2g2m9x777309/ef87lPPfNUsV2mblZBSieKFSURlmUxPDzMWGuMrJXhuA6ZlRGNRjpS5oCydRR3Uk4SeAHDfcMkbXVl+RbDpWHGW+NYrkUc6kidYzlIIVGOYjKZpGE1yLxMp18lRRpWNiVE0LJaNISOxqRJiuvpSEg4EVLaWGLvmb2FAHzwcw8yMjlCqb/E6drpzrQPpZBxW/xN1fj55ZoiPnsez4WhakcoUURZhOd5/Ml3/oTP/fvPUaLE6OhoYS6cGwsPDQ1RrVbnbDxeXKsLSG6Nc6HXka9lOQVgo9GgXC4v6Ni/+93v8kM/9EPFz+9+97sBuP/++/nkJz/JiRMnOHz4cPH7a6+9lkcffZR//+//PX/8x3/M5Zdfzh/8wR8YC5hVhBGAhkuSPOWbp8vOZ++ylBFApRR79+7FdV22bNmyKCme+RhMz2ab54sAjo+Ps23bNgYGBti8efN5U0RKKQ6f0DeaNElRtprWFSvV9LrIpmziOR6Z1KLdyixaoy1QuoNW2W3FpPTc39H6KMODwyRZon37Wu1au65Np1lKnMTUVA38tt1KHl2z0dE5D6gAZZANyan0FFVRhRi8wCv2KVPJc6PPAXB69DRf/PYXKQ2XOH72OPRraxeJRLWUFn/diCnfy3P8zqE3NSxBOIJU6gkSo/VRfvl//jKP/vqjhSF1o9EozIUPHDiAZVnF6LHh4eEXNBdeKZ23K2UdcGEE4EJMoAFe/epXn/dD3Cc/+clpj73qVa/i+9///oL2a7h4MQLQcMnRPccXeMGoQneadjE5fvw49XqdNWvWcPfddy/aDWUpBOC5IoBKKQ4fPsyzzz47K49CgB17d9BsNYvXB15AlESdiJfSac2pSClJ0kQbM1suURSRhilCCCzXImsrI6UUlm3RlE3SyZT+QEciozTSPoBJUoi8WlijKZq6sSMR0//iTY3CVSBJEyblJOuj9ZRECeHpyF4URTx3VgvAD33mQ4RByOnR04R9IVTbHbwhWvx1N4FMPV3dArD7d2rm5yupwIIo03WL+47t4z3/6z38/s//fuElV61WC0PqWq3G6Ogop06d4tlnn8X3/SI6ODQ0NM1gfKUIr5XiAQjLXwOYj4FbCdfBsHowAtBwydDt7TeXcW6LHQHMU76nT5+mv7+fjRs3LuqNbbYG03Pd5tTtpWnKrl27GBsbO+dYupk4dPwQCoVru3iOVzR82LaNbdmUvBLK0gbN3QIsF6CZzHQdXasj+JTVHqfWbpKQttTGzSphsjVJX9CnO7qF9gG0XZtGq0Fd1bGEBQJUplDOFJFrocVYfnkE4EA2kHF2/CyiLrAdGxIoO2WOnDzCI995hK8e/iqT9UnqE3Xt59ffvh4TXdux0MfndH2v0JHHtGv/3W+NGeoCpZQoVxHGIZ7tEWcxj3z7EX75R3+ZF132ot7DsSwGBgYYGBjg2muv1Y00ExOMjo5y6NAhdu/eTbVaLQTh4ODgihKAK2EdsPw1gK1Wa1kbQAwGMALQcInwQo0e52MxBWCtVmPbtm14nsfWrVvZs2fPoqeX8+NaTAE4NQJYq9V46qmnKJVKbN269Zxj6Wbi5utuJvACJuNJRCoIAt2hmzd9qJYi8RJc28W2bO3hp+jZf6YywnqoU8dCp3aFLTriT1goqYVLkiSM1kfxXA+lFI7jIBA0ZEMLv8KQD4jp6bJF0EkD5+Is089JBhLqo3XKYZlSUKLeqmNP2vz2V34bu2xTO1TTr8mAGkUaufD4c+kYPKecOxKYX0aXXqHYhRSy8FD0HC0CP/hXH+TT7/z0ea9FbumR23rEcczY2Bijo6Ps3buXKIqoVqsopZiYmKCvr++CReFWyhg4uDAp4OW0gDEYwAhAwyWAlJI4jucU9etmMQSgUoqjR4/yzDPPcM0113D99ddjWdaSWbYsxui2brobS44fP87TTz/NNddcww033DDn8/mlb35Jp3xB1+9Nrf/L9LqTLCHJEhzLwXGcoqEjJw11mEzYApUqXcPnKCysQtSJTAtEpRRxEjOajFLyS6RW2pmz215HT/0faOGl6IiubMr3HkwOTmKdslgzsAYpJHJCkg1mnK2fJapFnVrCMWAAuAo4ik4FnysFPFP3r2o/nkcGfTq1gK5+j+eehGmWYgubJ/c8yfZD23nJ1S8516WYhud5bNiwgQ0bNhTTJ06cOEG9Xmf79u0opYrawaGhoQU3JsyFlRQBvBApYBMBNCw3RgAaLlqUUkWXbx49mM8NZKECMEkSdu/ezdjYGHfddVePiepSdRgvtrDMz9uuXbs4ffo0d9xxB+vWrZvXth792qPayiXSIlBKievqaF+WZaRpiitdpNA3WcvRgs7B0V59aazT+ZHUUUHRPo9ehqV0VEYgUCiyJMNyLf2z0s0mjYkGVEC47eihkh0hlkf8bLTI6ia/37voiJ4NVGByYJKN6UZa9RZ9g30AZPWsIxZBi7es/ZoNQN5sOVPUr0sU5uJY2VPEaR6pzKOSoH0QnQApJb7rE2URf/TlP+J/vO1/zOn6FEsRgnK5zNq1azlx4gRbt26lXq8zOjrKmTNn2LdvHxPhBNuPb+eWa27hJ7f+JL4/9aQtHiutBnC2k3kWAxMBNFwIjAA0XLTk4g/mlvKdSh79ms8NaGJigm3btlEul9myZcu0G+RSNZgstgAMQ+1SXK/X2bJly7w7Ek+PnmbP83soD+pohu3YWJZF2Ap7Iny+71Ov14vGDgAncLA9m+HKMKfGT/XM81WBwlEOGZ05u3l6GLrS4koW3b0K1Zm2MfWtMVXHtK1mCsrtxxogfcnZ8Cx9/X0IKYjTmPqput521N5WBDTRoi3vKm7NcIJsChHbM6/YYbpfYEqPjUwqUzKVYQubKInoK/fx5OEnqUd1qv7CRoiFScjff/fv2X9yP8fOHuP0xGn2HdvHyZGT2sfxa3Di6Anuvenewnvw2ZFnGW2M8k9e9k8WtO+clZQCzrJsTmUPCyVvAjEYlhMjAA0XLXkqdKFpozzVMxcBqJTi4MGD7Nu3j+uvv55rr732nB6DK10Anjp1ip07dwJw1113LSjK8+eP/LmO+FkutmOjLEWr2dK+fl1j2hxr+p8e27KJahFRLcJTnq7zEwqCtq1PlGL7NhLZEYFCoCzVaeSI0aJJ0Km/m2rBEtDb+AHTvQolWtj5QAojjDAoB0FCGqWoWHVEZC7c6ug0MMAg0Jh+foQl9Lq6xsQppbCkNb0zOk9Pp6A8Hd2Mkoiyp8V1UAkYSUb43Pc+x1u3vHX6zl6A7z7zXf7myb/hW7u+xf6T+8lEhuvoAkllKRzbQTgCS+n32qe+9yk++dQnwdKj9JJMG3Rvf24773r9uxZsSL3SUsAXwgjaYFhOjAA0XLQsJOrXTS4AsyybVdonjmN27txJrVZ7we5Yy7KWZM5wHrVcCFJKnn32WY4ePcqLX/xiduzYseB1jYyNAFrMYbW7KYWF67o9AnDaGDR6jYgbtYZu8nAFym37CCptiVIIw3Z0TGWqqANEov+q5eneCMiDmarr+5TeWbznKvdqdwUrFIcah3iR9yJGTo/omkSBFoH5iLcGHcHp02koybcj0J3MU3dhi2mzg3vOk2qniG2Is5gyZVzHZTQaxXd9/mb738xaAE40Jvizv/szHnniEZ4/9nxR95llGZdddhm1uEaS6maq7lF6vuuTkTEZahPujEybVCvFn33jzzg2eoy33PqWnvrBuRpSr7QU8HKPghscHFy2/RkMYASgwVAIydnU6o2OjrJ9+3YGBwfZunXrC87MXKkp4DAM2b59O0mSsHnzZsrlMjt27FiwqBwa0GLYwuqx0lCyd7tRK5omeITVEQtZlukGEl8UdYBCCL0dG7C0KBMI3RRiKy32LDoRv3zbCfovXS7+couWbiw6NXxM+X37+0QlNOIGYT3sPL9b30h6O4oH0TOAu44vF6s9QtDWzSx5XWNB3kWcC9myTgMnWcLadWs5G54lSiKeOfoME60JBkoDnIuDJw/yO5/5Hb719LeotWrFe8exHcqlMpONSWphTXdkd+HYjo7MphFZov99hHGIa7soSwtA13X5h4P/wPH4OB98/QenGVLngnA2htQrRQBeCBuYTZs2Ldv+DAYwAtBgAF64EUQpxfPPP8+BAwd40YtexFVXXTWr6MZKTAGPjIywfft21q1bx4tf/OIi0rEYncVrh9YihGCiPlHcQD3Hw8Ki5JeKCSACwXD/MPV6nTjTEdK8Oxi0YJRS6gggqhBMAlE0TFhYSCEL/780SzvRv1xH5U0fPr1iLY/OdQd5ZNfP3Y/nglHCkfoRskbWeX533Z5LR2wqdB3hWf0ry7b04+mU2r98O1NRU74XoJoKq2LRTJuMRqP6pUpiY/O1577GT/7AT07bzOFTh/nQpz/EPz71jyD02D2llE7zW/ocTjQnSLMUT3VCopaw8F2fMA1JU23GncikeM8nWULgBYRpiO3YZFbGvtP7+PVHf51H//2jAIUh9YkTJ9i7d29hSJ0LwqkfnkwK2KSADcuLEYAGA+eP1IVhyI4dOwjD8AVn4E5lJXUBK6XYv38/+/fv55ZbbuGKK67o+f1s5gG/EGsG1uD7PnESUwpKWMIiTmNIwQ86ncGu6yJjSZzECCHwHI+yUyaxtIl3Pv1Cic4YOcd1EJbACRziJCaTmV4zeuxfUfvXc9DMHPHLbVfsrp+n0t0Y0p7Rm5F1rFo89Pfd/oEJnUhj2wB6qg1OvqZCzGa65g66rkEe/etCCIFKFFkpoxE3KLl6R0ma8OT+J/nJH/hJlFJ88Ttf5B+++w8cOHqA548+j23bpColS9uNDUJ3rvueT5iExTXPxbnneEglaSWdLhbf9wnpjQ4CVIIKlEAmkpiYfWf38aFHP8QHfvwD5zSkPnjwILt27aKvr6+YTpIbUq+UCOCFEIDV6sIaeQyGuWIEoOGiZTGjBecSamfOnGHnzp2sXbuWu+66a87WECslBRzHMTt27KDZbJ5TxC5GtHLdmnVIZHHcoQz1JA56U7xJmmBLrb6UUkRJRDypI4GBGzChJrBcS8/CRVAZqOD7PrZlU66WqTVrNKMmrbjVSZHmAaWpYi6Y8nP++6klXlN/7vbra2sBF1d3M+epWUGnWzcXgHS9bgDEpOjZb/f7tmgKyf0S81rGfELJFITUzwnjECVV4W346FOPoiYU39j2DVrNFmE9JIxCAi+g0WrglTxs1yaOYmzbxnVdwqQj6GzbJskSSn6JKI2mfRBIRVqs0fd8UplqWxorIEk7YVClFJ9+4tO85Z63cMP6G4rHZzKkHh0dZWxsjGeeeYY4jgmCAMuyLrghNRgfQMPqwAhAw0XNYkStYHoKWErJc889x+HDh3nxi1887/qclZACHh8fZ9u2bQwMDLB58+Zz1i0uxrlcP7ieOInxPI8syRBOR+zEUVzU7aFAxlLXxbXrA5VUuL5LGIf62NpdvUMbhrSnH3qaSH2yTqWvUnj8tU63tLiq0kkB51h00r8pvX/xuh/LxdzUtHC3QTRwRfUKjp452rG0yVO9Ufv1U4NkFWBSR/hENsMHFpkvpUsk5mnrKfWFCoXlWMiahCq0ZKvwPjx08hAPH3sYT3pErQghBH7JRyrJ8PAwCsVYbQzP9chUpqOyXXieh+M5PaIwxw98YmICLyiEX3F6HWt6SlvAX2z/Cz7wox+Yfrxd+9u4cSMbN24sDKn37dtHrVZj+/btAAwODl4QQ2pY/hrARqNhIoCGZccIQIOBXgHYbDbZvn07WZaxefPmBf1hvpApYKUUhw8f5tlnn+WGG27gmmuuOe9NdDHE6pmJM/RV+qi1aoC+0SexFksykz0/W8LC8z2iZlS83nZskjgpGgzKpTIDfQO0kpa2HUELIYmk1WzpiSMpWuTFdOxbcrq1brdOmdookguvqWnhfJZvBq7lkqYpJbdEEiWdWsPu7UZd2wKdJhbtTt+UYu5uEeXLR8Tlk0qgqBXsqWNErytLM4TU1ixY7TnJ6G1GcYRKdBrVxkbZejziyOQIQTkg8APtd5n1XmPHdpCWnNYAkhOUAtI4nSYOhRBEKsK1XKKscw0d1+Ef9/0j/OiMm5tGbkjd19eH67rcfPPN1Go1xsbGCkNq13V7GkqW0pAaLkwKeL7emwbDfDEC0GCgIwBPnjzJrl27uOyyy7j55psXnAa6UCngNE3ZtWsXY2NjL2hVk7MYEcADRw9osYOOorj0Rhtt2+5Ez/JRbFPIbUiELXAdl0arQZREhf2IRHLqzCmStN2UkPvlgRZO+Rxe0OnfLgE1LcI39R6fP3dqtNCC9eX1lOwSdbve2YaHFp7F4ukISUt/KU+d0/4lj+DlFFY23eQi0257XyJQTYWqdEVTA4mKFK50cWxtmJ3XWwJU/Aoj4yOF2Ay8gDiN8RyPRCVEaYTj9t4OHMuhUq0wEU5MWzuAX9J1ga6YElG24MDIAWphjb6gb8bXzkT3KMf+/n76+/u5+uqrybKMiYkJxsbGOHLkCE8//TSVSqUQhIODg4s+tWM5U8BKKVMDaLggGAFoMKAF1dGjR6nVatx2221s3Lhx0ba7FALwfB27tVqNbdu2EQTBjNNJzsVirPXIiSOF8MiyjCzOerpyo6hj/5KmKalMizSwQptGR81Id82im0WEEghL6AiUgkarQaISrMDS2+9G0DGD9ugIvJkifDCz/UvuEag6X47jIFIdZfMsT5+rTE6vG1Rd22k3mihLQdJV7zfluXlUEMByrWkRuu51KUvp8xUrRKUtHB09I1mWJV7k0Ww2e4R8ySvRCBtFfaHjOuDqhp2UFJlI3NTFc70imtgX9NFMmsRW3JOmL5ZjWUQqmtHbMCVFKsmJyRNzEoDd56Eb27aL7uHrr7+eJEkYHx9ndHSUffv20Wq16O/vLxpKFmpIDcsfAWy1WmYSiGHZMQLQcFGzGFGrer3O+Pg4juOwZcuWRS3GXuic4XNxLrF27Ngxnn76aa655hpuuOGGOdVNLca5TLJEp2Xb2MLG9V2iUD+mpMIv+UStiDRLsW0bJ3AIG6FuJlBQqpQIoxBhCSzLIo1TSn0l4jgmSRItGmmLkjqdv2Ki679t37zOweULYroI7P457/xVXT/bMNA/QF/SB3XdECFkW8zNlDXNt5c3kXhAs+1b6HbVPGaqIwLb3+RNHdPIaxTb59BSFqrVnpIS6LRv4ic0Rhs9r/Edn0QkuL5L4AckMkGhUJbiTPMMjuXo12YJSihc20VYgrONs/i+TxTr6+Z5ejJLGOkD9gOfSET4jo9lWXiWtpAplUuEIkQmkrONs7yIF81wMDMzW9Hlui7r1q0rZlWHYVg0lBw/fpw0TQsxOB9D6vmOhVwIZhSc4UJgBKBhVZMLpiAIuOyyyxa9E2+5mkCyLGPPnj2cOnWKO+64o7g5LmSb80FKCRI83yOOY1SmpkWPun92bZc0S0mSBNu2GegfYOSMdk8WCGzLRiqpPf+kLGoLsdGj01roRouZ7u/nemzKjN2e9LGPTuPaFBE8y7JwfZfxcBxPejglB7tmk9lZR+TlEUaPTpQvbyDpmjiiEl3bKHyByESv4BN0HusmT113HY9UEuogykI3hkhJYnVqJINKQKWvwmQ0qRtl0lZxvgGiVAs7x3Fohk18x8fzPcI0RKU6Etc9CSROdJ7bdV0GKgPUVR2VKcIsJLADYqXtfDKVkckM3/UZbYzOcAHOzXzTrkEQcPnll3P55ZejlKLRaDA2Nsbo6Oi8DKnzfwPLJQCllCYCaLggGAFoWJWkacrTTz/NmTNnuOOOOzh9+vQF79ad63bzaF2z2WTbtm0IIdiyZcu8i8kXJQIok2J9AkGcxNjCxvEc0kQLiiiK6Kv0kaY6/Rg2QjzHw/M96uN1okYngkimv9JGSia1shKewLZtrNQizGZuXMBuf8X0NoXkv8vrBvP/Jl3Pm3IKypUywhaU3TJxGhcRNCJ6vQcDdERwaoSx1PYzVKKweiHTQlg4Qo+VA90xnemUquqEBnuif3mziECnxZXS67BcPQ3FGXZ0tEvAaEsLMN/1iVIdrUuypPD7syyLKIm0yJYSqWRx/QM/0BY7bRzbwbEdojSiFtemG2UrCMoBLaVfE2VRUQs6WxbDB1AIQbVapVqtcuWVVyKlZHJykrGxscKQOgiCHkE4kyE1sGw1gI2GjtqaGkDDcmMEoOGiZj7WEJOTk2zfvh3f99m6dStBEDAyMrIkqdo8BXyu+qb5kgvLU6dOsXPnTjZt2sRNN920oBvobCeBnO9Y+ivaXzDKoqLmzHd8/ZdG6ohTlESkKqXWrGFhYTmWTvvWdY1fEiVajFlQGarQki2iLKI+WUc5ipJdYqg8xPipcb2OtgjrEa/t7tuehgzoCKqUTqOIpFdkddXvoWC4f1hH2NyE/qCfycYklmMhpED5qrcLeeo833ybG4CTXT+nbeuXuN0M0jaEnpb+bZ+3Yu1d1wAbRCRwKg6BE5CJjIbboC/t60nD500fURz1RBd9xydTGa2opaN9lr4+CArxVwi/LCJNU4IgIIxDSHQ0MLV0Ot62bULVK8avW3Mdc2EpJoFYlsXg4CCDg4OFIfX4+Hgxrq7bkHp4eJiBgYFljwA2m00AEwE0LDtGABpWDUopjhw5wt69e7n22mu5/vrrixuObds9XZOLRTELd5EFoBCCkZERjh49yu23374oTSvdUcXzMVob5Sd+4yf4qVf+FOVymeeOP8fhs4c5NX6KkyMnGamOIB0JZbCVTcNqYGODA07mYEubZFLbqFi2RaVc0SJZKlKZokoKEQgoQVM1ibOYZtgECYPBoBYzSaQjhd2TNrrtVMr0dvTmaVgx5b/59933+jxCCAT9Aa20xdrSWiajSRpRg2q5ymg4SmLrujlsOt3H0EnX5qdSAuvQApC2JYzqCNbCHzAXe93WNPl/p14WVzeE2MrGcRw8x6PiV3AGHGpHasXTLKEtYSZbk7q7WmZIpaN9o/XRIhoI0Iga2LaN7dtFNE5qJ24sYVEtVXuEZZIk+L6PQuGWXELZEYCu63Ld8NwF4FKLLsdxWLt2LWvXrgV6Dan37NlDkiRFJK5Wq9HX17fk/oPNZhPbtvWUFoNhGTEC0LAqSJKEXbt2MT4+zl133VVMJMhZqlRtnkZazJtbGIacOHGCNE0X7FPYzQudg4MnD/K5f/wcX9/9depJnd9/5PfxXE9H7doefVESIW2JUALpSCRS24wInRKUSJ2+lAJPeHiZhy99xuvjxDImtVNUVWGhU8gCnQ6Nw5iqW9XdqXGTNNSjzZTVsUJBtG1SbAFuu0awO8Xbnenr9uDz6UT8LHomi6xdt5Y4i5kMJ6nYFf19NEnZL9OyW1rs+e3n53QHkrsikMpXWHHve0C1/ycQOn1sU/gOFv+dIlaFo8WxUIIs1hG8MAkZr48jXS28OQMiFXi2x9n47LQ6TGGJouO3exScyhRpnBZNLN0Rw1CG+LZPJagUojuKItYOruVMdqZHKPUH/TryOwcuxCi4mQypT548yeTkJNu2bQPoaShZCkPqRqOx7EbXBgMYAWhYBYyPj7N9+3aq1Spbt26d8ZP2Unbrgm7SWAyvspGREbZv304QBAwODi5q3dDUGsDt+7Zz81U389UdX+W3P/vbHB89XsyOtSwLx3OKMWAlr0QrbmFb7fFuKKzMQjkKJRSWsHS0qavhIbZiYiemntURZZ0OzcWTEp11ZFGGShWlaqm4RlEzgqw9iSJS4OjaQIUqas9y8XhOJJ25vXlaOB/BpnSkrhk3GQgGqDVr2KlN2S4TxiFxHGPZlm5ySad07s7kb6iAfpBnpbaE6Z780Y4gKnQ6WSVqejNJW0QKT0DQe2wi1o9JpaN12MAGUGeVPk9dQs7SIVOkktPOj6At0KUAqzcFmnsWRmlE3IgJ3ICSp2c918M6tm9rwd3msuHLzn3ez3U5liAFPBdyQ+q1a9dy/Phxtm7dSq1WY3R0dEkNqfMOYCMADcuNEYCGi5rz/dFUSnHw4EGee+45brzxxvNOwlgqAZjvb6HRRaUU+/fvZ//+/dxyyy2FF9piMjUC+MFPfZBnjjxDKlJtLNyV/pNS4kqXTOhz1opbeI6HYznFMSuldJ2cpQrxZ1mWFlcIZKL3JRBIV2pxI8FKLV0jpwQ2No1Gg75yH2mWkokMW9ikYadDtYgAZjo6JlzRaZQQoiOMuqOAio7XX/dbQnUe66v2oVB67m6mCOshMpYEQUCSJGRWhpVYZGSFH96MRs55OrgCjKHPCV0lAW0vwlwUFucmn0Ki9LotzwKvnTrOs96WKBpdlNAegUVKe0Bvl1Zn28W5gM4a8rS5BbZlF6JQqrYgs/QIvu7r2kpaRGnEQN8AaZLieR6haFvE+D63brz13G+0c7Dc1ivnIh8D121Ifc011yyZIbWZA2y4UBgBaLgkieOYHTt20Gg0uOeeexgcHDzv85dSAC502/mxNJtN7r33Xvr7+zl8+PCip6y7I4Bf+f5X2HNwD4mVFCPCAi8o6sgAkjghCAJasoUQgjiNsYSFYzmFhUhu8Cws3bUKgOwIESEFymmnQNsdsJmTYbkWlrRwqy6c0ftOsxSltFddFrY7gh3dQCGE7qZVUqH62pGxXFDlx9XdENIVeStq97pq/3BhaHCIZtbEtV2UVDjK0TV0qUSmErtk6+hfO00rRDui1l0DmH9JoEKnC7g7Qtg1Ig7VtsnJ2q/JwFpj6cesdmS0XT9otReuEtURtFZnnyITqH6lG0zqXdeYzvkRiCJCm5EVps5CiuJ8KKU6wlC009ZCIV1ZWOMM2UP4VR+JJHMyfuS6H5nz++9CpIBn4lxCdCZD6rGxMcbGxqYZUg8PD9Pf3z+r4zEpYMOFwghAwyXHyMgIO3bsYGhoiC1btkyzeZiJpRKAsLD6wvHxcbZt20Z/fz+bN28ujmUpahbzLuC///bf829+999owdaV4QrjECFE0YShlCIMQ0qlUtEAIJXsTbuqTpODsEURaRJSizJlKUQqiqYGACuzIIPMy2ilLew+G1mSBDIgiRKaYROZSB3pa88MLgRULpymRPaK6FWmOn590Nv8IdDRNAdK1RIKhW/rE5CpjD7RR+ImxDKmElRoNpokdqJTsG3xJbKuNHr3/Vyi07SexEqsQpxabjuF3RaJSqrO5A0fRElAA20l4+noYiEUM9URnK5u1JDo+kshRZHmpdK+tpOd6F/ur5g3gUi06Om2nxGIImKaN4MUpypfowVhGjLRnGCgMkCpXCKxE1559SvP806bmQudAu5ex2wsYFzXZf369axfvx7oNaTeuXMnUkoGBwcLQXiuNK8xgTZcKC78xy2DYQF0/0FVSvHcc8/x/e9/n+uvv56XvOQlsxJ/oAXVShKASikOHTrEd77zHa6++mruvPPOnmNZCgFoWRZ7Du3hgQ8/QCYzoiyi1WgRuEHPusI4xLZs3QCCHmMV2Po5URwhZVsE5pGodtOHlFL/TrWjgu1pGgqFjDvHoiyFcrQQcXEpe2UkktAKyUoZtmXrdCj0iizoNHGETOtoFoiON1235UtCb7ROQHWgiuu4ZCrTorF9nCW3RBqmiLKg3+9HuNqsurvucFrjBnQaTtagR7eh9HZTOmbZeSo2A6tsIUqdJhiRCexmW5RIijWBfi5WO3LYru9TkY7q5WtSZYXVZ2HbtjZsllnn/Fidf0dCiCJKKGzR0yXcM7NY9IrcMAmxlU1d1bl26NrCcHourJQIYJ4Cniu5IfWtt97KK17xCu6++26Gh4cZGxvje9/7Ht/4xjfYvXs3x48fp9XqeCzmEcCF8OCDD3LttdcSBAF33303X//618/53K9+9avFde7+euaZZxa0BsPFh4kAGi4JwjBk+/btxHHMy1/+cvr6Zj+DFJY2AjjXbadpyq5duxgbG+OlL30pQ0ND056zFALwmcPP8OAjDxKnMZ7vkWYpQgjCeohX8YjTuLPGLIWMIhrYarYIygFjrbFCNAglCpsWKXWHaR69ytOyQum6P6F0F2wRAUOBC/VWHZEJAjcgkhEqVYycHSnSkVMbV/L6PxS6q7Y0pWFCtaONoqtxo9tmpav5wRIWtmUTp7rpQYaSptckcALiUM/ILQdlSuUSo81RpCW1aLNER6Dl6d92OpcB4FB7X06vkAMdVaqWqtSpk8q0WJNKdR2liAWq1E4Ho7B8S0cKU1Eck8hEIQbzWkhLWUXaVkVd56ttGp2ndaGrXjCVHaHd9Tgu0+ocpZI0kyYWFgPBwPneZudkpdQALsY6ZmNI7Xken/rUp4iiaEGm05/97Gf5lV/5FR588EG2bt3Kxz72MV7/+tfz9NNPc9VVV53zdXv37qW/v7/4eT7TgwwXN0YAGi56Tp8+zc6dO1m/fj133333vAqxbdteEhsYmJtYq9VqbNu2jSAI2LJlyzm7DJdCAP7uw7/LkdEjVCtVbQpMp5YvbsTTRCDotLBt23iWR22iRhInuoC+bW6c/y/vAraweqJKRddqWwRK2e5CbdfCxWMxvu1jKYt15XU8u/9ZXevXFjZKtIVgXu9nd8QeCm3P4uc/truFbaEjb47qNFq0Z/7iwpVXXkkzaerzq7S4cW0XPLQoC0A0tPBcP7ReR0n7AhpxQ2/XntIVDD2dwbIssRrtDuJYp8Et28J1XAb7B5GZxM3a0UfZXnPSiaJSB1HRVjCUQWay0xGNgohpYk61dJocpx3li7Twk6KTds3rE/MpIxLZOc/54h0KS5lcPKK08A7jkKqo4ljzu62spBTwYgvRmQypjx07hhCCxx57rPiw9yM/8iP82I/9GK9+9atnve3f+73f4xd/8Rd529veBsBHPvIRvvSlL/HRj36U3/qt3zrn69avX/+CtdGGS5sL/3HLYFgAo6OjbN++nVtuuYXbb7993lYrS10DOJttHzt2jCeffJKNGzfy0pe+9LwWE7Od2jEX0jTVwkvoNG+apviOj+/qdcSNGM+ZbqGTZRlJlmhxZLVFmFA9tYBKqI7NSFcUENrRJ6sthLCK7lSFIkkSFAq7ZTN5bJIN1Q2sCdbgOm6PCXQhNZ3eNKLKlK7Ro93Y0M5MCkv0io12sK3SVyEj01MyZEYca8EbJzGO7SAygcykTq8KiNOYofVDRboVtJA9p4BQwHDH8iVfl2d5rF+7Hle6VNwKvueDB3bJhqSdJlbtzuZ21FQpRZbq7tx8hnCeTraw9POUtokRSnsCVvwK1WqV4bXDbFqziSvWXMHa6loGS4P0lfooeSV838eyLX2OaEdxLYFwprznRLt5xda1mEma4NnevCOAKyUFPN+ZxHPBcRyuvvpqHnroId761rfy5je/mXe/+92cPn2aT3ziE7PeThzHfO973+O1r31tz+Ovfe1refzxx8/72jvvvJPLLruM17zmNTz22GPzOg7DxY2JABouaoaHh3nlK19JEAQv/OTzsFQj2/Jtn0+sZVnGnj17OHXqFHfcccesUjGzndoxW/Yd2cfx08ep9FWI0o7dS2794tiOnpbSiHoigbnxcittEalIe+NNjRrRFgqWFiJCaBE1zYfOEiivS7AJQZZmlJIScRgX6/ICj42DG5lsTtJyW9qLME/jWh3Pu+7GD5EIKHcaKLC0MMJpW6m4gA2lSgmBIExDgiCgP+hnIpyATNe5BW7AeG0chSKwA4QvGKuNMVAaoB7VdeSs3XzRc3zdl2oAONG2uxF6fF7gB9RH68V5Ah1JVKmCUItqYbejdq7Uf7ljsKSFLEtsYesIaqIFdj53OPACHOHglPSfektYeK5H2SlTq9fI0oxEJgihBWK/30+Y6IaeelInIipsZXKbmUJ0t6OveSRVKYWUkp+5/Wfm9R5cKRHA+dYAzpdms8natWv56Z/+aX76p396Tq89e/YsWZaxYcOGnsc3bNjAyZMnZ3zNZZddxsc//nHuvvtuoiji05/+NK95zWv46le/yg/+4A/O+zgMFx9GABouaoQQCxZ/0DuxY7E//Z8vXdtsNtm2bRtCCLZs2UKpVJrxeXPZ5nz4/GOfL6xUXN8tDJ5z0iwlzVI8x0PEAt/zSVWqp3dkqY4A6gG3QK+nXXdDRFGn1u4i7RZJuVWL8hRWYmlLmaYDih5RGidafPqeT3+pn7F0jEbY6KQ4u0RKsd9MYSl9U8+nkShLFfWCwhZUyrpLM85i3ZiiJKlMKTklVFOLn1CG+I5PK2khygJHOqTo8+DZHolKOmIv9wbMaxJzHGAQyhNlHVUUAidwcFKnEFGFUXO7OYSsXZNXtnSncqTXLG2JSAVZKUMgcDyHwcqg7q4WgrXeWs5OnsV3fIQliJKITGaMToyC0JEoK9Wi3XM9fVztc1dxK8RJjLS04BRKFFHFvP6y8CVss6a8hnuuuGeub7/i+q+UCOByC8CpAm6uTBXO5/sge9NNN3HTTTcVP2/evJkjR47w4Q9/2AjAVcaF/9dmMKwAuid2LMW2Z9ruqVOnePzxxxkaGuLee++dtfjLt7mYAvAbT30D0PVuWZQVEz2mEqcxURzhKQ9hCWIZ02g1CNOwp6NQiU4at/t/Rd1eO63YIw67hIR0JHZokzZTEtkRo90pfiklaZIy4A6waf0mKkEFy+50B3fv1y5p2xOVtJsihDb6zaONlmMxMDhQbDdwAlpxC4WilbaoiiooSFraF3Ht2rW0aq3CN08qScWvFMfYLQItS9va5MIJAdYGi8HqIAiwHZuwoaNuuW9k30BfESHMU+eqpMWhsNveiY7AkhaiIbDGLcQZQXY0Y+T5EUYPjDJ2cIwDhw7QbDSpNWs0wyaFyXT7vKcyRdgC13b1910XRCAInKAzo5jeZhHLmxKFFjDgzy/9m5/31SgAG43GvCf6rF27Ftu2p0X7Tp8+PSdR+fKXv5znnntuXmswXLxc+H9tBsMCWKyUUXcEcLGZmgKWUrJ371527NjBrbfeyi233DLnG85iC8CR8RGdXkQiMy2UzlVPKSzByfAkZ+tnabVaxQiwqWIPoSN+eeRtKspSnYih6hUeIhJEKsJ27MJ4GugIvDaVUgVb2IT1kLJbZl11XRFV69qgTpsKCguVwq+wPWljoH+ATHX2YwsbgSDJEpRS1Ot1Kn4FJAR9AWOjYzjCoZW2cC23OC+2ZU/vTBa6JlAgsNCRTeUqWq62ArFtuydC6Jd9wkZIxalgORZU21Yv7fOpLN1Uo1LtUzhQHqA/6NdehGUQfjvNnkriMKY52WRyZJLxs+M0602SpDe6W6Ssren/lob6hzodv4Xzi06dZ+ioY+FLKBRHR4/O+325UlLAy1ED2E2r1ZrTh79uPM/j7rvv5stf/nLP41/+8pfZsmXLrLfz1FNPcdllcx/fZ7i4MSlgg4HOTXqpIoD5TTG3q0mShM2bN8/7k/9iCsCJ2oSuaXMDlFA4rp7xm4UZXskrUq5hHNKKW6ReWvje5ebNhYCbcv8WQhTmxNBpBimigZZO++U+gEop7MRGpm2D4kDieV7RjJELBN/zUShtPdJuwFBSoWqKIWuIrJQxHo5r8ej3psREKooUqUJR8ktYnj6fw+Vh4iwu6uAymeE6LrIlqbVqVMoVarVa0RkspSRVKbawydCRUyl7x60p2Z7G0e6YVZm2v5non6Av6SNuxoXgcH0XK9MdoxERV1auZP/oflphCyEFVmThShff9nFcR287VNiOjfJV0WVdiLn2PkGnkOuNuu449l0qXgVLWPi2j8wkJbuE7duF6PV9n1CEWmyqTre1sETR6azQx2IJC8d3qMd1nh15lpvX3Tyn92AumFdCBDDLshnnhS8VjUZjQUbQ7373u/m5n/s5XvrSl7J582Y+/vGPc/jwYd7xjncA8L73vY9jx47xqU99CtBdwtdccw233norcRzzmc98hr/6q7/ir/7qrxbleAwXD0YAGi56pkZc5stSdQLnwnJkZITt27ezdu1aXvrSly4oypALwMVoWpFScvjkYW3ibEltnaL0+UiSBDyYbEwWYiq3WumxD2kjlOiYBLd/190RLJSYJhIlsvDOE5EoxB+gxVXFxpY2WZpp82mrUxPo4+vuZavThIAEUROsddaSllPGnLFirm0+fSSfn+u6LqX+khZwKqMVtwizENdyCZyAyWgSx3ZIGglpmhKnMa5wiYmJsogBZ4CmauJaLlmWUfbLjDfH9fG0u3aBTvSsayxdEiSMXj6K3bIJ6gGBDHDLLnEWExNrs+ZIMeAMMBwMk0QJWZD1nG/LtbQ5dZxCoxPNk67U00Es3Q0srHbNo9Rfcay3v75/Pc1GUwv1SE8psV0by7KoxTWko617MrJOjabTmbNcHJsHwtF+jTet7dSXzeU9CCtDAF6IGsCFCMA3v/nNjIyM8F/+y3/hxIkT3HbbbTz66KNcffXVAJw4cYLDhw8Xz4/jmPe85z0cO3aMUqnErbfeyiOPPMJ999234GMxXFwYAWgwtFlKATg6OsqhQ4e4+eabueKKKxYs2vIb1HwE4FhtjL/46l+w7fltPHv8WQ6dPMRIbaTwnOumiOB52gZE+VrJ2JbdEXpdqcE8IgSdaF/7l0WaMO8E7qmXs9C2KGlnv7mgUyhUSREkAZZjEUWdhhDQDSq2Yxe+dTlZmlFyS9jKxgosJrIJUqnnCVueRbVSJXV044rv6Dm2rbSFLWziLMazPFzbxcYmbIW4ZZckSoiICOyAMAtpRA2cwCHMQnzbJxYxbuCSiATLtopuZ6kkoq67n4tomtKpboUi9VKUr5COhBCyWAuuql2lkTR0M4aUPeKvElQQUtBoNkhVfuL0ebZCPWJOVqT2LWyPh8trEBXaQub46HFKbomSrVOQUkoc6SCFjryGMtQfYNppeOG1RXSXyLdtG2lJAjfgqsGr5vXezgXgak0BL3QU3AMPPMADDzww4+8++clP9vz8a7/2a/zar/3agvZnuDQwAtBgaLMUKeA4jjlz5gxJknDvvff2OO8vhFwAzjZakWUZX/zuF/n0P3yabfu2EWVRz7HmgqybYloHAhUpPZe23chQiC3Ve9O2sDomxGrKzTxPR3bX/eWPZejGkJJAhZ00sdUuUxaWHmc21Yg635YrXGIR9xyDZVtEmZ5ZLJuSqqjilTzsAZvM0v55URyRqYxm3CxG7bmOS5ZkZEr7G8pYkjZS/KDjyxhmISW3hAwkfUN9CNm2fYkVlVKF8Wy8Y3XTnniS+/dh6fNkWRae5+FZXlFvGaoQfAjcALfp0pps0Qo7Y8Py67Kmbw2jY6OFqXZKp4FDIMhEhuM7yKZEZIKsnGmRrTo2OXnUvBW3sHyLklXCdVwd9Y2hXC0Thu0UMEpPWVGq972idH2lQODbPrduuJX5sNJSwMu1DqWUmQVsuGAYAWi46FnMFPBiNlaMj4+zbds2bNtm3bp1iyb+oFcAzkSj1eCxpx7ja9u+xs6DOzly9gi1sAaA67lkMivsUoQQOI5DkrWbA/LMXtc5tTwt7EQmUG5H4AnROy+2EAaiIwxtYXeek0+OaHe2CtkxNbaEpWvLPB0Bo+0/JxCFmPNdH1/5RRSwW/RYVu+UEa/fI8w63bWBH4AEP/SJVIRyFbIlcUoOqUgLcZRkScd6RsHE9yYg0bYoa9avoSVbpFlKGIdU7AqTySSWsGimTUpOiVbWomyXCZNQn2chOiLK0pG4ocoQDg5hK5w2z7qUlLBqFs2oyVD/EI1Wo/h9pVSBDM6Onu253hldYt7Vo9+yOMNWNlkrw0os6NfegkKJYppHfs0asqFFaWIVdiy1yRp+uW1543V1NndRvC8sQdkt87JNL5v+pFmw0iKAF0sXsMGwEIwANBjaLFYKWCnF4cOHefbZZ7nhhhuQUlKv1xdhhR3OJwBHJkb40V/9Uc5OnMX3fGIVF0a/jusglcR27Z5okOM4JGFSRN7ySE9xQ/bbz21HkfI0Yk9nKL2PFdM/lOx9rC0aHcshVTpyVaRJVdviROloWh5hzMWpkoo4iwlKAWEzLPabpinC6YgUpRSJSvCUh2M7hHFIGOt0ZqVSoVFvIEJBmqSoWJFmKbW4hiV0utPObLI4Q0SCLMmorquiAsVIbUR3/banYDTjJkE5oJW0cG2XMA3xbA88qHgVJhoTJEmC7di4jqtrGCV4jkeSJDi206l/UxblZpmkntBMmgDUm3U818OyLHzXpzZZm3bNhdA1fiLTKXoZycJjUYp2A04Kqq4g/wySC3FfFNe0Th0VK2xsSqUScRYjGxI7aE8joTf6Z9mWnn+Mtq5JsoRXXP2KebybOx3Aq1EANptNyuXysu3PYMgxAtBgaLMYAjBNU3bt2lXM9hwaGuLgwYOLbi+T3yynbldKyc/8159hrDbGUGWIZtJEJPp5MTFWxSKMw2nby02RVdauA8x99PIooN2OzrTTl/nECqVUUdsHXUJQtV9rdWoDoZMWFohi1m3eKNKdElZuW0hG6A5YV/SsJ0xCvLJXRCuTNKFkl/RUCwSlcol4IsapOqhEdxYLJfDX+bSiFoEbYNu27nK1LUQicB2XRrNBpjKkJfVYtUTh2A5u4BbnqtiHUyLMQqSUeI6njxltMWMJC8/x6Cv36VSwpU2Tc4GTJfp95lgOURYRpAF2zabZbPbOSlad+r1mo9lzvR3bwXVcoiQiJUV5Sqfq1RQj7DzNnqDrEKsSy7eKxhlyY26liIOYalolJS1SobXRGpT1e6CI8Fraq7FYi+MgbMHBiYNsGth0vrfujKwUE2hY/hpAkwI2XCiMADQY2ixUANZqNbZt24bv+2zZsqWY5btU9jJTBeB4bZz3/OF7OHTkEJ7yCKMQCy1E8mhf2S8X4iyVafF6v+zTmmwVgkPvoJ2qtdv+bG0hkdu65HYjeSp5akRQIIpoStHwAR0LGLSZsR4g0mkKKaZnuBTi1bd9HZHqOt44iQn8AN/TUy76/X5Kbom4HuNIB6fiUKvViuf763xqUY3ADYgynUJOkgTHcQj8gJJXYu3gWs7UzzA+Pq499QJB1aviuL3egrlBtGd7CARxoq1cSk6JVtqiZJe0mKbjXVhEzkTHwkdJxUBrgKSZFNYzOYEbkKVahLVaLYQltD2J1O+pMAlJ4xTf97WgnFIemddQSmRxLZVUWNKCtr7pqdkUgkQlOIGDa7tUggpjE2N63Q0QVdHxbnQ7YlYpVYjhqje/VOZK8QCE5a0BjOOYNE1NCthwQTAC0HDRs1g3joUItWPHjvH0009zzTXXcMMNN/SsabFrC3PyecB//bW/5tFvPsqTTz1JmIZ6jm05mDHSJ2LRM1bNtm1sy8bC0qbLaaZr8trRNsuxOka/ebSoLQaFErp5w6YwgxZC9Ig5V7hYwiJRSW+Tieg8N7MzbGnriFteJ9ceOaYCheM52GJmo27XcUmjlDRNSaKE0bFRhCO0mXK9c/x+v1+Ivm5jadDHFcWRHn/XD5U+HY0JoxAHh3JfGdu2KbtlpJQk9Y6RcpzFBCrAsz1SpUfiubZLM2lSdaq90c/umkgkg+4grYkWk6OTPREnz/FQUum0drtGEtBiUwkyKyvEYhAEhK0QKXrPS96NnafcsdDzjmNQk0p3BufWMFnHoxBgQk2wzl1HfbJOIpOOz2JdoaoKUe4IP9AC1/d8EpnwouEXTXvPzYaVFgFcrrU0Grq+00QADRcCIwANhjbziQBmWcaePXs4deoUd9xxB+vWrZv2nKU0mP7ik1/kPzz4HwhDLQhsy8bxHMJ0uvgDSKPOvF6AJEt0itUS2G5bAELRHKJSVdSJ5WPKbFv7xFmWnmphWzae74GtU+BFVNH2QUHgB3pWL4p6WNeRR9XpIrYsHYWy0LYpoNObadsTpiVaDFa0WJKZvjkHfkAqU8IsLOYWR0nbG7DfJ8syAi9AKUWWZChP4Vm6li5Pn0+1k/HKHiEhLdnC6/MolUskUUKcxZDpNHc6mDK4fhA1pmhONAuB1IyaBF4AQgtMS1ikMsWxHCxhFeLTEQ5Vt4qsScZHxkkSLRjza+faLmEU4rs+SawNmct+GalkcXyWrbuHlVLFdc/rLfPoafcMYlESqETpFHDeXT1poYa70vT569qzkGuNGq5wibKoM5eY9ozm1CJzsqL5ynVc6mGdilNhz649DA8PMzw8TF9f36w/nK2kCOByCsBmU9d6GgFouBAYAWgwtJlrpK7ZbLJt2zaEEGzZsuWc45yWKgJ45PQRfvtzv12IANDioy/ooxbXZnxNmqQEVR0dzLKMNEtxbAfbtnFKDnEr7ongAVpESEH/QD991T5dT5jFPV2heS1fOSgTxe30qky0r5xycFydVlw/tJ5aWCNMQi3Oskx/yUyLpUwbF2dZRq1R05YzUjIRT1CullFNRSxjWom2RnFE509Y7vGXJRlJnJAoLQz9wXb0r0uDu66L67h6cke75q67pi2VKalI6evvo16rd0yQUYzH41ABr+pRqVcQSs/MjZNYN2t4PrZto6Qq5hjbQkdaRSxojjWJmu0uZiHwfA9b2kRxRCtpUfJLxGGM7/jEaUwjbBQWNQCe62FbekSe7dm00lYRjSvMpwXgtE27466O33atpQp1fWN+B+iOUkoliZwIlapCFKIAH4hBJhJr0Cq6wQfLg2RkXDl8JRs2bGB0dJTDhw8jhGBoaKgQhEEQzPiehJUzBxiWtwaw2WwSBMGy1hwaDDlGABouehZzHvBsI3WnT59mx44dXH755dx8883nvXkt9txe0Dep3/+r36fWqE3bd+AH5xSAAEmcFJE6z/F05CoDXB1t6+4OVihc16XaV8X3fDK0N54lLFzHLSJdSZagpCJshpTKpU76WWlRmklt6zIajqJQ9Jf7C7sVqSRZlunuZGz6vD4OH+9MLlC05xJ7epyZbHXO5dTrlaUZSdQ761aVVGeebRtb2Dp6mCS6dq9UIrOyac8LsxC7ZCOSKY0VQKxi4kpMVVQRTYET62ifyhS2spFCapFp26RpSnQ2QiAIbC2ELMvCd3xEKmi1tKDtL/XrqR5K+/N1r9f2baqVKuOT49qHsFKi1WoVkVLo2OtYJQsRtyN/Xb/LO7hRIEKBqnZse2zL1iLYgsRKUFGn6Ub4Qk+IyT8TTCjEoMAtu7qTWwhuXH8jmzZtYtOmTUgpqdVqjI6OcuLECfbu3UupVCrE4NDQUI/oWSkp4Nx8fDlTwOVyecVEPw2rCyMADYY2tm0XM2fPhZSS5557jsOHD3PbbbfNaoD6UqSA//DP/5DRydFp3mye69GoNxjqH9Kp3S7Rktf1xVFMf7kfG5tGo0HU0tEoqSSO4+jaM9FJCa7buI5EJjpS18oIKgGtqNUzsi1PXyqliMKoiFjJTBY1d5ZrFXYuk9EkJa9EK+pao9A1fSONkZ46RcvWncuDwSDjyTheySMN055ReEopWo2WjiR2/VmzPZtYTr+mU8UcQpspl7xSEZ3MSaW2mHEdly6t1fm9SglFWMwcdoQDLe0jGGWRFsqWhYOjo4BCUPJKRHGk07oCykEZz/KYmJwozrvv+sUUjkQl9Pl9nB3r+P+1Gi0c3yFKoqJmEq99bPH07uvCxiU3924oVKVdc+kJPQawPSlEIomkFqx4oOJeCxihBHJcUqqUijna3RYwlmUxMDDAwMAA1157LUmSMD4+zujoKM8++yxRFDEwMMDw8DBr1qwhy7IVIYKWeyRdLgANhguBEYAGQ5sXigCGYcj27dtJkoTNmzfPunNvsVPArbDF//jL/0GapPglH8/1dFo2jYmTGOEIJiYmwKGoqYPO2DiZSVr1lh6fJnUnr2PpPwX91X5Gx0f1uZAZrqvTpHkqEyBshARBoKdktNOnRZSvjaUsAhHgeNrrr1Ku0Eg6hsZCCMIkJPCDnlq8ROqaRGXriJBKtTGzj4+tdMQoTmIcz0GkgizNsB2bNEmp1+pU+iu6y7a9Lrff7TFJzplqtWK5+obfSls6MmdruxghBLawi9Ru2S9Tr9V77G4c5eh6x/bPttARv7JTpuSUqEd1akkN1dRm15aw8PGxsHQTDBmkEMoQ3/e1SE/jQgR7vodKFBOTE3pSR9a5FnkjkBLtSS2t7sNqp28lPeKv+J1sC64And7OrXjax5Fb8aikM5Elv3ZKKSzXYvLUJEObhqj0V3j9ja+fdp5zXNdl3bp1RY1ss9lkdHS0GJGYb/fEiRMMDw8XHfTLTf7vdDlTwCYCaLhQGAFoMLQ5X6RuZGSE7du3s3btWu6+++5idNdst7uYAvDrT32dyfokjuVoO5JoyqgwtMhzXVePbFMKx3UI69oI2bbsoqM3X1uS6Xq9RCW4nkua6jRkuVKm7JWL+rc0S8lkRhRG2I6N53rEyfQIW5RGSClJ05T169YTy3ZNWxb3RNeiREcLs1SngPN0cm5irGzdpSqlJI46+0mzFGEJ/JKPShVpUzeW+L5Pf7WfZtrUx+dZBHa7GURmJGmCEKIz2xYtfgM/QFntyFg7DVj1qshMEscxGRkt2SIkxLd8olZUHIenvJ4RdbboNNOAboYJrIAkTXRzR7tpRSktwtJWinQlMpG6I1voNSdZooVzo6EjUhad69eOxKVpSjAQUG9pE+d80khB2+OvGEmX2/l4+sOBkzpkIuukdoXqlAA4oMIp4q9rO0roiPLkyUmuXHMlQ6WhWb+Hy+Uy5XKZK664AiklBw8e5MSJExw7doxnnnmGcrlcpIsHBweXTZAtdwTQmEAbLiRGABouehazBnCqUFNKsX//fvbv38/NN9/MFVdcMef9LdaEkZxte7fpOr9GjUCdu7A+CROCakDUimhNtnBcp7D0AC0efN8nCqNOZ7DSHYkT4xMIW9A31EczbBLKTqOJJSxc29XRxFhSKVVoRI0ZR4UJIWgkDYSljZ8BfNdHIEiztBB8tm3j4NBoNnQzBx37EuEILCxqtZruHm5bm1iWRZRGlJ0ycSvGtVzSMKUpm4RZqGsHBxyEFLo7Wji4nkvJKyGRNKIGSZaQoqeApFZvfjcmpuJWcO3eqFtEhFf2SFq67lFOKRy0hY3taCGXCyYLS09hkZKyVyaRCRW3wsTZCTzHo1wu06q1CpFt27qzuhW2tJCXkiTVtZslX3sNCkvgB74+991LL8b0dub1FpNdAv3hQGQCGxsZSsTAlPdzXieYW/2IruaS9jVVXqeuUkrJyLERamGNvqDvnO/Hc2FZFkEQUC6XufPOO0mShLGxMUZHR9m7dy9xHBfp4uHhYarV6pJFzPJU9HJF5BqNhukANlwwjAA0GNpMFWpxHLNz507q9Tr33nvvvGf5Fmm6PAKzQA4cO0AYaUEWRzHlapkw7oxFyw2IHdehNlHD87xp4i8niiKCSnusWnttjuMQBAFRGtFqtgj6gp60qlSyp0YvrsWUS2U83yOMQ5IsKSJsXuChhCoib57rFXYm+b7y9HOj2aDRbPQIFyEFQTnQ3n6Wj8wkzaRZRBctyyJOY8J6iB/4lPwSCPCFj1WyaCnd1JLKjkLKmysCN8BzPD3GTCTT6wKBTGWkpARuUHQCg24AcQIHFSk8PFzhFl3NKlMkcW8jii3sYvpH2S8jE8lkfVJPQ8kUjbhRnBfHdbRYjtt1qWlczG7OU8191T6arSZhM9SCrW2a3S3UoC3WpLbyUUppW59c1KGtYZRUCLsjero9Bbuve14DONXwW6FotVr83J/8HA+/42FdKzlHuptAXNdl/fr1rF+/Xtd2tlpFuvjgwYPYtt3TXbyY6eLl7kZutVpGABouGEYAGgxtugXgxMQETz31FP39/WzZsqXHhmOudM/tXYxUlud6PT9Hzain8zZOYtyyS7PVRFh6kkapUtLNHjNE6VqNlu4obXRSyf19/ZweOU0URnpUWqDtSmZK9yKgGTZptBqUq2WyRFu6BEFAPatrk+RMW7SEsa77i+O4iHalWUq9WdepbIEeOZZoIWNZlh4zZgmwYbhvGKupz2cqU5I0YeLMhE4fZym1UHdFB16ACmY42J5l6wkevuXj2rrWMUzCaSJdoQhlSNktozJVjHmz0BNOkolEj4/L6w7FDO+V9lJ8xyeejLWNThf5efUDnziKtYUMCUEQIIXU006UIMoi/MAvupdd2yVJExy0aBSy7denZ/ChbD1RRckub0DRMXEWWVsg5indbvGdNwJZoqgRVFLXBlrSKp7rCAeBYOehnfzyp3+ZP/mFPznveZ+JcwkvIcS0dPHExASjo6McPXqUPXv2UK1WCzE4MDCwoH9jyz0GzjSBGC4kRgAaLnoWMwWcpimHDh3i2Wef5YYbbuCaa65Z8PbzG0qWZYtyc9m0oWvWavt+3Wq0KFVLOjKoIIszSkEJ19GRKTIY6B8gbIWkmY6GCSGK+i6VKNYMrWHk7AiBq9Nx9WadqBnRX+3X48jqLUp9pRknjOTbazV0qllYghYtkiwhTmNsocUKonMeBII4jZmoT+gIYe5fZ3Wipp7nYfm6cSKMQ043T+MHPq26FqvCEsRNLZ4sW5s8Z1lGHMVYyirGes10DYvRbI5FqrQQzYVdmE4Xgp7nUaLEaHNUp83zxwOPsixTb9WL1Gk3tm1Tdsq40qVZ08a/gRsUQs2yLGzbpr+vn9pEDd/2SYVeT5qkKKG08Cv5BDJAJrpmE6fdzGJBJa0wyWRRw4en16FShZV1RtF1N4Lk6WkknRFvefrXbqd9w06Hdk+k0WqP8bOg5JXwXI8kTfjq01/l6899nVfe+MoZ3yPnYrZG0JZlMTQ0xNDQENdffz1JkhTRwT179pAkCYODg4UgrFQqc/r3u5xj4ODinwP81a9+lR/6oR865+9f/epX89hjjy3jigxzwQhAg6GNUoooiti/fz933303w8PDi7Ld7gjgYnDt5dfi+7qZoLDlsHQ9Xtkv00gaeLZHIhPtKdcmTEJc10WherqDi9+Ph9oLMG5R7a/i+R7NsMlkbZLB8iAWFmkjpa/SBxZFVC9v3sgjYGmSan87SxTRP+gdwZano2uTNVKZYlttkawynaK09eizSrWi/Qptj5S08Az0yz5JqBtXchGcTymxbV1/ZzmWjqQlSVHXlU8vySd2gDZLzsm7nX1Hd+NawqLklIiTmGajSWzFBAS06LWvCe0Qv+RDCp7l4XgOmcxQUmFj02q0qI11vBld39XXJ0txhIONXRhkF+fI1g0fvuujPKXFY9646wQIW9BKtRB2HVfPIQ5bWL5FFmU6gqp6Z/12N+AUfoCyPUFE6WhhQd493DVhxHZsZCx1pLFtMO1b7VnEStvu/Kf/85944+1v5L477+PGy26c6S08jfn6ALquy4YNG9iwYQNKqZ7u4v379+M4TiEGh4eH9Szl87DcKeCLvQZwy5YtnDhxYtrjX/jCF3jHO97BAw88cAFWZZgtRgAaDECtVmP37t0opdiyZcui1hXl4mOxBOCP3vuj/Kb3m9DQUZwgCIjiiHqrjm/5BKVAe/G1RUY3SZLgOA6WZZEm003t4kgX3GepjtL1VfuoN+oMZAM6ZStTarWarker+LTijhCyLAvHcvBcD+Xp9K6QOnWc17elWUoY6yhk3g0L+sabR69EKnQqz9FRQs/2SBudtdrYtJIWtmdjRZ0Oa2F1hJxUknKprEff0TH4zbKsMC6WmexEHbuwhI7KyUxStsqcqZ/RdjCOFqmhCCnZJVqZPnYLnaaWtiS2YkhAxpJMZUVTgTPlT60tbBL0tSCDKI70OL0upJQoV2F7NvVWXU8ISWIylRFmuhvZc3QHshCCNf1rmLAmiGI9vq1I98v23N8u8SfozBhWUiHcrt/n0T7Z8UuUSoKvjys3786PQylVNPhkUcbZ0bP8yf/7Ez729x9jTf8abrvqNn7ipT/B625/3Tkj4IsxCk4IQaVSoVKpcOWVV/aki48cOcLTTz/dky4eHBycJvaWWwA2m81Z20mtRDzPY+PGjT2P7dmzh/e+9728//3v501vetMFWplhNhgBaFj1HD9+nN27d3P55Zdz9OjRJfEgW8xO4MH+QV58/Yv57q7vgtT1d0maaAsRxyrEhOu405oRgMLoOSgHtJq9ZtGgG0MqZR2V8DwPJ3IYPztOaaAz6k5JRVgLdZOHpYrJIrGMsQI9DSOM9aSNPDpYC2vFDOAiDSk6EzY8y8NzPPx+v2guyJ/ruNqgGuhEFLOMZq1ZWJsE5QA/8IuGG9d2CbxAp4VVhsxkEbUsJj4IbU6dpRmBE3SaStqzlBuioSNcqvfahYQMeAPEMkZEgiRNOp3CFsX3haiZQdsEQUB9tF7MVY7jWAs1qc9NUZcptTFzK9W+hCVHm1XHSYxwBWvWrGG8Nk5rooVf8hkoDdBMmiSJNu9GabudXNwodOey8IS+A/gUUUIkYLfX2z7kngam7kkiCBy79xaSbzuSEQ4Ox0ePc3z0OH+/7e/pK/fxiltewf0/eD8vu/5lPa9bCuE1NV0cx3HRXfz000+TpmlPM0m5XF60Mo3Z0mw2Wb9+/bLtb6kZHx/njW98I6961av44Ac/eKGXY3gBjAA0XPTMN3KQZRnPPPMMJ0+e5I477qCvr48jR44sWrduN4vtBfgvf+xf8t2d3yWz9Ogz13UpVUt65i26qSCTGf2VfiYbk9Ner5QiDPXYtiiMilm+oGva6vU6fkX73VUrVSbrk/Sv7SdJpkQUw0SLr4qeL+x6rq5ZSyI92zZq9YinPOLmWLr7N58g0lfpI0xDAld3H3dHq7I4I85i3MAt6t9sxybNUuIJ3TChMv1VzNi1BZONyWnCzbZsXL8zpUSmkiAImJSTNMNmce1zUaZQxMQ6KtiulwzcACUVk8mkrsmTUoum89GdeRWCvqA91UP0PscLPLJEd/zmTTlZlhXbVyhaWUtPCfEsXM9lZHyEwAnIVIbnechUR9O6052BCvBtLazLfWXONs/SCBtaENuqaA7pulC6hrDc5R0o0fWZ7c5ggWAwGERmsud65aLdsq0ee5pas8bffe/v+OL3v8jt19/Ov37Nv+bHbv8x/ZplGAXned4508XPP/88rusSBAFpmhLH8QumixeDS6kLWErJT//0T2PbNp/5zGeMufVFgBGAhkuCafVNL0Cz2WTbtm0IIdiyZQulUqkQN1mWzcnoeTYs9ji4+7bex3t/9700wyb9/f2EUahToF27yLKMZrNJqVQqZs1OJQxDPE9H3pIoQWWKil8hDENkKhmoDpDGqW6MGA8pD5SLCFU3sinp8/sIqgHHxo7RCBtFDd1AMIDnegilGzT6q/2koj0/uC0WlKOfGxPj+i6u4xLFEYGtfQwdR3eaer6HL3yiOGLkyAgy0lE8ZSlt5px3pgYOqZXiWV4hVvT/BTKVhQdh2SkTpzGO72DZVk90ME1SIhlpuxlhUSlV8JXPeDReiOXQCilb5V4vwDyTKgSe4+mxbsIncvVxJGFCfbKuGy8ywGp/KT31I051A4vt6ahxkiUIuzOGzfEdcCFt6RQ7At0k4vjYwqaVTb/WlmVhVSxcy6We1Kn4FRzb0TYrQYtm1uzUU2ZowekAabsZxBLaMka1fQ8FeI5XzHi23Xb9pWWjhJ4fHSURgRv01DWC3sbuA7t515+9i6vWXsV77nsP1/nXLWvkbWq6OMsyJiYmOHToEGEY8o1vfIO+vr6e7uKlEKgXewq4m/e///088cQTfPvb3563ZZZheTEC0LDqOH36NDt27ODyyy/n5ptvLv6wd3frLrYAXMxxcJOTkzz11FNcs+Eanj78NFEcUSqVphkSg073OqnTiSzRGfuWW7DEUUwU6W1EtYixyTFtHix0Gtd2bBzPoVlr4rZccKc3tDi2w3hjnNpEjcAL6Cv1YdmWrjl0HeI0LlK5taimRZHn00p0WrO7iSROY+I0JvAC6vV6r7DPoK7qrKmuIayHOvKHwnEcYtVlrWJDohJsYff4DnYjhKAVt7DKWvj5lq+jlzIqrr9n667gLMsYnxhHOpISJWI7LppJpCUpO2Umsglc26XqVaGpo7BF7aNMcYVLfaIOQCko9azFsrW5dn2yPu2DTG5rk5Fh+RatRquo33RwinR5IhOqdpUmzZ7t+hWfKI10R3YSI5WOojqWg+u4NO2mjuwpq5hOIoXUDSEhOvqXUKR9QUcBh0vDhdk16I7joBTQClvY2Di2Q+AFVEtVncIOpwhTB46NHuNdf/Yubr/sdv7D6/7DjNdpObBtm+HhYer1Oq7r8qIXvaiIDu7evZssy3q6ixdrfNulYgPz2c9+lg9/+MM88sgj3Hjj7Bp/DBceIwANqwYpJc899xyHDx/mtttu47LLLuv5fd6ssZiRupzFSgHn9YrXXXcdL7v1ZTx//HkkkjAMpxk2FyhwlIMUEsd1Zqz7EwjCVohX0hErqSSO5ejRb6lOSQ70D2hjaAIs3yJNdRRNZUq/tuqxJlijLUTaoixJkqIL13Xd4qaplCKMQm27YltEsiPS8maSVks3etjCJg474k4IwVhzTEfr0P52jt/7pyzv7J3qtzeVVKa4lu6MztfgCQ/bssnQfoaR1JNSPN8jISGUIU7sEItYr9V1iO2YPr+PRtSgntR7RKdv63F1uXXNVPzAJ4szoli/xi/r1HuOROJU9Sg/L/J6JpNkUtcuttIWEkkSJlqUOQKv5BEmYWF87ds+kepsN5UpuBCqUItctAWKFFLfGVw9hYUEZF0i0s4kECklE60JSm5HyJZKJcZqYz3H1opber9ppCOivkc+5i8fnyeEYOfxnbz9z9/Or9Z/lZ/d/LPnvWZLSW4Dkzc3bNy4EaUUjUaD0dFRRkZGinTx8PAwa9asYWhoaN4+oZdCBHDbtm289a1v5bd/+7d53eted6GXY5gDRgAaVgVhGLJ9+3aSJGHz5s0z/tHNa78Ws1YvZ6EpYCkle/fu5fjx49xxxx2sW7eOH7n3R/jMo5/B8R1txZKmegqGq1OkgReQypQwCXGkNgpO01R3mypmbBDJBUBQDiDtNFwoqXREzbEJGyElVaIVt8jSjHKpTLW/SiQiLMcqxEmr0cLBwfbtYnzbVJI0wcUtJo94rkcSJ4U4yLKMjIygEhA1O7WBeboa0DWF3pQ/Ze1dSSXxHb9ncslUHMchoXMuMjIc4aBiHRWsq3qx9rw2UDiCde466kmdZqtJmqRkKtN+h9IlsIJi/VEYaWubLnKDZc/3iBpRT3qxWyT7ZR8pJc2aTtGG6HRqnlrNr7sjHFKVkpExtHaIkdpIIfwAbRGTTBegTaupG0IQRURTKd0VTEYxMUSU9Bg5MiDU02biLC4EYBAE5ywzyFPXSildb6p0pLCIuKYRmcwYa43xG3/1G3x555f58Fs+zLr+dee8ZkvFTM0oQgiq1SrVapWrrrqqSBfnk0l27dpFf39/ER3s7++fdbr4Yp8FfPbsWd74xjfy6le/mp/92Z/l5MmTPb+3bZt165b/OhpmhxGAhkuC89UAjoyMsH37dtauXcvdd9993vTuYs/t7d7ufIVlFEVs27aNNE3ZvHlzccO48aobefOPvJkvfPMLRfOHzCRSSG0q3KwV5yTNUgJPi4Yk1rV3pXKJOIx71qXQ0x7CKGSwOqi991Ltw4fStWZj9THGa+P0lfsYHBgkljGZlVH2yyQqwXd9fQ7bPnK+5VMpV4hlXNjSdEcgbdvGdVzKfhmBoJ7WUUKRST1dQypJGIU4noOFRRzFhGfCYjue5+GXezu3u8Vmtz3MTFi2BZl+TeBoS53cX6+RNXBxcXB0pExY+K5PnMRMxBN4ytNRStcmSnWnbZzFRDUt6oTVEVbdVMoVkmaiJ61MEQtRS1v4WLZVRAKnRjjzhpkkTZBCMjgwSCttUa/XiStamOWCz7Xdoqt5KpEdFecg7xgWlijMuLOmni6Sp5mFLVCVtqBrC3A/8AnDmbcPOgrrWtqSSCn9vut+vuu6OFZHhH/j2W/wE7/3E3zzP35zWesCYXbdyHm6OPcJjaKoSBfv3LkTKWVPd3GpVJrZiLzdiHIxN4E88sgjHDp0iEOHDk3LqABcffXVHDx4cPkXZpgVy2d4ZDAsM0opnn/+eb7//e9z4403cvvtt79gbd9SCcD5RhbHx8d5/PHHCYKAe++9tydaYFkW//K1/5L7/8n9lNyStoGxLCR6zuzUTtAwDgk8HZnKU77KUgTlTvNEHvGzLZs41s0Inu0RhiHNsMlYbUynCrGo+BVEKhiuDuM7Pi3ZIpYx9aiu5/Va2hYmyiJGa6PUm3U9/SPTNithGpKS4vs+Y40xRmujjNRGkLZEOUqLT/QN2XXc4viGB4dJJ9PiZj142SB+xccre3glD9d3e8yd4yyelvLuRglFyS1hSYtW2Jp2nVJSIiLWlNbgKEd3NrdNpGPRSTFbwsKxdb2l67qFpUueBldKT/6oBBXCRqgbPYRdHJcQQtfslfwe8QdMT+sDYRYyODSIG7jU6jVU1O5gFhattKVtbYSlhfgMH44c1yneT90+fPlcYKUUltuu8VNMO4eZneEP+FhO+/oIu+judi1Xf9kunq2bjBzLYaBvgCROegRRmqRErQgrsQoD7rONs/zW3//WOa/ZUjGfUXC+73PZZZdx66238opXvIK77rqLgYEBzpw5w7e+9S2eeOIJnnnmGU6fPj2ti36hAvDBBx/k2muvJQgC7r77br7+9a+f9/lf+9rXuPvuuwmCgOuuu46HHnpo3vsGuP/++4vGqZm+jPhb2ZgIoOGSJI5jdu7cSb1e55577mFgYGBWr1vKCOBctquU4siRI+zdu5cbb7yRq6++eloUIReVH/ilDxDFEX/7+N9SF536M5lJorTd3BFHRd1dHgkEOvV7ga4tazabOLau/WtmTV1/l8VYrsXY2BhCCS5fezmnzp7i7MRZ+iv9pG6K4zq4gUsjaQD01kR1eceFrVA3NZS0bUkURzSjZs+x5RHKwA+0l53MekTZ+LFxsjTTUzr6SjpN2Z7RK9AzbX3XJ7OyQsyUS2WdMpW6A9gSus4wlCGZ0qPjznUdAi8gyzJGW6Pa8oaAUHQiWEooXMstIpZCCHzX1x2x7S7nNEtxS7rJIwxDglJAYiVIJLaysbAIqgFxMyYLMz3CzNO1dkmW9AhAy7bwyh5xFDM2OYZjOcRZXHy4yYValEWUnTKNuNFzTH7JR7m6aSTv9O3uXBZO24swpUgJFyMDlbYLkkpPA5mcmNRTXxD4JZ80Tmc0GM/sDDdwmWx2WRIJOk0kFriWixVbDHgDpFbKnz3xZ9xzzT289pbXznhtloIsyxZk/yKEoK+vj76+Pq6++mrdPDQ+zujoKAcOHGD37t309fVx6tQpXNddkAD87Gc/y6/8yq/w4IMPsnXrVj72sY/x+te/nqeffpqrrrpq2vMPHDjAfffdx9vf/nY+85nP8M1vfpMHHniAdevW8c//+T+f9zEbLl6MADRcEnQLiImJCZ566in6+/vZsmXLnAq0V0IEMMsy9uzZw+nTp887kq57usgH3/lBMpXxua9+btpzwlCLrjxVF8YhvucXQtGyLBzl6HNo0+Od5zouaZoyMjECAtYPrydJEjxXRwVrUY2+Uh/KVrTG9RzgoC8glnERdcrHiSmltMm2gGarietoo+aZolMCoecaoztmwygsxEdyOoEU+jf2U61UCdNw2jWTiSTxksKHzpKW3kbX/F8l2vYm53APcmwdzWq22l217b+WISGu0u+pRCQ60mcrqk4VoXRktbvBIbACiNC1io5TeOSpTNvNuIGLyhTNyaZu4hGSsckxvIqer+vYTtGJndkZUTMirOtzY1t2MVZPTTkQ3/ZpxA1KbolIRnhlj1SluhEkg2q1yrgaLzq+8/OuhLanye1+RCBQLVWcJ6WUngecKSJb288oVDEjOqgExK1OaYHr6XnUMpn+/i/GB8oUmUkSldBKtaF1xavwH/76P5BkCW+47Q0zX6RFZrENqW3bZs2aNaxZswbopIv/9m//lj/5kz+h2Wzyq7/6q/zTf/pPee1rX8v1118/623/3u/9Hr/4i7/I2972NgA+8pGP8KUvfYmPfvSj/NZvTY+ePvTQQ1x11VV85CMfAeCWW27hu9/9Lh/+8IeNAFylmBSw4ZJBKcXhw4f59re/zdVXX82dd9455+68xfbrm+t2W60W3/rWt6jVamzZsuW884inisr/+Pb/iGM7lIPpReVSSsJWiG3ZBEFAnMT4rk/JK4HS3ZqJ1DYhqUwJSnoqhlKKycYkSir6K/167JitO4JR2mql3qjTjJp6Bi8WUS3CR3vS5fi+X3jcxYlOyaZpShRGlNwSrneO66SgFbZwLZeyVYYRSCYTqkNVqkPn7p6c6lUYy7hHICVpQhjpaRpJmhBY/z97fx4k2X1fd6Kf33K3XGrrDTtIEARAAuK+oDkxpmVLlOVnyWN79ORRzNga2bItWaHNGj9LsjWkx5Jsa4LhsCx7QqJkaWzJo5mIJ7/Rs2xJDlvLCwKkCTQAEsRCkNhIAuju6toy866/3+/98c17M7OqutHoLjQgMA8C0d1VmTdv3szuPHW+33NOSkpKohJR46IU3/iFkd38/RvVYGLDseQYHnG07pa77FQ7svdIQuxjKCAfiVmm/ddWKVG8eis9cQCXDt9ITV1VVzS1jLfb0Wuv34MejIoRrnAS6NyOa5WM1K22nfKngkT9VE1FkiX41BP1JaC7CdMRvzKoRExPC6PdCGimI+Egu38qVrPnH4ASlJOvtXt98yiqgmBD18xSNzVN0yy8Hw6+zLNjJJn8cLK3u8d4NObv/Mbf4b/7l/8dz289f9H7HxVe7Sq4dlz80Y9+lEcffRSAD3zgA/xf/9f/xdve9jY+9alPXdZxqqrigQce4CMfWVRHP/KRj/DJT37y0Pvcd999B27/Td/0TXzmM585MJpe4msDSwVwiTcEmqbh4YcfZmtr65Kq2cvhtTSBbG5u8tBDD3Hq1Cne/va3v+wH0X4CmKUZaZyys7fD+so6F3YvHNzbcg6XO/pZHxMZ8jyXcZ5WVNVUtUJUQxSM6zF1U7PSW8Fo+QBvHzNOY0pKCfwNqZg42taIBmJibGqxPSEjKBkNt4pgi6quUEGx3l/HB09Zl0I8pgHKrnCMt8fkPsc7z/DYsCOM7S7eAey71C64rjf3MAQtbtTYxJhg8LknVlJzN4/IRlhjKeuSoiooKEhCIgR/msJd6xqf+wPXvs0pjKMYkxnySU5d10KctcYYsxBEXZYlGMmKq7XszdW+pqYmsYkERisthN2mC2PiwXDAXr0nETZzlygyYrgIKjDy4m5OTUrhipkDGOk3bjmZx6MTDSNozdLta6hQlK4ktemB6+RqJ5V8NpJRfnj5v1ct+WtR5iW90OOBpx/gm372m/iF//4X+K9u+69e9jhXimtZBVeW8jx/9Ed/lH6/z2g0Ik3Tl7mX4Pz58zjnOHXq1MLXT506dcCJ2+LFF1889PZN03D+/PlDTRxLvLGxJIBLvCHw5JNPUlUVH/rQh66qy/coA5vncakRcLss/dRTT3HXXXdx8803X/Ex77jlDu7/7P1s72yzNlwT1ahZ/OBN45RJOSEUgTRNyVKpkGuJV4umadgebUOAQW8g5CnI2NEai2+kAk1rzd7eHsqqbtyXDiS4eDwZk6mMOI3Jy/xQN6TSispXVHuVdN2mGaEKjHfGjMO4IyZZmmGUofaSdTdIBoyqkWT2BSe1ZlPWcti40RizUE0mF3/2vdSk3Riz/Z5pDHGIyeKMJm4YV0KI51GpCu01CYnEtChpInHF4nWPogjTN+SjnGpyOBE11hBn0sriakeSJbja4ZxbqKkrfNE1f7TXMM6kBq6X9dgsNw89vvMSBm5SI85uQEWKQTZgK9/CBTdT9Nx0n9CDLzyqmrWRtK5gEPU4UlPDRxRjlaWYiGNaKYVyimPDY4yLcRcbE0LoHN6Nlx1SG9tDQ7snxYSV/gp7zR7Pb7+6KuCrrQDOYzweyz7slPRdSR7g/r9PL1djedjtD/v6El8bWBLAJd4QuPPOO4+kw/fV3AFsFbZ5NE3D5z73Oba3t3n/+9/P2traKzrmfgL4L/5f/4Jv/sFv5sXzL7Kzu0Mv7eEzGf8CpMkiySkKUbGOHz9OmASqejYqLcqiM3DUrmbQG6C1Zmdvh/FkLAHPXnU9tbvbu5y44QQmlfaN9jjOOYpxIfmDmgMECoSUhiZQ5iWTfCJj1IEEKDeV5NzV47p7HgBUEoeS2EQMDdOOYaMMyiviKO5MGD54UbKmpoPWLav9tM0j+EXyN4U18k/kbilj8ATZYSwpu2iXMP2v9CWxirFYQj+gG+kPVkrU1bIoiXSEMYZmjomGEIjSCGMN5bikGE/PQ0nXcpzFRI0Q6+DluTSuoW5qNlY3iJKIxjWMx2MykzEpJwdiZ4DO+FI1FVEUSeONtvLaxgNOrZ+iaApGxagj+5R0LSDBBJRT3fOdPnk8nu1im0E8wFeH/5BT7pTESYxWeqEaThtN2ksZj8YoFGkkZKit6ute6qrqyOWriWtJANsMwCv5N+v48eMYYw6ofWfPnj2g8rW47rrrDr29tbbbUVziawvLHcAl3hCw1h7JT7HXcgQ8Ho+5//77qaqK06dPvyLyB3Q7evM4tnqMf/x9/7hzhE6KCTRyfVYGK13bxH5sj7fRaKIoIolFQbXGCgnQUs82ykds721LO0gt1yi4gGrEFRpM4PzW+YOPMT3Fuqyp8krGrNqQ2ITUpLiJo9gtKCflzI06jalRKIwz4jLtJaTDlHQg/2ujpTc4irr7Nb6hdCWFK6i8xM2UrpT9xqkxxXlRC6umonLVgnLYoq0xa5pmcSRJSRlKTDCkIcUGuc4mCAuuQ02lKrL1TNy9QaOCkucapxhr2DixQWpTBumA1dVVVoerWGehlBHtvArrncdkU5VvGhPTW+kxPDEkGSQUtVy3cTGmqcWBe9hYXClFZCIqVxGnkl0YQpgFZBukrQPFMB3ylvW30Gt6RC5Co4U4R4dkbU7d3aEMjEYjtifbF1W6q7Ii1nH33kx7KcGIM93jqX09iwcKDZGJSKOUNJI4G1c7vnTuS4ce+6hwJTEwV4q2Bu5K/t2K45j3vve9/O7v/u7C13/3d3+XD33oQ4fe5/Tp0wdu/zu/8zu8733vu+ImkyX+aGNJAJdYYg6vpglk/oPx7Nmz3HfffRw/fpz3ve99VzS2vthY+Y+/94/zV//sX+3+XJQFBkNZldjYEifxAuHRVjp7i2p6u1K6cH3w3U5aWZU456gbcb0WeSHjPT0NCLZS7+Uax+7W7oE9v/lz1krLKNaBa2S8eSDixmhSlVJul9RlTTEqqPYqit2CYk/+d42jpqYxDaRgeoZ4JSZZTUhXUwmIThKMlQ/0QCAyBz/oWodye35ZnIlqWV483NjhqKiE0CUbrCarxDZGaYXzjm22KUNJXufkVU5e50LWmhIfe+jBuByzs7vD7niXvMkpmoLKiQIb6YjUpvTiHi53RFlEuppiUkNVVxSTonMTD7KBZPpFPfJG2lequqJpmtm+ponBQNJPUH1FUc8c0W0cDkCiE7KQMcknZDZjpbfCWm+N1KYz40mYqqdKE8oANZ1hxXnHdr7dtcHsR13XWGtJskTMIvvMOgu3nSOEcRKTZAn/56f/z0MV5KNCWwV3LZDn+VW1gPzwD/8wn/jEJ/ilX/olHnvsMX7oh36I5557jr/xN/4GILuFf+kv/aXu9n/jb/wNnn32WX74h3+Yxx57jF/6pV/iF3/xF/mRH/mRq34uS/zRxHIEvMQbAke1w2KMOXRUe7VoiWUbTv30008f2kf8So95MbXlR//yj/Lg4w/ymc9/pqsLU0YIW9VUXSdrVVbEcdyNP8umlH23uiEvptVeSowacSQBx2UumYJBB1Ss5Fdk1wsjOX6j3RHD1SFGGWIbk6UZsY1lvNsIwSGAwTBYG2CN7cKr+0mfYqfA1dJzq1ASYbNXYCPbdQBbZWlU06l/zrkF8p4MkgU10lrLwA5kRArdSLW9fxqnVFVFXs4qzeZ33lBi4NBKy4jSNZRNSe1qYmKJxzHSpRxUwJwwNBearmPaB09VS1C2N/6izTUg5Eenmt6wx9ZkS3YwJ9WiuSWI4mm1lb7dekrcI0+fPiFI1l8apbJLGaTnuPHNwt+XYIM4i52inJTEdjEHT2tNL+2RJRm5yilGhcTCaDojSFByHVun8F4u8UAr6Yo8TwUmEkV0b7yHsdKe0qqV+xXYebRmo7wWp/onPvkJvuePfc9Fb381uNY7gFeqAAJ8+7d/O5ubm/z9v//3eeGFF7jnnnv4rd/6LW699VYAXnjhBZ577rnu9m9+85v5rd/6LX7oh36In/u5n+OGG27gn/7Tf7qMgPkaxpIALrHEHF4tE4gxhqZpePDBBxmPx9x7770Mh8OrOualCKBSin/+t/853/T938TueBettNTFueke4FTdipN4puJNFbvGNWztbkn7g5JQ4IZGzCJFyXh3LP9yRJIfp1BSF6bkVxQUk4IoibCRRUWK3fHuoecJUOxJOLW3nshHXDh7oVMeWwQXDtSZ+crjtEMH2bUzWkbFbfXaIBqgw2xMHgiym+hnpM5qi3UWXWl84Ym1qKNeeRqabi/NaENOfqhJoevuJXSVfAA6lscOzSK5aWNj0vWU+txMzdJGE2XSIFIVFWVVokYK5xzj8bjres5MRuEKrLGd0jb/PlBaYRKDU46e6omBJmQ0TppV6rruauqyKKNuaqrJ1IATS4VcahbdqIlNoJEYk7zOKZCsw/l9wPn3UCCwk+8wqSesDdaghlBJqHZik24fMVd51z5z2HVNejLmzhDzSOUqfu4Pf473v+X9vO/G9x16v6vBtd4BvNoauO/93u/le7/3ew/93i//8i8f+NqHP/xhHnzwwat6zCXeOFgSwCWWmMOrtQNYVRU7OzscO3aM06dPH8nOTbsDeDHzy8mNk/zM9/8Mf/2n/jqDwYByV8hJURYkkRgnyqLEeHGEmsjQjGQfrgmiEgUn6o1Csb23TblXopKp8aPzAYRO+WkjZbTXjC+M6a31KFTRhRVfDIlNGI/G0gpipFUiNIFiLKPmanxQlXWVg5TOTerdPjKc0402u2um9IIq2NQNoQ5oLapeG5kSRzGJElXMOzGQxFGMU45GNV1wMsyFJ++DV570eErx0uI5tFl8pStJVhOJZfGBupLXYx6Vl+fdFA3JakI5Kcmd5CLGOqZ2dafGpoMUrzw+8pSUpDolr2ZqZhzFlLok0xkGQ6ISdie78nppIdCdQSPItYpNTJM3sp85dxyjDX36NK6hqGR03ZliQgAjo+K6rjm/fZ7YxAzSgawT+OmxGgmNVihwSHuLd7jgSHoJtZMRsEyXZ9e3LEsuTC4cuN5HgWu9A/hHuQd4iT/6WO4ALrHEHF4NAvjCCy/w1FNPYa3lPe95z5EtXLdKxaUUy2/4wDfwY9/1Y+zu7ZLESffhVtYleFgdrkoDQ11TTArSKMVGtqsxw9CNMPMihwS89rPMOdX+MkdAp0QwECgnpcRcXGTKFUIgjVLy7ZymFGIUfKAcl5RliUkM2WpGlIoytnBfHw41wrRw1eW9ju0Y0xpLlmRENpI9u0oMJGVTdv3FdV0TqoCpDEmdkDYpffpor4lCJI0qYdqdGxRVVGFTS2QjkiRhZbhC3JN8xKADFRXOO+rq4F5bEiUL2X6+9jNDja9JBgnZekbVq3Cpo/BCxLz2ByNtAG88RhsiE9GEhiIUBBOoXS2u4qqmKipsY8nKjKRMYCIGl8hE3Q8ZUTp7/1pjGWQDhtkQY01XvaecWhhXV65iZ7JzYDewGBdoo6Uz2pdEvYjeYNpPPH3ubX909zychFQfNdr8xWvtAl5iidcKSwVwiTcEjnIH8KgIoPeeJ598ki9/+cu8+c1v5qWXXjrSvK15Angp1eKvfOtf4cXNF/mFf/sLeDxpmlIUheykNRWJTaSKK3hpbSgbNBqvfRcD4xsPjUSBYGc7cahpJd30016ZWT5cCBLhMhlPiOOYOI3FqdrMRn6ZzSh2hKgofdBl6p2XeJhpKHKcxV2NWpWLCaN1JO9Hkzewb8reHt8oCV/WQdOLejjtmLjJRceR++GC64KNfSMO1lBIH7HRZuF1TtdTik3pHK59TVVWHbkJBHzs0U4fUDCVVp0i2e4rZusZXsnrtu23OwWwH/UhyA6nVpqqXlRM0zRFWdWZKlKTzkbqCobZEF9LJl85LnGVoyzLjvxrraUy0Mi+obLyOmujUUZRliWJTtgtdilDOQuKnrsOjW84PzpPlmZdHiCAKx1REqETTd7MFEuttdToKRa+biNLZmf3Pyq0P0gtCeASXytYEsAllpjDUbmAq6rioYce6iJeiqLghRdeOIIznOFyFMAWP/4//jiPPfMYf3DmDyjyAmutEKkge3FaaXpJj63RFgBJnOBy1zmBuwYIH2SvTnfzX2BWb6bUIokLXoiaNRIOHAgkqWTpUUC5V2K17ciFD35hjyyEgKoUiZG+2dCEjvAZY6Qmbfo4vvbUVd29fioooijqyFAgyEjbi4vXOScVZYXB9C899tNKY6yQRqXUQr6gNppAEDLq3IHXo6YmTmPqSU2kIlGwlBKVVQUslsHGgHwr74wbPnjIkFy8qQmnaRpxaU8bSypXkdc5vajX7R4m8TQc2ogjNxCIk5jc510Idqxj8lpCua2yxCGm3C07Q4YxBmMMcRx3qlh7rRrddNV5Pnjy8fQ42pLalGSQMC7HbBfbC+plu5sZQmBcjalcxfHV42ijKYsSZaa91nM/H/ngyV1OalNSm3Zu4FrX3Hnyzku+XleCa00AlyPgJV5rLAngEkvM4ShMIDs7O5w5c4a1tTXe8573YK2VKqwjHi236srlnu8//N5/yJ/+gT/N9mRbIkIqT5ZlEgrcOLZH2xKkbGQXrHPJ7hPFfCNjMm8kWDno0Ck+C80CU1eoCookksX/QBDiEwKFLojXY3BQjkppuJgLCW7JYjG6eBxL2y3cuUlVwCTSVNKaQUwkr2lw4fAcRE9HZFEy1rTGdkSvdrXs6Ll6oVatRVuRZ/TF1eOQBsIkdHVxIYRZ2LGHUT0iWo0ITcAGi1VWVNVGlLP2NS5HJXZoMdP0befdwn5lGqXsVDvyHCJLrWohci7MSJiXeraqrCiKgogIrxbfQ60aqZSSlpRYuqHrsqbMS0pbUld1tz/Y7ozWXgwm6+k6o2rUjW67Hb5IYoeauuGlrZfox30ZdZceZdUBhTwxidTUAcdXj3O+PE9iE04MThx6na8G7TW+VjuAVxsDs8QSV4slAVziDYHXywj4y1/+Mo899hi33347b3rTm7rzupRj90rRxYtc5nFvOnUT/+2f/G/51X//q+RNTpIklIXk+2VpRogDdVPjnSg+vvGLsSPtJQ5CELTRBLVI/tqGjbZTNoSAjnUXOGwiI2R4Wk/X9qGqTGEzS9qkVONKHvsyEJpFA0x7PVrzRBqnnXM3UQlBCwHViOIYbCBNJKA5TmMJIfZN142rlcYHf+kGiunDa6M7pXThHIMQv96wR1BBxprTr/tcnmftaomTMTFVWaFTveB6ttoSmYjSl1isNJ9Mn+98LZuy08gcX9DQkOqUnWJHrr0yRH4W46OVjFhdM339p6qm844mNMR2GnlTNdT57Im1+4xtK4lzcvvgxT2tlTiMh8mQUTWiDKWMsz0orwj1zDk8rsayk9g09FZ6nUGmu3YqYIwhyiLOlefoRT1OrR7edHG1aPMor1Ut2ng85vjx49fksZZY4jAsCeASS8zhSgmg957HHnuMF198kXe/+90H/mF/NQjglRz37/6Vv8unPvspvvD8F8BA7nIMovgppYjjGO89u6NdUbsu9llo6T7s2z7aVt1qzycQ0FYTxWIaMJERkrDfrYuQodFkRGQiXOSI+5JTGIqL58MBsq+YLo7sWqVLK411ljRKJbzYazAyWqx9TdmUNE1DFSr82C+MLGHanmEjfPAYZTCVmZlepiShKXJsKEmH07xCl4gKOjXCeD/9H2n02Mv3FgiGa1zXjAGyWxhF0UKcDIgK2Ob32dLiIrnWWkmV2mBlwDiMKXwhhGs6li1dSazjLqexmMxIpQ9equFcha/ktYx1jG2k59k34ui2ynb5i7WvhWBXlYzDEYWwI/w+4IJUzGmrGagBtrGMq7GQPjWLDmrdvTvFDmvxGolOFnYwV3urlKakbsQN3Cqyf+Edr05u3bU0gIDsAF5J/+8SSxwVlgRwiTcM9u+fXQmuhAAWRcFDDz2E954PfehDZNnBBfX2uEfRVzyPV0oAtdb8Hz/9f/AN3/MNbO9ugweTmo78VHklbQiNvjj5i+jyA7z3QgS1ljGqB42WfD402VCuhbEGPIeSv3m03bR1JXtzlalQq4rYxELganCF6zp2Qx2wfYvyErTsvOzgOeWkraOuiPoRzjtUrQ6QPBBlbL53tkU7pnXeEXQ4cJtmMsYVJbXSBNUnywadonkYmtCQ9bLFPuN9cN6xtrbG5tbmod8PQQhWr9/D9Ay+8uQ2J/c5iUpIraiLCkWkIsqmpHQlkYqoJ/vkyQA6aGJijDNURUWhCowyHWk97LoYJSP2XtojL3LZg7RiBmmaRvqkg8Ta+ODRXtOz0lLSxuW0sUEguYg79Q7DMJRdTxPoZT22yq0Dbt9+3Oe7PvBdF71+V4NrGQEDSxPIEq89lgRwiSXmMN/YcTlE7cKFCzz00EOcOHGCt7/97Rf9AGmVhVeDAL5S0mu15Uf+wo/wI//bj7CSrVBSLuzAFUUhkSyH/eswR/46BPnw7KrhvDR9bFy/IS0hQcaUl+OwrV2NNRajDL24J8rUlORWviKYgOqJMmcwhDoQRRGjyWhGWOcur1IS72KxFOFw4nVYpEhbWdfeNzJRR4baHzScC1RFjQbCOCddOSZB2NNr0ppE2l89s2q9i70HFIrt0TZJP6Ecl7Pn0LPS36sDlavEre0aBulA+oyno9NJPZmNfusd6Vw2CUmTYCPb5fu52hGawKSY4L1f7NJ+mbenC0LAK1cRdJBg6UqjjTigs0hCpxslppVAwHqJFtpr9g4cLyAj8q/ufZW1Y1I7t9fsHXqNvvHt3yjGmFcB17IGDpYEcInXHksCuMQSc2gJ3MsRtRACzz33HE8++SR33nknN9988yVvP+/YPcoPmVeqALaE9fix41Kl5mV3K47EVdpUDVUu+3PKTwOOp3EvxFycHIRZIHQUR5w8dZIylNRFTbKSoCPp9vW1nx0fRWSizsTggqNxDZGJmJQTxtVYzBvTfTWlZy0fXS6chpV4BZ1pyapDds1c4yTkeeocnid5RhvZA9SaGolRSZNU1MNWRURGwu1I0wV3UA2LFU1qsLWjomFr6yV0dHg8idaa2tUYbVgbrlHmZZeXZ40lKFEYszSjMQ3KKtJjqUTHNDU1siOYKvkajdS6ueCIVNSNco0ypDaVQO1p/ZyuxbzhakdVVt35ZDYjsQnOOWkV8XVHVhfOXWkiK69Tm1lYl7XkHE5fB2tl3Dyf89dmDsLUrOK07AG2ZiEDmGk0jxNDz7nxObIoY6O30a0UtLj9+tv5iT/5Exd5A149XosR8NIFvMRriSUBXOINg6MaAcOl1QDnHI8++iibm5u8733vY319/RUdd37n62rxSgjgc889xxNPPMGdd97Jpx7/FNZYykYiOKqyIk1TLoykYaFrAQH5oE55WWWo3Xvrr/Qp61J2//pSLefDLIQ4G2SzyBTnKcuye6wQghhE1Cx6JSBuZO89dahln23qPtVK8vN88J3RBKa1ajYitakQw6CIbSxkyguZCk2QTEILyqlDx52tm/lisP0+7ErNXV3kxCZBHfK+iW1M4Qppt3CFjM2NlseOlYy0p2Ns7TVUkA5mBo4WC9EqlYJMrtO4GpPECcPekMl4gtWWWMk+52RzckDl9H56zeqyG+ODqMO9uEecyH3zMheV8BBTTlVVXe7jYT/8OO86d3Z3LeNZvmFoxGE+HyIeQmBSTahcxcnBSSovFXWDwYCP/5mPk0TJxV+Mq8SSAC7xtYYlAVxiiTnME7XDGjsmkwlnzpzBGMPp06el5eIy8EojWy4Xl0MAW4PKSy+9xHvf+142Njb4xP/3E/LhHzw6aKy17OzsLHbKtoT6cv+VCICFvdEeqyur9LM+O/UOiZUMv8Y3M0Iwt44WbMCmMiKsS4nLGaZDxpNx10esjBLC1LaMeCGKDsd4T5ykbXtJ4xqcc1RIREy7FzffjBGCtIgYZTAYjDfYYGdq59SgEJmImnpmIukujjxfhcKmhr3dCxDAqIp4da27Hu3INw5xl1FYFiU2tZRVSV3LnpxSijROF5y/xVZB3IsXnKnz1XblpKSX9Zg0E/pJHx/LmNy7qfHEeoZhiNf+QANHC6staIhNLIHWk5rdye5CpI3VtovV8UGO1RLR+ZzF/VBaEUdxF/C9W+4SXJhF0sytLwQvodJeSfh44xq2xlv00h7aar7rXd/FXcfvusSb7+rhnLtmO4AhBPI8XxLAJV5TLAngEkvMoW09OMwIcv78eR5++GGuv/567rrrrlekFrR5akedBfhyBLCqKs6cOUPTNJw+fbozqDzz1We6D/HWmJHneefmhKmLN9F46zvC0zaDyOIbs68DKpIwaOcd48kY1VOooCgpL3mtFIqmbsibaaiwtaTDlMKIIUEjo0PfeFQj+4QEeZy6qSUk2TU0rpm1VkxHxi2CX5TxWnIbCORNTp8+RXFwR9AZGf0eaqJojx1H1GMgBGgKnMkXFDGtNHv13oI6Pb9T2J7PAQUyyBi+7c5Nk5RIz8a9LjhSUnwi/b9922dzd5PUpAQnkT7nN893e3+9pEdqU5qmYVJMUJWinkzHvnbxPTT/Xt2v5LXnb4yhn/bZdbtyjaJIzD5KRvBVU3URPEAXXSNPbWYCaUk+7c9bShplSl2S2ITv+rrv4n3R+/jDP/xD1tbWOHbsGBsbG/R6vSPdp73WCuB4PF66gJd4TbEkgEsssQ/7iVoIgS996Ut86Utf4u1vfzs33njjFR331YiCudQxd3d3efDBB1lbW+O9733vwuj5iWeeWLhtURQ0TdMRIxVEdQvRvvln+3nbPmQADOhYz8igh4KCeqeml/YY9ofUhwXktYfynqZp0EZMFyjYLXa7mjmlFF7J+NcrGSVbZWfKXWNpaCirsnMBN072/7TWFE5CrY09GPJttaVuZpl6Wuku3qQlkxZLbMUpe+hrYDRZ2qOeTIg8uLpBJXFH+OIoXlD2AMqinJFopPd3/20Ayrwk6kcSnD0NRK59DQE21jeI4kg6fV2gKAosM0XPNIZgZQeyrmpG+YgRIzlnJfE8aZR25pwurJlLt2G0rS9BBfIql9xBJ2QdL0Ye591iPzQcILiBgEayJH3wovLaabbk1C28kW7wY9/8Y9JFnedsbm6yubnJF7/4ReI4ZmNjg2PHjrG+vn7VqxWvxQh4aQJZ4rXEkgAu8YbBUakB8wpg0zR89rOfZWdnhw984AOsrq5e1XGvFQF88cUX+exnP8ttt93GbbfdtnBtnnruKc5unp3deDruRM26coMKqFR1ROiw+JT2vjrS3e8BSGT8550nECjqgkE6IHf5gbs7LxVj1sqYMTIR/azPqBlJZVm1eJ/2XKpQLXwtjVJxs2rbBT0TwGKZTMTpGhHhlIz52uvhGoePPCqWSBnHrOOXgBhlVCNmjHCRMaq3uMTQlAFlwDUlURp1/blaa1Kbdo8ZkLDlOImpazGG7M/9m4f2GhUp6kaicUxiaELDheoCqUsZrA64UF5AeUWik65SbWAHbE+2Dx3/tmaXohFyHNu4C36ed8FbK9ezfW+4ZmpKqeSYNrJESSQKbFsZEyQs2mor7m1Xyfh/ztShwrQpRgdCFFBGQcKsUxrF0AzZnezyj/7zP+JH/+SP0uv16PV63HzzzTjn2N7e7shgnuesrq5y7Ngxjh07Rr/ff8X/HixzAJf4WsOSAC6xxD60dXCj0YgzZ86Qpikf+tCHiOP4qo/7ao+AQwg89dRTPPPMM7zzne/k5MmTB+7zb//Tv+1GelEc0Rv0+NKXvjRrk5iO49oxndJqoeZNHgjp/o1VF3yMl6+FeLpfF8RpG0URRV2QRmmnYoHseeFhmA5RWnW1bjoWx2zXN/xyz98JmWmDglvlUJ4M6EwTXJD9uMpT13U3kk+iRDpuDzGAXC588ChrQYnmFZpm9vWgyKt8QV1rYZyR8GUz3ZMjdG7jdncwiiMJo+4Jga1d3SmW3XUsG/I6Z0NvoILq6vSCkeDmloxVTbUwynXeyd6iNkRR1O3kKS0GoMSK4aKpm4UIn3llr65rTLJPGVWzZhMQtbGZ6xPsGmTm3zcDukYTFRQ902MlXUFpxb/6zL/i29/17dx27LbZtTOmI3sg6wsXLlxgc3OTZ555ZuH76+vrh+7z7se13AFsmoaqqpYK4BKvKZYEcIkl9sEYw+bmJs899xw333wzd9xxx5Goi6+2Atg0DY888gij0Yh7772X4XB46H2eeu4pQgisb6wzrsZs7W3JHuB0t88Hf0DV6wwhLY8xsvO333mtEnHoEqBRDXvFHmVTMlwZUuuajf4GNbXEwVRVF3/iKjczyoRZPVoSJQt7ZPthlTROKBSxnrp8Xd2NnJMoEaKjhBDFidwm+CCEyDkqV1GEgqRKsLG0XrRZh9ZM8wMv8vIrZuqotpbgGwKeEDxqSu5yf1D5BBkDW20pmkIImBFTilW2U8+cl0o+VzkacwhJVeArT0PDpJmAhizKKJuSHb8jpLsupIkkMqwkKxhlyItcXLxO4RrX7RnOI05jqkqU1shEWGNFfW2q2Xjbxgd6hPdfH2MNucrlPePm3kfT3b8QiQqolex69kyPtd4apRd3eGpSfv7+n+cf/j/+4UUfJ8sybrzxRm688Ua89+zs7LC5ucnTTz/No48+ysrKSjcuHg6Hh/59vpYK4Ggko/ilArjEa4klAVziDYOjIGkhBKqq4plnnuEd73gH11133RGcmeDV6gP23jOZTHjwwQdJkoR77733kmrl9t42x08eZ3NX2iaauumMFd75LvKljVvplEA1y29T0ZzJoXVzKnH0duYQZJRcVRVN3ZDFGXv5HnVd09BgrJHH1UIcW6episQRS5BdNgyd+1ejscqKoldVEOgUr0hHB5S2/eNPYw11U6O0wiCPb5iOhCuY7E26QGutRL10SE6ebiTsWBsxmHTGnqmqZqKSOq+JtSIxETqKJAdPs0Cegxf1S6OprVyL2tVwiDgcmYjCFVhnGWwMaGhEyWxH8kGMPljZZ3RBdu8SndC3fcqsxDdCth1uIYMxtnFHEA9Dm88IsnfYmji00sQ27nYkvfbU1J3a25pvmtBQNzV7bg/f+MUfIJjtd4a+GI9iFZPFGf203xmCAApXcN+z9112iLrWmvX1ddbX17n99tspy7LbHXz++edRSnVkcGNjo/u7ci0J4GQyAZYEcInXFksCuMQSU1RVxSOPPEJd19x2221HSv7g1RsBj0Yj7rvvPm644QbuvPPOS36IffKhT/Lc+ec68geyBwdzzkwjFWHtmG5e4UuShFrVC0SrywvMxL3ZhkK3RNAYQ5zGTKqJmD20JksyPH42kgyiYNrIduPYQCB3Ob2oJ6TJBcq6lOYSRNHLokxIo1JigDCzEWUSJVRNtZDlp4LUyrXO1k6905okS+TcvZgSnHPiHrZi5FAodNAop7rGj9CEmSGm0phSyR/LgEHq1WDWCtKOd9vz8/iZ+/UQtIS1cQ1N2VBoIWuxibsYG5BxcmQjbGOl79dDHnJ6SQ87sTg3t9s4vbZlUwqZVqFr1yibsju/siglmmXfDy3aaIIJWGsJOjBIB9jYMiknoiS23DQEJrV87bAd0hAC9EVlHegB161dx7gek7v8ANH76u5Xue/Z+/jQmz508Yt1ESRJwg033MANN9wgPde7u1y4cIHnn3+ez3/+8wyHQ44dO0ae59dsJJvnOXEcH2km6BJLvFIs331LLIE4Zs+cOcNwOLzsnaFXiqNWAEMITCYTdnZ2uPvuu7npppsuefuf+/Wf4+O/+nEGvUXVoW3MUCh0JFls7Qd2FwujIE5iGeU2khXXKVrT34QoCHGcKjXtLlnQErjcmj2MFlKjtSaxyUKAszXi6LVaxqBN0yyYDuahlJyXR7LjggkLip8OmjKU7BMFxbRROXH8Gk2apsRJjK412mkC0+q2th9ZVV2mYKt6tb/GJqZqhOSJDcJPn3eJdvGh6prVlsSKWUNVCh3rQ3cE9zuD60kNfWZNKA4ymzHoSR0cJV0mX2Yz8jpn0kyIk5g4xF238fy+Y/t+bB9Ho+lnfTGmNKW8H6Z1ds652f29dALnVY5XniIUojxO9wa3820ZScOh43Ol5XkPBgN6ugcezo/O04t6RDpaiIwBeY99/tznr4gAzkNrzdraGmtra9x2221UVdXtDm5ubnLhwgWKougUwiR5dYKnx+PxkcfYLLHEK8WSAC7xNY+vfvWrPProo51j9uGHHz7yUS0suouvFt57Pv/5z7O7u8t11113SfJXliXf89Pfw3/81H+8yMFkrNflwU1dwSqozliR2ITV4Sq9pEdvrUeyk3Bu51x3CBWpzinaKm7tqFMpRdNITtz8WNF7aaJozSEKxSAd4CvZM6upO/KWJilFefio8qJo20Sm1W/tc8lMxt7WnjiUXUE5KTGlkao65dFW4xtPUzcy+tUSmUI8a9DwbhZd472QPnyYEkMheRcdrWrNpJgQCFR1RdbPus5ilIxbnXcHdutc40h0IqQWudb9Xp/z5XnqRkKmV/Wq1M75ugtubpIGVzhMEPdwPxWHbDuizbQ8vnMO5xyjQvbTjDL0TG/B0DH/HFrncus6DgS2823yJsfjOwd5Zy4yEi0EgIXjq8dxznU7kCBdxlmWYbShaqrOFZzECRfyC6/s9b8MxHHMddddx3XXXYf3njiOieOYF154gSeeeIJ+v9+RwdXV1SMbEbcEcIklXkssCeASbxhcSezDE088wVe/+lXe9a53ceLECeDVGdW2xz0KYlmWJWfOnMF7zw033HBJ52IIge/62Hfxh2f+sPtaM3WpxpGMEXfDbqd2KaNm+3xTVTCOYo4fO45SinE+ZpyPARgmQ3aLXdlDjGQ/T4VphVzbqIG0RURxJNEsB05Q3MA926NxDXv53kLES3fOfpZReBissfSSXudW7kKup60hjW9miuVUCYvsosobVKCazEa2URyRZRmVrrogaa21PI9ph61GyKJ3HqZOWRMUiU2ppuPe+fFnF7Myp/hZLKUvF5S5XtyTnUejqfzMdEENyiqSLKFRDSM36q6jSx3VWJRBjSaLMrluKNSqQk80rhSCp5SodaEOeOUXXLotXHDs5XukvVQUO7SQsuC7ajuQvdGCgkk96QhbC299N6p2fvq8DQx7w86cE9uY0oshpr32hSsw2pDqlMY3NKFhu9g+9LU/KoQQupiZN7/5zdR1zYULF7hw4QKPPvoozjnW19e73cE2VP1KsKyBW+L1gCUBXOJrEmVZ8tBDD3UNGfM/jb9aBPAoRsA7OzucOXOG9fV17rnnHr74xS9S1xcPWf6Bf/wDC+QPoG5q+v0+tatpfEO2mlGeLbsYjhYKRRInrK+vd2POeQx7QzyecT7GxFLD5vGyhzc1p1htObF+QiJd9vHzLM5QKCbVBBcc2mj6vT6qmp3H/Ah6LVtjNBkR2UiiU4IYOLTTNK4hn+Q0YUq68EQ2OvRxcWBqQ5ZkOBxKqwNNF0pJO8lkZ4LTDpta4iyWoGIfaMoG1zhiO9vjGk8mOAVEitFU4dNaY4x0IGulMZgDymBohBTNX/eyKbtzUkrRi3tkvYyKiiZtxJkchPgCpCZljz0ZP3vJ9VNOUU7KroovJIGokixEkH2/JjRkJiMxF3dbN9Us408rTS/qyZ+DjI7zIqeJGnFjGzXLlZzefn6cbmPLam+1+2FNK92dT/fyTP/uBRXQVqODpnIVb9l4y6Hnd1TYHwMTRRGnTp3i1KlThBAYjUZcuHCBl156iSeffJIsyzoyuLa29ooiZCYTUTqXI+AlXkssCeASX3PY3t7mzJkzbGxscPfddx9YxH41CeDVHLcdVd9+++286U1vmrkwL0Iq/5df+F/4t7/3b7s/W2Mx1lC5ikxnnSM0iiNR/vyMLLVj3KyXLWTAzaNxDceGx7px7bxLM/hpnlu/x16xR5Zk3diwJSRb463F66M0eZ5LzZgyspc25aOxiRnXY3zw7I33uvukyaw/N9XpQkZe7etDP2CVmkafTErZ60MRp0LuDrTAzGUj1uN6Zr7wBhMb0l7KpJng6xoVBZSHvu0xmY6GnZOg60pVZJHs5SmlZkHJjafOZ7t9IMS6aAoiHXUVcZNmwmRXdupW01WqqKJhZigx2hATE6/GqF1FMZ6aRWzcjWpjEzPcGNKcX9wDrJzsNkZRdChBbZqGtJdSVMU081BRNAUjRjjj8MZDzAGivVD3BiRpQi+WvbfUpqJwWs24Gi9kC3rvSZKEioqJm2C1uMP/2Jv+2IHX8ihxKRewUorhcMhwOOTWW2+laRq2trbY3Nzk8ccfp65r1tfXu3Hxy5G78Xi8VACXeM2xJIBLvGHwcj9NhxB4/vnneeKJJ3jrW9/Krbfeeuh9tNZd/tlR4kpHwCEEnnzySZ5//vmFUTVcXFX8tX//a3ziNz4BTJsykukHuBNVbrw7xia2Gwcba6irutsFxCM7dObgB2KraJV1KapJYqhD3Y1fVZBrmqWZZOohqmNko5nb9BC1yVgj40gvilMWZTIirpvu9UhtelnX7JLtJX52mxaudmLhqD3pIKUqK1RQRCZCWSFse2pvweVKBbnLKZqCZjLBVVN3bzwkaMm/c95JjAyWuqhlrzIIAUVL129P98iGGXv1Ho1rGFUjOfeL/KxQjkuKbEp6k5TMyqi3R09ieOaEKK11d5zKVWzmm5w4cYKdzR1RdYOYaDKTUTkh8i0RdDh0pLuoniiNqFzFV8Zf6RzFASH9RpmF8W+rJgdExeslPYn2maJoCtJE/my17SJkGtdQVzVN1HSvT+MbTvRP8Nbjb33Z1/1q8EpiYKy1nDhxghMnTnRmrP01dW0Q9dra2oEfMpc7gEu8HrAkgEt8TcA5x2OPPcbZs2d573vfy8bGxkVv+3pSAOu65pFHHmE8HnPvvfceyA07jAB++nOf5qd/8acJIZAmoorllcRONHVDVVeY2HSqS2xjrLHUoZboF6Ydrfty16yRuraiLrrnoZSS8e9U8WtJYGQj+sM+rhG3bavUteNqoyS2pN0pA7nuNXWXM1c2JcFLRIkL0vFbNiWRjQ60YQALapPW4qztauHULB5Gl3oWwVHNbp/FGXVUE6YRLmZgaEppwdi/tzd7yAAhoIqK2GmcCdSxocgntPXHkZbxrwoKvOwl+tpL0HEIbNfblElJrWsxweAp3eHRKQB1URNSeW06o0SAfq9PYhL2enuY0uAqd2gN3LnxOVbXVtE7mombYCLDcDhk3Iy7urfCFcQ6JvjATrEj5xP5Wcfv3M9NIYSZUjpH/JRR2MQyjIayOzk15GilGWZDRs2IpmlwtcNYQ+GF1CqtDqiJX/+Wrz/0WhwlrjQHUClFv9+n3+9zyy234Jxja2uLCxcu8IUvfIGiKFhbW+vGxf1+nzzPj1QB3Nra4vu///v5v//v/xuAb/3Wb+Vnf/ZnWVtbu+h9vvM7v5Nf+ZVfWfjaBz/4Qe6///4jO68lXt9YEsAl3vDI85wzZ86glOJDH/oQaXppFemozBr78UqVxfF4zIMPPkiWZZw+ffrQaJr9BPCFcy/wVz76VyjrkjiWGJIQAlmakRd5R4KsthBgfWWdC7sX5MNvqv4plLg4jYwFh5k0iuxN9iiqfftrIZAkCePRmLaGzWjD6uqq7BBGCXWoF+JMQAwGrhYS2UaHWGNJdUpZl3LeU1KRN7nEtcQpZVFiIomRMYhJIGg5Z+UViUpwwWEwkj+3P8NOaYbNEF958DI2tj1L7WvKUC508ta7ElWTrWUXNZ9opbGVp8SDhSTK8PtuGwiMJ2KciWw0c7gGL9V3WosZw3q297YlpFobUcimkS/z5NM5RxQivPad6pbGKaN6RO5yQhMYHhtSbVbyPjCxxMRMX68oirCxpVoRldMqyzgfL9T0AZSuZLfYne1H1nQVgSrM1e7NszUlSq6NLSvpCrGO8V5UXe/FkJPECefH57u7tIS3F/eE6Cu/oCamNuUH7v2BQ6//UeKoquCMMRw/fpzjx48Dsu/XRs18/vOf5wd+4AdYXV1lY2OD7e3tS5K0y8V3fMd38OUvf5n/8B/+AwB/7a/9Nf6H/+F/4Dd/8zcveb8/9af+FP/yX/7L7s9XW3e5xB8tLAngEm9obG5u8tBDD3Hq1Cne/va3X9ZP+K8HF/C5c+d4+OGHX7aKbj8B/Ov/4K8zySeSvTfd80qTlKIoZgHJcYJRRkJ6t0uyXsbYjqmLuuvzbT/YtdJsjeZ29bS0U2ijiUxEYhJG5WhBLRxmQ1KdYhLDbrE7vdvFr3vtanEkWzFJZHFG7WR/r/0vBDFUbKxs4GqH9pq6qSlcQeWnu4whEuKqpaEjVWkXQxLCtHLOOfZ29mTUa6QFQ+1Oe4FXE4l1cXPdyj6Q7+TYzJIMJCi6HJdEWohc42rG+W6nWMX9IZGJ8NaLchgckYo6E0Xd1J3KmUUZTd10vcn9rE9e5kKYmoa9Zk8IprWkcYrDdfl4xht0LA7hJEooKbs6vIKC3WqXdJCiLkjwtQ9eQrabhqZq2Kw2hYwmhqIo6NGT3EXX4IOn9kLamyDnPW/aaB3RcoHm9iRjRTCBRCWkIaWv+xI1M1Uh21aU/USzRelKySHs99lD9jxjG/M//bH/ieuGRxvKfhherSaQXq9Hr9fjpptu4q677uJnfuZn+Omf/mk+//nPc/z4cU6fPs1f/st/mb/6V//qFR3/scce4z/8h//A/fffzwc/+EEAfuEXfoHTp0/zxBNPcOedd170vkmSHHng/RJ/dLAkgEu8YTBPkkIIPPPMMzz11FPcdddd3HzzzZd9nNfSBTx/3nfffTc33HDDZR/zX/5//iWPP/04tZd9u3aHrSxF1bLGYoyhrEsSNQu4LfOSY8eO8WL5ojxvPTuXsi4PkM/GNSQmYZyP2Sq2UGvTfDcP/aTPsD+kQfp9V6IVilB0u4ALLSFAlmRCRN20smxK5qy2GCVKn/eexCYUVcGkFCNEZjNxuEYJwUuP7Py5aqW7vLx5WGVpiqkBYh+n9vVUTeunFKPigJu1HAnxG2QDXOSoi5pmaxemil8W97FRTBUq2RVUovjpRndu2O6xgievcoKXNhPVKDGITNU/gxE385QM7ta7nSvbWouuNXZgUUrJY02v53zOYqEKstUMVU77mRskC3BKRo0y5C4nyRLKqqRyFeNKjDZtBFB73O7cSyCWRhVlpMcXAySAgVjF9EJPGmqqkcS8GFkxKFzxsu9/j0TfZCajCQ1/9m1/lu9893de8j5HhWtRBZckCd/6rd/KH/zBH5BlGT/8wz/Mb//2b19VI8h9993H6upqR/4A7r33XlZXV/nkJz95SQL4e7/3e5w8eZK1tTU+/OEP85M/+ZOcPHnyis9liT9aWBLAJd5QUEpR1zWf+9zn2N7e5v3vf/8rHrG8VjuAzjkeffRRNjc3+cAHPsDq6uplHdN7z9kLZ/mnv/ZPuxGtMUIg2hFjHMUUVdGpgnVTi8o3XeAv85Jbbr6Fr7zwFQqKTnlzzi18OCVRQuMaJvkEPF2AsUYeY31tfWHcW1SS52aN7caQBBlZ1r7uFEL58kxZalyD8xKz0tbRzX8/dzmjMMLXYmqJiBaCk9V+djeFdbYjQIfdxjeeYlSQDJIu6kWh6EU9lFGUTvp+yaEpCmxTkcYaGwzNStLlDs4/j6ZoRPGLM4qqWHgegUBeSWVbP+5LNIufqW7GmIUu5LKW70chwq04Gj1rcZk+qYW8xMY2UMouaT1dSoyt1NpVTYVWErGSk1NW5UKQ9/w+3+wCSg4hkcS0dD8caPlzz/eE9EUxhS+ky1lBXuekUUru8oXrrVDdbqm1lhACYz8mMhGnbz7NT3/DTx/6Or4a8N4fyQj4cjCZTNjY2OCWW27hu7/7u6/qWC+++OKhpO3kyZO8+OKLF73fN3/zN/Nt3/Zt3HrrrTz99NP8vb/39/gTf+JP8MADD7xqDShLvL6wJIBLvKHQ7s3Fcczp06ev6B+yo2zsmMelRsBFUXDmzBkATp8+/bJ7ii1aAviD/+sPsrkj/b7GGlztUEqRJRlFXRzY3fPeEyey7xOaQBIl7I32WFtb4/zkfKf4NLXUt8U2lvFnVXaVYIN0gPeenb0dYiuux/27fiDEtioq0iQlGAlGPmwM2KlMAdIopfJVd7xAkDGtTqjqSvp8E8f2aJu+6ZNGqeyzIWS0b/rgWCCPIQTUSJH0E8nW6/cYb41nhG3upSlHpRDaY+vs7O4waSYzAgv4psFNcoxT1D7ghgnKB+JeTG1qUpvKe8hBHWpccORl3jmo56NWlFKUdYmtLC440jg9UNmWxAnKqK4lxOGE4FcVRhmUkWaPNuC6qqvOzV3Ygl6vx2Qi6mn7PNosxXPlOTH+xFp2I2FhHxQrTS+BqTvcAclUbWwDw5Ui0xl9K8aG2Mb04z6TatK9TwE20g0KLz+IeOepnTSYeCcj8zRLaWg4lhzjF771F65ZTl6rtr7aCmCLywmC/uhHP8rHPvaxS97mv/yX/wIcnoCw38S1H9/+7d/e/f6ee+7hfe97H7feeiv/7t/9O/78n//zl3zcJd4YWBLAJd4w8N7z6U9/muuuu4477rjjiv8xfzVNIIcRyzaX8Pjx49x9992v6LyVUvz2/b/NJx/6pDzGNLZFK2mrqFx1qIEhhMBab42d0c5CyLN3npiYPM7RTku+2eo6eSnKTdPIMn9kI6yx7E52aULD9bdcT97kBx4HhCBYawkqUDey77e/6xXoGiY8fqYUdcKWxLo4HFmaEamI0ARGYcS4HBNVspPXqlyqUBKWvHgi+JFfeG2DDiT9BOrZCLDdmatcxfkL52WXzs6tFzhHvbdH7BSN9qgsRU+X5+uiJunJuDp4cVMbZTDWLLyu68N1nHfshB3Wh+tMqoncNjYyOo4iBvGAvM4pXUlJOYuFmZ6KUaZTZ52XXUPjDWUoaZqGTGWz/uK+RpeL+42Vq5jUk44ce7yMdCsINqAj2fcLPki7C7P+Zbx0L7ckUQVFWqd444lMJFE21cG/Q3mVd7EvbbsLgW7twEeeVKd8+NYPdyHX1wLte+JaEcDLcQF/3/d9H3/xL/7FS97mTW96E4888ggvvfTSge+dO3eOU6dOXfY5XX/99dx666184QtfuOz7LPFHG0sCuMQbBlrrK1b95nEtTSBf+cpX+PznP3/JXMJL4ezWWX79P/+6kBcz670t6gIaySuLomihLUQpxfG141zYvrCgMnXnicE4Q4gCVagYVSN6aY+6quV4NiKxohiO8zE3nrrx0LgRmLpkY0ujmi5zsCgL4kiIXvv4VktIddHIyDi2sUSnTMeZGk2kI3bz3e65pCYVwutgO99mPVvvPsAPI71xiLsdww4BfOFJ4oQszdiqtg6ok03eCMFZSalGBeXWHnEDlfGYKMJmUkGX2ISmlpFvez16djo6rhb3EVtTjvKK8WRMVVekw7SLQgFxPyulDlUErbYop7rMP60lOicoIWyDaIAvPXUtZppCFZihwW8vvv8qV81GuQEZ7dqAdkIWlVKz96SSMa/cEejR7XT2VZ9hNGRcj9GRvngGI5LrZ5B4nnm37/raOqMw4qaVm/jee7/3ovd/NXCtCeDlBEHPO4kvhdOnT7Ozs8OnP/1pPvCBDwDwqU99ip2dHT70oQ9d9jltbm7y/PPPc/3111/2fZb4o41r825fYolrhKvp52xxLUwg3nsee+wxHn/8cd797nd3zR6vFD/+z36ccTlGaTEIoFgYLzZNQ1VWxFFMFEUkcUKappy/cJ6maWS0uw+JTdiwG0IClDRv7IwlC84mlmACta+pXMWx1WNS+eYsWZSR2rT7/9jqMdIsJSipJkvjtPtfay01cYMTbAw30JHUuSkvIclVWVEUBXmeg5PR885kZ4HYFb7g5PpJojqSUed0v65VtPbDVEKOkyghizMZnWpFjbiJL1y4gDaauL94TRRiosi3RtTnt0ktNDFoY7GDgew4arswrm7R7u2lUdp13bYIhC5jMImShRF0d5sQKErJXZw/hjW2C9wGxP3rp8YVLRl8lavoJ316cU9268oxKlOdijt9cnKfKMio10nnb0sK217oBfLXXpdGbqtiud24GpNa6Q1+OTjvZD8QUTKPD47zrpvfxb/5f/4bfvt//G1uXr1809ZRoL0e13IHcH+m55XibW97G3/qT/0pvvu7v5v777+f+++/n+/+7u/mz/yZP7NgALnrrrv4jd/4DQBGoxE/8iM/wn333cczzzzD7/3e7/Et3/ItHD9+nD/35/7ckZzXEq9/LBXAJZbYh1ape7kdmleKdgRc1zUPPfQQZVly7733XlUg7PbuNrWrOX7sOFt7W4cSH6UU3k33mzSy4N8qa3OuUWssRht2y13J/2PISI+oG+kMXh2s0jQNRouTWGvpcZ1UE6I4QkdiKLBW1LzN8absd3l/aIhyGqVsjjYxWohYoxbVSKvtTM3ch9YlXDohV3VTU7uajXiju9btODwge4eudJI/2EzzB7WYNpRSmEhCn10t+YTpMKUcl91+YCgq2BrRaE/TgLKG1etPgUcUv+lIOxAWY1KmKOqiU/Pm9zHb6BXnHRtmg9rUh/7w0RLB9hjKzBy6qU078teaQYIWItwqkVmcEcWye5gME4rdgqZpSOIEVzvpI1bTEObpSFaF6e+nx1VhFtAcmI6KB4EQBay3aC9O7H7SR7lF5VB+ka8ZbVBKkZiEYTbEOMMnvu0TvO1NbzvwvK8VnHOLauerjMlkcqRNIL/6q7/K93//9/ORj3wEkCDof/bP/tnCbZ544gl2dnYA+Tfus5/9LP/7//6/s729zfXXX8/Xf/3X8+u//usMh8MjO68lXt9YEsAlltiHVgXY74A9iuM657jvvvvo9/vce++9V338Y+vHWL2wyoXdC4d+XylRBstK3KNpnJJXOURTN6hSZDYjOIl8adysgksh37PGUjYlO6MdtNas9ddk/2y6o6WUwjYSSZKmKaUrL9ofDJIHp7T0yQYCzjuMNmRZJmNPFGmUiiO2OXiczGbyvSBkNE5jmEj3b15IlIo1tsuwA7DBUpVV97yABaJmzCweBaDYKyTQOLP482MaN6Iy0zGhjYiGA5pclDSdaCGhRS2k6BCyC1MSVxWdk9p5txBFMxqPCDYcIIkHjlEWRHHEWrSGjS0jN5oRs+kPAG0LTBsBFAgUTSGj4n5MP+oznoxFYZUbCBmetnwoLxEvoZkLfQbZ/WuVQIMQRSU90h5PHMeMqpE8h9YQNHc5VFDSgew9O/UOd2/czQ++7Qc5OXxto0eupQGkrY47KgUQYGNjg3/9r//1yz5uiyzL+O3f/u0je/wl/mhiOQJe4g2Fo/gJfp4AHiW2t7ep65rrrruO97znPVdN/pwTRWt3snvo95MoEQVtOhpN0qQzcwBUTUUTGpRV1Lom6kWkg5Q4jdFG1Mr14Tor2Qqr6SpGS9/rhfEFLowvULqy+1Dx3ssY0hUXJUBa6S7+pWqqA7fLq5x+1CcyEXmdH9gjM9qQmpS8lucQ25jYxGwMNzC1QeWKkAfiJkaXGust1sn/cROT9BOyQUbaT4mSaNZwEQ6PhDFOUb54gVCP8VrO1cQJ0XBAZGI0GhckD7DYK2jqhqyfsTJYoZ/1LxpF0/YgJ1GyaEjxU4d0VRDbmMgebH4B6Kd9TGTYK/cYN2PSKBVVbaqwKSSuhvm7z+X5BRcYN2N6cU/iV5SdEVHFjPDVgKHLBeyaP4J0A5MCDd2OJsxMSHVTd+qyVlrWAqIUrTRFU1C5ihvWb+DX/8dfl13Oa0S+LoZrSQDh6BXAJZa4EiwVwCWW2IeWRB4VAQwh8KUvfYkvfvGLANxxxx1Hcty/9TN/iy89/6VD95bSZFFFUlpiQuYJchpLE0bjJaeuqoWUVb5CoRiuDfHaY1NLnMUMwoDgAudH5yl8wV6zR+5yNgYbeO0pdgrUijqUAHaxLvXBPTmQa55FGZNqIiNEPQt0BshMRlmXVFUlu4nBU1GR6YyylBDpTuWyU+LhZmYEVaoFIwxhWlmWWFG7wszRGtuYUNeM9s4TvMd7BTbQP7GK81aaPUKzoN5ppUlMQj7KpaLNeqIkYqUndWhlVVJXdUf4nHddu0mn3s0pkq0zO41TyXJUWjqQqfGRp2gKqcFDVEWF4njvuAQ7u4RCFZSUGG06omu1lcDpMqdpGiZMyIscr7yoevtetkBANdPMv2q6E6imu4LJLGuQGnkOQVTYdswb27gj+/PxQIlN+Lb3fht/+0/+bbIom12H1xBHVQN3ubicGJgllni1sSSASyyxD20A71FEwTjn+OxnP8v29jbvfve7eeCBB45kt/DXfuvX+K3/32+JkaBu6Pf63Y5YG/o8jyRLKEr5mjUSw9GRsWk/bFM2nXKTxUK4UpV2uXFJnBBCYGOwwaScUPiCOtScm5yTsauyrCVreOOl2m1uDw8tuXMEZqHOUwdpYuS4eZETXJARYpR2vbypTdmqtw6QxizKaPYkCNka27WGtLBYKiqstovkD1F8qrqSerJp7Ep/o8/uzi55vkczHne3VcoQH1ulrgODrE+wgWpX8vdARtohBPImx879k1o3NbvjXcqiJLUpXnlsItdeIRmN2zvbrK2s4byjoZHGlOlbw+OpqVGxwlrbKZ+d+WOegKI5NzlHZjIhikHyAqM0oh7V1E3N9t62GECCn5E9DaEOohaqWfhzi6CEBKpEEapAiMVg0pI/pRSqVrieYz1eZ+InOO+onMTPlK7sgsCNNpx+82n+7kf+Lrds3LLwWlyr3buL4bUYAS8J4BKvNZYEcIklDsFROIHzPOfMmTMYYzh9+nT3IXe1jQOf/+Ln+djPfYyqqboxYV7krAxXxI05GS/cXmvdxZCk8eG7dZNiAkHUmboR1UZr3TlTkyihqRo00sE76A1I/LQVpJlQNiW1rzm/eZ5gpR7MGNN12fZ6vQPkQilFalNG+UgGjHPNEkVd0I/7stdXH8wXTG2K8hKMbJQhTVJqVy/sOWmlIUhH8Px+n2vEmBJHMb24JyHNo5xRM8IYj6rHHUnX1pKuHiNEitRrRvkIgCiN6CU98r1cQo3DnKt2H0II5HVOFEUQoKqr7vlXrmJ7tI3Wmv6wz57aO+QA4GpxCiulupiadhcvUtHsugbYK/eY1BOMNuzUO1SjCt3oLrB5/hoFAiqSOJqg5+JgWkPJ1AFMA6ono9/u/nO1fkVTUNkKDER61slMAKccbzv1Nj76TR/l3Te/+9Dr81orgNeSABaFVOId5Q7gEktcCZYEcIk3FI5KSbhaAri1tcWZM2c4efIkb3/72xdCoK923PQT/+wnCCp0KhbIiHU0HnWxHXEsClzd1ERJRFVVJHFyqKPWey+kLht0ESHdh6GXY1VVhXOOXtLDRnNqlFYMkyHDeEgTGiGXSgiRcw6nHLWrKatyIR6krf8qdCF9uVr6clsik1oZT++/TgohjXmVEzOLa4mjeGH02LimU8pc5SSuRCuCE7JhEkMTGtnho8Y3QuDyC7sED1Gisb2MoFK0saRRytZkpkLWpcTghCgQxzH1pO5q4y72Hqxd3e1BFlWxMHL1wVPUhRD0qjx0jF7WJVmSkUXS7uK1J1UpZSgJSvbwiqZg4iayi9kEdKOxxsp4eXpIpYSIdwQPMX0As9iXwCyjz0z/XlUQktC9DkHN+oKrumJkpJpPaSUqcpbxx978x/ib//Xf5H03v+/Qa9K+/15rBfBajoDbRpalArjEa40lAVxiiUNwNQTw+eef5/HHH+fOO+/klltmo66WVF3taLlxs1DlEAJplHYxI/JFZo5XpWAg49vGNZ2KpBDnZl3XhCZw8thJSleysrrCha0LEuViJDOv0Q3jekwWZWS9jHE5xkbS2+qC68iKUYZjg2NgYVyPyUvpl3XByZ6ZDx1BKppi4UNfodBai7t1sNbtjJkw+1DWaGIdk1e5RNGMyy66wxorgclNQ9VUHTFJooRqImHHTSXj4iiKZsG/iEJZUYEPhHZHL2iMTVlbW0N7zcRNuvMECaHuCHgpX08GCbGPRU2lfSkWidw80Ztv5QAh00VVyFgaDoRrKxRlU0pjiokZ9AZslpvdqFU5xdiNcTgIoGuN804iY6rFjuD9aiwx2MqCYfaaqmkFnJuN61Wt8NGccYVZD3GwAYsl0hHvP/l+/sKb/gK3nLiFY+4Ye3t7DAaDi1aWfS0pgOPxWKoIlyaQJV5jLAngEkscgivpA/be8/jjj/PCCy/w3ve+l42NjYXvt2TlaglgL+11MStpkjIpJhcN313dWGW32j3gqA0EIZEB+r0+O5XkgxXjAgyUvsRqi8sdZVQyqSesrqyyNdk69HGiSHbp8jrHeIM2mn4qHb1FWVDWpZARNVOOuq5ZNXWa+oBrHC8VL7G6soqNLFVTkUQJLjhUUB0xjHWMU/L6xEZCkK213ag7ECirksSK07ZpxABzwFkbZkYTtEJpTfAeXXv0pGKbbVKbolckPqUaV2RW4moSkyw4fYtxgQ8SCxNlshdoGys1bvtQ1AWJTRZyGNu6udrVonTui4NJ41RUuWnY84XyguxB+oZJNZFYHRVknNuELuMwmCCj26nJpFNa57lpgKyX0VQNjWqkzaP20ND1/YIcQ3sJCO+Oo+SYXnvec+N7+NFv/FE+cMsHKMuSzc1Nzp8/z7PPPou1lmPHjnHs2DHW19elHnBqvvlaIoCtA/i1Vj2XWGJJAJd4Q+EoR8CvhKhVVcVDDz1EXdecPn36oj/dH8VuYTuqimxEWZfd+Ha/YpTECbk/GKcSQugIUZZlncmjhcNhtcSDVHXFpJmQxunh8S5q6jhupPvWGktkItaGa+yVe1RNRWYyhmrIuBgzKSYSOsxsFCmHUahmSlzw7OV7rK2tQQCbWtnbC76LOwl1ICamH/fxTvp9YxtTNAWRizDR9Bq5qAv5PSx2x3vfRZgAxL0+YWdMbTx5MUK7iHQ1xjsZ+66vr0vn8WiuF7e9r4qJiIiiiNIL6Wt0g061ZB8GJUHTThS6Ng4mspGQvvm+4RCoqoqVdEVe1wBeezHGBLnmIKNX5x2Fn8bvOPDNjJwFgvxwEEEohXC374d5h3AIgdjERGlEURYyyp0qhirMkXYCoQ6YxMjXpuHQw3TIrcdv5Tf+ym/M3n9Jwg033MANN9yA957t7W02Nzf54he/SJ7nrK2tHfgh6bXCtVYAsyxbEsAlXnMsCeASSxyCV0LU9vb2ePDBB1lZWXnZfL/5OrgrxSgf0ct6syw9JcYGY2Yf6GkssSuudgsqlQ+epm6w1sru2iEdvt574lSiS7z3oqStiArXQUEv7hEnQrriSI7VNm00uw21rqV6LU4ktiRLWV1fZWd7h2Ii9WatAtgFGE+VKdc4yknJ6soqk3KCUdPn5uS1qcqKSEdsFVskJunIVJZkjPMxsYsJIVBOSpRVRFGEtRZtxIHrGkddiTs2aiIiHWG1pVSaesUTpi5gX9fk58+TpceITczWniigNrX0e32q7YoIMXeUrkQhVWuVFlIdqUiuTS1tKkopsEL6QiPkTCeajWSDIpb8Px88DofHs1vvYo0VMl/NzDC1rUlJuzieEIIQP/SiutoiAsrFkXT7XjEYOZdadbE0Gt0piCB/bse9gSCxMIkQQ620jKNHm4zLMf3k4G6b1pqNjQ02NjZ461vfymQy6dRBgAceeIDjx49z7Ngx1tbWrmkkC1z7HcDl+HeJ1wOWQdBLLHEILpcAvvjii9x///3ceOONvOtd73rZcOcrGS3vx+54F48oFsaYjnSoMF2+T8QkYGO7SP68p67rjvxdrK0jjmJR/TJx6NLAIJHO2zRKsdaSJil5yNnOtynqQsjoXAtF3dT0o740VzSF3DeRIOBBOmB1sMpKfwWLlRgSx2IXboDx7rhzCLd7cSC1ZlZJOwkshjgPe8Nuv7Htqm3V3KqqKHLpF67qCmMNK8MV1ofrmIGh9LJfZ5KEeGUFNVWEgnPU584xGc8Ct5u6YTKeiPkkU6ie6hSkNocQ6PYdnXJkSdapnlrJDwLOO8qm5ML4AvEwpqamoTlA1EpXksVy/zSRTuDCi5HEOSdZfNApfu3jtD8goKf7fHMOXtUoQhnwtZcwaOiifIIKGD0jRJ0hpO0FRlpCWue40xJK/vtP//5F3rWL6PV63Hzzzdx9990A3H777YQQePzxx/nDP/xDHnnkEb7yla9QFIc3ohw1rvUIuN/vLxXAJV5zLBXAJZY4BC9HAEMIPPXUUzzzzDO84x3v4NSpU5d93KtVAKu66nbDlBJ1K4kTtNb0sh57hUSJ6EgLsUJIQuMaIhuRJmkXNBwIGGMkskWLQ3VUjIiJKVVJpSoZFWrXEa525HvgmkzVu7avFiBNU+qqllGlc+LQrRsSmxAZGZeOd8cUk0JUq6kbtW2gKCcldsV2Y0urLaEJC2PreQKolJBg5x3Hhsck3NqGmdt1+qHb+Iba1WyPtsmKTKJVIqQFRWtCHdDWws6E2hc0GprJmOAabK9PFmUolKhy01NRWpH1M2pTY5zBNW6ByBVNQRTJKHh+F7SNZ9kut4kjIebz75E2sNtiWU1XyaOc0pckKum6lmGm0rVKXUcwHF3YtXZ61m/ckkWtWOmtYIyRIGevUEZ1rub2GgdCd+6BQHABay3rg/Vu5P0HX/oD/vRdf/pl3sEztOd+4sQJTp48yR133MF4PGZzc5OXXnqJJ598kl6v1+0Orq6uvipE7bXYAVxiidcaSwK4xBsKR/VT9aWUuqZp+OxnP8vu7i733nvvKypPP4oR8NrKGs+++CwwVdtcTagkjmRrvEUIgeFgSGObbvyoUGRpRr/Xl5GqMd0Cvg+yQ6eCwtfiUtVaU5QFQQuhiG1M8AFjzeHkL8j+Xy/pgYa9fI9QBbI0o27q7nUJIZBFWedmBcgGGdWkommajsS0glMIgaqW77VB0uPJ+NC8PZBdTO88aZayN9nDB09mMnIOZgkCYkSYb+AopqHXOiHqxajVBDMa0YxHYprIS2gU+Uogs4sf4iEE8jzHrAlhNokhizJsYfGNl5Hz1OAR6xjvvRBCFMlqQoGYZayW2BnXOFKb0gRRBEtfEnTAYFixK+zmux3p7sh3UHLtHFLTVk/VxnYP1AtR7YwdYfZ3xmoh2hpNHGIKXSyqsiy6fgGMMwzSQWe++dSznzr8hbkI2rzFrn9aKQaDAYPBgFtvvZW6rrlw4QKbm5t87nOfkyDyjY2OEMZx/DKPcHm42mzOV4LxeLyMgFnidYElAVxiiUNwMQVwMpnw4IMPEscxp0+ffsUfQEcxAn7Xne/i4ScfPnhso2Wsq2BvvMdaf42dfIeyKYmiiDiO2ZscEjQ8RRqnsz2z1qQwdegWVQEJC8pb2/BAkOoyqy2jYrRgOilKUb1qL8RnmA25sC0xM7GJwUNTNmRpxqgaESaSb2hiA1ZehziKMUr21BrXCKHVkvnXRtpkcca4GGO0YTgYMkgHbO5sAlAWJTrTB8wwIHmEVVmhrcbjO2dvR3IbwESkJ4+hzm3hjSeEEgoP/fTQ6xi0EFjnHXmdy56lghCL2zW4gMOxcXID7yQvkRQSk8iOpm/kXKKEiorKVcQmRkUSHE0jo9r1ZJ2qqtisN0WFrDmw+9eOmpUSpS/EAfZN/hObyHWqS3lMJ8ad0pfi+kWuTRcdE2YGnjiL2R3vkqYphSt4cfdFHv7qw7zzhnde9H02j5dT3qIo4tSpU5w6dYoQAnt7e5w/f54vf/nLPP744wyHw44MDofDK/4B0Dl3ZGTy5bBUAJd4vWBJAJdY4hAYYw7Uh21ubvLQQw9x/fXXc9ddd13RyOgoRsBf//6v51d+81cWvpYm6QI5CyGwvbdNTU0v7R0wEeyH1rob8YJEkbTuWaUU53bP0R/0WRusiYvYNWL2mLqJLxYyHYKQocQmZGlGWZSYxtCUzUI7x3AwpMgLHBLaHAoZ25qeYb2/zrgad9cu+NBFuxhlKJuSopjW4KUxeZmz1lujl/YoqgLnHVm4iAo4DT3OrMSpzF+DFrGJGQxXyJuKam8PQoBQYSabRMfWMdagvMI7jy70bF+OmenCeQnErppKiKiSfuLIRAyHQ0okx6+NpTEYhrEQmlE5ogkNvvIor+RY1BJMrQKmkXFz294xX9Pm8Z1b2QffxQWFELrfZzbrzresS9JIiK2tLLWpCW5m/uh+VQpttZhpypooFiONC45/c+bfvCICeLmkTSnFysoKKysr3HbbbUJ+NzfZ3Nzk+eefRynFsWPHOH78OOvr6xJNdJm41i7gpQK4xOsBSwK4xBsKRxkD0y6ghxB47rnnePLJJ7nrrru4+eabr/i4RzEC/vr3fz3vvvvdfO7Jz4mpw1gKVywETTdNQ6YysDMlyuNJYgmCng+TBglMnieIVV2JQ1XP9sp2J7sEH8gSIQydOUNzKPmLbCTNHFocwts726Q6PaCAJiahdjW9QY+93b1ZPl0A3Wh2XtrBecf6+jpFKEhicf320z55kQv5mT7vsipxjWNnb0f6ia0lVjK+jm3cESKtpHkksxkVFU3dHMjri3SEUTLyDgSUtcTDFeq9PYL3uLqh3LpANBx2I+koivCxx8ZWavC0ZaveovLTnUsduoiW1hG8HbaJixgauRZto8lOtSNRPUmGwVB5Mdp4/Gy3MCCRLW0YM7NsRZhr/ZhWvHW5e0pq/mITHxinF3VBGqUyfp7W3Gk1dRfrIGrpdGWg7UMuxgXxQK7v73/x8owgcHUh0HEcc/3113P99dfjvWdnZ4fNzU2efvppHn30UVZXVzt18OVMF8sdwCW+FrEkgEsscQjaEbD3ns9//vOcPXuW973vfayvrx/Jca8GSil+5gd+hm/+wW8mjVKqvKIOolY6J6qctRaDweFktNsIuZtXuJQRBSpLMqIoIutnVHXF7miXOq9B05EN5WWEOC7HlE2J1loMC6GRMfD0vGIrlWxN3VCVFYlN2G62aYKodXmTd9lxLQndqrek3ULH8pjtyBJF3dTYYOWYvpGgamAlW5F6Oa9IoqTbJbPG0lQNO6MdjDESh4PE5UQhwlu/QMB98GI2qctujNmOgffyPZxzpGk621Gzhmg4xO/soT3YwmF0Tby6AoiDujIVKFFRX8pfwhuPDZKrmNhEwrGrAqstJhjcOUeSJaSp7C0GH4j6ET54amq2y22MMkQ2oqllxB+ZCGMNFstO2MHhZkSvLYSZZvh1sTBtrp+Vdg+jjcTUmINxQEVdsJqsMhlN8MZ3dXDBha7RJRDoR31RJ70HJwT47N5ZXth9getXrn/Z9/JR1cBprVlfX2d9fZ3bb7+doig6dfDpp58miqIuZmZ9ff3Avt+1joFZKoBLvB6wJIBLvOGwv/D+SqC1pq5rPv3pT+O95/Tp02RZ9vJ3vIzjXq0CCHDHLXfw977r7/H3f+nv4yPfxcForRn0JbKFILl4OtbdWG+/8aP0Mnpsm0AAnHIE1RbH0jk/2wiQxjdoraUGbdoUoYM+WG02fR3mnbCqEEJCEDNCu5cXCDIebfxMqWLxvk45URRNzM7uTkd0QwgYb4iiiGE2xAZLbWu00UyKiewKGkVZlERxJC0X0zGta2TkHNkI7TWJTtgab1E2pVSgTY0U9qTt1MtGKegP8NsjGh3w1QjtI+wgI+pFFBS44BjbMSdOnqB4usAo2ZcsqxLjDUmTEKUR2mkmTCjzkmJSsLKygo0sW6Ot7vVKsgQdyfXOYon4aRrZhYzqiFBN9/KYBjZHSkKlp69X19TRNoNMr+kwHhKcvBeyKKN0JUabLmzbe8/QDtkpdghpWBgxa6XFgORrIhN15DxeiUlswsn+yct6H79ayluaptx4443ceOONOOe6EOonn3ySqqpYW1vrxsVZll1zBfBqf5BcYomjwJIALrHEIaiqiq2tLU6dOsXXfd3XHZk6cBQmkBbf+We+k1tO3cL3/KPvYacQAtcaLmovis6J9ATn8nMXPUY7Dp1H1VQdAexGiO1umaGLWVFKdQ7a/Xtv840TKsxFicwRQu9lF651pgY3zQN0wPRyl2VJb9gTslHXpFHK7t4uzjtx0E7PwXtPWZboIOPVOtSkOiVKJOA5TVIxNYSADpooifBaCFGTyB5j5SvKUKKHmqEdys7ebkVe5dLAMZx2B2PxQaNWNdVoGw+M3TYxgTROMRhIYKAGTPIJ2mgJyA4OExkiI13ExaQgCYmolE0lo/uiYW93j+Mbx9kpduQcigoKupDmftyXbEVvOkW3i34J0vvrK9+FOc9/PyAEMbEJ1knTi8NRaiF/ta+pmamBOmhpAglByKVSs1BopRjXY47ZY90+ZxpS4iy+7L8v16IGzhjTjYL3h1A/9dRTZFlGXddMJpNrQgTzPOemm256VR9jiSUuB0sCuMQS+/DCCy/wpS99iTiOeec733mkga1HYQKZx+l7TvNj3/Zj/Ivf+Rd8deurB74/3h2j48MdsC0WGj6g6wgGRPXRU+JgpmSrPZaa1aF1xoM2f25OkWpVKF+KCUF7IcHBzZSkYKYdtiZASRde7IKT/b0sxmIpS2kniWy0EC3TIoTQjcPrRlRAZYTcWW0JWs6/aMQ0UroSYw2NamTXLhgGdkDucobxkCZu2Lmww85kB7+yeA2zfh9dTfBVhfIe7WuaqCEYOYfd0S5WWUIZaMYNxhiyLMNZR6Ma0iwlCxlbu1torTmxfoJzW0LWz184TxqnXdOK87KOkI9yidLJMlZ7q0Lu/dzuayfcCgGf3w1sSaD1lvXeepcFCTIKx8veY/vDA9DtSlKCz/yCItuqtqUru37kKq9ooobHzz3OXSfuuuh7rnvcIxoBXy6UUvT7ffr9PrfccousIGxt8dhjj/HlL3+Z559/fiFmJkmSIz+H8Xi83AFc4nWBZRPIEm84XOkHSgiBJ598kkcffZQ3v/nNncJ0lDiqETDA9vY2999/P2+67k38q7/zr/jRv/SjrA/XF87Ze491l/45bz6DLY5jlFGiwBlAIyROT0fBRi2SPi8hw+1/bUwIWoijRkKVQxWgQIjE1M1qtJmRtxrI6ZQ/GiSDLgghXR2ssjfZwwV34HWZ7xPu9/rEcUycxJKZFxnKUFK4gnE9pqiE+NWhpjfsEfUinHFYYxlVI+qqZlyO8U7iWOpQc3zlOMEFspAdUEujfp840oQB1G5MUI6Jm1AVUsM3ySdMyom0kBQFW1tbnNs8x95oj7zOycmJ05gszji3eY7Yxp17tagKqrzCOivB03OvU1VWnD17lpSUyEbS9avmAp7niF97bbTSkrMXD0iipHsunSIbvIzT1aJ610bJaK8XDCYtqSyaQuoATUzb0/zxT378ku+57rW7BgrgpWCt5cSJE1hrueeee3jPe97DcDjkhRde4JOf/CSf/vSn+eIXv8jOzs5Vr5W0WO4ALvF6wVIBXGIJhGQ8/PDDjMdj7r33Xqqq4qtfPaioXS201lRV9fI3fBm88MILfO5zn+Otb30ru7tSUfY9/8338Gf/qz/Lr/z2r7C5s8lLWy/x5XNf5vkLz5PqlBpRxIw2Cx/ivaRHUzQ0rqFyVdcR2xI9FUTRIyAGAC2jxm5LL4ihwCknpG26FzivOrZjYPmD/NKqP+1OmXfiNvXad0HGSiksls09yfQzkUTI7EeWZFRNhY40eT5zM+8nbD548jKnP+jjje9MLEorohCRmpRxPcYEw7gYo5Wm8hW9tEdZlRKSnMaUlPQG0sdcRQlmUqBMIB9t4WJDXueipPopMfOz5o2yLCFAXdXkUc6KW2HsxsRRjA4SwJ32Usqq7EK0U1K007JjWBUMsyGlKsmbfKbYTrMGlRIS1vX2Itc3MhHDeNgZcEIzq3tryU3j5Hq02X8ARkneIgWE/mw1QAVReMumJLUpIQSiOGJcjvnDZ/6Qs6OznBxcehfwWiuAlzoPYwzD4ZDhcMib3vQm6rrujCSPPPIIIYROGTx27NgripmZx9IFvMTrBUsCuMTXPMbjMQ8++CBpmnL69GmiKGJnZ+fIdvXmcbUj4BACX/ziF3n66ad55zvfycmTJ3n00Ue7Y95w4gZ+9L//0YXbf/TffJRf/U+/ShZnGGOkHm1OGSqrUmrZ2r7dKdmDWZZcC6UVXvluzNu2TrjGzYwiYaYqtY/RRv7N7wa259eqhN2e4TwfKMWRmrgEG1mcdwsqahpJ1VwbYbP/2s5H3YAQ8DiLGTdj+qpPZjOCChSuQKHErWwMmcm6wOVQBomXsbLHp7Wmt9JjwgSnHEl/SO4KbANNmTMy4Con16cWt7Vc1tAFNYcQxPCioPbSm6yUXJt+1qdpGhKTiIJZlXi8GHka6EU9qlBJWPV8o0eYkrT2tY3Fua28qH69qEfjG+lnzgsaGgbpYLHZJYh7OTZxZxiy2oKbvlZeS9A1M8WxPWYURdIJXDtsY/n4fR/nH37jPzz8jTzFtTRfvNLziKKI6667juuuu44QAru7u2xubvLcc8/x2GOPMRwOO2fxYDC4bCI7Ho8ZDAavxtNYYolXhCUBXOJrGufPn+fhhx/mxhtv5I477ug+BI7SrDGPqxkBO+f43Oc+x9bW1kIF3aWOqZTiY9/xMT5894f5W7/4tzi/c16W3qdBzy2SOOkMBR7fEYs2CDowc4ESQDnZB1yIHSF0ES/d47fGAydf3L+L2BHJeo40qu7O8hhe0ctEgQtB8vzqpibWMUVRzFS+wIGautrV2MgyrsdUoaKmlpBpD3vVHhv9DVFFlbiLc5cLCZruwUUmwiceqy1ZL+OcO8c4jAnjQNqk9Ht9SlNiowRPgW0Cvpw+x4pul7Elxu1oVivNMB1itaXv+hRVQZIk1HVNEsveWQiBuqyxiZg1yqZEKy3Pv6qJo1jCnJspsWbWCUyAUAYym5HFGUmc0M/6jMsx44mEatvEUjQFWZSR13l3zRWK2gsJrFyFVXY28i+B7OCYuVY1JjKzLMkKPv/S5w99T87jtR4Bt3g5IqqUYnV1ldXVVW677TbKsuzUwWeffXbBaLKxsYG1F/9oXSqAS7xesCSAS7zhcDk/iYcQePbZZ/nCF77A29/+dm688caF73etE9P8tKPClRLLsix58MEHATh9+vTCcvrlHPNPvPNPcOafnuHs9lkeevohHn3uUZ49+yxfeOELPL/5PEVdcGx4jNKV7Ix3xAlMWHT3TtU5rTRYCWneH/PSksB5I4j2Gl8vOoLbkaVSSvYDnaiLCiWj5Dlkg4xiVGCskeiURkwtRblI9qIoWrgOIQRycnG6umm0TWtOmXYMv7j1IsNsSC/rdc8jMQmlE7KpUtmLrMuaIinohR55k3fB0ruF9PEmJkOPa7aSGt8EVKNnRHaOAIKMVNcH652D2gWHVpq8yCVbcVrn1/hG8v6cITEJxJAXOU1o0EGjvYyLlVF466GS1yY1KUZLD3Hr1q6KinJSor2sAPR6PXQq7uTGN/TiHpNqsnA9K1eR2hSlFdv1toSC+7kqOC2u8LY6b1SOCARSm1IUhTyPl8HrYQQcQnjFXcBJknDDDTdwww034L3vYma+9KUv8eijj3YxM8eOHaPX6y0YlvI8XyqAS7wusCSAS3zNwTnHo48+yubmJu9///tZW1s7cBtjTDcCe61dwHt7ezzwwAOsr69zzz33HPigajMLLwcn107ykXd/hI+8+yPd17z3fPLxT/KfPvufeObsM/ze6Pc4t3dOwoWnpK8zdzA1BchSmxA35kjd/K96Wj9Wqi6UuBtPTq+pd0JcQI4lX5w74SAdx847XOOwuRUFs6wPvDbW2u48J0y66jfj5Xp1cTRhzsQSpDe5l/SoqYl0RJzE6ESjtWZcjqGCk/2T5OSUeYkxRl6DBEIRiFRErR3BOWoVUFMXc5dHaWb7lEYbVtNV0iglL+X82l7jxjeSrRjoSMN8w0oap2ysbIARFQmgn/UZ5SMiFXHqxCmJcClngd9tRl/wQUK1jaUf98nHuRDdSm5XUzPIBtRB9kTb16mX9EQtrGX8TgDVKHxPXMPta9rQdO+VTuW9jJ9zXg8KYPv38UrPQ2vNxsYGGxsbvPWtbyXP804dbNMEjh8/jjGGkydPHrkC+JM/+ZP8u3/373jooYeI45jt7e2XvU8IgY997GP8/M//PFtbW3zwgx/k537u57j77ruP7LyWeP1jSQCX+JpCURScOXMGECUtTdNDb9eSLOfckX5AvdIR8NmzZ3n44Ye57bbbuO222w4lo1frLFZKce8d9/KB2z+A1pqf/MRP8on/9ycIBOnmHWoaJd29rnEydlSQk6PcLNgZ6LpsffCS6xeQLtm5UXHrKlUoGSXP7SO2yuD8GLndNUttSlVWbFVb+NoTRZFUrwUvwc0qMGpG7IU9aTCZ7tu1MTfzJBbo4lM8nguTC5y88SSRFZNFXdddR65CUbtaatC0ZiVe4YK7QCgDsYpx1tE3fbazXVEaPSgz3ZMLgaBljN0SQKWUNIEYS+Maolges5f0OgOObzxJktCYhrPbZ4ltjFOOzbObDAYDkiyhLEsiFbHWWxPSm09QQRTLJEooc9ntrJtaKgOtRRvpfI5NfMAg04Zml4WQwiRK2Cq2xERSaVH0wnRFIJ29Rq2i2vgGow2Vq2R8XL682en1sAN4tQRwP7Is46abbuKmm27COcfW1habm5t8/OMf59d//ddpmobf/M3f5NSpU9x6661X/XhVVfFt3/ZtnD59ml/8xV+8rPv843/8j/n4xz/OL//yL3PHHXfwD/7BP+Abv/EbeeKJJ7rVkiXe+Hjtly+WWOKIcTHFbnt7m/vuu49+v88HPvCBi5I/mH0YHPUe4OWOgEMIPP300zz88MPcc889vOUtb7no87oaAhhC6CrvtJaYkG/58LeQ9TJ6vR69rEdP94h9zCAMOJ4eZ6AHDNSAYTTsds1CFQi1jHJd7eT3NbKf5pTs+NUB1ShCOW3YCIHQLEZrtLuGrXqkjCLWMalNJQNwWt0WRVKLlk9y6kL2GV/iJfbMnoxD2wibaUh0F2WjJcom2IDqK1RPoQeaylRs7WxR1ZIX2F4bkL5cY8Q5vZ6sc748Dx65XSS/lr4ktw5KWHiZFBLRkgRCHCh1ycRPGPQHrK+sY2JDZWQ3sWjEmFGGkiIU7OQ7nN05S4glamV7vE1RFZwfnefLL3yZrb0ttifb1HXdGUhiG5PnOeW4xBpLMKJQ2kjIH8zq/fbHvXQxMNqQRAm1ryXrz1WzqriW9NUHXd21rzs1WKGY5BJ/0zTNRd+fr4cR8FETwHkYYzh+/Dh33nknP/uzP8u///f/Hu89//E//kduv/127r77bp588smreoyPfexj/NAP/RBf93Vfd1m3DyHwT/7JP+HHf/zH+fN//s9zzz338Cu/8itMJhN+7dd+7arOZYk/WlgSwCW+JvCVr3yF//Jf/gtvetObLqvZoyVDR00AL2cE7L3n0Ucf5ZlnnuEDH/gA119/6U7VKyWAh5E/gHfe8U7WVtfIK9mfK8aFuITjaKFLOPOZ7DJpFnac5lU25Wa1fK3C17VWuFk3becABiFvbYWZ1QQlLRStOQJk3OuCY+RHXHAX2GKLpmrwlUTItPt1Sqtut7CLsnHTsfb0uO1O26SYiEO2KYh0ROVFwdJKg4FBMmDH74gKiiKLMzyeiAiPx9eeMPcvakACrrtmk6lTd1JPePrC03zp3JeEHOFJs1QInIm7+++6XUIkz8MkBsyc43fatzzZnbA12mJ7b5umbnDedceoyorRzoja16wN10jSpHttal+T2IMhx41vSKyQv3bMP67GBzPwypnBp32uzrvudStdKaRz+t5smqYjg+17rn2/vNYKoHOyJ/lqn4fWmjvuuAOA3/zN3+T8+fN89KMf5ZZbbnlVH3c/nn76aV588UU+8pHZGkiSJHz4wx/mk5/85DU9lyVeWywJ4BJvaIQQePzxx3nsscd417vexZvf/ObLVhyOurUDXp6sVVXFZz7zGXZ2djh9+jSrq6tXfczD4L0/lPy1+IYPfkP3e6UUK72VBfIH8qG/Gq12C+1tGHT3fRXwbpb11+0STh8fJ47V4EIXldI+XgsbWRrfUDpRxdKetGOczc+y7bcpVIFTTiJP2oDqdqTs585lOg7uqu30viDpacbhzs4OgUCko1mVnVaYxLDdbFNVFTayJCR45Yl1TO5zqlDh5tS/jvw1LFTboehG6GUo2Sl2GBUjdse7eO1xCIFz3oljud1D9TKqVpnqSHbn0K7FWLCb73J+6zyjyYimbmiapgvNLiYF1aTCGnEzG2MYV2OyaLHfOoul0SMxQg5H1agbS8+P6kMVOlLYdQPPMf80kzzFJElIkkTGz1p3P3S0XcavhtP+leJa9wAD9Pt9VldX+bZv+7ZLTiJeDbz44osAnDp1auHrp06d6r63xNcGlgRwiTcs6rrmgQce4Ny5c5w+fZoTJ068ovsbY67pCHg8HnP//fdjreWDH/zgZX8wvBIC2DoenXOd+nIYIf47f+nvcGztGABpknbVZC3iOCZJJTqmn/Sx8XSdeF8ETOcchQUHqdJTNXBKzLzzYKdjYTclEgGMNRgljtbEJlS+IooicUHP/eulrFrI2Wvvv5BHGOZUxmnAdZfJ5zyhCYxGI4IXZ7PVliRNqG1N7nLKqiRJEk5kJ8h1Tl7kXUNH0zRC/tqHU4i5pX1Z9OyazMN5x7iRur4QAuNyTOUqqqhaOPeOpDSgUiUGlDYzceps9qWncQ271S47eztMiklnDmodvU3TkI9yXOXEDGNhkA46RTNvcgJBat3qadbgVDltr1/bBrJAsJlVBFprqUJF48UFrLXuXrM4jonjuPu7tbOz04WjX2pU/GriWhNAa+3LVsx99KMf7Qj+xf7/zGc+c1Xnsv/v/VEb3pZ4/WNpAlniDQelFKPRiAcffJB+v8+99957Ran9rwYBvJiquLm5yUMPPcRNN93EHXfc8Yr+IVZKXdYHZ6u+tCToUh96/azP//zX/mf+1sf/VtebW40qkkGCMoq8zLuxmY40g8GAnQs73YeIUkpGsYRZjiAskL7gZwQGIDQBFSlUPQ2bno5tdaop85LEJGg0VaiIoxhTyuvTkclWoQqqq5HbrwKipyRs+tRdmAY2+9l5bG9u07+xz9rKGlsT2QtESczMUA/Za/bQaFKVsjvZZZAO2Mw35Rza5+NmxyPQOYGDD10/ctebDOxUO2Qho5f0uvMJ8fQ6laGL25kP4Fap7FbOu6a9m7aoWHDKsTfew+TSQayVnnX9Tl3QRV6QGMkIbHTT7Vru5rvdTt/8mLf9tRvhm7lg6+AZ9obkPsd7Ty8+6HSdf8898sgjaK259dZbO3WwDe5u31vXYjTrnHtFETBXg9YB/HJ/v7/v+76Pv/gX/+Ilb/OmN73pis7huuuuA0QJnF8vOXv27AFVcIk3NpYEcIk3HC5cuMCnPvUpbrnlFt761rde8U+1r5YCuJ+sPf/88zz++OO87W1v46abbjqSY+7Hxfb9LoVv/a+/lT94+A/4jd/7DeJUXKh1U2O1lQ9mpbu9QGMN/dU+o/MjiKcj3oZuNNiZA7SQhVCHg8StPafpHlkI09q5XNHr9xiNRpIx5yQaJbYxk2ZCaMSl2sa8tHt97fPujj0lZyEEdJhVne0T5WjKhtxL5IsKok6a1GCdmD2qpqIX9dh1u5LLVzcHI2z2rcx1aqWaqYDzpFhZRT7Jcd4xTIeSDRim1y5T0pPspqYJNx39OiG02kiTysLrPa1589rjjGM0GTEuxp1ZRCuN9RajDaMwkn5kX+O9l1FzrGa7mIGuC7odPwcfMI0hZKHLOfTKM3bjTgl808abDn1fNU3DmTNnUErxnve8pwtNnlem2993l0/r7v+jxrVUAMfj8WX1AB8/fpzjx4+/Kufw5je/meuuu47f/d3f5d3vfjcgqye///u/zz/6R//oVXnMJV6fWBLAJd5wGAwG3HPPPd1PuleKV6MNpCWVLTF5/PHH+epXv8p73/teNjY2ruiYL0cAr4T8tfhfv+9/Je2l/Ovf+dfd1+qylvG0XmzeGK4MKTYLqrxCJWqmTM7HhfjF4Oh5BbAjNXOn52pHXueoHUUySAi1VMfFJiZOY/JxPiOVc2aTeeWqU83mHssZJ//6TXuLMQiJU4CFC1sXGK4NSZTsrymlsNZSV7W4ZG3CpJpQu1oIqQqoAMHL/S9GAIMKB3qRW9W0ddxuj7fxkYd4SrqmTmmVye7d/uvkgxfl1KuZ8tjm8U3Ht2g5r1CHbiezctWCC1srMdwoPT2Oa09di6OaxfF6UzcScTP3ftor9+jHQnDuvO5O9qOuax588EGiKOKd73zngvI2T/DaEPb2fdv+P3+7oyJt13oEfNQtIM899xwXLlzgueeewznHQw89BMDtt9/e7efedddd/PRP/zR/7s/9OZRS/OAP/iA/9VM/xVvf+lbe+ta38lM/9VP0ej2+4zu+40jPbYnXN5YEcIk3HJIkuWryB6+eAgjyQfjZz36WyWTC6dOnr+pD4VIE8GrIX4t/8F3/gJMbJ/nnv/HPKcpCiJZHIlCweO+FjJU5vvJor7vIlTbDryUOPvhZUwgzla8bDQe1sNvWNA1NPW3EyA3ZSsbWzlanAhpjJPZlnnC1WXXTazPvYA0EcdZGzNS6KekjohuvNqVkHibDBN94yQesCwyGAcONYgAAahlJREFUtWiN3WYXFxw+9hJrEyDUQMyh2G+Q6a5Jq0oyI2YuOCFvni6rzxgj41E9HQ0XakYcW1IdmPUOu5npxQcvJpLSz5zVzWyXr30N2o7n/XmJbbvLwj5l2/Si1cL1LZuSXtxjkAz4m6f/5sLzraqq69x+xzvecUnS1X6vJYjzpqWjHhVfawXwckbArwQ/8RM/wa/8yq90f25Vvf/8n/8zf/yP/3EAnnjiCXZ2drrb/O2//bfJ85zv/d7v7YKgf+d3fmeZAfg1hqUJZIklLoJXywUM8KlPfQrvPffee+9VKwIXI4Av5/R9Jfj+/+b7+f1/8vt85IMfIY5iqlBJ0HAcEfdjIRntLljtoaaLZFFWdRlzSqtDG0E6R2vr1jVCTtIoJVZSxTaZTHjxhRdxtSNOY3EnZyudOtWhNZq0iuOcAznYub1DjZC+mIXomZan5eMcFxxJlhBZcdMO9IBRGIniqMJM7cuR36vZOXS/ThXGoGf7f21OYSeotaT3kNcQwCHRM0oryVI0ARXPyHLncPZT53Uk5Ltr5QhCJlVQ+EqyFDuSrKS27mLvj845vf8E/eHGgaIu+I73fQfXrcx+CCvLkgceeIBer/ey5O8w7DeSRFG0ENY+HzPzSv/OvhY7gEeJX/7lX+4U8Pn/W/IH8jp953d+Z/dnpRQf/ehHeeGFFyiKgt///d/nnnvuOdLzWuL1j6UCuMQSF8GroQDu7e0BsLa2xt13330kysMBlWu6QzU/MjsKxeHU+il+/od+nkeefoRf/b1f5aEvP8QXvvqFruc3SiMUCmNNZ+gACMU0668dxTIlHWGqCCqFMYYoiijGojC2zuHGSU5eHMcEFbDe4hrH+MIYZRQrKytsj7dnbSNTtCPglrgEJIi5I2wX8wS1h3BQ5zWNboiR1gxrLGVT4rzDYnHtjHRquthfYTd/PMU0fDpMCbCeqoYqoL0ocsR0odnzXCt4cUbPR9cQROXDTmNlKhajYdqxcSTj4uDCAlkkktFuGwrdksBOVZzP/bvYW2eO7M6Tw+s2ruPHvv7Huj8XRcEDDzzA6uoqb3/726/6PX+xUXFLfFp1sH3fv5w6+FoogEss8XrAkgAuscRFcNQE8Ktf/SqPPvooIPs5R/WhM68AvhKn75XiHW9+B+948zsAOLd7jvu/cD/PnnuW5zef55ef/GWKoiBNUxrXSPuEhsQmNF5qz5qmITEJzjlp01Dy/RAChSoY5SNKX3YKE0gtWd7Ivl/b1GGVZW9njziLKUIxIzdKRqHBT1Urj2TyBYRctcrb/j29Vq1r998i2NnZ4fjGcUIIRDaiKiuiEDFiJNErwc/mKDVd4DOwqAY203FpHRac0K1qGkxApQpVKrz2kE2PVU//h44UdyrllHgFFzDWyLk0dESwfVyQ54JDrgVT9bBVYZnG8LRk1Sissd17f7/7t1NbYxa+rpQiMhEfufMjHRnP87zrsX77299+5DEjLzcqbv9eXGpUfK13AC/HBLLEEtcCSwK4xBsOR/Uhc1QEMITAU089xbPPPsu73vUuHnrooSMlli0BPIp9v1eKEysn+Jb3fkv35wd//0Ge/eqzNK6hKAustgyHQ8bVmOFgSFEKOYxsRF3V0oVrImpX452c97GVY5zdOivjPCf7fU1oDjx2ZOV+kRUncrebqME1c+RFy9f27wkuYI5U0dCNhYtxQbla0qPHqBmRqITYxKIytXEvER1J64wkCjmXes71q8LBx5w/F4OohG0/cnushNnOohOHL2rq/p2S3LZbGTsdde9zBRtvcEECs72e7Uzuj+hBibLonBNiZ6dZjmpK/pSYcAjgre+MIwCRiRgkA25duxUQsvPAAw9w/Phx7rrrrmvyfryUkeRiruJrOQLO83xJAJd43WBJAJd4Q+LAGOsKcBQuYOccjzzyCLu7u9x7770MBoOr6u49DO3xrjX5OwzXH7+eZ778jJC/afuDd57MZt3OWWQi8jKHAGmaSgBxmVPkBQqp30uihKZqqKua4XDI3mRv4XG00pR1iYkNxhi00qKALUxJw2KUycXQOmVb9S+dfT34QFM2aKVxOAZmwHa9TeMbQjN9DVtFUSHkMQLmS1NatW7aALJAuFhU2EB2Jg+cc/v7ObOKd1PV181lLbbj2OmOoapFAW1H7QSEUKrp+6aZ7W4uPI6aubK7YO7OADwdt2cS/QJglGG9t461Fqss4/GYBx54gOuuu+6qopiuBpdrJJEQb3VNlMClArjE6wlLE8gSS1wEV6sAFkXBpz71Kaqq4vTp010kw1ETwJbsPvPMMxRF8ZqRvxACa721roJMa90RtaqpCHUgtjFlPWVHCqq6Yme8g440aS8liRN88BgtH9rBB85+9Sw2WvxZNbZiPLGxxVpLlkqlWatGdQaNOVOHfOOQP7dQCLnSc9/zsLW3RSBgjWW32QWgKcpZ6PPc3iAFQv72j4H3/b4zwii6ruKumYRw+H0N8pz09PetgSVFcvvaqJmpa1c5qY9r76MSBT3QQcv+n/eyi2iFdHY7hq1hZt8PUF3UTpBIGhXL+Wql2RhsiJO48Xzlwlf4zGc+ww033PCakb/DsN9IYq2Muc+fP08cx1dlJLlcLHcAl3g9YUkAl1jiIrgaArizs8N9993HYDDg/e9/P3E8ywc5ytGy9x5rLXfddRdbW1vcd999fPKTn+Spp56SXturVEEvF63SGZsYG9nuQz+OhajFcUxVV1hlie3sWiRRgvde8vSaAp1o0n5Kmk1luAD5JIcJxGp2v263a2o0SaKkG7V67Rd38dqWj3mlDxZJWsRsHtIqepV8LbjA9t62jFmNwm5VVDRym/Zf0IZu/27exHHAOXvY3mH729ZZ3J5Te677iWD7uO3Ucvp7m1qSYUKURULOjHQYE4Pve3wq54+ZZQTqMFfVp4LkN0ZKVMh5Ijz/fwx+zROZiNSmHMuOEUKgdtIc8sSzT3DzzTdz++23v27I3360P4Q98sgjrKyscNttt2GM6ZTA/WTwqAjhUgFc4vWE5Qh4iSUugiuNgXnppZd45JFHeMtb3sKb3/zmAx+CR6EA7nf63nTTTdx88800TcP58+c5d+4cDz74IMYYTpw4wcmTJ1lfX39VRlxVVXXhsyY2i2PYKQF1Xghv4xoqV5HFWeeoVUpR10Ieylq+hgGdaImSAc5unuX6k9ezmq5SurILoNZGg5cR5MJ41XPx0a+a+7UdEXsOunhTuriY8y+e5/o3X4/dLTg3Pgsrc7et544H3V7gfLRNe8z9cSoLLSlqusPX7COBsNAkskBsp4aXYTSkZ3oEF7CJRRtNExpqVxPHktGoY03VVLjgMFrG5pPJREagU/MMbkoElRDAti+6HQkrq4h6EQM1QFlFEicUXl6L4AOjZoRKFbfddtshF/71gzaWZjgccs899yz8HX01MweXBHCJ1xOWBHCJNySOYgfwlSp1IQSefvppvvjFL/KOd7zjor2aV0sAL+X0tdZy3XXXcd111+G9Z2tri7Nnz/Loo4/inOP48eOcPHmSY8eOdRVcV4PJZMKZM2e69pWf+7c/hzFGKuOMlT09bajqSly0rgIgr3JR7bQijmPKppTvN/J9FOJsbXzXGXzuwjmiKOKm62/CGENRF3jlycucuq67fbT2/pdEm8M3f/v27eKQPbmWFDbQqIZqa4dqZ4I3Sm7aMKuAa3MFWzK5b9Tc1dPNfa2tyQN5v3p8tyd4ScTT88tBFYqEhNVklbzOsdYSCORVjkKR2IRe1COKI8bFmLVsjbzO5ZxC4LqT1zHJJ0IKMVSukszGqXnGxKY778hGXTB1lmaUqqSoCupQd8qZtZb11fWXeQKvLebJ3913333oD2jzRpL5/6+2nu7VyAFcYokrxZIALrHERfBKTCDeez73uc+xubnJBz/4QVZWVi5626sZAc8rfy9n9tBac+zYMY4dO8Zdd93F7u4u586d44tf/CKf/exn2djY4OTJk5w4cYIkSV7xuezs7HDmzBmuv/567rjjDpRSvLj5IkVeYCNLFEU0ZUOURLjSYY2l9nV3f601eZWzvrYO+az1ooXRhlrX4nRViqquqF3Nk08/iYkMcRZT+QqnXRccfWDHDw4qffvJX3dC0/u3t9XIGHhquji3vcsxY3HOz1S/9j7zo9ppfItKZicy33Pc7vm1ppiFvT9Y+D1MH789Z4uQP4CxfF0ruY5plKK0onQlcRTLDxkGLowuYJRhY7hB6crOMKOU9A8niexdWm1RzcH3k7GGjdUNzo/OC6mMElQqhC/SEa528n5WovAygRdeeIHjx48TRRcLXHxtUFXVAvl7OfJ2mKu4/ft3JZmDSwVwidcTlgRwiSUugsslalVVcebMGZxznD59WnpyL4ErVQCvJuZFKcXq6iqrq6vcfvvtjMdjzp07xwsvvMDjjz/OyspKRwYv5wPq7NmzfO5zn+Mtb3kLt956a/f13b1dITlzbR9tuHCn7k3ROPnwzMucsi7ppT2SKKGsSzRa3Jt6GpYc9Kwq7v/f3n3HV1Xf/wN/nbtH9iYhJIxAIAGyGAFFUJY0QAJKFb+MDpRatUJRKtr+HEVrVYqtuIq2Iq2DMKQCCigBi6FCFiSEECAhGJLcm73uPOf8/jg5hyxC9r0h7+fjwUO9ueNzh9xXPuP9lgtfvPY6O2RamfC3WFMQYjm2ZRAU960BN2bm2n1xIe1vAyDM7Nkh1ONrCnucHGCsDKxyBmg+uyyWa2m+p/Bmb6/sxuldqeyKuAzMN80UNh3skJaxW983hHHI1EKQc1W6grfysNgtUCvVcNG4SDOvFptFml2srKuESqmCUq4UZuvkwmyhVDJHzkMpU7YI6eI+wfraerioXMCpOJisJun5We1WyHn5jXIxPI9A90BcvXoVOTk5cHd3h6+vb6c/V33JarXizJkznQ5/rd3sVHHr7RgdLRVTACTOhAIguS31xubzzgTA+vp6qcvB+PHjO1VPrDvlZXq7xp9er4der0doaCgsFguMRqM0O6jVaqV9g25ubm0e69q1a8jPz0dERESbZe5GS6P0HG02oUaf1WaFWqmW9u0BkGr/AUIQlMvkaLQKt1WpVFDKlDBbzWBkDGQKGWSsTChJAqFLCKNgpLp5YIRQ1WbmDGh7iKI94s2a9/FlIIQwC4TZNxaACahQcWCZluVmpMdo9TichYNMI7vRSo1v1htZPHHbLB8wXNPPle3cZ6swyzcKPY0ZhoHKRQWZXQYtp0W9qR41tTXQqrSwcTZo1VqYzCbpfqw2K/QKPWwymxDkmmHtLHy9fFFjqpFayLEcCxtnE+5LJpTrUevVYBQMWJ6F2W4Winwzwj5CjUqDWRGzMHXEVJjNZhiNRpSXl+Py5cvQaDTw8fGBr68vPDw8+q34MnAj/Lm4uPRqB56u1hykAEicCQVAQm7iVodAjEYjsrKyEBIS0qUTj105XCKW3ujssm93qNVqDB06FEOHDoXdbkdFRYV0iEQmk7U4RHLlyhUUFxcjJiYGHh4ebe7LbGk6nCGTgbWyUCgU0Cg1UMqVLQKgQqGAzWqDjJHBbrdDo9JIM1Ecw0HjqhH2KDYVNoYNYCzN9nU2q0nX4V7P5jOBaPXvYqASS6uImhd3Fmv6Nc3GsXZWqqPXYqav+RDEmUYbpNlJhmeEAxayZi3dmuoMCsNibvx3R28vA6BBWB7nwUOj1mD2uNlYOX0ldny7A8fPHYfFZoHZZhYKNrPCfj2zxSwFZI4VTl1rNBqYzTfeE57nUVFVASgBpVrZ4mdA04wtD3AqDhaTBXa7XdhzyPNw17ijzlwHV4Ur7hh+BwChxmNwcDCCg4PBsqz0uTp37hw4joO3tzd8fX37fKm4efiLjIzsk+DZ2ZqD5eXl3dpuQUhfoABIyE10NAN49epVXLx4EREREQgMDOzS/XZ2Cbivevp2RKFQwN/fH/7+/tIhEqPRiPPnz8NqtUImk2HkyJHtzmKwLCvV+BNP/cqUwslTk80EpUoplNoAA5VCdSMMKYQZSdbCws7bYYcdjWiEhbUIe/sA2GX2Ft02eL6pQLG4p+9mWncAETXf69f6emL4qwZwrekyL+FylUIoZ9OitAwgnaCVSsE0/TdXy0Gmk92ozddUO6/NcJq3hpPdJNA2PZ5cJofaTQ2lXokn73kST9/xNABg8qjJuFx6GS9//jK+y/lOeN2tJijlSrjr3FFrqpVm9nieh6nRBJ1OJ8wQii8tx0INNcwNZqg1arA8K4UXG2uDp7cnKrgKodajQglGxoDlWFitVnAch7nhc9v9jMrlcvj5+cHPzw88z0v7UcWlYg8PD2l2sDdnyMQ9f30Z/trT3kGSf/3rXzAajVI/cEIcjQIgITfRXgDkOA4XLlxAaWkp4uLi4OnZ9ROPnVkC7o+evrciHiJxc3NDbW0tFAoFvL29cf36deTn58PLy0va36XRaCCXy6FSCgV1bXYhrbE8C5VSBZPNBBtrE1q3yZXS8qPGVQMzY4bdZoeNb7b3jLkxmyIWTOZdeaAGwt9aPG707G1ej+9WxNAnFoluPhsogxDsDADKAIi5SAHhcXXA0NChKLWWotHc2DZYti47IxPGx9k5KciKz6dFCGweItvrUywGSiUAPaDT6qDRaSBjZHgw8sEWQxgZMBIfPPEBLhRfwN/+8zd8k/kNzDYzquuroVfroVAoYGGFkM4wDEwmk1SrUTrQ0PRiWszC/kGtTphBVKqVaEBDi/DXnKvGFb+e/ut2XvRWL1Or/ajiUrG4BaG3lorF8KfX6/s1/LUmk8mQnJyMp556CgcPHsTcuXMdMg5CWqMASG5LvbUHUFzCEWvVZWZmwmKxID4+Hlqttkf3ezN9veTbFSaTCRkZGdBqtYiNjZVCWWNjI4xGI0pLS5GXlwdXV1f4+flBq9LCDDMsdgsYNNX3U7Ucv0KukPb/QSbU8JP+u5nmBaNlahmgEmYZUS/cDircmIVr3oMXaBkK5Wg5Syhep3lhaAZALYDrEE7+iieHm5V6cZe5Q24RTtM2WhtvlIAR76u9fME03Z+2qSYi2+wxxduh2RLwzfoFN+1JZOQMlGphuTQyIBLBHsHtPCgQHhSObWu3oby2HH/98q/4NutblFWWgeM46LV6gAcsrAU8eFitViHoaYT9gmJ4B5pmChtM0LpqYdfYhfI9anWb/ZZyRo4ti7cg0K1rs+FAy6Viu92OysrKFkvFPj4+0p/OLhU7S/gDgH379uHXv/41PvvsMwp/xKlQACTkJsQvDZZlpS8UnU6HqVOn9qiGXkczgL192KMnamtrkZGRAT8/P4SHh7cYi06nQ0hICEJCQmC1WqUZHJ7jYbPZwLIsNDqNUD+v9elfzn7jPxjhQIi4/08kzvrJFDJwKu5G9wp3CHvwqnBjGVbZ4oYCcV9f65dPDIvibcXZxEIIZVWaX09cJuaFpXFfvS80Kg1s9TahlVrro77ibVovO/NCcWdGKbRbE2d1W5R+ad4BpNlrI11FK9yvVqOVQviDE1rO/rXHx80HLy5/ES8ufxE/XPwBH6d8jB/yfgDHcdDINIBMCIIcz8FkEsIdwzDSbKBCqYDCRYE6ex24Rg5KpRKualdYOIt0wthF7YLH73occ0bPueV4bkWhULS7VFxYWNjppWJnCn8HDx7EmjVrsGPHDiQkJDhsHIS0hwIgITchftFWVFQgOzsbgYGBbYJQd8hkMlit1jaXO1P4Ky8vx9mzZzFixAiEhIR0OBaVSoWgoCAEBQUhYkwETp87DZ4VWoPxDA8WLOSMHIyMkYpEizjmRt/f5uQyOTR6jTADxzXtkZMJnSh4Vx68Lw9chdB716X1jdFuCJOI9f00EJZ2ayGEPw5tZ/F4IYR667yhVggzX0qlEspqJSxyy42/QZvP7DWftRP/2IUyK+JhEqkAtFgDkG8WCDm0DILqG89JrxFCj7vGHcsilrV53ToyefRkTB49GQBgqDbgm7Pf4Fj2MZy+dFoYB8PDyluhVqkhY2SwKWywclZhppDjhWVfhhG6h/B2yOQyjPUfi78s+QtG+47u0lg6o/VSsclkkrrcXLp0STqt7uPjIy0VO1P4O3r0KFavXo3t27dj6dKlDhsHITdDAZDclnojPIlfHllZWRg7diyCg9tfbuuq1kvAzU/6iq23HBn+fvzxR+Tl5SEiIgIBAQFdum3cuDicOntKOP2r0YAHj0ZLI+ysHTzLQ8NopIALCLN6Mr7ll7RGrYFMK0ODrUHYs2a1CDXmlLxQ9oVvem/GAVwJd6NYs7hs297BDxlu9M+1Qgh9FWh7mEMkTsjJGHjoPYSOJIwQ/jieg6feE2XVZcJBlKbZuZsS9xzam0Ke4kabuBbLweI/mx9s0d74dxkjkwLj2slrO1Vy6Gb8PPzw4IwH8eCMB1Fvrsf2Y9ux58weeOo8cff4u1HP1uOK8QoKDAUoqioCJ+cgZ+RQyBUYGTgSU4dPRUJEAiYOmdhvn1WtVtvhUrGXlxdqamrg5ubm8PB34sQJPPTQQ9i2bRseeOABh42DkI5QACSkHTzP4+LFiwCAcePGYejQob12381PAbdXRNZR4Y/neVy+fBnXrl1DTExMtw64xIyLgUatgclsErpNyBjIFXLIeTl4npeKE9vtdiHU2W+URdFoNGDlLMy8WSibAkCtVMPKWcEreKnmn8QCMAEMeBsPNEIotyJnhFDWfH+fuBQsztLVo+NewSIGUMgUcFG5QKaWocHUACWjBGfl4O7ujnpLPepr6oX7kwNo3eFLfHxxZlEcg6L5QzTrAtI8ACrQIvwBQgB0U7jBVe+KtZPXdvxGdIGLxgVP3vsknrz3yRtD53nk5+ejtLQUkRMi8WXOlxjiPgQzw2dCqXB8d4/WS8XiLD3P8ygvL0d6ero0O9jfdfe+//57LFu2DG+88QZWrlzp0F/mCOkIBUBCWrHb7Th79izq6+uFPU+urr16/+IeQGc46SviOA7nz59HVVUVJk2aBBeX1uuqnaOSqwBO+ILmOE4qBwOmqUOCXAalUgkevFQrzc7awSk5NPANkPHCLJd4KIFlWOEkrZyTTqeKM2q8jAdv5yFTyIS9gUDLYsl2HjJGBhkvA2fjwDVwUm/fFt07mnfbaDbzx3AMXDWuwlh5Dgq1QgiFSgXKq8rh4+IDU41JGAfLgzfxN/5Gvdl3frPlYPFkMM/wN2YtxX2H7cwqahgNGusa8X/B/4ezZ8/Cz8+vT2ro8TyPvLw8GI1GxMXFQafTYeX0lb36GL3JZrNJp9IjIyNhsVikpeL8/HxpqdjX1xfu7u59+v/ZmTNncN9992Hz5s1Ys2YNhT/i1CgAEtKMyWRCeno6lEolpk6diu+//77bfXtvRiwv4ywnfW02G86ePQubzYbJkyf3qFAtwzBg7UJvXhdXF9Q21EohkAEDG2uDTCaDUiXsJ+O9eFg4i7DPj+Nhs9qgVqlh44T9Z3oXPWpsNUIXjablcU7BSbOGMoVMOkDBQwiDSpsSGlYj7NnjeWiUGliUFlRXV8Nms92o19c8AMpu/JFB6DripneDHHLpdK5CoRBm7HgeKrkKbCMLnUYnnAhuCrgcxwn3L548bn7at/njcU2HWlS4EUDFHNd6DyCE+9IqtVg0cREemfVImxp6YsDR6VpPQ3YNz/PIzc1FZWUl4uLiun3Svb80P5wlLvu2XiquqKhAeXk5srKyAEAqQO3t7d2r4TkzMxOLFy/Gc889h8cee4zCH3F6FADJbak7f/lWV1cjIyMDvr6+GDduHGQyWaf7AXeFuFndZDJBo9E49IvCbDYjIyMDGo0GcXFxPTrdDAjh1mq3wk3nBjNrhp2xQ6lSQiFTQK1Uo9HaCCtrBcdyYBgGSpkS4ITXRKvRgpfxMNvM4FkeMpUMteZaYc+kvWnJnBGWjHk0/bMp/MllcnAMB7VdDT2rBwMGWoUWJrtJmPFhAZ2nDnXGOqEfL9O0B7NZIWgZZJDJheV5jVYDjV4DhmOgUWrQ2NAodfWAHVDyStSaa+Hn7ocCQ4EU7mTyppZ1PH+jcLUY8FSt/ls8qayEEPqaHypuvjcQwlJ0THAMXl/0OhiGgZubG0aOHNmihl5+fj50Ol2L2a6ufLbEWeCamhrExcXdsqe1ozUPf+PHj293Zq95YXOe51FTU4Py8nIUFBQgOzsbnp6e0qninoTnnJwcLFq0CBs2bMBvf/tbCn9kQKAASAiAkpISZGdnIywsrMWp1660besMnufh6uoKuVyOkydPwt3dXdrL1N+zLXV1dcjIyICPjw/Cw8N7rT8qIARLpUoJhVwBO2cXSr/IABtnk15bjucgY4Tgx4IVChSzgFKhhEKlgF1uh5JVws42FZaWN7VSg1BOhWM4qXsGx3Dw5Dwhs994DlZOOGkt7rHT6XVorGoUZijRzl5LXhiTXCaHu1oIT3bYYZFZYFFZ4OrqCplWBqVJiSpTFeQyOcyNZqmlmkwmlIZhGEY46du8RR0H4fCJuMSraXa5GTcKUzcbS/N/93fxx47lO9qMuXUNvYqKChgMBmRkZEht/Hx9feHl5dXhoRGO45CdnY36+nrExcU5fbuyzoS/1hiGgYeHBzw8PKRTxWKvYjE8i2GwK0vFeXl5SEhIwK9+9Sts2rSJwh8ZMCgAkkFNPPhQUFCAiRMnws/Pr8XPe2sGsPlJX7VajcmTJ8NiscBoNMJgMCA/Px8uLi5SGNTr9X36RVJRUYGzZ88iNDQUoaGhvfZYMkb40mRkDOycHTzHQ6vUgodwAEStVEsHXTieg0wuQyPbKN1erVLDzthh4S3QyrRgORZ6nR4m1nRjrxxudNNgeKG0jM6ig06hgxlC/1q1Ui11vBCXoBVyBVx8XFBTXCM9HsO0rMsnZ+Rw07gJ+xWbnou49Gzlrbgj6g5M0U7BG/9+A4yCQV1jHdScGha55UabNUY4hNL8vlvUJ2ydw5rv/xMzR7MAyCgYvHv/u3DRdLwvs3Ubv+rqahiNRuTl5cFisUhLn76+vlCpbhTZ5jgOZ8+ehdlsRlxcXIufOaPuhL/2aLVaDBs2DMOGDWvRA1tcKhaLT3e0VHz58mUkJCRg5cqVeOGFFyj8kQGFAiC5LXXmL2KWZZGdnY2qqipMnTq13cMevREAb3bSt/nsjc1mk8JgQUEBNBqNFAbd3Nx69Yvl+vXryM3Nxbhx4zBkyJBeu18ACB4SLIU8nhcOT0ht3zQaWOyWFtd3Y9wAQHo9GtlGqU2axWYRikQzLNRqNcysuUWvXDkvh5bXgmkQXk8zZxaCYdMMHCAEUjsrFDXmwUOhUUDjooHZKgRFnudv1ORjGPi6+AqHUnCj7InZZoZCroDKW4Xw4HA8GPcgPj74MXILc6FSqaCWq6E0KWFXCLcTT/YycmFcPMNLobDFYZPWRZ+BG4dT7JBK2qg0KkwLmdal90Emk8HLywteXl4YPXo0GhoaYDQaUVxcjNzcXLi5uUn74PLz82G32xEbG9vrB0p6W2+Fv9baWyo2Go0dLhUXFhYiISEBS5YswauvvurQQ1yEdAcFQDIoWSwWpKenAwDi4+NvuuTV0wDY2ZO+SqUSgYGBCAwMBMuyKC8vh8FgQHp6OuRyuRQGe9Ibled5XLlyBUVFRYiOjoaXl1e3n9fN+Hn54YEFD+CTrz/p1PVlvAwqpQqcnIOJM7UJujLIwIKFVqeFpd4i7AEEA5lVBr1RDw8vD5jlZiiVSlhZK2x2G+RyORrMDZDL5VAoFLCyVqgVajAyBhpGA7uXHbYqG1ielcKfTCaDm8pNWLJm7ULhaTBQKpSwW+3wDPCEXWNHtH80GIZB0qwkXN91XXocrUqLKlMVGK0wfkbGtJjZkzEy8OBbLgt30D5OvD2jYqDX6KFRdH8/HsMwcHFxgYuLC4YPH95i5vnSpUuQyWQICgpCfX19n5+S7Qmr1Yr09PReD3+tNV8qDgsLk5aKxdnU//f//h/GjBmD7777DgkJCXjzzTed9jUjpCMUAMltq8USXDN1dXVIS0uDp6cnIiMjO9wb1VHbtlvpbk9fuVzeYimvsrISBoMB586dA8/z8PX1hZ+f3y33dTXHcRxyc3NRUVHRozIvnbHpl5tw5NQRlFvKO7yeQqGAnJfDyljb1ONTypRC/T+GByfn4KJ0gU1tQ721HgqrAi5GF+i1ejQ2NkKpUgqzi6wFKqUKLhoXNFgahBIzvDArx8k52Gw2KOVKuOhdUM/XCw/ECKeT/Vz8pOAHQFjClTGws3aoPdVoUDXAx8UHk4ZOAgD8MvGX+PzI52i43gBXvSusdquw7GyzQKaStS0uLR4S4YTPAcdw0qyfOKMpBj+GYYTgK2fBy3iEeIT06P1oTa1WIyAgACUlJfDw8MDQoUNRWVnZYulTnB3s6aGg3iKGP61W26fhrz3Nl4rNZjMeeOABbN68GXa7HXv37oXFYsGyZcuo1RsZcOjXFjKoGAwGnDp1CsHBwZgwYcItA1R3D4GIM38sy/aozItMJoOPjw/GjRuHGTNmICoqCgqFAnl5eTh+/DiysrJQUlIilDe5CbvdjszMTNTW1mLy5Ml9Gv4AIWD8dtVv2/2SZmQMNFoN1Ho1bDIbGs2NbUqeqBVqWDgLZEoZeDkPlUIFK2+FRquBK+cKN6ObcB1GWE62WW2w1FmgtCmhhhpW1iqd4NZr9FDKhF7DnI1Do7kRjeZGKLVK8FYeCpkCHloPaFTCDJs4I8jxHFz0LmC9WFhUFjByBp5unlLbOplMht88+Bu46d1gahCKXrtoXIRuHSwjtXaT3ncxDIpZr+lyBgzkMrmwLaDZwRSe5wGlMHM4PWR6b701wutlsyEtLQ1yuRwxMTEYMmQIIiIicNdddyEqKgpqtRqXL19GSkoK0tPTce3aNZjN5l4dQ1fH66jw11pdXR127tyJhQsXoqamBvv370dQUBBOnz7tsDER0l0M394UCSG3AavVemODP8+jsLAQly5dQmRkZKf3vuXm5oJhGISHh3f6cfujpy/P86ivr4fBYIDBYEBDQwO8vLzg5+cHX19faUlbLPOiUqkwceLEfpvR4XkesY/EorahFnJGDhlk0Ol1qGqsAoeWgdp1qCvq7HUAD2hUGjTYGiBXygG5cJjDxtugkCvw2IzHEKmPxON/exxWmRU27kbo1ag1MNvN0Oq0MPGmG5erNLDxNrAKtsWMLFfNobG4EV56LyhVSrh7uKOmoQYqhQp23g5exkPmL4PJJtyXt7834iPi8VbCWy3GnvB4Ai4WXYRNaYNSrURlYyUsViGY8mqhLiHPtexgIlPLwGmbDow0nWpu0R+YYcDoGXCuHFRyFd5Leg/3R9zfK++LOJOm0WgwYcKEDsOUuG/QaDSipqYGrq6u0iESFxeXfjnwIIZVZwh/lZWVWLBgAcLCwvDpp586/X5JQm7FOeb3CekD0kGEpvpmRqMRkydPhru7+61v3EQul3c4u9aceNJXXDLuywLPDMPA1dUVrq6uGDlyJBobG2EwGHD9+nVcuHAB7u7ucHd3R0lJCXx8fDB27Nh+/fJkGAZTwqfg0JlDsPNNhzBsfJvwBwCoBRgdA5VaBTNrhkwpA+RCeDOzZgR7BOONpDcwOWQyAGDD8g3446d/bHEXYnkZC1oeMmF5FiqVStpfKJfLoVFpkDgnEbs+3wWGYVBfXw9Gw8DEm2CHHRzPQavQQs7cmB2uV9Qj2KNlL2iTyYQFkxbgyvUrkDEyKJQK6DV6WG3CLx6MjZH6E/McL30eeXur1m8QPjsMwwDKG0EQANw17kgMT+ziq98+i8WCtLQ0uLi4dKpXrl6vh16vR2hoKKxWq9Rdo7CwEEqlUgqDnp6effLZEsOfRqNxePirqanB4sWLERISgk8++YTCH7ktUAAktzWr1YrMzEzYbDbEx8d3ubitXC7v1PKXo3v66nQ6qaSL2WzG1atXUVRUBJ7nUVdXh8LCwn4pL9Pc/Xfdj6MZR2FjmwL0TdYarFYrPF09UcvXgpWxQkhTa+Dr6otfTP0FVk1e1WLMP5v7M7jqXPHMP5+BzW6DjJGB5VhotBqY+RvvFcMIpWiaixoWhVfvfxVjAsbgYuZFXCy6CI7noFKq0GBrgNUiLB83mBqgtws9ZF21rrDJbRjjPUa6n4aGBqSnp2PWpFk4evYozl45Cw00UKvUcNG6oK5RmNHkWV4qDM2ohIMdPNf0303dTHjwN4KiGASbysg8OOFBKOU9DxtmsxlpaWlwd3eXipx3hUqlanFIqbKyEkajEdnZ2eA4rsW+wd4IR83D361mKvtaXV0dlixZAm9vb+zatcvpy+QQ0lm0BExuW1VVVThz5gxcXFwwYcKEbi1/FhQUoLq6GtHR0Te9jjP19AWEotbnz59HeHg4/Pz8pBOfFRUVfVpepj3rt63HnpN7AAj73RQqhRQINVoNWAULyAGr3Qq5Uo5g/2DcMf4OzBk7BzPDZnZ432cLzmLzp5txOv80ZEoZOBUn1eIDhAClUqtgl9sxLnAcfnbHz7Akdon0852HdmLzPzfDZDHBK8ALlQ2VYBgGCpkCJqsJSi8lbLBB562D2luNw6sOY4j7EOkQUVBQEEaNGoWTWSfx2OuPwcIJewUhB8qqy2C1WqXuH9LyLhjwCh6MFwOobswaM4xQ05BneMjkMkAFqLxUyP1NLnz1vj16D0wmE9LS0uDl5YWxY8f26nvO8zxqa2ulpeKGhgZ4enpKs4PdKW7uTOGvoaEBS5cuhUwmw4EDB6DX6x02FkJ6GwVActv6/vvv4eLigtGjR3f7S6+oqAhGoxGxsbHt/lyc+evpYY/eIO5zLCwsxIQJE+Dt7d3i5yzLSp0ijEajVF6mr5fxfvveb/Ft1rew2+3CSVnGAlbOQq6Uw87b0WhphJveDSvvWon1966XDmR0Vlp+Gj479Rkull3EjxU/gud5eOg94OPqg9jRsVg5bSUCPALaHdv0h6fDUGWAl78XqhqrhD7ErA0sx0LtpQbUAOvGwsfNB5vHbYarqyvq6uowbNgwhIWFSfd1/zP341zROZitQkkahmFgqDHALrNDJpPdOF3c1G+Y9+YBOW60teNvtLVj5AwYDYNJYyfhm5990+3XHgAaGxuRlpYGX19fjBkzps8/n81LplRVVUGv10thsDO/cDhT+DOZTFi2bBksFgsOHTrUbp1QQgYyCoDktmWxWG59pVsoLi5GcXExJk+e3OZn/XHYo7M4jsOFCxdQXl6O6OjoW35ZcRyHqqoq6RAJx3FSeRlvb+9Ol5fprPzifPw3579osDSg2lqNoqoiXC65DEOVAfOi5+H5+5+/ZaeLvvDYa4/h6OmjcPdxR6WpEja7DSqlCla7FTovHVgvFgpXBWaGzcQzUc/gwoULUus3d3d36TXLvJSJdX9bh7LqMgDCkqnJakKNuQa8nJfKwEg9jH2alnrFSWm+qc8xIywTe3h64Hc/+R1+PfnX3X5uDQ0NSEtLQ0BAAMLCwvr982mz2aR9gxUVFZDL5S32Dbb+jDlT+LNYLFi+fDkqKytx+PDhLu0bJmSgoABIblt2u73HXTxKS0tRUFCA+Pj4Fpc7U/iz2+04d+4czGYzoqOju7zPUex8IIZBi8UCHx8f+Pn5wcfHp9c3vPM8j0uXLqG4uBjR0dEO/XItNhZj7mNzodApUGMXWsRpVBrYWTsU3gowngy03lqsGLsCE9gJiIiIQEBAAMxms1Ssu7KyEjqdDp+c/AT/Pf9fVNVXCfej1sBkM6HCUiHt6xNr/XHeTUvVckg9hAHhZyqFCkFDgvDdE9/BXdO916aurg7p6ekICgrCyJEjHd6iTPyFQ5wdtNlsUms6Hx8fMAzjNOHPZrNhxYoVuHbtGr755ps+KZhOiDOgQyCEdKB1J5D+POnbGRaLBRkZGVAqlYiLi+tWWGvd+UAsL1NYWIicnJx2y8t0l1iQurKyEpMmTXL4nqog3yAMHzIcV8qvCKd0wUOr0qKWqxX25ckYVJuq4VfvhwlTJsDXV9iPp9FoMHToUAwdOhR2ux3l5eVY47IGZy6cgVKmhNlmhslkgouLCywyCxrMDcI+wKYC0VK7OPZG2zgwABih8HB0cHS3w19tbS3S09MxbNgwjBgxovderB6QyWTw9vaGt7c3xowZI33GioqKkJOTIxz80WgwatQoh4Y/u92OX/7yl7hy5QqOHTtG4Y/c1igAkttWbwSz5p1AHH3St7X6+npkZGTA09OzWyc729OZ8jLiIZKubvBnWRZnz56F2WzGpEmTujxT2VfGho7FpdJLcPVyhcVmgVlhBmtlwbEc1Ao1dIwOC6YvgKenZ7u3VygUCAgIQEBAAJJfSUbCUwlgeRYWqwVV1VVwdXOF0l2J6ppqqfeweOgDPIR/AlAqlJCpZFDIFVgyYUm7j3UrNTU1SE9Px/DhwxEaGtrdl6RPNf+MDRs2DGfOnAHP89BoNDh16hR0Op20VOzu7t5v/4+xLItHH30U2dnZOHbsmBT2CbldUQAkpANiJxBnO+lbVVWFzMxMBAcH9+kSX/PyMhaLRTpAkp+fD71eL4XBWxUGttlsyMjIAMMw3Z6p7CvxE+Kx77/7YJVZYWEsUHHC0V2ryQorb8U9IffcNPy1FuQXhM1rN2PDtg1QK9VotDQCdoCzcXDVusLMmoU6gWJdQIaHHHK46d2gd9FLexBnj5rd5echfiZGjhyJYcOGdfn2/U3s8KHRaDBx4kTIZDLY7XZUVFTAaDQiMzMTDMO0KDHT23tTRRzH4YknnsCpU6eQkpKCgIC2h4YIud1QACSkA+IScHd6+vaV0tJS5OTkYMyYMRg6dGi/Pa5arUZwcDCCg4OlDf7iUrFarZbCYOtZG7PZjPT0dOh0OowfP77PvsS7657J90D5jlIq1SIWclapVeCUHFbFrOrS/S2IX4DjmcfxxYkvoFVqwYGDUqkEz/OQ8TLo3fTg9BysvBVWWKFX6+Gh94CVt8LO25E0IQl6ddeWxisqKpCVlYXRo0f362eiu8TwJ3aoEX+hUigULfpgV1dXw2g04uLFi7BYLNJ2BB8fnx5vRxBxHIennnoKx44dQ0pKyoB4/QjpDXQIhNy2WJaF3W6/9RU70NDQgO+++w6RkZHw9fXtt1Zq7eF5HlevXsWVK1cwfvx4p1mial1eRiaTSWFQqVQiMzMTPj4+CA8Pd/jM6c1s2bkFH/3vI9RYamC326FVaaHwV2DCyAn4bOVnXb4/juOQ+EwiLl67CJvdBo1eA5ZhAR5Q6VWodau90Zau6RcLtVyN+FHx+Gj1R10KyeXl5Th79izCw8MRGBjY5bH2t5uFv47wPN+iNV1tbS3c3NykpeLuFjjnOA7PPvssdu/ejZSUFIwaNao7T4mQAYkCILltcRzX6TZuN7s9y7K4cuUKysrKYDabpdOx/R0GeZ5HXl4eysrKEB0dDTc3t3577K5oXl6mrKwMNpsNLi4uGDFiBHx8fJxu9k/EcRzmPjMX+RX5sLN2ePt6g/Fk8K/V/0LkkMhu3SfP83h5x8v4+KuPodVpUWVrOh3spoHZrVnHEjCQM3KM8R6D9RPXQ6FQSJ8xLy+vDgOSwWDAuXPnpNPJzq474a89FoulxSlstVothUEPD49Oh8oXX3wRO3bswLFjx7rU75uQ2wEFQHLb6m4AbH3SV5xZEE8uGgwGNDY2wsvLC/7+/vD19e3TPW0sy+LcuXNobGxEdHR0t7or9Dej0YizZ88iOFjon9sf5WV6wm634+97/o43T74JG2OD0kOJRdGL8OfFf+7xfaflpeHxLY+jXlaPusY6aLw1MGlMAJq6lchViB4WjX///N8AIJVLMRgMsNvt0mvWus2auBVg/Pjx8PPz6/E4+1pvhb/WxBlocXYQQIt9g+39osbzPF599VW88847OHbsGCIjuxfyCRnIKACS21Z3AmBnT/o2NDRIs1z19fXw9PSUwmBv7U0ChD65GRkZkMlkiIqKcqrQdDPXr19Hbm4uIiMj4e/vD0B4XcUAbTQaUV9fDy8vL6mQcm++Zl0lBhOFQoE9F/Ygw5ABVw9XbH9wO1w1vdP9wWK1YNM/NuFo1lEMHTMUCrUCaoUaccFxcNW64uHpD7eZHRX7OIuvWUNDg/SacRyHy5cvY8KECfDx8emVMfalvgp/rYk1LcUwKP6iJtYb1Gq14Hkeb775Jl5//XUcPXoUMTExfTIWQpwdBUBy2+J5XujH2oXrd+ekr8lkksJgbW0t3N3d4e/vDz8/vx6VOmloaEBGRgbc3NwQGRnptPvnRM1b0U2cOLHDGmria2YwGFBTUwM3Nzdp36BOp+u3MVsslhYHVPr6Na5prIG7rnv1/RobG2E0GnHt2jWYTCbodDoEBgb2aA9cf+iv8Nee5vsGDxw4gC+++AIBAQFIT0/HkSNHMHXq1H4bCyHOhgIguW11JQD2Vk9fs9kMo9GIsrIyVFdXdzvYVFdXIzMzE0FBQRg1apTTfrmLeJ7HxYsXUVpa2uU9ihaLRVryrKys7FJ5mZ4wmUxIS0uDp6cnxo4d6/QBGxB6U1++fBkRERGw2WzSa6bRaKR9g/1ZO+9WHBn+WistLcVTTz2FL774AiqVCr6+vli0aBEeffRRjB071mHjIsRRqAwMGfR6s62bRqORSqVYrVZpluvSpUtwcXFpEWxupqysDDk5OQgLC5P20DkzjuOQk5ODmpoaTJo0qcszeGq1Wuqq0ZXyMj1RX18v9ckdPXq00wSmjhQWFqKgoAAxMTFS+7ygoKAWp7DF7QLigQgvLy+HHbwRaz86Q/jjeR5HjhzB4cOHcfToUUydOhUpKSnYv38/qqqqHDYuQhyJZgDJbaszM4CtS3H0VRCw2WzSLFdFRQW0Wi38/Pzg7+/fYparqKgIly5dQmRk5IDY2G+325GVlQWbzYaYmBioVKpeu++Oyst4enp2O1DU1NQgIyMDwcHBGDFixIAIf1euXEFRURFiYmI6nF0Va+eJr5nNZpMORPTnwRsx/CkUCkycONHhp78///xzPPbYY9izZw/mzp3r0LEQ4iwoAJLbmsViaffy9k769lcQEHvHGgwGlJeXQ6VSwc/PD2azGRUVFS1meJyZ1WpFeno6lEolJk6c2KdlccTyMmKIZllWmuXqSnmZyspKZGVlDZhuGTzP4/LlyyguLkZMTAxcXTt/KKX5wRuDwYCGhgZ4enpKS8V91YrP2cLfvn37sGbNGnz22WdISEjo88c7ceIEXnvtNaSlpaGkpAR79+5FYmJih7c5fvw41q9fj5ycHAQGBuLpp5/G2rVr+3ysZHCjAEhua1arFa0/4s7U05dl2RadDlQqldQJwcPDw2lnp8T9c444oMLzPGpra6VgYzab4e3tLQWbm81yGY1GnDt3bsAUTOZ5Hvn5+SgtLUVsbCz0+q51B2lNPHhjNBpRXV0NV1dX6RR2bx0isdvt0olqZwh/Bw4cwOrVq/Hxxx9jyZLu9VfuqkOHDuHkyZOIiYnB0qVLbxkACwoKEBkZiTVr1uCRRx7ByZMn8eijj+KTTz7B0qVL+2XMZHCiAEhua60DoLP19LVarcjMzAQATJgwAfX19SgrK4PRaATDMPD19YW/v3+Pljx7W11dHdLT0+Hv748xY8Y4NKSKHSLEMCiW5BGXisXyMiUlJcjNzUVERIRUmsaZiYW/jUYjYmNje/1ktNVqlWahKyoqpL2WYiHl7rynzhb+jh49iuXLl2P79u144IEHHDIGhmFuGQA3btyI/fv3Izc3V7ps7dq1yMrKQmpqaj+MkgxWdAiEDBrNZ/6coadvY2MjMjIy4OLigsjISMjlcmg0Gvj4+Eh7ucrKypCdnQ2e56XZGm9vb4eFQXEJNTQ0FKGhoQ5/DRmGgYuLi9RtRJzlKi0tRV5eHtzc3KBSqVBRUYGoqCh4e3s7dLydwfM8cnNzUVlZibi4uD4p/K1SqRAYGIjAwMAWhZSzsrIAQPqsdfYQibOFvxMnTuChhx7Ctm3b8NOf/tShY7mV1NTUNvsS582bhw8++AA2m21A1P4kAxMFQDIo9OZJ394gHkQYMmRIu6dQZTIZvLy84OXlhfDwcNTU1KCsrAwXLlyAzWaTvqD7s72aGEbDw8MRFBTUL4/ZVVqtFiEhIQgJCYHZbMaFCxdQXl4OALh48WK/lJfpCY7jcP78edTU1CAuLq7P9uk1J5fLpdeF4zjU1NTAYDAgLy9P6t4i7rdsL4w4W/j7/vvvsWzZMrzxxhtYuXKlU77PzZWWlraZlfb395f2Cg8ZMsRBIyO3OwqA5LbGMIwU/Jwl/BkMBmRnZ2PUqFGdOojAMAw8PDzg4eGB0aNHS/vfLl26hOzs7H7pT3zt2jXk5+djwoQJ8PX17ZPH6E08z6OoqAg1NTWYMmUKNBqNtOR59epVqQ6cv7+/09TN4zgO2dnZqK+vR1xcnEO6o8hkMnh6esLT0xOjR4+WDpEUFRXh/Pnz8PDwkD5rWq3W6cLf6dOncd9992Hz5s1Ys2aNU7yvndF6nOIWlYEyfjIwUQAkty2O41BfXy/NWjhD+BODVHf3ojEMA3d3d7i7u2PUqFHSF3RhYSFycnKkwxB+fn69snTE83yLEiQeHh49vs++Ji6hVlRUIC4uTjo8MWTIEAwZMgQsy6KyshIGgwGZmZnSXktxydMRy+scx+Hs2bMwm82Ii4vr1XI63cUwDFxdXeHq6oqRI0fCZDJJXTUuXrwIvV4Pm80GjUaDCRMmODz8ZWZmIjExEc899xwee+wxh/+/3lkBAQEoLS1tcZnBYIBCoRgQWxbIwEUBkNy20tPTMXPmTMybNw+JiYmYN29ehwWY+xLP87h06ZJUzqM3glTrL2jxMMS1a9eQm5vb7mGIruA4TlpCnTRpksNeu65oPos2adKkdpdQ5XK5tKTZvG7e+fPnwbKsNKPaX8vrLMtKtRRjY2Odds+XVqvFsGHDMGzYMOkUuNivODU1tcUhkv4O0Tk5OVi0aBE2bNiA3/72twMm/AFAfHw8/vOf/7S47PDhw4iLi3PazwK5PdApYHLb4nke6enpSE5Oxu7du1FcXIw5c+YgMTER9957b5dqqvUEy7LIyclBbW0toqOje1zOozN62p+YZVmcO3cOjY2NiImJ6Ze9aD0lBimr1dqtotTdLS/T0zFnZGSA53lER0f3aS3F3tJ62ReANKNqNBoBQArY3t7efR6i8/LyMH/+fDz88MN48cUXHR7+6uvrcenSJQBAdHQ0tmzZglmzZsHLywvDhg3DM888g+LiYuzYsQPAjTIwjzzyCNasWYPU1FSsXbuWysCQPkcBkAwK4hKbGAYLCwsxe/ZsJCYmYsGCBXBzc+uTLw6bzYbMzEzwPI+oqCiHLO217k/s6uoqhcH2yos0H3N0dPSAmIUQxwwAUVFRPR5zR+VlequIst1uR0ZGBhiGQVRU1IAJf2K7uaioqDbhjud56RCJwWCAxWKRQrSPj0+vf/4vXbqEe++9F8uXL8err77qFKWSUlJSMGvWrDaXr1q1Cv/85z+xevVqFBYWIiUlRfrZ8ePHsW7dOqkQ9MaNG6kQNOlzFADJoMPzPLKzs7Fr1y7s2bMHly5dwj333IPFixfjJz/5Sa8VYDaZTMjIyIBOp8P48eMdvkcKQIv+xJWVldDr9VIYdHFxgdlsRkZGhtPs6+oMsSOJWq3uszGL+9/KyspQU1MDNzc3KQx2Z0bXZrO16KIyEF7nW4W/1pqHaKPRiLq6Onh4eEj7LXta3qawsBDz589HYmIitm7d6hThj5CBhAIgGdTEAwNiGLxw4QJmzZqFxMREJCQkwNPTs1thsLa2FhkZGU5RLPlmWvcnVqvVsFqt8PLycprAeitmsxlpaWlwdXXtt44kYog2Go2oqKiAXq+XQo2rq+st32sxsIoheyAEl66Gv/aIM9EGgwFVVVXQ6/VSiO7M69ZccXEx5s2bhzlz5uCdd94ZEK8hIc6GAiAhTXiex8WLF6Vl4uzsbNx1111ITEzEwoUL4e3t3akvKbHl2IgRIxASEuKU4a+1yspKZGZmQq1WSy3p/Pz84O/v32fL4z3V0NCA9PR0eHt7Y+zYsQ4ZY+u+zkqlUjp4095MssViQVpamlT8eyAEl94If63ZbDaUl5fDaDRKr5sYom91iKS0tBTz58/HtGnT8MEHHwyIX1QIcUYUAAlpB8/zuHz5sjQzmJmZiTvvvBOJiYlYtGgRfH192w0cP/74I/Ly8hAREYGAgAAHjLzrysvLcfbsWakuodgZQpzlal4ouLszor1NbEcXGBiIUaNGOcWYmpeXad7KTywvY7VakZaWBnd3d4wbN27Qhr/WWJZFVVWV9LpxHCcdIml9EttoNGLBggWYOHEiduzYMSD2TRLirCgAEnILPM+joKAAycnJ2LNnD9LS0jBt2jQkJiZi8eLF8Pf3B8/z2Lt3L7y8vBAVFQVPT09HD7tTSkpKcP78+ZsGVo7jpFBjMBicoj9xdXU1MjIyEBoaiuHDh/f743dG8/IyBoMBdrsdAODu7o4JEyYMiIM1/RH+WhMPkYhLxWazWeqOMmfOHPz85z9HWFgYPv300wHxGhLizCgAEtIFYocJMQz+8MMPmDx5Mqqrq1FeXo4ffvhhQHTKAIRN9FeuXMHEiRM7VXC2eagpKysDx3HSzGBne8b2VEVFBbKyshAWFobg4OA+f7ze0NDQgDNnzkCtVoNl2RblZfriZGxvcET4a09DQwOOHTuGP/zhD8jLy4OXlxeefvpp3HfffRg5cqRDxkTI7YICICHdxPM8cnJykJSUhJKSEphMJkyZMgWLFy9GYmIihg4d6hRLk63xPI/8/Hxcv34dMTExcHNz69Z9iP2JDQZDv/QnFnsRjxs3bsD0R21oaEBaWhoCAgIQFhYGhmFQX18vzXDV1dXB09NTeu2cod6is4Q/UV1dHRITE6FUKrFs2TIcOHAA33zzDV566SVs3LjRoWMjZCCjAEhIN1VVVeHOO+9EaGgoPvnkE9TW1mLPnj3YvXs3Tp48iZiYGCQmJiIxMRHDhg1zijAoLqdVV1f3WlFqsRuEGAbNZnOv9ycuLi5GXl4exo8fP2BmWMV9ikFBQRg5cmS7779YXsZgMEg1GsVZ1f4oGN6as4W/hoYGLF26FHK5HF9++aX0mtTW1sJisQyYzwIhzogCICHdxPM8du7ciQcffLBFyOF5HqWlpdi7dy92796NEydOYOLEiVIYHD58uEPCoNgpw2KxICYmplvt4W5FrP0mhsGGhoYW3TS6s9x59epVaanay8ur18fcF2pra5Geno5hw4ZhxIgRnbqN1WptUZZHp9NJYbCrZVK6w9nCn8lkwrJly2CxWHDo0KF+69zz9ttv47XXXkNJSQkiIiKwdetW3Hnnne1e92ZFn3NzcxEeHt7XQyWkRygAEtKHeJ6H0WjE3r17kZycjJSUFERGRiIpKQmJiYk3nRnqbVarFRkZGZDL5Zg4cWK/baBv3k1DXO7sbH9inudx5coVXLt2DdHR0XB3d++XMfdUTU0N0tPTMXz4cISGhnbrPrpaXqanWJZFenq604Q/i8WC5cuXo7KyEocPH+639/6zzz7DihUr8Pbbb2P69Ol47733sH37dpw/fx7Dhg1rc30xAObl5bXYSuHr6+vw15CQW6EASEg/4XkeFRUV+OKLL7Br1y58++23CA8Pl8Lg6NGj+yQMmkwmpKenS7XnHPXFJPYnNhgMqKmp6bA/Mc/zyMvLg8FgQExMDFxcXBwy5q6qqqpCZmYmRo4c2W5g6I7W5WUASDOq3t7ePT6JLfYjBoTetY4OLjabDStWrMC1a9fwzTff9Ous75QpUxATE4N33nlHumzs2LFITEzEK6+80ub6YgCsqqqCh4dHv42TkN5AAZAQB+B5HlVVVfjiiy+QnJyMo0ePIiwsTFom7q3CxnV1dcjIyICvry/Cw8OdYh8iIMzwiGGwqqqqRX9ijUYj7VOMjY3tccuw/iKeUB49ejSGDh3aJ48hnsQWl4ptNht8fHzg7+8Pb2/vLu+3dLbwZ7fb8fOf/xx5eXn49ttv+3WPn9VqhU6nw65du5CUlCRd/pvf/AaZmZk4fvx4m9uIATA0NBRmsxnjxo3Dc8891+6yMCHOhgIgIQ4mnqjdv38/kpOTceTIEYSGhiIxMRFJSUndLhoszkaFhIQ4bN9hZ4h738rKylBZWQmZTAa5XI7x48cPmD1/YjHt8PBwBAYG9stjiodvxCBtMpng5eXV6f2Wzhb+WJbF2rVrkZ6ejmPHjvV7IfXr168jKCgIJ0+exLRp06TLX375ZXz00UfIy8trc5u8vDycOHECsbGxsFgs+Pjjj/Huu+8iJSUFM2bM6M/hE9JlFAAJcTI1NTX48ssvkZycjK+//hrBwcFYvHgxkpKSMH78+E6FQYPBgOzs7D6djept4iEEi8UCvV6PyspKaLXafj0I0R0GgwHnzp1zePeX1vstPTw8pNeu9RK7s4U/juPw+OOP47vvvkNKSopDPrNiAPz+++8RHx8vXb5582Z8/PHHuHDhQqfuZ+HChWAYBvv37++roRLSK6iPDiFOxt3dHQ899BAeeugh1NXV4cCBA0hOTsbs2bMxZMgQKQxGRUW1GwZ//PFHXLx4EZGRkfDz83PAM+g6m80mHVKZOnUqFAoF7HY7KioqUFZWhjNnzkj9if38/ODu7u4UYbC0tBQ5OTkYP368w19rvV6P4cOHY/jw4TCbzVIYvHjxYovyMhqNxunC34YNG5CSkoJjx4457BcWsX5laWlpi8sNBgP8/f07fT9Tp07Fzp07e3t4hPQ6mgEkZICor6/HoUOHkJycjIMHD8LHx0cKg7GxsQCADz74ACNGjEBMTMyAaUdnsViQnp4OnU530xlOZ+xPfP36dVy4cAETJkyAj49Pvz9+ZzUvL1NZWQkAUKlUiIyM7JMTxV3BcRw2bdqEvXv3IiUlxeHdPaZMmYLY2Fi8/fbb0mXjxo3D4sWL2z0E0p777rsPlZWV+Pbbb/tqmIT0CgqAhAxAjY2N+Oqrr5CcnIwDBw7A3d0dOp0OJSUlSElJwZgxYxw9xE4xmUxIS0uDh4dHp/c6OkN/YnGWtbNt9JyBWOrFZrPBxcVFKi8jdiHp7yDN8zxefPFF7NixA8eOHXOKunliGZh3330X8fHxeP/99/H3v/8dOTk5CAkJwTPPPIPi4mLs2LEDALB161aEhoYiIiICVqsVO3fuxJ/+9Cfs3r0bS5YscfCzIaRjFAAJGeCqqqqQkJCAc+fOARCWkBctWoTExERMnTrV4Ut8N1NfX4/09HT4+flhzJgx3QofzfsTGwwGsCwrhcG+6k9cVFSEy5cvIyoqasDMsop7/nieR0xMDORyeZsgDUAKg71RXqYjPM/j1VdfxTvvvINjx44hMjKyzx6rq95++238+c9/RklJCSIjI/GXv/xFOtCxevVqFBYWIiUlBQDw5z//Ge+//z6Ki4uh1WoRERGBZ555BgsWLHDgMyCkcygAEjKAcRyHefPmoba2FgcOHICLiwuOHj2K5ORk7N+/HxqNRgqD06ZN65W2bL2hpqYGGRkZCA4OxogRI3pl5kk8TW0wGFBWVtaiREpv9ScuLCxEQUEBYmJiBkxhapZlkZmZCY7jpPDXGs/zLYK0+NqJvZ1783PD8zzefPNNvP766zh69ChiYmJ67b4JIZ1HAZCQAe7QoUOYMWNGm96xVqsVR48exe7du/HFF19AoVBg4cKFSEpKwh133OGwMFhZWYmsrCyMGDECISEhffIYzUuklJWVtehP7OPj061OKFeuXEFRURFiYmJadH1wZs3DX3R0dKfe856Wl7nVfb/zzjvYvHkzvv76a0yePLnb90UI6RkKgIQMAjabDceOHUNycjL27dsHAEhISEBSUhJmzJjRb63hjEYjzp07hzFjxiAoKKhfHrOn/Yl5nsfly5dRXFyMmJiYfutJ21PdCX/tEcvLGI1G1NbWSuVlfH19u1Skm+d5fPjhh3juuedw8OBBTJ8+vVvjIYT0DgqAhAwydrsdx48fx65du7Bv3z7YbDYsXLgQiYmJmDlzZo9meDpSUlKC8+fPIzIysktlNXpbV/oT8zyP/Px8lJaWIjY2ts0sq7PqrfDXmtlslk4UV1VVwcXFBf7+/vD19e2wXR/P89i5cyc2bNiA//znP5g5c2avjIcQ0n0UAAkZxOx2O/773/9i165d2Lt3L0wmkzQzOGvWrDaBqLuuXbuG/Px8pzs1215/4ub18vLy8mA0GhEbGwudTufo4XZKX4W/1qxWK8rLy2EwGFBRUQGtVisdInFzc5P2dfI8j127duGxxx7Dnj17MHfu3D4ZDyGkaygAEkIACMHh5MmTSE5Oxt69e1FXV4cFCxYgMTERs2fPbtNNorMKCgpQWFiI6OhoeHh49O6ge1Hr/sQKhQI8z2PixIkDpiVdf4W/1sSi3QaDAeXl5VAoFDh37hyGDRsGk8mERx99FJ999hkSEhL6ZTyEkFujAEgIaYNlWZw6dQrJycnYs2cPqqurMX/+fCQlJWH27Nmdmg3jeR6XLl3C9evXB9TeOY7jkJ2djaqqKuj1elRXV0Ov18PPzw/+/v7Q6/VO0YWkNUeFv9bE8jIvvfQSPvnkEzQ0NODuu+/Gk08+iTlz5nT7FwlCSO+iAEgI6RDHcfjhhx+kMGg0GjFv3jwkJSVh7ty57e6L43keubm5qKioQExMzIDZOyeGv/r6esTGxkKtVsNms0lLneXl5dBoNPD393eq/sTOEv6aO3r0KB588EFs2LAB9fX12Lt3LwwGA/Lz8zFkyBBHD4+QQY8CICGk0ziOQ1pamhQGr1+/jrlz5yIpKQnz58+Hi4sLzGYz9u/fj6CgIMTGxg6YGR+O43D27FmYzWbExMS0exiGZVmUl5ejrKwM5eXlTtGf2BnD34kTJ3D//fdj27ZtWLFiBRiGAc/zOH/+PCIiIhw9PEIIKAASQrqJ4zhkZmYiOTkZu3fvxrVr1zBz5kzk5+dDqVTi5MmTvXaIpK+xLIusrCzYbDbExMR0qiwOy7KorKxEWVmZw/oTi+NmWdZpwt/333+PJUuW4I033sAvf/nLfgvFb7/9Nl577TWUlJQgIiICW7duxZ133nnT6x8/fhzr169HTk4OAgMD8fTTT2Pt2rX9MlZCnAEFQEJIj3Ech9TUVDz44IMoLy8Hy7KYM2cOEhMTsWDBAofNjnVG8zZp3Q1RHMehqqpKqjUIQAqDXl5efdJWzRnD3+nTp7F48WL88Y9/xK9//et+e8/FHr5vv/02pk+fjvfeew/bt2/H+fPnMWzYsDbXLygoQGRkJNasWYNHHnkEJ0+exKOPPopPPvkES5cu7ZcxE+JoFAAJIT1WUVGBuXPnwt/fH7t27UJBQQF27dqFPXv24OLFi7j77ruRmJiIhIQEeHh4OE0YtNvtyMjIgEwmQ1RUVK+0i+N5HlVVVW36E4s9dnvjMcTwZ7fbERMT4xThLzMzEz/5yU/w7LPP4re//W2/vsdTpkxBTEwM3nnnHemysWPHIjExEa+88kqb62/cuBH79+9Hbm6udNnatWuRlZWF1NTUfhkzIY5GAZAQ0mMWiwVbt27FunXrWuyd43keFy5ckMLg+fPnMXPmTCQlJSEhIQFeXl4OC4M2mw3p6elQKpWYOHFirwSz1jrqT+zt7d2t4OaM4S87OxsLFizAunXrsGnTpn59T61WK3Q6HXbt2oWkpCTp8t/85jfIzMzE8ePH29xmxowZiI6OxptvvildtnfvXixbtgyNjY391hmHEEfq/XUJQga4zZs3Y9q0adDpdJ2uW8fzPJ5//nkEBgZCq9Vi5syZyMnJ6duBOhG1Wo2NGze2OTjBMAzGjh2LP/zhD8jIyEB2djZmzpyJ7du3Y8SIEVi0aBE+/PBDGI1G9OfvolarFWlpaVCr1b0289cehmHg4eGB0aNH44477kBcXBx0Oh0uXbqE48ePIzMzEyUlJbDZbJ26P2cMfxcuXMDChQvx6KOP9nv4AyBtOWjdXcbf3x+lpaXt3qa0tLTd69vtdpSXl/fZWAlxJhQACWnFarXi/vvvx69+9atO3+bPf/4ztmzZgrfeegunT59GQEAA5syZg7q6uj4c6cDCMAxGjx6NTZs24cyZM7hw4QLmzJmDHTt2YNSoUUhISMDf//53lJWV9WkYtFgsOHPmDHQ6HSZMmNAn+/PawzAM3NzcMGrUKEyfPh1TpkyBq6srCgsLcfz4caSnp6O4uBhWq7Xd2ztj+Lt06RISEhKwatUqPP/88w5d2m/92DzPdzie9q7f3uWE3K4oABLSygsvvIB169Zh/Pjxnbo+z/PYunUrnn32WSxZsgSRkZH46KOP0NjYiH//+999PNqBiWEYjBw5Er/73e/wv//9DxcvXsSCBQvw6aefYvTo0bj33nvx7rvvoqSkpFfDoNlsxpkzZ+Dm5obIyMh+C3/tcXFxwciRIxEfH49p06bB09MTP/74I06cOIG0tDRcu3YNFosFgHOGv8LCQiQkJOC+++7Dn/70J4e9lj4+PpDL5W1m+wwGw017TgcEBLR7fYVC4VStCgnpSxQACemhgoIClJaWtuhxqlarcdddd+H777934MgGBoZhMHz4cDz11FP4/vvvcfnyZSQmJmLPnj0YM2YM5s2bh23btuHHH3/sURg0mUw4c+YMPD09ERER4dDw15pOp8Pw4cMxZcoUTJ8+HT4+PigtLcV3332HH374AadOnYLVanWa8FdcXIyf/OQnWLBgAbZu3erQ11KlUiE2NhZHjhxpcfmRI0cwbdq0dm8THx/f5vqHDx9GXFwc7f8jg4bz/A1IyAAlziR0ZQ8SaR/DMBg2bBjWr1+P7777DgUFBbj//vvx5ZdfYty4cZg9ezb++te/oqioqEthsLGxEWfOnIGPjw/Gjh3r1Mt8Wq0WISEhmDRpEqZNmwa73Q6LxYL6+nqkpaWhoKAADQ0NDhtfaWkpFixYgJkzZ2Lbtm1OEaTXr1+P7du348MPP0Rubi7WrVuHoqIiqa7fM888g5UrV0rXX7t2La5evYr169cjNzcXH374IT744ANs2LDBUU+BkH7n+P9zCekH4v6kjv6cOXOmR4/R1T1IpGMMwyA4OBi/+c1vkJKSgqKiIjz00EP4+uuvMX78eMyaNQtbt25FQUFBh2GwoaEBp0+fhr+/P8aMGTNg3hOWZZGXlweFQoEZM2ZgxowZGDp0KKqrq5GamorU1FRcvnwZ9fX1/XaAxmg0IiEhAZMmTcLf//73Pjs801U//elPsXXrVrz44ouIiorCiRMncPDgQYSEhAAASkpKUFRUJF1/+PDhOHjwIFJSUhAVFYWXXnoJf/3rX6kGIBlUqAwMGRTKy8tvebovNDS0Rduyf/7zn3jyySdRXV3d4e2uXLmCkSNHIj09HdHR0dLlixcvhoeHBz766KMejZ20xPM8ysrKsHfvXuzevRvHjx/HhAkTkJiYiMTERIwYMUIKeUajEefPn0dQUBBGjhw5YMIfx3FSZ5Lo6Og2y5Lt9Sf28/ODv79/n/UnrqysxIIFCxAWFoZPP/2UlkoJGeAoABJyE50NgDzPIzAwEOvWrcPTTz8NQDhJ7Ofnh1dffRWPPPJIP4x2cOJ5HuXl5di7dy+Sk5ORkpKCcePGITExEcHBwdi4cSN27tyJGTNmOHqonXar8Nda6/7ESqVSCoO91YGluroaCxcuRGBgIHbv3t1un2RCyMDi+N3EhDiZoqIiVFZWoqioCCzLIjMzEwAwatQouLi4AADCw8PxyiuvICkpCQzD4Mknn8TLL7+MsLAwhIWF4eWXX4ZOp8Py5csd+ExufwzDwNfXFw8//DDWrFmDyspK7Nu3D9u3b8epU6fg6+uLkydPwtfXF+Hh4U4/A9jV8AcAcrkc/v7+8Pf3b9GfOCMjo0V/Yg8Pj27t16urq8OSJUvg4+ODXbt2Ufgj5DZBAZCQVv7whz+0WLYVl3WPHTuGmTNnAgDy8vJQU1MjXefpp5+GyWTCo48+iqqqKkyZMgWHDx+Gq6trv459MGMYBt7e3hg9ejRycnLw6quvws/PD8nJyXjttdcwcuRILF68GElJSRg3bpzThUEx/ImnfbuzxCqXy+Hr6wtfX98W/YnPnTsHnue73J+4oaEB999/P7RaLfbs2dNiiwQhZGCjJWBCyG3lwQcfxN133401a9ZIl1VXV+M///kPkpOTcfjwYYSEhGDx4sVYsmSJU5SE6Y3w15Hu9Cc2mUxYtmwZLBYLDh06RL/MEHKboQBIiBOqqqrCE088gf379wMAFi1ahL/97W8dtqZbvXp1mwMnU6ZMwalTp/pyqE7nVqeva2tr8eWXXyI5ORlfffUVgoKCkJiYiKSkpH7tDCLq6/DXWvP+xAaDAVarFT4+PlIYVCqVsFgsePDBB1FVVYXDhw/D3d29T8dECOl/FAAJcUL33nsvfvzxR7z//vsAgIcffhihoaH4z3/+c9PbrF69GmVlZfjHP/4hXaZSqeDl5dXn4x2o6urqcPDgQSQnJ+PQoUPw9/eXlomjo6P7PAz2d/hrjed51NXVSWFQLJdUU1MDhmFw7Ngx+vxAeJ3mzJkDuVyOr7/+usXP3n77bTzzzDM4d+4chg0b5qAREtJ1FAAJcTK5ubkYN24cTp06hSlTpgAATp06hfj4eFy4cAFjxoxp93arV69GdXU19u3b14+jvX00NDTg0KFDSE5OxsGDB+Ht7Y1FixYhKSkJcXFxvR4GHR3+2nP69GmsWbMGRUVF4DgOs2fPxtKlS7Fs2bJBvwR87do1jB8/vsXJ/oKCAkyYMAF/+9vfsHr1ascOkJAuokLQhDiZ1NRUuLu7S+EPAKZOnQp3d/dbtpZLSUmBn58fRo8ejTVr1sBgMPT1cG8ber0e9913Hz799FOUlpZiy5YtKC8vx+LFizFu3Dhs3LgRqampYFm2x4/ljOGPZVm8//77kMvlKCwsRG5uLmbNmoXt27c7tPOIswgODsabb76JDRs2SMXHf/GLX+Cee+6h8EcGJAqAhDiZ0tJS+Pn5tbncz8+vw9Zy9957L/71r3/h22+/xRtvvIHTp0/j7rvvhsVi6cvh3pZ0Oh2SkpLwr3/9C6WlpXjrrbdQU1OD++67D2PHjsWGDRvw3//+t1th0BnDH8dxeOKJJ/DDDz/g6NGjCAgIwMiRI/HUU08hNTUVAQEB/TaWqqoqrFixAu7u7nB3d8eKFStuWYtz9erVbTr7TJ06tdfHtmrVKtxzzz342c9+hrfeegvZ2dnSNg1CBhoqA0NIP3n++efxwgsvdHid06dPA2jbVg649eGGn/70p9K/R0ZGIi4uDiEhIThw4ACWLFnSzVETrVaLRYsWYdGiRTCbzTh69Ch2796NBx54AGq1WlomnjZtGhSKjv9K5TgOZ8+edbrwt2HDBqSkpCAlJQVBQUEOHc/y5cvx448/4quvvgIg7H9dsWJFh/tfAWD+/Plt9r/2hffffx+RkZH47rvvkJyc3O4va4QMBBQACeknjz32GB544IEOrxMaGoqzZ8+irKyszc+MRiP8/f07/XhDhgxBSEgI8vPzuzxW0j6NRoOEhAQkJCTAarXi22+/RXJyMv7v//4PcrkcCxcuRFJSEu6444424U4MfxaLxanC36ZNm3DgwAGkpKRIvXMdJTc3F1999VWL/a9///vfER8fj7y8vJvufwUAtVrdLzOVfn5+ePjhh7Fv3z4kJSX1+eMR0ldoCZiQfuLj44Pw8PAO/2g0GsTHx6OmpgY//PCDdNv//e9/qKmpwbRp0zr9eBUVFbh27RqGDBnSF09n0FOpVJg/fz62b9+OkpIS7Ny5E3K5HD//+c8xatQo/PrXv8bRo0dhtVphNpvx+9//Hg0NDU4T/niex0svvYRdu3bhyJEjGDlypKOHNGD2vyoUilvO9hLi7CgAEuJkxo4di/nz52PNmjU4deoUTp06hTVr1iAhIaHFDEh4eDj27t0LAKivr8eGDRuQmpqKwsJCpKSkYOHChfDx8aFZin6gVCoxZ84cvPfeeyguLsZnn30GjUaDRx55BCNGjEBERAQ+//xzjBgxwmnC36uvvop//OMfOHLkCMLDwx09JAC0/5WQ/kQBkBAn9K9//Qvjx4/H3LlzMXfuXEyYMAEff/xxi+s0b0cnl8tx7tw5LF68GKNHj8aqVaswevRopKamDvryHf1NoVDg7rvvxjvvvIMrV65g3LhxsNvt4DgOcXFxePjhh3Hw4EGYzWaHjI/neWzduhXbtm3D4cOHERkZ2eePKdYX7OjPmTNnAHR//+tPfvITREZGYuHChTh06BAuXryIAwcO9NlzImSgozlsQpyQl5cXdu7c2eF1mpfw1Gq1bQrUEsfieR4rV66EyWRCXl6etIyZnJyM9evXo7a2Fvfeey8SExMxe/ZsaLXafhnTO++8g9dffx1ff/01oqKi+vwxAdr/SogzokLQhBDSR7766itMnjy5TTcNjuNw6tQpJCcnY8+ePaisrMT8+fORmJiIuXPnQqfT9fpYeJ7Hhx9+iOeeew4HDx7E9OnTe/0xekosgv6///0PkydPBiDsf506dWqHRdBbq6ioQFBQEN5//32sXLmyL4dMyIBFS8CEEMnbb7+N4cOHQ6PRIDY2Ft99912H1z9+/DhiY2Oh0WgwYsQIvPvuu/000oFh/vz57bZSk8lkmDZtGrZs2YIrV67gyJEjCAkJwe9//3uEhoZixYoV2L17d68VYOZ5Hh9//DE2bdqEL774winDH0D7XwnpTxQACSEAgM8++wxPPvkknn32WWRkZODOO+/Evffei6KionavX1BQgAULFuDOO+9ERkYGNm3ahCeeeAK7d+/u55EPbDKZDFOmTMFrr72G/Px8pKSkICwsDC+99BJCQ0OxfPlyfP7556irq+vW/fM8j88//xwbNmzA7t27MXPmzN59Ar2M9r8S0j9oCZgQAgCYMmUKYmJi8M4770iXjR07FomJiXjllVfaXH/jxo3Yv38/cnNzpcvWrl2LrKwspKam9suYb2dix5Dk5GTs3r0bV69exezZs5GYmIgFCxbA3d29U/ezb98+rFmzBp999hkSEhL6eNSEkIGCZgAJIbBarUhLS8PcuXNbXD537tyb1l9LTU1tc/158+bhzJkzsNlsfTbWwUImkyE6OhqbN29Gbm4ufvjhB0RFRWHLli0YPnw47r//fuzcuRPV1dW42e/xBw4cwJo1a/Dxxx9T+COEtEABkBCC8vJysCzb5qSlv7//TeuvlZaWtnt9u92O8vLyPhvrYMQwDMaPH4+XXnoJ2dnZSEtLw6RJk/DWW29h+PDhWLp0KXbs2IHKykopDB45cgQ/+9nP8MEHH1ArQEJIGxQACSGS1rXWblV/rb3rt3c56T0MwyAiIgLPP/88srKykJWVhenTp+O9997DiBEjkJiYiGeeeQbLly/H22+/3aJHNCGEiCgAEkLg4+MDuVzeZrbPYDDctP5aQEBAu9dXKBTw9vbus7GSGxiGQXh4OH7/+98jPT0dOTk5mDVrFj766COsWrUKK1asoDBOCGkXBUBCCFQqFWJjY3HkyJEWlx85cuSm/Yfj4+PbXP/w4cOIi4tzinZngw3DMAgLC8OmTZtQUVGBt956i8IfIeSmKAASQgAA69evx/bt2/Hhhx8iNzcX69atQ1FREdauXQsAeOaZZ1oU1V27di2uXr2K9evXIzc3Fx9++CE++OADbNiwwVFPgTSRy+WQyeivd0LIzVErOEIIAKGfakVFBV588UWUlJQgMjISBw8eREhICACgpKSkRU3A4cOH4+DBg1i3bh22bduGwMBA/PWvf8XSpUsd9RQIIYR0EtUBJIQQQggZZGiNgBDidLrSki4lJQUMw7T5c+HChX4cMSGEDCwUAAkhTqWrLelEeXl5KCkpkf6EhYX104jJ5s2bMW3aNOh0Onh4eHTqNjzP4/nnn0dgYCC0Wi1mzpyJnJycvh0oIURCAZAQ4lS2bNmCX/ziF/jlL3+JsWPHYuvWrQgODm7Roq49fn5+CAgIkP7I5fJ+GjGxWq24//778atf/arTt/nzn/+MLVu24K233sLp06cREBCAOXPmdLvnMSGkaygAEkKcRnda0omio6MxZMgQ3HPPPTh27FhfDpO08sILL2DdunUYP358p67P8zy2bt2KZ599FkuWLEFkZCQ++ugjNDY24t///ncfj5YQAlAAJIQ4ke60pBsyZAjef/997N69G3v27MGYMWNwzz334MSJE/0xZNINBQUFKC0tbRH01Wo17rrrrlsGfUJI76AyMIQQp9OVlnRjxozBmDFjpP+Oj4/HtWvX8Prrr2PGjBl9Ok7SPWKYby/oX7161RFDImTQoRlAQojT6E5LuvZMnToV+fn5vT28QeX5559v93R18z9nzpzp0WN0tfc0IaT30AwgIcRpNG9Jl5SUJF1+5MgRLF68uNP3k5GRgSFDhvTFEAeNxx57DA888ECH1wkNDe3WfQcEBAAQZgKbv09dDfqEkO6jAEgIcSrr16/HihUrEBcXh/j4eLz//vttWtIVFxdjx44dAICtW7ciNDQUERERsFqt2LlzJ3bv3o3du3c78mkMeD4+PvDx8emT+x4+fDgCAgJw5MgRREdHAxAOAB0/fhyvvvpqnzwmIaQlCoCEEKfS1ZZ0VqsVGzZsQHFxMbRaLSIiInDgwAEsWLDAUU9h0CkqKkJlZSWKiorAsiwyMzMBAKNGjYKLiwsAIDw8HK+88gqSkpLAMAyefPJJvPzyywgLC0NYWBhefvll6HQ6LF++3IHPhJDBg1rBETKIsCyLO++8E0OGDGkxQ1ZTU4PIyEisWrUKf/zjHx04QjIQrV69Gh999FGby48dO4aZM2cCEPb7/eMf/8Dq1asBCPv9XnjhBbz33nuoqqrClClTsG3bNkRGRvbjyAkZvCgAEjLI5OfnIyoqCu+//z4eeughAMDKlSuRlZWF06dPQ6VSOXiEhBBC+hqdAiZkkAkLC8Mrr7yCxx9/HNevX8cXX3yBTz/9FB999BGFv1ZOnDiBhQsXIjAwEAzDYN++fbe8zfHjxxEbGwuNRoMRI0bg3Xff7fuBEkJIF1EAJGQQevzxxzFx4kSsXLkSDz/8MP7whz8gKirK0cNyOg0NDZg4cSLeeuutTl2/oKAACxYswJ133omMjAxs2rQJTzzxBB1IIYQ4HVoCJmSQunDhAsaOHYvx48cjPT0dCgWdCesIwzDYu3cvEhMTb3qdjRs3Yv/+/cjNzZUuW7t2LbKyspCamtoPoySEkM6hGUBCBqkPP/wQOp0OBQUF+PHHHx09nNtCampqmz7G8+bNw5kzZ2Cz2Rw0KkIIaYsCICGDUGpqKv7yl7/giy++QHx8PH7xi1+AFgN6rrS0tN32Zna7HeXl5Q4aFSGEtEUBkJBBxmQyYdWqVXjkkUcwe/ZsbN++HadPn8Z7773n6KHdFtprb9be5YQQ4kgUAAkZZH73u9+B4zip48KwYcPwxhtv4KmnnkJhYaFjBzfABQQEtNvHWKFQwNvb20GjIoSQtigAEjKIHD9+HNu2bcM///lP6PV66fI1a9Zg2rRptBTcQ/Hx8Thy5EiLyw4fPoy4uDgolUoHjYoQQtqiU8CEEHIT9fX1uHTpEgAgOjoaW7ZswaxZs+Dl5YVhw4a16UtcUFCAyMhIPPLII1izZg1SU1Oxdu1afPLJJ1i6dKkjnwohhLRAAZAQQm4iJSUFs2bNanP5qlWr8M9//hOrV69GYWEhUlJSpJ8dP34c69atQ05ODgIDA7Fx40asXbu2H0dNCCG3RgGQEEIIIWSQoT2AhBBCCCGDDAVAQgghhJBBhgIgIYQQQsggQwGQEEIIIWSQoQBICCGEEDLIUAAkhBBCCBlkKAASQgghhAwyFAAJIYQQQgYZCoCEEEIIIYMMBUBCCCGEkEGGAiAhhBBCyCBDAZAQQgghZJChAEgIIYQQMshQACSEEEIIGWQoABJCCCGEDDIUAAkhhBBCBhkKgIQQQgghgwwFQEIIIYSQQYYCICGEEELIIEMBkBBCCCFkkKEASAghhBAyyFAAJIQQQggZZCgAEkIIIYQMMhQACSGEEEIGGQqAhBBCCCGDDAVAQgghhJBBhgIgIYQQQsggQwGQEEIIIWSQoQBICCGEEDLIUAAkhBBCCBlkKAASQgghhAwyFAAJIYQQQgYZCoCEEEIIIYMMBUBCCCGEkEGGAiAhhBBCyCBDAZAQQgghZJChAEgIIYQQMshQACSEEEIIGWT+P5tMPbcIdByBAAAAAElFTkSuQmCC", - "text/html": [ - "\n", - "
\n", - "
\n", - " Figure\n", - "
\n", - " \n", - "
\n", - " " - ], - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Function to create the lettuce shape\n", - "def lettuce_leaf(u, v):\n", - " r = 1 + 0.3 * np.sin(6 * u) * np.sin(6 * v)\n", - " x = r * np.cos(u) * np.sin(v)\n", - " y = r * np.sin(u) * np.sin(v)\n", - " z = r * np.cos(v)\n", - " return x, y, z\n", - "\n", - "# Function to create the root\n", - "def root(t):\n", - " x = 0.1 * np.sin(10 * t)\n", - " y = 0.1 * np.cos(10 * t)\n", - " z = -t\n", - " return x, y, z\n", - "\n", - "# Generate the lettuce surface\n", - "u = np.linspace(0, 2 * np.pi, 100)\n", - "v = np.linspace(0, np.pi, 100)\n", - "u, v = np.meshgrid(u, v)\n", - "x, y, z = lettuce_leaf(u, v)\n", - "\n", - "# Generate the root\n", - "t = np.linspace(0, 1, 100)\n", - "x_root, y_root, z_root = root(t)\n", - "\n", - "# Plotting\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot(111, projection='3d')\n", - "\n", - "# Plot the lettuce\n", - "ax.plot_surface(x, y, z, color='green', alpha=0.7)\n", - "\n", - "# Plot the root\n", - "ax.plot(x_root, y_root, z_root, color='brown', linewidth=2)\n", - "\n", - "# Adjust plot\n", - "ax.set_box_aspect([1,1,1])\n", - "ax.set_xlabel('X')\n", - "ax.set_ylabel('Y')\n", - "ax.set_zlabel('Z')\n", - "ax.set_title('3D Lettuce')\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2dce1256-7afa-4e86-8aff-5db7b13b4d4d", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "conda", - "language": "python", - "name": "conda" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/scripts/distributions.py b/scripts/distributions.py index 242d5e7..2164dcb 100644 --- a/scripts/distributions.py +++ b/scripts/distributions.py @@ -1,5 +1,6 @@ from numpy import fmax -from plot import * +from formulasheet import * +import itertools def get_fig(): @@ -22,7 +23,6 @@ def gauss(): ax.plot(x, y, label=label) ax.legend() return fig -export(gauss(), "distribution_gauss") # CAUCHY / LORENTZ def fcauchy(x, x_0, gamma): @@ -37,7 +37,6 @@ def cauchy(): ax.plot(x, y, label=label) ax.legend() return fig -export(cauchy(), "distribution_cauchy") # MAXWELL-BOLTZMANN def fmaxwell(x, a): @@ -53,7 +52,37 @@ def maxwell(): ax.legend() return fig -export(maxwell(), "distribution_maxwell-boltzmann") +# GAMMA +@np.vectorize +def fgamma(x, alpha, lam): + return lam**alpha / scp.special.gamma(alpha) * x**(alpha-1) * np.exp(-lam*x) +def gamma(): + fig, ax = get_fig() + x = np.linspace(0, 20, 300) + for (alpha, lam) in itertools.product([1, 2, 5], [1, 2]): + y = fgamma(x, alpha, lam) + label = f"$\\alpha = {alpha}, \\lambda = {lam}$" + ax.plot(x, y, label=label) + ax.set_ylim(0, 1.1) + ax.set_xlim(0, 10) + ax.legend() + return fig + +# BETA +@np.vectorize +def fbeta(x, alpha, beta): + return x**(alpha-1) * (1-x)**(beta-1) / scp.special.beta(alpha, beta) +def beta(): + fig, ax = get_fig() + x = np.linspace(0, 20, 300) + for (alpha, lam) in itertools.product([1, 2, 5], [1, 2]): + y = fgamma(x, alpha, lam) + label = f"$\\alpha = {alpha}, \\beta = {lam}$" + ax.plot(x, y, label=label) + ax.set_ylim(0, 1.1) + ax.set_xlim(0, 10) + ax.legend() + return fig # POISSON @@ -73,8 +102,6 @@ def poisson(): ax.legend() return fig -export(poisson(), "distribution_poisson") - # BINOMIAL def binom(n, k): return scp.special.factorial(n) / ( @@ -98,9 +125,17 @@ def binomial(): ax.legend() return fig -export(binomial(), "distribution_binomial") + +if __name__ == '__main__': + export(gauss(), "distribution_gauss") + export(cauchy(), "distribution_cauchy") + export(maxwell(), "distribution_maxwell-boltzmann") + export(gamma(), "distribution_gamma") + export(beta(), "distribution_beta") + export(poisson(), "distribution_poisson") + export(binomial(), "distribution_binomial") + # FERMI-DIRAC - # BOSE-EINSTEIN - +# see stat-mech diff --git a/scripts/formulasheet.py b/scripts/formulasheet.py new file mode 100644 index 0000000..c6be793 --- /dev/null +++ b/scripts/formulasheet.py @@ -0,0 +1,71 @@ +#!/usr/bin env python3 +import os +import matplotlib.pyplot as plt +import numpy as np +import math +import scipy as scp + +if __name__ == "__main__": # make relative imports work as described here: https://peps.python.org/pep-0366/#proposed-change + if __package__ is None: + __package__ = "formulasheet" + import sys + filepath = os.path.realpath(os.path.abspath(__file__)) + sys.path.insert(0, os.path.dirname(os.path.dirname(filepath))) + +from util.mpl_colorscheme import set_mpl_colorscheme +import util.colorschemes as cs +# SET THE COLORSCHEME +# hard white and black +# cs.p_gruvbox["fg0"] = "#000000" +# cs.p_gruvbox["bg0"] = "#ffffff" +COLORSCHEME = cs.gruvbox_dark() +# print(COLORSCHEME) +# COLORSCHEME = cs.GRUVBOX_DARK + +tex_src_path = "../src/" +img_out_dir = os.path.join(tex_src_path, "img") +filetype = ".pdf" +skipasserts = False + +full = 8 +size_half_half = (full/2, full/2) +size_third_half = (full/3, full/2) +size_half_third = (full/2, full/3) + +def assert_directory(): + if not skipasserts: + assert os.path.abspath(".").endswith("scripts"), "Please run from the `scripts` directory" + +def texvar(var, val, math=True): + s = "$" if math else "" + s += f"\\{var} = {val}" + if math: s += "$" + return s + +def export(fig, name, notightlayout=False): + assert_directory() + filename = os.path.join(img_out_dir, name + filetype) + if not notightlayout: + fig.tight_layout() + fig.savefig(filename) #, bbox_inches="tight") + +@np.vectorize +def smooth_step(x: float, left_edge: float, right_edge: float): + x = (x - left_edge) / (right_edge - left_edge) + if x <= 0: return 0. + elif x >= 1: return 1. + else: return 3*(x*2) - 2*(x**3) + + +# run even when imported +set_mpl_colorscheme(COLORSCHEME) + +if __name__ == "__main__": + assert_directory() + s = \ + """% This file was generated by scripts/formulasheet.py\n% Do not edit it directly, changes will be overwritten\n""" + cs.generate_latex_colorscheme(COLORSCHEME) + filename = os.path.join(tex_src_path, "util/colorscheme.tex") + print(f"Writing tex colorscheme to {filename}") + with open(filename, "w") as file: + file.write(s) + diff --git a/scripts/mpl_colorscheme.py b/scripts/mpl_colorscheme.py new file mode 100644 index 0000000..9fd6562 --- /dev/null +++ b/scripts/mpl_colorscheme.py @@ -0,0 +1,149 @@ +""" +Set the colorscheme for matplotlib plots and latex. + +Calling this script generates util/colorscheme.tex containing xcolor definitions. +""" +import matplotlib as mpl +import matplotlib.pyplot as plt +from cycler import cycler + +skipasserts = False + +GRUVBOX = { + "bg0": "#282828", + "bg0-hard": "#1d2021", + "bg0-soft": "#32302f", + "bg1": "#3c3836", + "bg2": "#504945", + "bg3": "#665c54", + "bg4": "#7c6f64", + "fg0": "#fbf1c7", + "fg0-hard": "#f9f5d7", + "fg0-soft": "#f2e5bc", + "fg1": "#ebdbb2", + "fg2": "#d5c4a1", + "fg3": "#bdae93", + "fg4": "#a89984", + "dark-red": "#cc241d", + "dark-green": "#98971a", + "dark-yellow": "#d79921", + "dark-blue": "#458588", + "dark-purple": "#b16286", + "dark-aqua": "#689d6a", + "dark-orange": "#d65d0e", + "dark-gray": "#928374", + "light-red": "#fb4934", + "light-green": "#b8bb26", + "light-yellow": "#fabd2f", + "light-blue": "#83a598", + "light-purple": "#d3869b", + "light-aqua": "#8ec07c", + "light-orange": "#f38019", + "light-gray": "#a89984", + "alt-red": "#9d0006", + "alt-green": "#79740e", + "alt-yellow": "#b57614", + "alt-blue": "#076678", + "alt-purple": "#8f3f71", + "alt-aqua": "#427b58", + "alt-orange": "#af3a03", + "alt-gray": "#7c6f64", +} + +FORMULASHEET_COLORSCHEME = GRUVBOX + +colors = ["red", "orange", "yellow", "green", "aqua", "blue", "purple", "gray"] + +# default order for matplotlib +color_order = ["blue", "orange", "green", "red", "purple", "yellow", "aqua", "gray"] + +def set_mpl_colorscheme(palette: dict[str, str], variant="dark"): + P = palette + if variant == "dark": + FIG_BG_COLOR = P["bg0"] + PLT_FG_COLOR = P["fg0"] + PLT_BG_COLOR = P["bg0"] + PLT_GRID_COLOR = P["bg2"] + LEGEND_FG_COLOR = PLT_FG_COLOR + LEGEND_BG_COLOR = P["bg1"] + LEGEND_BORDER_COLOR = P["bg2"] + else: + FIG_BG_COLOR = P["fg0"] + PLT_FG_COLOR = P["bg0"] + PLT_BG_COLOR = P["fg0"] + PLT_GRID_COLOR = P["fg2"] + LEGEND_FG_COLOR = PLT_FG_COLOR + LEGEND_BG_COLOR = P["fg1"] + LEGEND_BORDER_COLOR = P["fg2"] + COLORS = [P[f"{variant}-{c}"] for c in color_order] + + + color_rcParams = { + 'axes.edgecolor': PLT_FG_COLOR, + 'axes.facecolor': PLT_BG_COLOR, + 'axes.labelcolor': PLT_FG_COLOR, + 'axes.titlecolor': 'auto', + # 'axes.prop_cycle': cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']), + 'axes.prop_cycle': cycler('color', COLORS), + # 'axes3d.xaxis.panecolor': (0.95, 0.95, 0.95, 0.5), + # 'axes3d.yaxis.panecolor': (0.9, 0.9, 0.9, 0.5), + # 'axes3d.zaxis.panecolor': (0.925, 0.925, 0.925, 0.5), + # 'boxplot.boxprops.color': 'black', + # 'boxplot.capprops.color': 'black', + # 'boxplot.flierprops.color': 'black', + # 'boxplot.flierprops.markeredgecolor': 'black', + # 'boxplot.flierprops.markeredgewidth': 1.0, + # 'boxplot.flierprops.markerfacecolor': 'none', + # 'boxplot.meanprops.color': 'C2', + # 'boxplot.meanprops.markeredgecolor': 'C2', + # 'boxplot.meanprops.markerfacecolor': 'C2', + # 'boxplot.meanprops.markersize': 6.0, + # 'boxplot.medianprops.color': 'C1', + # 'boxplot.whiskerprops.color': 'black', + 'figure.edgecolor': PLT_BG_COLOR, + 'figure.facecolor': PLT_BG_COLOR, + # 'figure.figsize': [6.4, 4.8], + # 'figure.frameon': True, + # 'figure.labelsize': 'large', + 'grid.color': PLT_GRID_COLOR, + # 'hatch.color': 'black', + 'legend.edgecolor': LEGEND_BORDER_COLOR, + 'legend.facecolor': LEGEND_BG_COLOR, + 'xtick.color': PLT_FG_COLOR, + 'ytick.color': PLT_FG_COLOR, + 'xtick.labelcolor': PLT_FG_COLOR, + 'ytick.labelcolor': PLT_FG_COLOR, + # 'lines.color': 'C0', + 'text.color': PLT_FG_COLOR, + } + + for k, v in color_rcParams.items(): + plt.rcParams[k] = v + + # override single char codes + # TODO: use color name with variant from palette instead of order + mpl.colors.get_named_colors_mapping()["b"] = COLORS[0] + mpl.colors.get_named_colors_mapping()["o"] = COLORS[1] + mpl.colors.get_named_colors_mapping()["g"] = COLORS[2] + mpl.colors.get_named_colors_mapping()["r"] = COLORS[3] + mpl.colors.get_named_colors_mapping()["m"] = COLORS[4] + mpl.colors.get_named_colors_mapping()["y"] = COLORS[5] + mpl.colors.get_named_colors_mapping()["c"] = COLORS[6] + mpl.colors.get_named_colors_mapping()["k"] = P["fg0"] + mpl.colors.get_named_colors_mapping()["w"] = P["bg0"] + + + +def color_latex_def(name, color): + name = "{" + name.replace("-", "_") + "}" + color = "{" + color.strip("#") + "}" + return f"\\definecolor{name:10}{{HTML}}{color}" + +def generate_latex_colorscheme(palette, variant="light"): + s = "" + for n, c in palette.items(): + s += color_latex_def(n, c) + "\n" + return s + + + diff --git a/scripts/PeriodicTableJSON.json b/scripts/other/PeriodicTableJSON.json similarity index 100% rename from scripts/PeriodicTableJSON.json rename to scripts/other/PeriodicTableJSON.json diff --git a/scripts/other/Untitled.ipynb b/scripts/other/Untitled.ipynb new file mode 100644 index 0000000..f1537f2 --- /dev/null +++ b/scripts/other/Untitled.ipynb @@ -0,0 +1,55 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "790c45a0-a10a-411d-bfc0-bdd52e2c2492", + "metadata": {}, + "outputs": [], + "source": [ + "import tikz as t" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6c5d640f-c287-4e8d-a0c8-8a8d801b6fae", + "metadata": {}, + "outputs": [], + "source": [ + "pic = t.Picture()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9b7f8347-1619-40cd-b864-24840901e7a1", + "metadata": {}, + "outputs": [], + "source": [ + "pic.draw(t.node(" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "conda", + "language": "python", + "name": "conda" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/scripts/other/crystal_lattices.ipynb b/scripts/other/crystal_lattices.ipynb new file mode 100644 index 0000000..5280b97 --- /dev/null +++ b/scripts/other/crystal_lattices.ipynb @@ -0,0 +1,565 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "eaed683c-c6f1-45e4-aaee-ae4e57209f5f", + "metadata": {}, + "outputs": [], + "source": [ + "import scipy as scp\n", + "from scipy.spatial import Voronoi, voronoi_plot_2d\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "from mpl_toolkits.mplot3d.art3d import Poly3DCollection\n", + "%matplotlib widget" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "efd84ecd-9fb3-4d2f-9f7a-47cd1ff09eea", + "metadata": {}, + "outputs": [], + "source": [ + "class Lattice:\n", + " def __init__(self, *vecs):\n", + " # if the vecs were put in an iterable\n", + " if len(vecs) == 1:\n", + " vecs = vecs[0]\n", + " if len(vecs) == 3:\n", + " pass\n", + " elif len(vecs) == 2:\n", + " pass\n", + " else: raise ValueError(\"Vecs must contain either 2 or 3 vectors\")\n", + " self.dim = len(vecs)\n", + " self.vecs = list(vecs)\n", + " for i, v in enumerate(self.vecs):\n", + " if type(v) != np.ndarray:\n", + " self.vecs[i] = np.array(v)\n", + " if self.vecs[i].shape != (self.dim,):\n", + " raise ValueError(f\"Got {self.dim} vectors, therefore all vectors must be {self.dim} dimensional but vector {i+1} has shape {self.vecs[i].shape}\")\n", + " self.vecs = np.array(self.vecs)\n", + " self.vec_lengths = np.array([np.linalg.norm(v) for v in self.vecs])\n", + " self.center = np.zeros(self.dim)\n", + "\n", + " def get_point(self, *ns):\n", + " if len(ns) != len(self.vecs): raise ValueError(f\"Requires one index for each lattice vector {len(self.vecs)}, but got only {ns}\")\n", + " point = self.center.copy()\n", + " for i, n in enumerate(ns):\n", + " point += n * self.vecs[i]\n", + " return point\n", + "\n", + " \n", + " def get_points_around_center(self, n):\n", + " points = []\n", + " import itertools\n", + " ns = [i for i in range(-n, n+1)]\n", + " for n in itertools.product(*[ns for _ in range(self.dim)]):\n", + " # print(n)\n", + " points.append(self.get_point(*n))\n", + " return points" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "515b9133-233b-4a6a-8b2f-a2fca10fea3d", + "metadata": {}, + "outputs": [], + "source": [ + "def rot_mat_2D(rad):\n", + " return np.array([[np.cos(rad), -np.sin(rad)], [np.sin(rad), np.cos(rad)]])\n", + "\n", + "\n", + "def get_reciprocal_lattice(lattice: Lattice):\n", + " if lattice.dim == 2:\n", + " rot_90_deg = rot_mat_2D(np.pi / 2)\n", + " a1, a2 = lattice.vecs\n", + " b1 = 2 * np.pi * rot_90_deg @ a2 / (np.dot(a1, rot_90_deg @ a2))\n", + " b2 = 2 * np.pi * rot_90_deg @ a1 / (np.dot(a2, rot_90_deg @ a1))\n", + " return Lattice(b1, b2)\n", + " elif lattice.dim == 3:\n", + " a1, a2, a3 = lattice.vecs\n", + " V = np.dot(a1, np.cross(a2, a3))\n", + " b1 = 2 * np.pi/V * np.cross(a2, a3)\n", + " b2 = 2 * np.pi/V * np.cross(a3, a1)\n", + " b3 = 2 * np.pi/V * np.cross(a1, a2)\n", + " return Lattice(b1, b2, b3)\n", + " else: raise NotImplementedError(f\"Dim must be 2 or 3, but is {lattice.dim}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2855d08e-70d8-4ef7-ba19-2c06316caf15", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def get_elementary_cell(lattice: Lattice):\n", + " points = lattice.get_points_around_center(1)\n", + " return points\n", + "\n", + "def get_orthogonal_2D(vec):\n", + " return np.array((vec[1], -vec[0]))\n", + "\n", + "def get_unit_cell_vertices(lattice: Lattice, voronoi: Voronoi):\n", + " \"\"\"regard only voronoi vertices which are closest to the center <=> their norm is <= 0.5*(norm of the unit vectors added together\n", + " \"\"\"\n", + " lattice_vec_norm = np.sqrt(np.sum(lattice.vec_lengths**2))\n", + " return voronoi.vertices[np.linalg.norm(voronoi.vertices, axis=1) <= 0.5 * lattice_vec_norm]\n", + " \n", + "def plot_unit_cell(lattice, fig_ax=None, vec_label=\"a\", subplot_kw={}):\n", + " # get voronoi of the points around the center\n", + " points = get_elementary_cell(lattice)\n", + " voronoi = Voronoi(points)\n", + "\n", + " if fig_ax:\n", + " fig, ax = fig_ax\n", + " else:\n", + " if lattice.dim == 3:\n", + " fig = plt.figure()\n", + " ax = fig.add_subplot(1,1,1, projection=\"3d\") \n", + " else:\n", + " fig, ax = plt.subplots(**subplot_kw) \n", + "\n", + " # unit cell vertices\n", + " cell_points = get_unit_cell_vertices(lattice, voronoi)\n", + " # sort by polar angle for the fill function\n", + " cell_points = list(cell_points)\n", + " # print(cell_points)\n", + " # print([i for i in map(lambda p: np.arctan2(p[1],p[0]), cell_points)])\n", + " if lattice.dim == 2:\n", + " cell_points.sort(key=lambda p: np.arctan2(p[1],p[0]))\n", + " x_cell, y_cell = zip(*cell_points)\n", + " ax.fill(x_cell, y_cell, color=\"#4444\")\n", + " ax.scatter(x_cell, y_cell, color=\"orange\")\n", + " \n", + " # lattice points\n", + " x_lat, y_lat = zip(*lattice.get_points_around_center(3))\n", + " ax.scatter(x_lat, y_lat, color=\"blue\")\n", + " \n", + " # lattice vectors\n", + " arrowprops = dict(arrowstyle=\"-|>,head_width=0.4,head_length=0.8\", color=\"black\", shrinkA=0,shrinkB=0)\n", + " for i, vec in enumerate(lattice.vecs):\n", + " ax.annotate(f\"\", xy=lattice.vecs[i], xytext=lattice.center, arrowprops=arrowprops)\n", + " if vec_label is not None:\n", + " # add name of vector at a perpendicular offset starting at half length\n", + " ax.annotate(r\"$\\vec{\"+f\"{vec_label}}}_{i+1}$\", xy=0.7*lattice.vecs[i], xytext=0.7*lattice.vecs[i] + 0.06*get_orthogonal_2D(lattice.vecs[i]))\n", + " elif lattice.dim == 3:\n", + " # todo filter so that only\n", + " ridges = voronoi.ridge_vertices\n", + " lattice_vec_norm = np.sqrt(np.sum(lattice.vec_lengths**2))\n", + " for ridge in ridges:\n", + " # ATOMS\n", + " verts = voronoi.vertices[ridge]\n", + " # TODO: doesnt seem to work\n", + " \"\"\"regard only voronoi vertices which are closest to the center <=> their norm is <= 0.5*(norm of the unit vectors added together\n", + " \"\"\"\n", + " verts = verts[np.linalg.norm(verts, axis=1) <= 0.5 * lattice_vec_norm]\n", + " x_lat, y_lat, z_lat = zip(*lattice.get_points_around_center(1))\n", + " ax.scatter(x_lat, y_lat, z_lat, color=\"red\", marker=\".\")\n", + " # print(verts, type(verts), verts.shape, verts.ndim)\n", + " ax.add_collection3d(Poly3DCollection([voronoi.vertices[ridge]], edgecolor=\"black\", alpha=0.5))\n", + " # UNIT VECTORS \n", + " for vec in lattice.vecs:\n", + " ax.plot(*[i for i in zip([0,0,0], vec)])\n", + " ax.set_xlim(-2, 2)\n", + " ax.set_ylim(-2, 2)\n", + " ax.set_zlim(-2, 2)\n", + " \n", + " else: raise NotImplementedError(f\"Dim must be 2 or 3, but is {lattice.dim}\")\n", + "\n", + " # limit to 2*lattice vectors\n", + " def calc_lim(axis):\n", + " lim = 2.05 * np.max(np.abs(lattice.vecs[axis,:]))\n", + " return -lim, lim\n", + " ax.set_xlim(*calc_lim(0))\n", + " ax.set_ylim(*calc_lim(1))\n", + " if lattice.dim == 3: ax.set_zlim(*calc_lim(2))\n", + " fig.tight_layout()\n", + " return fig" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c2faef81-5f2a-4950-b986-e891ddfa7da8", + "metadata": {}, + "outputs": [], + "source": [ + "sphere_point = lambda rad: np.array([np.cos(rad), np.sin(rad)])\n", + "\n", + "square_lattice = Lattice([1, 0], [0, 1])\n", + "tilted_lattice = Lattice([1, 0.5], [0, 1])\n", + "honeycomb_lattice = Lattice(sphere_point(0), sphere_point(np.pi * 2/3))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a6b6ccf4-34c7-419d-8bcc-f3ce2870ba25", + "metadata": {}, + "outputs": [], + "source": [ + "# fig, axs = plt.subplots(3, figsize=(4, 12))\n", + "# plot_unit_cell(square_lattice, fig_ax=(fig, axs[0]))\n", + "# plot_unit_cell(tilted_lattice, fig_ax=(fig, axs[1]))\n", + "# plot_unit_cell(honeycomb_lattice, fig_ax=(fig,axs[2]));" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5314dd3a-17a7-402d-b3ee-ddbf69a6c4ed", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_lattice(lattice: Lattice):\n", + " reci = get_reciprocal_lattice(lattice)\n", + " print(reci.vecs)\n", + " if lattice.dim == 3:\n", + " fig = plt.figure()\n", + " axs = [fig.add_subplot(1,2,i, projection=\"3d\") for i in [1,2]]\n", + " fig.suptitle(\"3D Lattice\")\n", + " \n", + " else:\n", + " fig, axs = plt.subplots(1, 2)\n", + " plot_unit_cell(lattice, fig_ax=(fig, axs[0]))\n", + " plot_unit_cell(reci, fig_ax=(fig, axs[1]), vec_label=\"b\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "39a49d00-fc93-4f2a-8645-d5e440e7a092", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 6.28318531e+00 -3.84734139e-16]\n", + " [ 3.84734139e-16 6.28318531e+00]]\n", + "[[ 6.28318531e+00 -3.84734139e-16]\n", + " [-3.14159265e+00 6.28318531e+00]]\n", + "[[6.28318531e+00 3.62759873e+00]\n", + " [4.44252717e-16 7.25519746e+00]]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "03f1538170914d43ab528487e51297c3", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQmVJREFUeJzt3X18U/Xd//F3WmgBoUWkNC2t3Cg3IjcFlFqUrSoT8BbdUJyiOC4mXuDEItfob0IBp1XwBkU2tnmN6rw270BU5tiwgjKoOJGCqDBgRUppCspIuJEC6fn9UZsRSG+gTU57vq/n43EekJMT8vkkJx/ePUlOXZZlWQIAAIAxouwuAAAAAJFFAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAzTzO4CIqGiokJ79uxRmzZt5HK57C4HQARZlqWDBw8qOTlZUVHO+pmX2QaYq76zzYgAuGfPHqWmptpdBgAbFRcXKyUlxe4yGhSzDcDZzraIB8Dc3FwtWbJEW7ZsUcuWLTV48GA98cQT6tGjR423e/311zV9+nTt3LlT3bp10xNPPKFrr722TvfZpk0bSdLOncXavDlOHo/kdkuDB0vR0fVuqUnw+6W1a2Vc76b2LZnb+6l99+7tU+fOqYE54CTMNvZz0/qWzO29wWebFWHDhg2zFi1aZG3evNkqLCy0rr32Wuv888+3Dh06VO1t1qxZY0VHR1tz5syxvvjiC+vhhx+2mjdvbn322Wd1uk+v12tJspKTvZZkBZaUFMtavLihOmu8Fi+u7NW03k3t27LM7T1U35Wve1ler9fu8hocs4393KS+Lcvc3sMx2yIeAE+1d+9eS5L1wQcfVLvNrbfeal133XVB69LT06177723TvdRNSSl4CHpclUuTt5xFi+u7PHkvk3o3dS+Lcvc3qvru/J17+wAyGwzp3dT+7Ysc3sP12xzWZZlNcixybO0fft2devWTZ999pl69+4dcpvzzz9fWVlZmjx5cmBdTk6Oli5dqo0bN9Z6Hz6fT/Hx8ZK8kuKCrnO5pJQUqajIeYeQ/X6pc2dp9+7Q1zu1d1P7lsztvea+fZLi5fV6FRcXF2qDJovZFvp6p/Zuat+Sub2Hc7bZ+pW4iooKTZ48WZdffnm14U+SPB6PEhMTg9YlJibK4/GE3L68vFw+ny9oqY5lScXF0urVZ9dDY7Z6dfUvFsm5vZvat2Ru77X1bSKnPtcS+3l1nNq3ZG7v4ZxttgbAiRMnavPmzXrllVca9N/Nzc1VfHx8YKnLt+RKSxu0hEahrj05rXdT+5bM7d1p/TQkJz427OcNs11TYmrv4ezHtgA4adIkLVu2TCtXrqz168tut1tlZWVB68rKyuR2u0Nun52dLa/XG1iKi4trrScpqe61NxV17clpvZvat2Ru707rpyE58bFhP2+Y7ZoSU3sPZz8R/wygZVm6//779eabb2rVqlXq1q1brbe57bbbdOTIEb3zzjuBdYMHD1bfvn21cOHCWm9v+udkSkoqD4+fyqm9m9q3ZG7vNffNZwCd9FxL7Oem9S2Z23s4Z1vEjwBOnDhRL7/8sv74xz+qTZs28ng88ng8+vbbbwPb3HXXXcrOzg5cfuCBB7R8+XI99dRT2rJli2bOnKlPPvlEkyZNqlctVSfOnzfPWTtMleho6dlnK/9+6i8JcHLvpvYtmdt7TX2byMnPtcR+LpnVt2Ru72GdbQ33ReW6kRRyWbRoUWCb73//+9bdd98ddLvXXnvN6t69uxUTE2NdfPHF1p///Oc632d158pKTXXu18ZPFur8QSb0bmrflmVu76H67tjR+aeBYbaZ1bupfVuWub2HY7bZfhqYSKh6m2T/fq82boxTaWnl++pDhjjvp4Xq+P2V3yYyrXdT+5bM7f3Uvvv186ldO2e/BcxsYz83pW/J3N4berYZFQCd+B8AgJo5+fXv5N4A1Ky+r39bTwMDAACAyCMAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAYfLhhx/qhhtuUHJyslwul5YuXRp0vWVZmjFjhpKSktSyZUsNHTpU27Zts6dYAEYhAAJAmBw+fFj9+vXTggULQl4/Z84cPffcc1q4cKHWrVunc845R8OGDdPRo0cjXCkA0zSzuwAAcKoRI0ZoxIgRIa+zLEvz5s3Tww8/rJtuukmS9NJLLykxMVFLly7V6NGjI1kqAMNwBBAAbFBUVCSPx6OhQ4cG1sXHxys9PV0FBQU2VgbABBwBBAAbeDweSVJiYmLQ+sTExMB1pyovL1d5eXngss/nC1+BAByNI4AA0ETk5uYqPj4+sKSmptpdEoAmigAIADZwu92SpLKysqD1ZWVlgetOlZ2dLa/XG1iKi4vDXicAZyIAAoANunTpIrfbrfz8/MA6n8+ndevWKSMjI+RtYmNjFRcXF7QAwNngM4AAECaHDh3S9u3bA5eLiopUWFiodu3a6fzzz9fkyZP1y1/+Ut26dVOXLl00ffp0JScna+TIkfYVDcAIBEAACJNPPvlEV155ZeByVlaWJOnuu+9WXl6e/ud//keHDx/WT3/6Ux04cEBXXHGFli9frhYtWthVMgBDRPwt4NrOjH+qVatWyeVynbZU9y05AGgsMjMzZVnWaUteXp4kyeVyafbs2fJ4PDp69Kjee+89de/e3d6iARgh4gGwtjPjV2fr1q0qLS0NLB06dAhThQAAAM4W8beAazozfk06dOigtm3bNnxBAAAAhmky3wJOS0tTUlKSfvCDH2jNmjV2lwMAANBkNfovgSQlJWnhwoW65JJLVF5erhdeeEGZmZlat26dBgwYEPI2nC0fAACgeo0+APbo0UM9evQIXB48eLB27NihZ555Rn/4wx9C3iY3N1ezZs2KVIkAAABNSpN5C/hkgwYNCjq31qk4Wz4AAED1Gv0RwFAKCwuVlJRU7fWxsbGKjY2NYEUAAABNR8QDYG1nxs/OzlZJSYleeuklSdK8efPUpUsXXXzxxTp69KheeOEFvf/++/rb3/4W6dIBAAAcIeIBsLYz45eWlmrXrl2B648dO6YpU6aopKRErVq1Ut++ffXee+8F/RsAAACoO5dlWZbdRYSbz+dTfHy8vF4vvzwdMIyTX/9O7g1Azer7+m+SXwIBAADA2SMAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGGa2V1AJPn90qpVUmmplJQkDRkiRUfbXVVk+P3S6tXm9W5q35K5vZ/ad79+dlcUfsw283o3tW/J3N4bfLZZEfbBBx9Y119/vZWUlGRJst58881ab7Ny5Uqrf//+VkxMjHXBBRdYixYtOqP79Hq9liQrOdlrSVZgSUmxrMWLz66PpmTx4speTevd1L4ty9zeQ/Vd+bqX5fV67S6vwTHb2M9N6tuyzO09HLMt4gHw3XfftX7xi19YS5YsqVMA/Ne//mW1atXKysrKsr744gtr/vz5VnR0tLV8+fI632fVkJSCh6TLVbk4ecdZvLiyx5P7NqF3U/u2LHN7r67vyte9swMgs82c3k3t27LM7T1cs81lWZZVz4OIZ83lcunNN9/UyJEjq93m5z//uf785z9r8+bNgXWjR4/WgQMHtHz58jrdj8/nU3x8vCSvpLhTapBSUqSiIucdQvb7pc6dpd27Q1/v1N5N7Vsyt/ea+/ZJipfX61VcXFyoDZosZlvo653au6l9S+b2Hs7Z1ui/BFJQUKChQ4cGrRs2bJgKCgqqvU15ebl8Pl/QUh3LkoqLK99Xd5rVq6t/sUjO7d3UviVze6+tbxM59bmW2M+r49S+JXN7D+dsa/QB0OPxKDExMWhdYmKifD6fvv3225C3yc3NVXx8fGBJTU2t9X5KSxuk3Ealrj05rXdT+5bM7d1p/TQkJz427OcNs11TYmrv4eyn0QfAs5GdnS2v1xtYiouLa71NUlIECouwuvbktN5P7ydP0vV12K7p4znHqZz42LCfV1kg6Ud12K7p4zlveI0+ALrdbpWVlQWtKysrU1xcnFq2bBnyNrGxsYqLiwtaquNySamplV8jd5ohQyo/E+Fyhb7eqb0H910h6SFJf5a0VpJz+5Z4zqvr20ROfa4l9vPKvo9Lypa0WNJGSc7tW+I5D8dsa/QBMCMjQ/n5+UHrVqxYoYyMjHr/21UP6Lx5zvrQaJXoaOnZZyv/furO4+TeT+5bekPSN9/9fYaj+5Z4ziVCoOTs51piP6/0B0kHv/v7TEf3LfGcS2GYbQ36XeU6OHjwoLVhwwZrw4YNliTr6aeftjZs2GB99dVXlmVZ1rRp06wxY8YEtq86DczUqVOtL7/80lqwYMFZnwbm1HNlpaY692vjJwt1/iATen/9db/VrFl3S3J9d6oMWR06rHF835Zl7nMequ+OHZ1/Ghhmm1m9v/rqMSs6OjUw1yRZiYmFju/bssx9zsMx2yJ+GphVq1bpyiuvPG393Xffrby8PI0dO1Y7d+7UqlWrgm7z4IMP6osvvlBKSoqmT5+usWPH1vk+q06VsH+/Vxs3xhl39nDJzDOnv/baa7rtttsCl6OiopWZman8/PdsrCpyTHzOpVBny/epXTtnnwaG2WbWfv773/9e48aNC1yOjm6m66+/XkuXvmljVZFj4nMuNfxss/U8gJFSNSSd+B8AQquoqNBFF12k7du3q6KiIui6NWvWaPDgwTZVhkhz8uvfyb0htOPHj+uCCy7Q7t27dep/34WFhepnwu8+hKT6v/4b/WcAgbPxxhtv6J///Odp4S86OlozZsywqSoAqJ8//OEPKi4uPi38NWvWTDNnzrSnKDRJBEA4TkVFhaZPn66oqNN3b7/fr/z8fK1du9aGygDg7B0/flwzZ86UK8S3AU6cOKGlS5dq48aNNlSGpogACMep7uhfFY4CAmiKqjv6V4WjgDgTBEA4Sk1H/6pwFBBAU1PT0b8qHAXEmSAAwlFqO/pXhaOAAJqS2o7+VeEoIOqKAAhHycnJqdN2VUcBP/roozBXBAD1U1FRUedQV3UU8LPPPgtvUWjymtldANCQevbsqebNmwetKysr0/79+3XRRRcFrW/evLmaNeMlAKBxc7lcuvjii9W2bdug9aWlpfL5fOrRo0fQ+tjY2BrfKgYkAiAc5s03Tz8R6qxZs/S73/1OmzZtsqEiAKgfl8ulv/zlL6etnzp1qt555506zTaPx6OZM2fqV7/6VY2fkYY5CIAAADjMwoUL9fLLLwet2759u3r37q1JkybZVBUaEwIgAAAOM2HCBE2YMCFwef/+/brrrrt055132lgVGhOOAwMn8Xg8mjBhQq3fIgYaQtVpPU5eevbsaXdZcKDWrVtr8eLFp32OEObiCCCMxtsksNvFF1+s9957L3CZLyYhHGJiYuwuAY0MkwZG420S2K1Zs2Zyu912lwEHmjZtmjZv3qxly5bZXQoaId4CBk7C2ySItG3btik5OVldu3bVHXfcoV27dtldEhyisLBQ/fr1s7sMNFIEQOAkMTExio2NtbsMGCI9PV15eXlavny5fv3rX6uoqEhDhgzRwYMHQ25fXl4un88XtADVKSwsVN++fe0uA40UARDGy8nJUZ8+fXTOOecoMTFR9913n44fP253WTDAiBEjNGrUKPXt21fDhg3Tu+++qwMHDui1114LuX1ubq7i4+MDS2pqaoQrRlPh8XhUVlYmv9+v733ve2rVqpUuvfRSfkMIAgiAMJplWbIsS7/5zW/0xRdfKC8vT4sXL9YLL7xgd2kwUNu2bdW9e3dt37495PXZ2dnyer2Bpbi4OMIVoqkoLCyUJM2bN0+5ubn65JNP1Lp1a91+++32FoZGgy+BwGgul0uzZ88OXO7UqZOGDh2qrVu32lgVTHXo0CHt2LFDY8aMCXl9bGwsH1FAnRQWFqpFixZaunSpkpOTJUmPPvqoLr/8cn399ddq3769zRXCbhwBhNG++uorTZw4Ub1799a5556r1q1b67XXXlNKSoqKi4uVmZmpXr16qW/fvnr99dftLhcO89BDD+mDDz7Qzp07tXbtWt18882Kjo7mKA3qrbCwULfeemsg/EnSueeeK0k6fPgwsw0cAYS59u3bp0svvVRXXXWVnn76aXXs2FF+v1+XXHKJ+vXrp2bNmmnevHlKS0uTx+PRwIEDde211+qcc86xu3Q4xO7du3X77bfrm2++UUJCgq644gp99NFHSkhIsLs0NHGFhYW69957g9Z99NFH6tixo2JiYphtIADCXO+88478fr/+9Kc/yeVySZKef/55HT9+XGlpaUpISFBSUpIkye12q3379tq/fz9DEg3mlVdesbsEONCRI0e0bds2+f3+wLqKigo9++yzGjt2rJKSkphtIADCXOedd558Pp/efvtt9erVS++8845yc3PVsWPH047ArF+/Xn6/n29dAmj0Nm3apOjoaC1atEjf//73FRcXp1/84hf69ttv9fOf/zxoW2abufgMIIx1ww03aNy4cRozZoyuuOIKlZSU6NZbb1VaWlrQdlW/HeS3v/2tPYUCwBkoLCxU9+7dlZOTo5tvvlkDBw5U8+bNtXbtWrVp0yawHbPNbBwBhLGioqK0cOFCLVy4sNptysvLNXLkSE2bNk2DBw+OYHUAcHZO/hWXt956a8htmG3gCCBQDcuyNHbsWF111VXVnpYDAJoaZhskAiBQrTVr1ujVV1/V0qVLlZaWprS0NM6iD6DJY7ZB4i1goFpXXHGFKioq7C4DABoUsw0SRwABAACMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAM08zuAmCACr+0b7X0banUMklKGCJFRdtdVfiZ2jdgClNf46b27TC2BcAFCxZo7ty58ng86tevn+bPn69BgwaF3DYvL0/33HNP0LrY2FgdPXo0EqWiPoqXSOsfkI7s/s+6VinSwGel1FvsqyvcTO0bMIWpr3FT+3YgW94CfvXVV5WVlaWcnBx9+umn6tevn4YNG6a9e/dWe5u4uDiVlpYGlq+++iqCFeOsFC+RVv8oeFBI0pGSyvXFS+ypK9xM7RswhamvcVP7dihbAuDTTz+t8ePH65577lGvXr20cOFCtWrVSr///e+rvY3L5ZLb7Q4siYmJEawYZ6zCX/lToqwQV363bv3kyu2cxNS+AVOY+ho3tW8Hi/hbwMeOHdP69euVnZ0dWBcVFaWhQ4eqoKCg2tsdOnRInTp1UkVFhQYMGKDHHntMF198cchty8vLVV5eHrjs8/kargHUzb7Vp/+UGMSSjhTraPEKVSR8L6ylHD9+XJZl6ciRI2G9H0mK2vehWtShb+1bLSVmhr0eAA2M2VYNZltTE/EA+PXXX8vv9592BC8xMVFbtmwJeZsePXro97//vfr27Suv16snn3xSgwcP1ueff66UlJTTts/NzdWsWbPCUj/q6NvSOm22bdOH8rQI74eHd+3apWPHjmnNmjVhvR9Jch/9UH3qsmEdHx8AjUwjmm0lJSU6cuQIsw1npUl8CzgjI0MZGRmBy4MHD9ZFF12k3/zmN3rkkUdO2z47O1tZWVmByz6fT6mpqRGpFd9pmVSnzaLO6ajWLVuHtZSYmBi5XC61bh3e+5GkqOiO0sE6bFjHxwdAI9PIZltUVBSzDWcl4gGwffv2io6OVllZWdD6srIyud3uOv0bzZs3V//+/bV9+/aQ18fGxio2NrbetaIeEoZUfjPsSIlCfWbEknS8WaLK4wcp1hXen5KbNWsml8sVkX2iPGaQjn3dQc1P7JUr5BauysclYUjYawEQBo1otkVHRzPbcNYi/iWQmJgYDRw4UPn5+YF1FRUVys/PDzrKVxO/36/PPvtMSUn8pNFoRUVXnhZAkk4ZF9Z363YnPiSFeUBGnCtauxOnSgr1X8N3j8PAeZwzC2iqmG3MNoew5VvAWVlZ+t3vfqcXX3xRX375pe677z4dPnw4cK6/u+66K+hLIrNnz9bf/vY3/etf/9Knn36qO++8U1999ZX+67/+y47yUVept0hD3pBadQxafbxZooo6ztGBNlfZVFh4HWhzlYo6ztXxZh2Cr2iVUvl4cK4soGljtgVfwWxrkmz5DOBtt92mffv2acaMGfJ4PEpLS9Py5csDXwzZtWuXoqL+k03//e9/a/z48fJ4PDr33HM1cOBArV27Vr169bKjfJyJ1FukjjfpaPEKbdv0oaLO6ajy+EHO++n4FAfaXKUDrb+vWO/Hqjhcom59v6cWqT/gp2PAKZhtzLYmzrYvgUyaNEmTJk0Ked2qVauCLj/zzDN65plnIlAVwiIqWhUJ35OnRbRat2wd9s/FNBquaPlaDtAhf3ddkHA5AxJwGmYbs60Js+UtYAAAANiHAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAsJXH49GECRNUUVFhdynGaGZ3AQAAwCwLFy7Uyy+/HLRu+/bt6t27tyZNmmRTVWYhAAIAgIiaMGGCJkyYELi8f/9+3XXXXbrzzjttrMosvAUMNCG8TQLAiVq3bq3Fixerbdu2dpdiDI4AAo0Yb5MAMEFMTIzdJRiHI4BAIzZhwgT9/e9/19///nelpaWpZcuWuvDCC3mbBECTN23aNF1//fX6yU9+opEjR2rDhg12l2QUo44A+v3SqlVSaamUlCQNGSJFR9tdVWT4/dLq1eb17vdLJSUxOno0Sp980lr9+x9qsn2vXr1amzZtkiSNHj1as2fP1qBBg6rd3uTn/OS++/Wzu6LwY7aZ17vfL3k8zXX4cHSTnW2FhYUaOHCg/vSnP6moqEhvvfWWbrzxRs2cOVP9+/ev9nYmP+cNOdtsOwK4YMECde7cWS1atFB6ero+/vjjGrd//fXX1bNnT7Vo0UJ9+vTRu+++e8b32bu3dOWV0o9/XPln587SkiVn2UATsmRJZa+m9f7++211/fW9tWzZefL5onXvvd11/fW99f77be0urd7y8/OVnp6u4cOHh3ztmPqch+q7d2+7q6rdmc7DUzHbzOq9aratWNFOX3/dvMnOtsLCQvXt2zdo3bvvvqsBAwbopptuCnlE0NTnPByzzZYA+OqrryorK0s5OTn69NNP1a9fPw0bNkx79+4Nuf3atWt1++23a9y4cdqwYYNGjhypkSNHavPmzWd0v3v2BF8uKZF+9CNn7zhLllT2uHt38Hqn9/7++201dWoX7d3bPGj93r3NNXVqlyY1KHNyctSnTx999tlngXUnTpyQFDoImvqcV9f3qa/7xuZM52EozLb/cHrvTpltHo9HZWVl8vv92nPSDlw120IFQVOf83DNNpdlWVb9/okzl56erksvvVTPP/+8JKmiokKpqam6//77NW3atNO2v+2223T48GEtW7YssO6yyy5TWlqaFi5cWOv9+Xw+xcfHS/JKigu6zuWSUlKkoiLnHUL2+yt/Yjh1p6kSyd6PHDmiNWvWqHXr1oqNjQ3rffn90vXX9/5uQLokzZL0O0lVD4SlxMTjeuedzWHvu7y8XIcOHdLll1+uVq1anfHtLctSTk6Ohg8frnHjxmnLli0ht2vWrJlOnDiha64ZpsLC2dq7N/Rbw07d32ve132S4uX1ehUXFxdqA1ud6Tw8GbMt9PXmzLapkt6RVDUXms5sW758uUaMGKFLL71Uu3fvVmlpacjtqmbbDTfcqHXrZmrv3tBvDTt1fw/nbIv4ZwCPHTum9evXKzs7O7AuKipKQ4cOVUFBQcjbFBQUKCsrK2jdsGHDtHTp0pDbl5eXq7y8PHDZ5/NVW49lScXFle+rZ2bWvY+mYPXq6gek5NzeN2xorb17T/5G2VFJRyS9GFhTVib96lcede58NKy1nDhxQkePHlVRUdFZ/+dwwQUXaNu2bTp06FCN9yNJK1askGX9VVJvSc9KuipoO6c+57Xt643Vmc5DZlslZluVo6oMAU1vti1btkzNmzfXj3/8Yz322GM13k/V9pb1tqQ0SQskDQ7azqnPeThnW8QD4Ndffy2/36/ExMSg9YmJidUe3fB4PCG393g8IbfPzc3VrFmzzqiuan74aNLq2pPTev/66+anrDki6d+SxgatzcuLTD2RZFlV5wfcLOkXkkL/UOW057yp9nOm85DZVonZVuWwpFI15dn24IMP1mm7/8y2Qkk5klaE3M5pz3k4+3Hkt4Czs7ODjhj6fD6lpqbWeJukpHBXFXl17clpvbdvf/yUNc9KevK07X71q39qwIDqj6o1hGPHjunQoUMaPHjwGb9Nsm/fPqWlpSkzM1Njx47V5MmTtW3btmq3d7lcqvxERxdVDsg7qt3Wac+50/qpDrOtErOtyu8l/ea07Rr7bJOk3r17a/z48XrggQfUo0cPFRUVVbttVFTUdye/7y5ppqTbqt3Wac95OPuJeABs3769oqOjVVZWFrS+rKxMbrc75G3cbvcZbR8bG1vnQ9JVnxsYMqROmzcpQ4ZU9lZSUnl4/FRO7b1//0Pq0OHYSZ+TkaSTf3Ku/JzMJZeUKzr61J+oG1ZFRYWaNWum5s2bq3nzM7uv5cuXy+/369VXX5XL5Qp6mzCULl26aObM2crOHq09e6KNes5r29cbqzOdh8y2Ssy2pj3bjhw5ou3bt0tSjbet+qG2W7dumjXrEU2Z8kPt2RNl1HMeztkW8W8Bx8TEaODAgcrPzw+sq6ioUH5+vjIyMkLeJiMjI2h7qfKzTtVtX1eu714/8+Y560OjVaKjpWefrfx7Va9VnNx7dLQ0dep/vvARzJLLJT300O5G3/d5550nn8+nt99+W9u2bdO+ffuCrnd99yQmJSXp0ksv1T//+U+NGXOHnnsu+rvrdcr2lX869Tmvbl9vzM5mHtaFk59ridlWqenOtk2bNik6OlqLFi3SP/7xDx07dizo+qioymiSkpKi9PR0ffHFF7rttlF67rnK9aY95+GabbacBiYrK0u/+93v9OKLL+rLL7/Ufffdp8OHD+uee+6RJN11111BRzseeOABLV++XE899ZS2bNmimTNn6pNPPjnjX4WVnBx8OSVFeuMN6ZZb6t1So3XLLZU9duwYvN7pvV911QHNnVukDh2C3zJJTDyuOXOKdNVVB+wp7AzccMMNGjdunMaMGaMrrrhCx48H99KlSxe9/PLL+sMf/qDzzz9f0d9NPlOf8+r6PvVyY1PbPKwLZtt/OL13J8y2wsJCde/eXTk5Obr55psDp4Gp+qG2W7dueu2115SXl6eUlJRAIDT1OQ/XbLPlNDCS9Pzzz2vu3LnyeDxKS0vTc889p/T0dElSZmamOnfurLyTPsn6+uuv6+GHH9bOnTvVrVs3zZkzR9dee22d7qvqVAn793u1cWOccWcPl+w/c3okT5VwMr+/8ptzX3/dXO3bH4/42fLre6qEk6WlpWnjxo3q2rWrZs+erdGjRys6OlqrVq3S888/rzfeeCNoe7ufc7ucfrZ8n9q1a7yngZFqnoc1YbbZv58z2+o/2y688ELt2LFDPXr00COPPKIf/vCHioqKYradoqFnm20BMJKqhmRj/g/A6ewaknZryCH5l7/8RV6vV6NGjQoc7ZNU7ZBEJSe//p3cW1PBbKv/bHvrrbd0/Phx3XLLLYGjfRKzrTb1ff078lvAgBONGDHitHVDhw7Vxo0bdfjwYaWkpOj111+v92djASCSbrrpptPWMdvCjwAINGHvvfee3SUAQINjtoWfLV8CAQAAgH0IgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhACL8KvyK2veh3EdXKu7bTyXLb3dFkWH5Ffftp3IfXamofR9KFYb0DZiC2cZsa8IiHgD379+vO+64Q3FxcWrbtq3GjRunQ4cO1XibzMxMuVyuoGXChAkRqhj1UrxEeruzWqwZoT4Hc3WxZ5J677hebQ++b3dlYdX24PvqveN6XeyZpD4Hc9VizQjp7c6VjweApo/Zxmxr4iIeAO+44w59/vnnWrFihZYtW6YPP/xQP/3pT2u93fjx41VaWhpY5syZE4FqUS/FS6TVP5KO7A5a3fzEXnUpmerYQdn24PvqUjJVzU/sDb7iSEnl48GgBJo2ZlvwFcy2JimiAfDLL7/U8uXL9cILLyg9PV1XXHGF5s+fr1deeUV79uyp8batWrWS2+0OLHFxcRGqGmelwi+tf0CSddpVru/+TCl70nlvmVh+pZTNlfSfPk+6svKP9ZN5ywRoqphtzDaHaBbJOysoKFDbtm11ySWXBNYNHTpUUVFRWrdunW6++eZqb/t///d/evnll+V2u3XDDTdo+vTpatWqVchty8vLVV5eHrjs8/kargnUzb7Vp/10fDKXpJgTZYr1fixfywGRqyvM4r79VDGn/nQcxJKOFFc+PomZkSoLQENhtlWD2dbURDQAejwedejQIbiAZs3Url07eTyeam/34x//WJ06dVJycrI2bdqkn//859q6dauWLAl9uDk3N1ezZs1q0Npxhr4trdNmFYdLdMjfPczFRE7royV127COjw+ARobZVjNmW5PRIAFw2rRpeuKJJ2rc5ssvvzzrf//kzwj26dNHSUlJuvrqq7Vjxw5dcMEFp22fnZ2trKyswGWfz6fU1NSzvn+chZZJddqsW9/v6YKEy8NcTORE7fNLa3Jr37COjw+ARobZVjNmW5PRIAFwypQpGjt2bI3bdO3aVW63W3v3Bh9CPnHihPbv3y+3213n+0tPT5ckbd++PWQAjI2NVWxsbJ3/PYRBwhCpVUrlh4NDfFZGckmtUtQi9QdSVHSkqwuf1B/UqW8lDIl0ZQAaArNNzDZnaJAAmJCQoISEhFq3y8jI0IEDB7R+/XoNHDhQkvT++++roqIiEOrqorCwUJKUlMRPGo1WVLQ08NnKb4bJpeCB8d1HiAfOc9aAlMztGzCFqa9xU/t2sIh+C/iiiy7S8OHDNX78eH388cdas2aNJk2apNGjRys5OVmSVFJSop49e+rjjz+WJO3YsUOPPPKI1q9fr507d+rtt9/WXXfdpe9973vq27dvJMvHmUq9RRryhtSqY/D6VimV61NvsaeucDO1b8AUpr7GTe3boSL6JRCp8tu8kyZN0tVXX62oqCj98Ic/1HPPPRe4/vjx49q6dauOHDkiSYqJidF7772nefPm6fDhw0pNTdUPf/hDPfzww5EuHWcj9Rap402V3wz7trTy8yEJQ5z/U6KpfQOmMPU1bmrfDuSyLCvUm/mO4vP5FB8fL6/Xy/kDAcM4+fXv5N4A1Ky+r39+FzAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAA26dy5s1wuV9Dy+OOP210WAAM0s7sAADDZ7NmzNX78+MDlNm3a2FgNAFMQAAHARm3atJHb7ba7DACG4S1gALDR448/rvPOO0/9+/fX3LlzdeLECbtLAmAAjgACgE1+9rOfacCAAWrXrp3Wrl2r7OxslZaW6umnnw65fXl5ucrLywOXfT5fpEoF4DAcAQSABjRt2rTTvthx6rJlyxZJUlZWljIzM9W3b19NmDBBTz31lObPnx8U8k6Wm5ur+Pj4wJKamhrJ1gA4iMuyLMvuIsLN5/MpPj5eXq9XcXFxdpcDIIIi/frft2+fvvnmmxq36dq1q2JiYk5b//nnn6t3797asmWLevTocdr1oY4ApqamMtsAA9V3tvEWMAA0oISEBCUkJJzVbQsLCxUVFaUOHTqEvD42NlaxsbH1KQ8AJBEAAcAWBQUFWrduna688kq1adNGBQUFevDBB3XnnXfq3HPPtbs8AA5HAAQAG8TGxuqVV17RzJkzVV5eri5duujBBx9UVlaW3aUBMAABEABsMGDAAH300Ud2lwHAUHwLGAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxj1q+D8fmnVKqm0VEpKkoYMkaKj7a4qMvx+afVq83o3tW/J3N5P7btfP7srCj9mm3m9m9q3ZG7vDT7brAj65S9/aWVkZFgtW7a04uPj63SbiooKa/r06Zbb7bZatGhhXX311dY///nPM7pfr9drSbKSk72WZAWWlBTLWrz4LBppYhYvruzVtN5N7duyzO09VN+Vr3tZXq/X7vIaHLON/dykvi3L3N7DMdsiGgBnzJhhPf3001ZWVladA+Djjz9uxcfHW0uXLrU2btxo3XjjjVaXLl2sb7/9ts73WzUkpeAh6XJVLk7ecRYvruzx5L5N6N3Uvi3L3N6r67vyde/sAMhsM6d3U/u2LHN7D9dsc1mWZdXzIOIZy8vL0+TJk3XgwIEat7MsS8nJyZoyZYoeeughSZLX61ViYqLy8vI0evToOt2fz+dTfHy8JK+kuKDrXC4pJUUqKnLeIWS/X+rcWdq9O/T1Tu3d1L4lc3uvuW+fpHh5vV7FxcWF2qDJYraFvt6pvZvat2Ru7+GcbY36SyBFRUXyeDwaOnRoYF18fLzS09NVUFBQ7e3Ky8vl8/mClupYllRcXPm+utOsXl39i0Vybu+m9i2Z23ttfZvIqc+1xH5eHaf2LZnbezhnW6MOgB6PR5KUmJgYtD4xMTFwXSi5ubmKj48PLKmpqbXeV2lp/WptjOrak9N6N7VvydzendZPQ3LiY8N+3jDbNSWm9h7OfuodAKdNmyaXy1XjsmXLloaotc6ys7Pl9XoDS3Fxca23SUqKQGERVteenNa7qX1L5vbutH4akhMfG/bzhtmuKTG193D2U+/TwEyZMkVjx46tcZuuXbue1b/tdrslSWVlZUo66VEoKytTWlpatbeLjY1VbGxsne6j6nMDQ4acVYmN2pAhlb2VlFQeHj+VU3s3tW/J3N5r69tETn2uJfZz0/qWzO09nLOt3kcAExIS1LNnzxqXmJiYs/q3u3TpIrfbrfz8/MA6n8+ndevWKSMjo76ly+Wq/HPePGd9aLRKdLT07LOVf6/qtYqTeze1b8nc3mvq20ROfq4l9nPJrL4lc3sP62xryK8q1+arr76yNmzYYM2aNctq3bq1tWHDBmvDhg3WwYMHA9v06NHDWrJkSeDy448/brVt29Z66623rE2bNlk33XTTWZ8G5tRzZaWmOvdr4ycLdf4gE3o3tW/LMrf3UH137Oj808Aw28zq3dS+Lcvc3sMx2yJ6GpixY8fqxRdfPG39ypUrlZmZKUlyuVxatGhR4G1ly7KUk5Oj3/72tzpw4ICuuOIK/epXv1L37t3rfL9Vp0rYv9+rjRvjjDt7uMSZ003rWzK399PPlu9Tu3bOPg0Ms4393JS+JXN7b+jZZst5ACOtakg68T8AADVz8uvfyb0BqFl9X/+N+jQwAAAAaHgEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwEQ2Ajz76qAYPHqxWrVqpbdu2dbrN2LFj5XK5gpbhw4eHt1AAAAAHaxbJOzt27JhGjRqljIwM/e///m+dbzd8+HAtWrQocDk2NjYc5QEAABghogFw1qxZkqS8vLwzul1sbKzcbncYKgIAADBPk/gM4KpVq9ShQwf16NFD9913n7755psaty8vL5fP5wtaAAAAUKnRB8Dhw4frpZdeUn5+vp544gl98MEHGjFihPx+f7W3yc3NVXx8fGBJTU2NYMUAAACNW70D4LRp0077ksapy5YtW8763x89erRuvPFG9enTRyNHjtSyZcv0j3/8Q6tWrar2NtnZ2fJ6vYGluLj4rO8fAADAaer9GcApU6Zo7NixNW7TtWvX+t5N0L/Vvn17bd++XVdffXXIbWJjY/miCAAAQDXqHQATEhKUkJDQELXUye7du/XNN98oKSkpYvcJAADgJBH9DOCuXbtUWFioXbt2ye/3q7CwUIWFhTp06FBgm549e+rNN9+UJB06dEhTp07VRx99pJ07dyo/P1833XSTLrzwQg0bNiySpQMAADhGRAPgjBkz1L9/f+Xk5OjQoUPq37+/+vfvr08++SSwzdatW+X1eiVJ0dHR2rRpk2688UZ1795d48aN08CBA7V69Wre4gXQqNXlxPe7du3Sddddp1atWqlDhw6aOnWqTpw4EdlCARgpoucBzMvLq/UcgJZlBf7esmVL/fWvfw1zVQDQ8Go78b3f79d1110nt9uttWvXqrS0VHfddZeaN2+uxx57zIaKAZik0Z8GBgCaolmzZunBBx9Unz59Ql7/t7/9TV988YVefvllpaWlacSIEXrkkUe0YMECHTt2LMLVAjANARAAbFBQUKA+ffooMTExsG7YsGHy+Xz6/PPPbawMgAki+hYwAKCSx+MJCn+SApc9Hk/I25SXl6u8vDxwmd9yBOBscQQQAOoo3Ce+rw2/5QhAQ+EIIADUUUOe+N7tduvjjz8OWldWVha4LpTs7GxlZWUFLvt8PkIggLNCAASAOmrIE99nZGTo0Ucf1d69e9WhQwdJ0ooVKxQXF6devXqFvA2/5QhAQyEAAkAY7Nq1S/v37w868b0kXXjhhWrdurWuueYa9erVS2PGjNGcOXPk8Xj08MMPa+LEiYQ8AGFHAASAMJgxY4ZefPHFwOX+/ftLklauXKnMzExFR0dr2bJluu+++5SRkaFzzjlHd999t2bPnm1XyQAM4rJOPvOyQ/l8PsXHx8vr9SouLs7ucgBEkJNf/07uDUDN6vv651vAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGCYZnYXEEl+v7RqlVRaKiUlSUOGSNHRdlcVGX6/tHq1eb2b2rdkbu+n9t2vn90VhR+zzbzeTe1bMrf3Bp9tVgQVFRVZP/nJT6zOnTtbLVq0sLp27WrNmDHDKi8vr/F23377rfXf//3fVrt27axzzjnHuuWWWyyPx1Pn+/V6vZYkKznZa0lWYElJsazFi+vbVeO3eHFlr6b1bmrflmVu76H6rnzdy/J6vXaX1+CYbeznJvVtWeb2Ho7ZFtEA+Je//MUaO3as9de//tXasWOH9dZbb1kdOnSwpkyZUuPtJkyYYKWmplr5+fnWJ598Yl122WXW4MGD63y/VUNSCh6SLlfl4uQdZ/Hiyh5P7tuE3k3t27LM7b26vitf984OgMw2c3o3tW/LMrf3cM02l2VZVj0PItbL3Llz9etf/1r/+te/Ql7v9XqVkJCgP/7xj/rRj34kSdqyZYsuuugiFRQU6LLLLqv1Pnw+n+Lj4yV5JcUFXedySSkpUlGR8w4h+/1S587S7t2hr3dq76b2LZnbe819+yTFy+v1Ki4uLtQGTRazLfT1Tu3d1L4lc3sP52yz/UsgXq9X7dq1q/b69evX6/jx4xo6dGhgXc+ePXX++eeroKAg5G3Ky8vl8/mClupYllRcXPm+utOsXl39i0Vybu+m9i2Z23ttfZvIqc+1xH5eHaf2LZnbezhnm60BcPv27Zo/f77uvffearfxeDyKiYlR27Ztg9YnJibK4/GEvE1ubq7i4+MDS2pqaq21lJaeUelNQl17clrvpvYtmdu70/ppSE58bNjPG2a7psTU3sPZT4MEwGnTpsnlctW4bNmyJeg2JSUlGj58uEaNGqXx48c3RBkB2dnZ8nq9gaW4uLjW2yQlNWgJjUJde3Ja76b2LZnbu9P6aUhOfGzYzxtmu6bE1N7D2U+DfAZw3759+uabb2rcpmvXroqJiZEk7dmzR5mZmbrsssuUl5enqKjqc+j777+vq6++Wv/+97+DjgJ26tRJkydP1oMPPlhrfaZ/TqakpPLw+Kmc2rupfUvm9l5z33wG0EnPtcR+blrfkrm9h3O2NcgRwISEBPXs2bPGpSr8lZSUKDMzUwMHDtSiRYtqDH+SNHDgQDVv3lz5+fmBdVu3btWuXbuUkZFRr7pdrso/581z1g5TJTpaevbZyr9X9VrFyb2b2rdkbu819W0iJz/XEvu5ZFbfkrm9h3O2RfRbwFXhr1OnTnrxxRcVfdIz5Xa7A9tcffXVeumllzRo0CBJ0n333ad3331XeXl5iouL0/333y9JWrt2bZ3u1+v1qm3btnK7i+Xx/Ccld+woPf64dOONDdVh4/T229LPfy7t2fOfdSb0bmrfkrm9h+o7Kcmn0tJUHThw4LujZc7BbGM/r2JC35K5vYdltjXYiWrqYNGiRd+ds+r0pUpRUZElyVq5cmVgXdWJoM8991yrVatW1s0332yVlpbW+X6Li4urvV8WFhYzluLi4oYcZ40Cs42FheVsZ5vt5wGMhIqKCu3Zs0dt2rTRwYMHlZqaquLiYsd9Hqg2Pp/PyN5N7Vsyt/eT+6563ScnJ9f6kZOm5uTZ5orQe99O2aec0IcTepCc0YcdPViWVa/ZZsTvAo6KilJKSookBYZkXFxck93R6svU3k3tWzK396q+nfbWb5WTZ1ukOWWfckIfTuhBckYfke6hPrPNWT8OAwAAoFYEQAAAAMMYFwBjY2OVk5Oj2NhYu0uJOFN7N7VvydzeTe07Epzy2DqhDyf0IDmjj6bYgxFfAgEAAMB/GHcEEAAAwHQEQAAAAMMQAAEAAAxDAAQAADCM0QFw586dGjdunLp06aKWLVvqggsuUE5Ojo4dO2Z3aWH36KOPavDgwWrVqpXatm1rdzlhtWDBAnXu3FktWrRQenq6Pv74Y7tLCrsPP/xQN9xwg5KTk+VyubR06VK7S4qI3NxcXXrppWrTpo06dOigkSNHauvWrXaX5Rh1mRu7du3Sddddp1atWqlDhw6aOnWqTpw4EdlCz1Dnzp3lcrmClscff9zusmrVlGfbzJkzT3vMe/bsaXdZtapttlqWpRkzZigpKUktW7bU0KFDtW3bNnuKrYXRAXDLli2qqKjQb37zG33++ed65plntHDhQv2///f/7C4t7I4dO6ZRo0bpvvvus7uUsHr11VeVlZWlnJwcffrpp+rXr5+GDRumvXv32l1aWB0+fFj9+vXTggUL7C4loj744ANNnDhRH330kVasWKHjx4/rmmuu0eHDh+0uzRFqmxt+v1/XXXedjh07prVr1+rFF19UXl6eZsyYEeFKz9zs2bNVWloaWO6//367S6qRE2bbxRdfHPSY//3vf7e7pFrVNlvnzJmj5557TgsXLtS6det0zjnnaNiwYTp69GiEK62DBvut5A4xZ84cq0uXLnaXETGLFi2y4uPj7S4jbAYNGmRNnDgxcNnv91vJyclWbm6ujVVFliTrzTfftLsMW+zdu9eSZH3wwQd2l+Io1c2Nd99914qKirI8Hk9g3a9//WsrLi7OKi8vj2CFZ6ZTp07WM888Y3cZZ6Spz7acnByrX79+dpdRL6fO1oqKCsvtdltz584NrDtw4IAVGxtr/elPf7KhwpoZfQQwFK/Xq3bt2tldBhrAsWPHtH79eg0dOjSwLioqSkOHDlVBQYGNlSFSvF6vJPGajpCCggL16dNHiYmJgXXDhg2Tz+fT559/bmNltXv88cd13nnnqX///po7d26jftvaKbNt27ZtSk5OVteuXXXHHXdo165ddpdUL0VFRfJ4PEHPS3x8vNLT0xvl89LM7gIak+3bt2v+/Pl68skn7S4FDeDrr7+W3+8P+s9IkhITE7VlyxabqkKkVFRUaPLkybr88svVu3dvu8sxgsfjCfl6q7qusfrZz36mAQMGqF27dlq7dq2ys7NVWlqqp59+2u7SQnLCbEtPT1deXp569Oih0tJSzZo1S0OGDNHmzZvVpk0bu8s7K1X7eKjnpTHu/448Ajht2rTTPlx66nLqi6SkpETDhw/XqFGjNH78eJsqr5+z6RtwqokTJ2rz5s165ZVX7C6lUXPq3DiTvrKyspSZmam+fftqwoQJeuqppzR//nyVl5fb3IVzjRgxQqNGjVLfvn01bNgwvfvuuzpw4IBee+01u0szhiOPAE6ZMkVjx46tcZuuXbsG/r5nzx5deeWVGjx4sH7729+GubrwOdO+na59+/aKjo5WWVlZ0PqysjK53W6bqkIkTJo0ScuWLdOHH36olJQUu8tp1Bpybrjd7tO+iVr1+ov0a64+faWnp+vEiRPauXOnevToEYbq6seJs61t27bq3r27tm/fbncpZ63qsS8rK1NSUlJgfVlZmdLS0myqqnqODIAJCQlKSEio07YlJSW68sorNXDgQC1atEhRUU33oOiZ9G2CmJgYDRw4UPn5+Ro5cqSkyrcF8/PzNWnSJHuLQ1hYlqX7779fb775platWqUuXbrYXVKj15BzIyMjQ48++qj27t2rDh06SJJWrFihuLg49erVq0Huo67q01dhYaGioqICPTQ2Tpxthw4d0o4dOzRmzBi7SzlrXbp0kdvtVn5+fiDw+Xw+rVu3rlGeccORAbCuSkpKlJmZqU6dOunJJ5/Uvn37Atc11Z+i6mrXrl3av3+/du3aJb/fr8LCQknShRdeqNatW9tbXAPKysrS3XffrUsuuUSDBg3SvHnzdPjwYd1zzz12lxZWhw4dCvpJuqioSIWFhWrXrp3OP/98GysLr4kTJ+qPf/yj3nrrLbVp0ybwuZv4+Hi1bNnS5uqavtrmxjXXXKNevXppzJgxmjNnjjwejx5++GFNnDhRsbGx9hZfjYKCAq1bt05XXnml2rRpo4KCAj344IO68847de6559pdXrWa+mx76KGHdMMNN6hTp07as2ePcnJyFB0drdtvv93u0mpU22ydPHmyfvnLX6pbt27q0qWLpk+fruTk5EBQb1Ts/hqynRYtWmRJCrk43d133x2y75UrV9pdWoObP3++df7551sxMTHWoEGDrI8++sjuksJu5cqVIZ/fu+++2+7Swqq61/OiRYvsLs0R6jI3du7caY0YMcJq2bKl1b59e2vKlCnW8ePH7Su6FuvXr7fS09Ot+Ph4q0WLFtZFF11kPfbYY9bRo0ftLq1WTXm23XbbbVZSUpIVExNjdezY0brtttus7du3211WrWqbrRUVFdb06dOtxMREKzY21rr66qutrVu32lt0NVyWZVnhj5kAAABoLJruB94AAABwVgiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGH+P6kAk9e2mi3jAAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e300070748334ea8b857f0747956546d", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW8dJREFUeJzt3Xt8E1XeP/BPkrbpPaXQpi2ttMhdrlbFItUiPIsoVWRBXS+ID7ILC65cdKXPTyl4Q2FVvO2i6y7o43pBKIro48qWW5UCilQELAIWW0rTAqUJvbfJ/P4IiU2btilNMsmcz/v1Gmsmk+R7cjqHb2fmzFclSZIEIiIiIhKGWu4AiIiIiMi7mAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgAuQOwBssFgtOnz6NiIgIqFQqucMhIi+SJAkXLlxAQkIC1Gpl/c3LsY1IXN0d24RIAE+fPo2kpCS5wyAiGZWUlCAxMVHuMNyKYxsRXerY5vUEcMWKFcjJyUFhYSFCQkIwZswYPP/88xg4cGCHr/voo4/wxBNP4OTJk+jfvz+ef/553HzzzS59ZkREBADg5MkSHDoUCYMBiIsDxowBNJpuN4l8mNkM7N4N9rlAWvf50KEmJCcn2ccBJeHYJu4+Lmq7AXHb7vaxTfKyiRMnSmvXrpUOHTokFRQUSDfffLN02WWXSdXV1e2+5uuvv5Y0Go20cuVK6ciRI9Ljjz8uBQYGSj/88INLn2k0GiUAUkKCUQIk+5KYKEkbN7qrZeRrNm609jH7XBzO+ty630MyGo1yh+d2oo9tou7jorZbksRtuyfGNq8ngK1VVFRIAKSdO3e2u80dd9wh3XLLLQ7rRo8eLf3hD39w6TNsgyTgOEiqVNZF6b84Itq40dq3Lfubfa5s7fW5db9XdgIo4tgm6j4uarslSdy2e2psk/2KaKPRCACIjo5ud5v8/HxMmDDBYd3EiRORn5/frc+WJOvPBQush1ZJGcxm4OGHf+3fltjnytRRn4tI6b/nou7jorYbELftnhzbZE0ALRYLFixYgOuuuw5Dhw5tdzuDwQC9Xu+wTq/Xw2AwON2+oaEBJpPJYWmPJAElJUBe3qW1gXxPXh5w6lT7z7PPlaezPheRkn/PRd3HRW03IG7bPTm2yZoAzps3D4cOHcIHH3zg1vddsWIFdDqdfXFlllxZmVtDIBm52pfsc+VgX7ZPid+NqPu4qO0GxG27J9sjWwI4f/58bNmyBdu3b+90+nJcXBzKy8sd1pWXlyMuLs7p9llZWTAajfalpKSk03ji412PnXybq33JPlcO9mX7lPjdiLqPi9puQNy2e7I9Xk8AJUnC/PnzsWnTJmzbtg0pKSmdviYtLQ25ubkO67Zu3Yq0tDSn22u1WkRGRjos7VGpgKQkID29a+0g35WeDiQmWvvWGfa58nTW5yJS8u+5qPu4qO0GxG27J8c2ryeA8+bNw7vvvov33nsPERERMBgMMBgMqKurs28zY8YMZGVl2R8//PDD+OKLL/DCCy+gsLAQy5Ytw7fffov58+d3KxbbF7p6tRj3EBKFRgO8/LL1/1vvNOxzZeqoz0Wk9N9zUfdxUdsNiNt2j45t7p2s3DkATpe1a9fat7nhhhuk+++/3+F169evlwYMGCAFBQVJV1xxhfTZZ5+5/Jnt3SsrKUm508bJ+X2T2OfK5qzPe/dW/m1gRB3bRN3HRW23JInbdk+MbSpJUv6NE0wmE3Q6HSorjfj++0iUlVnPq6enK++vBXJkNltnUbHPxdG6z0eMMCE6Wgej0djh5SD+iGObuPu4qO0GxG27u8c2oRJAJf4DQEQdU/L+r+S2EVHHurv/y34jaCIiIiLyLiaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhE5CG7du1CZmYmEhISoFKp8PHHHzs8L0kSli5divj4eISEhGDChAk4duyYPMESkVCYABIReUhNTQ1GjBiB119/3enzK1euxCuvvII1a9Zg7969CAsLw8SJE1FfX+/lSIlINAFyB0BEpFSTJk3CpEmTnD4nSRJWr16Nxx9/HLfddhsA4J133oFer8fHH3+Mu+66y5uhEpFgeASQiEgGRUVFMBgMmDBhgn2dTqfD6NGjkZ+fL2NkRCQCHgEkIpKBwWAAAOj1eof1er3e/lxrDQ0NaGhosD82mUyeC5CIFI1HAImI/MSKFSug0+nsS1JSktwhEZGfYgJIRCSDuLg4AEB5ebnD+vLycvtzrWVlZcFoNNqXkpISj8dJRMrEBJCISAYpKSmIi4tDbm6ufZ3JZMLevXuRlpbm9DVarRaRkZEOCxHRpeA1gEREHlJdXY3jx4/bHxcVFaGgoADR0dG47LLLsGDBAjz99NPo378/UlJS8MQTTyAhIQFTpkyRL2giEgITQCIiD/n2228xbtw4++NFixYBAO6//36sW7cOf/7zn1FTU4Pf//73qKqqwtixY/HFF18gODhYrpCJSBAqSZIkb37grl27sGrVKuzfvx9lZWXYtGlTh3/t7tixw2EAtSkrK2v3OpnWTCYTdDodjEajsKdMzGYgLw8oKwPi44H0dECjkTsq8iT2uZWS938lt42IOtbd/d/r1wB2dmf89hw9ehRlZWX2JTY21kMRKk9ODpCcDIwbB9x9t/VncrJ1PSkT+5yIiDri9VPAHd0ZvyOxsbGIiopyf0AKl5MDTJsGtD7OW1pqXb9hAzB1qjyxkWewz4mIqDN+Mwt45MiRiI+Px3/913/h66+/ljscv2A2Aw8/3DYRAH5dt2CBdTtSBvY5ERG5wucTwPj4eKxZswYbN27Exo0bkZSUhIyMDHz33XftvqahoQEmk8lhEVFeHnDqVPvPSxJQUmLdjpSBfU5ERK7w+VnAAwcOxMCBA+2Px4wZgxMnTuCll17C//7v/zp9zYoVK7B8+XJvheizysrcux35PvY5ERG5wuePADpzzTXXONxbqzXeLd8qPt6925HvY58TEZErfP4IoDMFBQWI7+BfMK1WC61W68WIfFN6OpCYaL3439k1YSqV9fn0dO/HRp7BPiciIld4PQHs7M74WVlZKC0txTvvvAMAWL16NVJSUnDFFVegvr4eb731FrZt24Yvv/zS26H7HY0GePll68xPlcoxIVCprD9Xrxbz3nBKxT4nIiJXeP0U8LfffotRo0Zh1KhRAKx3xh81ahSWLl0KwHqD5+LiYvv2jY2NWLx4MYYNG4YbbrgB33//Pf7zn/9g/Pjx3g7dL02dar3tR+/ejusTE3k7EKVinxMRUWe8XglEDrxbPqtCiIh9bqXk/V/JbSOijnV3//fLawCp6zQaICND7ijIm9jnRETUHr+cBUxEREREl44JIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCYYJIBEREZFgmAASERERCSZA7gC8yWwGduwAysqA+HggPR3QaOSOijzJbAby8tjnImnd5yNGyB2R8om6n7HdYrUbUFjbJS/buXOnNHnyZCk+Pl4CIG3atKnT12zfvl0aNWqUFBQUJF1++eXS2rVru/SZRqNRAiAlJBglQLIviYmStHHjpbWDfN/GjdY+Zp+Lw1mfW/d7SEajUe7w3M42tsnZNlH3M7ZbrHZLku+1vbv7v9dPAdfU1GDEiBF4/fXXXdq+qKgIt9xyC8aNG4eCggIsWLAADz74IP797393+bNPn3Z8XFoKTJsG5OR0+a3Ix+XkWPv21CnH9exz5Wqvz1vv9+Q+ou5nbLfjeqW3G1Bm21WSJEmyfbhKhU2bNmHKlCntbvPYY4/hs88+w6FDh+zr7rrrLlRVVeGLL75w6XNMJhN0Oh0AI4DIVjEAiYlAUZEfH8YlB2YzkJzcdke1YZ8rT8d9bgKgg9FoRGRkpLMN/JZtbJOjbaLuZ2y38+eV2m7Ad9ve3f3f5yeB5OfnY8KECQ7rJk6ciPz8/HZf09DQAJPJ5LC0R5KAkhLrOX1Shry89ndUgH2uRJ31ObmfqPsZ2+2cUtsNKLftPp8AGgwG6PV6h3V6vR4mkwl1dXVOX7NixQrodDr7kpSU1OnnlJW5JVzyAa72JftcOdiX3ifqfsZ2u2c7f6LUtvt8AngpsrKyYDQa7UtJSUmnr4mP90Jg5BVt+3IdgMkubEf+in3pfa5+50rrm7btOQigP4ATnWzn30Ttb0C5bff5BDAuLg7l5eUO68rLyxEZGYmQkBCnr9FqtYiMjHRY2qNSAUlJ1qncpAzp6dbrMVQqALAAeATAZwB2A2CfK5Fjn5M3dPadK3U/a9vuLQCOA7gBwDmB2u1Iqe0GlNt2n08A09LSkJub67Bu69atSEtL6/Z72zpz9WrlXbQqMo0GePll26MNAM5d/P+l7HOFatnnTAK9o6PvXMn7Wdt22w5QnAYwAZJkEqTdv1JyfwPKbbvXE8Dq6moUFBSgoKAAgPU2LwUFBSguLgZgPX07Y8YM+/Zz5szBzz//jD//+c8oLCzEX//6V6xfvx4LFy7s8mcnJDg+TkwENmwApk695OaQj5o6FVi/3oKAgCcA2PbYXMTE7GafK9TUqdb9uXdvx/WtH5P7tPedK31sdWz39xfXSgB+wKBBN2PSJOfXp/s7UfsbUGbbvX4bmB07dmDcuHFt1t9///1Yt24dZs6ciZMnT2LHjh0Or1m4cCGOHDmCxMREPPHEE5g5c6bLn2mbKl1ZacT330cq4w7e1Kn169fjzjvvtD9WqzXIyMhAbu5/ZIyKPK1tJRAToqN5GxhPUlR1hC4wm4GoqGhUV5+3r1Or1fjNb36DTz75BEFBQTJG5zmi9jfgW23v7v4v630AvcVXBknyHovFgsGDB+P48eOwWCwOz3399dcYM2aMTJGRtyl5/1dy2/xBeXk54uLi2qxXq9WYOnUqPvjgA2hEyYzI6xR/H0CiS7Fhwwb89NNPbZI/jUaDpUuXyhQVESlJywIFLVksFmzcuBF/+MMfIMAxFvJTTABJcSwWC5544gmo1W1/vc1mM3Jzc7F7924ZIiMiJfnhhx+cjjMAIEkS/vGPf2Dx4sVMAsknMQEkxWnv6J8NjwISkTscOnSo3QTQ5qWXXsKTTz7ppYiIXMcEkBSlo6N/NjwKSETucODAATQ3N3e63bJly/Dee+95ISIi1zEBJEXp7OifDY8CElF3WCwWHDlypN3n1Wo1VBdvEjdgwAD06tXLpfc1GAyYM2dOp2MYUXcFyB0AkTtlZ2e7tJ3tKOCePXtw7bXXejgqIlKakydPor6+3mGdRqOB2WyGWq3GDTfcgClTpmDy5Mno27dvu++zZs0avPvuuw7rjh8/jqFDh2L+/PkeiZ0IYAJICjNo0CAEBgY6rCsvL0dlZSUGDx7ssD4wMBABAdwFiKjrbDOA1Wo1LBYLdDodbr31VuTm5mL8+PF45513XHqfOXPmYM6cOfbHlZWVmDFjBu69916PxE1kw3/9SFE2bdrUZt3y5cvx97//HQcPHpQhIiJSovj4eIwePRoZGRnIzMzEtddeC41Ggz//+c945513YLFYOp0g4kx4eDg2btwIrVbrgaiJfsUEkIiIqIuuvvpq7Nmzp836yZMnY9WqVfj2229xzTXXdPl9lVo9hHwPJ4EQERG5yZgxY9CjRw98+umnLr9myZIlmDx5sgejImqLCSBRC5yBR960bNkyqFQqh2XQoEFyh0XdEBAQgJtvvrlLCWBBQQFGjBjhwaiI2uIpYBIaZ+CR3K644gr85z//sT/mxCT/l5mZiX/9618oLi7GZZdd1un2BQUFeOCBB7wQGdGveASQhDZnzhx89dVX9mXz5s246qqrOAOPvCYgIABxcXH2xdX7xZHvuummmxAQEIAtW7Z0uq3BYEB5eTnMZjOuv/56hIaG4uqrr8YPP/zghUhJZEwAiVqwzcCLioqSOxQSxLFjx5CQkIC+ffvinnvuQXFxsdwhUTfpdDpcf/31LiWABQUFAIDVq1djxYoV+PbbbxEeHo7f/e53Ho6SRMcEkKiFoKAg3n6BvGb06NFYt24dvvjiC/ztb39DUVER0tPTceHCBafbNzQ0wGQyOSzkmyZPnoxt27ahpqamw+0KCgoQHByMjz/+GNdddx2GDBmCZ555BocPH8bZs2e9FC2JiAkgCS87OxvDhg1DWFgY9Ho95s6di6amJrnDIgFMmjQJ06dPx/DhwzFx4kR8/vnnqKqqwvr1651uv2LFCuh0OvuSlJTk5YjJVZmZmWhoaMDWrVs73K6goAB33HEHEhIS7Ot69OgBAKipqUFGRgaGDBmC4cOH46OPPvJozCQWJoAkNEmSIEkS3njjDRw5cgTr1q3Dxo0b8dZbb8kdGgkoKioKAwYMwPHjx50+n5WVBaPRaF9KSkq8HCG5ql+/fhg0aFCns4ELCgowcuRIh3V79uxB7969ERQUhNWrV+PIkSP48ssvsWDBgk6PKBK5itPNSGgqlQpPPvmk/XGfPn0wYcIEHD16VMaoSFTV1dU4ceIE7rvvPqfPa7VaXqLgRzIzMzusClJbW4tjx47BbDbb11ksFrz88suYOXMm4uPjER8fDwD2CUKVlZUICwvzWhtIuXgEkIT2yy+/YN68eRg6dCh69OiB8PBwrF+/HomJiSgpKeHpF/KoRx55BDt37sTJkyexe/du3H777dBoNJwAoBCZmZkoLy/HN9984/T5gwcPQqPRYO3atfjmm29w9OhR3HHHHairq8Njjz3msO3+/fthNpt52p/chgkgCevMmTO4+uqrce7cObz44ov46quvsHv3bqjVaowYMQIBAQE8/UIederUKfzud7/DwIEDcccdd6Bnz57Ys2cPYmJi5A6N3CAtLQ3R0dHtngYuKCjAgAEDkJ2djdtvvx2pqakIDAzE7t27ERERYd+usrISM2bMwJtvvumt0EkAPAVMwvr0009hNpvx/vvvQ6VSAQBee+01NDU1YeTIkYiJieHpF/KoDz74QO4QyIMCAgIwadIkbNmyBU8//XSb5+fMmYM5c+YAAO644w6n79HQ0IApU6ZgyZIlGDNmjEfjJbHwCCAJq2fPnjCZTNi8eTOOHTuGF198EcuXL0fv3r3bHIHh6RciuhSZmZn4/vvvL+n+jpIkYebMmbjxxhvbvS6U6FIxASRhZWZmYtasWbjvvvswduxYlJaW4o477mgzI4+nX4joUnWlKkhrX3/9NT788EN8/PHHGDlyJEaOHMkKIeQ2PAVMwlKr1VizZg3WrFnT7jY8/UJE3WGrCvLpp5/ij3/8Y5deO3bsWFgsFg9FRqLjEUCidvD0CxG5Q2ZmJrZt24bq6mq5QyGyYwJI1A6efiEid8jMzERjY2OnVUGIvImngInawdMvROQOl19+ub0qyO233y53OEQAeASQiIjI4zIzM/HZZ5+5749Kixko3wGcfN/602Lu7BVEDpgAEhEReVhmZiYqKirarQrSJSU5wOZkIHccsPtu68/Nydb1RC5iAkhERORhnVUFcVlJDpA3Dag95bi+ttS6nkkguYgJIBERkYcFBATg5ptv7l4CaDED+x8GIDl58uK6/Qt4OphcwgSQiIjICzIzM3Hw4EH88ssvl/YGZ/LaHvlzIAG1JdbtiDrBBJCIiMgLJk6ceMlVQQAAdWXu3Y6ExgSQiIjIC2xVQS45AQyJd+92JDQmgERERF7SraogMekwa+OdXgEIABJUkEISgZj0bsVIYmACSERE5CWXWhXEYrGg6JdiHAycBaDtNBDp4n9/6bUQDU3N7giVFI4JIBERkZdcfvnlGDx4cJdmAzc1NaGwsBCHDx+GSTcBRb1XoSkg1nGbAD1+0q/AD1X98f333+PChQvuDp0UhqXgiIiIvCgzMxPr1q2DxWKBWt3xcZja2loUFhaitLQUPXv2RHBwMKpwI6rCb0B47QEEms+iSdML1aGjAJUGcZFmlJeXo76+HkOGDEGvXr281CryNzwCSERE5EWTJ09GRUUF9u3b1+F2VVVVKCgowKlTp6DX6xEcHPzrkyoNqsOuwvnIm1AddhWg0gAANBoN4uPjUVNTgwMHDuDUqVOQpPauGiSRMQEkIiLyIleqghgMBhw4cADnz59HQkICAgJcP2GnUqmg1+uh0Whw8OBBHD9+HGYzbw5NjpgACsJsBnbsAN5/3/rTp8YCfy5q7sOx+3SfEwnMVhXE2e1gLBYLioqKUFBQgObmZsTFxXV6mrg9UVFRiIiIsF8/2NDQ0N3QSUFkSwBff/11JCcnIzg4GKNHj+7wUPi6deugUqkcFodD4dShnBwgORkYNw64+27rz+Rk63rZ+XNRcx+O3af7nIicVgVpOdkjJCQEPXv2hEql6tbnhIWFISYmBr/88gsnh5ADWRLADz/8EIsWLUJ2dja+++47jBgxAhMnTkRFRUW7r4mMjERZWZl9ueRSOoLJyQGmTQNOtaoeVFpqXS9rQuDPRc19OHaf7nMiAtC2KkhtbS0OHjyIEydOIDo6GhEREW77rKCgIMTFxaGiogIHDhzA2bNn3fbe5L9kSQBffPFFzJ49Gw888ACGDBmCNWvWIDQ0FP/85z/bfY1KpUJcXJx90ev1XozYP5nNwMMPA86u/7WtW7BAplOD/lzU3Idj9+k+JyI7nU6HG264AZ9++inOnz+PgoICnD59uu1kDzexTQ6pra3l5BACIMNtYBobG7F//35kZWXZ16nVakyYMAH5+fntvq66uhp9+vSBxWLBlVdeiWeffRZXXHGF020bGhocrnUwmUzua4AfyctrexSoJUkCSkqs22VkeC0sKxeLmlcX/R+ae47t1kfV19dDkiRUVVV1631sAs59hXBXC7LrM9zyma7y6T4nIgeTJ0/GY489ht27dwMA4uPjL/l6P1eoVCrExsaiqqoKBw8eRG1tLS6//HJoNBqPfSb5Lq8ngGfPnoXZbG5zBE+v16OwsNDpawYOHIh//vOfGD58OIxGI/7yl79gzJgxOHz4MBITE9tsv2LFCixfvtwj8fuTMhfrgbu6nVu5WKz8+KE8lAV1b3AqKSlBQ0NDh39gdEV8Yx5GurKhDAXZrX0pAfjx4vLbDrYjIrlYLBaMGDECjY2N2LdvH2699dZuX+/nqqioKNTW1uLo0aOor6/HwIEDodVqvfLZ5Dv84kbQaWlpSEtLsz8eM2YMBg8ejDfeeANPPfVUm+2zsrKwaNEi+2OTyYSkpCSvxOpL4l2sB+7qdm7lYrHy4KgU9Art3o1MQ0NDodFo3HZD1ODaFKDGhQ29VJC9ubkZBw8exFdffYWNG3cB2A6g0vYsgLYJtCx9TkQArJM9jh07hpqaGvTp0wcHDhzAbbfd5tUYQkNDERAQgJMnT6K+vh6DBw9263WH5Pu8ngD26tULGo0G5eXlDuvLy8sRFxfn0nsEBgZi1KhROH78uNPntVot/5oBkJ4OJCZaL/53dqmHSmV9Pl2OuuEx6UBoonXShJNr6SRYSxvVhqdCo+reEUDbKRV3neaoDU9FY0AsApsr4PzvdZW1bR4qyF5TU4N9+/YhLy8Pu3btwu7du1FXV2efIQ9YLm55E1onf7L2ORGhtrYWP/74I0pLS9GrVy9kZGRg8+bNLlUFcbegoCDEx8ezcoigvD4JJCgoCKmpqcjNzbWvs1gsyM3NdTjK1xGz2YwffvgB8TyM0SGNBnj5Zev/tz6zYHu8erV1O69Ta4BUa3BSqzTKmg6qcEr/iP3u9j5FpcEp/aMAnKWuF9uSutraRjeprKzEI488gtTUVOh0Otx444148sknsW3bNtTV1VljkSRYLJYWr3raMTK5+5xIcC0ne8TFxSE4OBjp6ek4f/48Dh8+LEtMnBwiLllmAS9atAh///vf8fbbb+PHH3/E3LlzUVNTgwceeAAAMGPGDIdJIk8++SS+/PJL/Pzzz/juu+9w77334pdffsGDDz4oR/h+ZepUYMMGoHdvx/WJidb1U6fKExcAIGkqGq75FxrUjn9xNgXoUdR7JaoibpQpsM5VRdzotCA7QhOB9A1Aknu/2O+//x4vvPACvvvuO/sd/c1ms9OBWqPRYODAMUhMTHVY7xN9TiSosrIye2WP+Ph4e2WP4cOHQ6fTYdeuXbLFZpscYqsccuzYMVYOEYAs1wDeeeedOHPmDJYuXQqDwYCRI0fiiy++sE8MKS4udjgUfv78ecyePRsGgwE9evRAamoqdu/ejSFDhsgRvt+ZOhW47TbrzM+yMuv1X+npvnEUqCriRnwT9nf01xkQZDnnUNTc11VF/FqQvbbyBMJ79Ue/tAfceuTPZty4cXjooYfw2muvdfrXudlsxrPPLvbZPicSicViwcmTJ/HTTz/Zj7a1pNFocN1112HXrl2YN2+eTFFatZwcUldXh0GDBvFyKgVTSQIc6zWZTNDpdDAajYiMjJQ7HGqhsLAQJ06c8Ojp/DfffBObNm3C//3f/3nsM6qrq9Hc3IwxY8Z4rEpNc3MzJk2ahO3bt3f413liYiJOnjzJWztcpOT9X8ltUwLbZI+ff/4ZERER7U6y+PLLL5GVlYUtW7b4xKVNjY2NqKioQFxcHCeH+LDu7v+sBUyyaW5uRkVFBUJDQ+UOpdtCQ0NRW1vr0XtOBgQEYMOGDUhJSWk3uVOpVFi4cCGTPyKZ2Sp7HD9+vNPKHmlpadBoNLKeBm7JNjmElUOUjQkgycZkMqG6uhphYWFyh9JttksWKisrO9mye3Q6HRYsWNDuEcDg4GDMmjXLozEQ0UUWM1C+Azj5vvXnxeo/58+fx4EDBxwme3QkIiICqampyMvL83zMLupwckg77Sb/4hf3ASRlqqqqQnNzs/1iaH8XGhqKiooK9OvXz+1tWrNmDd59912UlJSguLgYkZGRbY42ajQazJo1Czqdzq2fTUROlORYS0K2rAoUmojzfZfhwNkU1NXVdamyR3p6Ol555RXU1NT4zB/FTiuHaA9Cc2Bhm3Yj9WW3T34jz+IRQJKFJEmoqKhASEiI3KG4TVhYGGpqajxyGvj+++9Hnz59UFxcjGXLluHnn3/GsGHDHLaxWCz405/+5PbPJqJWSnKAvGltyllKtaWIOvQgetbu7HJZt+uvvx5NTU3Yu3evu6PttqioKERGRsJ4aC3UX98BqXUpzNpS6/dRkiNPgHRJmACSLC5cuACTyeQzf+m6Q2BgIJqbm91Wc9jGYDBg3LhxyMnJwYcffojs7GxERETgm2++wUMPPQSVSgW1Wo2bb74Z/fv3d+tnE1ErFrP1yJ/Tu4Ba1w2ufQOQunZaNDExEX379vWZ6wBbCw3RYnjTP9H2zq2A/bvYv4Cng/0IE0CShclkQkNDg8dmzMolODgYFRUVbruR6oEDB3D11VejpKQEeXl5uOOOOwBYL9LWarV48cUXMX78eFgsFixevNgtn0lEHTiT1+bIX0sqAEHN5QivPdDlt05PT8dXX33lk/fgC689AK25vepHACABtSXW74f8AhNAksWZM2cUc+1fS2FhYbhw4QKqq6u7/V45OTkYO3Ys4uLisG/fPnz66acYNmwYwsLCoNfrMXfuXEiShJycHGzevBkZGRndbwARdayuzKXNAs1dnzkrd1WQjrjcHhe/H5IfE0Dyurq6Opw/f15Rp39ttFot6urqYDQaL/k9JEnCM888g9/+9reYPHkydu7ciYSEBEiShDfeeANHjhzBunXrsHHjRrz11luIiIhAZmbmxTrARORRIa7dp69J0/Waur5QFaQ9LrfHxe+H5McEkLzOZDKhtrZWEff/a02lUiEwMPCS75tVV1eHe+65B48//jiWLVuGDz74AKGhoVCpVHjyyScxZswY9OnTB5MmTcKECRNw9OhRN7eAiDoUk26d9drOyVAJQGOA3lrRqIs0Gg3Gjh3rU7eDsakOHYXGgFgnVz7aqIDQJOv3Q36BCSB5XWVlpX3ighKFhYWhsrIS9fX1XXpdWVkZMjIy8PHHH2P9+vXIzs62H9X75ZdfMG/ePAwdOhQ9evRAeHg41q9fj8TERADA7bffjh49emDatGlubw8RtaDWWG95AqB1EihdXHdK/8gll7NMT0/H8ePHUVbmY6dSVRqc0j8KwPn0FwBA6mqPlMIkz1Dmv8Dks5qbm3HmzBlFHv2zsVUF6cpp4O+++w7XXHMNTp06hV27dmH69On2586cOYOrr74a586dw4svvoivvvoKu3fvhlqtxogRIwAADz/8MN555x23t4WInEiaCqRvAEJ7O6xuCtCjqPdKVEXceMlv7WtVQVqqirgRRb1XoSkg1vGJ0ETr98H7APoV5V2FTz7NaDSiuroavXp1/foYf6FWq6FSqXD+/Hno9fpOt9+4cSPuu+8+XHHFFfj444/Ru7fjPyqffvopzGYz3n//ffsRwddeew1NTU0YOXIkACAjIwM7duxwd1OIqD1JU4Het6H4u3/hXMkhhPXqZz3te4lH/mzCw8ORmpqKXbt24c4773RTsO5TFXEjqsJvgPrs1wiyVGLQyAyo9TfwyJ8f4hFA8iqj0Qiz2azIGcAthYSEoKKiAs3Nze1uI0kSnnrqKUybNg2ZmZnYuXNnm+QPAHr27AmTyYTNmzfj2LFjePHFF7F8+XL07t0bMTExnmwGEXVErUFdxGicDroB1WFXdTv5s0lPT8f+/ftRU1PjlvdzO5UGVdqROBM6HtBnMPnzU0wAyWts1T+Udu8/Z8LDwzusClJXV4e7774bS5cudZjs4UxmZiZmzZqF++67D2PHjkVpaSnuuOMO+9E/IlIWW1WQPXv2yB0KKZiyD8OQT7FV/wgPD5c7FI8LCAiwVwWJjo52eK6srAy33XYbDh06hPXr1ztc7+eMWq3GmjVrsGbNGk+GTEQ+wlYVJC8vD+PHj5c7HFIoHgEkr1Fq9Y/2OKsK8t133+Hqq69GaWkp8vLyOk3+iEhMvlwVhJSBCSB5jVKrf7SndVWQDRs2YOzYsYiPj8c333yD1NRUt33WhAkTMH36dHz++edITExEfn6+296biLzv+uuv99mqIKQM4vxrTLKyVf8Q4fSvjVarxdmzZ1FVVYWXXnoJ2dnZuPPOO/HPf/7T7bfB+c9//uPW9yMieQ0bNsxeFWT48OFyh0MKxCOA5BW26h8hISFyh+I1KpUKFosFs2fPRnZ2NpYvX473339f0fdAJCL3sFUF8cX7AZIy8AggeUVlZSUAKLb6hzNnzpxBVlYWioqK8O677+Kee+6ROyQi8iPp6en47LPPcPr0aSQkJMgdDimMOP8ak2xs1T/CwsLkDsVrfvzxR8yYMQPnzp3Dc889hwkTJsgdEhH5mbS0NAQEBPAoIHkEE0DyOFv1D1ESwK1bt2LWrFmIiYnB//7v/6J///44f/683GERkZ+xVQXJy8uTOxRSICaA5HGiVP+QJAlvvvkmlixZgoyMDLz55puIiYlxqSoIEZEzPl8VhPwWE0DyKIvFIkT1j/r6evzP//wP3njjDcyZMwfPPPOMvc2dVQUhImpPeno6q4KQRzABJI+qrq5WfPWPM2fOYPbs2di5cyeef/55zJ49GyqVyv58y6ogRERdYasKwusAyd2YAJJH2ap/aLVauUPxiCNHjuC+++7D2bNn8Y9//KPdyR7OqoIQEbmCVUHIE5gAkkcpufrHl19+iQcffBCxsbF45513MHjw4Ha3DQsLg8lkslcFISJy1fXXX4+qqiocOnRI7lBIQZgAkscotfqHbbJHVlaWw2SPjmi1WtTX18NoNHopSiJSimHDhiEqKoqngcmtmACSxyix+kddXR2ysrLwxhtvYO7cuQ6TPTqiUqkQGBiIs2fPeiFKIlISjUaD6667jreDIbdiAkgeo7TqHxUVFfj973+PvLw8rFy5Eg8++KDDZI/OhIWFobKyEvX19R6MkoiU6Prrr8eJEydw+vRpuUMhhVDGv8zkc5RW/ePIkSOYMWMGzp49i7feegvjx4/v8nuEhoaitraWp4GJqMuuvfZaVgUht2ICSB6hpOofXZns0RG1Wg2VSsWqIETUZbaqIEwAyV2YAJJHKKH6hyRJeOONN7o02aMzoaGhrApCRJfEVhWEdxMgd2ACSG6nhOoftskeb775Jv74xz+6PNmjM2FhYfabYxMRdcX111+P5uZmVgUht2ACSG7n79U/Wk72WLVqFWbNmtWlyR4dCQgIgNlsZlUQIuqy3r174/LLL1fkbGCDwYA5c+bAYrHIHYow/Pf8HPksW/WPXr16yR1Klx05cgQLFy6ERqPBP/7xDwwaNMjtn2GrCpKSkuK2xJKIxJCeno6PP/4YZrMZGo1G7nAu2Zo1a/Duu+86rDt+/DiGDh2K+fPnyxSVWHgEkNzOX6t/2CZ7xMXF4Z133vFI8gewKggRXTqlVAWZM2cOvvrqK/uyefNmXHXVVbj33nvlDk0YTADJrfyx+ofFYrFP9hg3bhzefPNNjx691Gq1aGho4O1giKjLhg4dqsiqIOHh4di4cSOioqLkDkUYTADJrfyt+kfLyR7z5s3D008/Da1W69HPVKlUCAgIYFUQIuoypVYFCQoK8vjYS4787zwd+TR/qv5RUVGBRYsWoaioCKtWrcKNN97otc9uWRXEn2dLE5H3XX/99fjss89QWlqK3r17yx3OJVuyZAkOHTqE2NhYVFZWIjs7G6NGjZI7LGEIlQCazcCOHUBZGRAfD6SnA358Da3vsJiBM3kw15xCY8k5hIVeIXdEdmYzUFoahPp6Nb79NhyjRlVDowEOHz6MRYsWQaPR4J///CcGDhzo1bhCQ0NhKCtF7cnPERzcAITEAzHpgJq/kN1lNgN5eb/u5yNGyB2R54k8trXubxHabqsK8q9/7cXw4bPQq1eTfWzzJwUFBUhNTcX777+PoqIifPLJJ7j11luxbNmyDhNBEfsccP/YJtthmtdffx3JyckIDg7G6NGjsW/fvg63/+ijjzBo0CAEBwdj2LBh+Pzzz7v8mUOHAuPGAXffbf2ZnAzk5FxiA8iqJAfYnAzkjoNmz30YcXYBxpy5B1EXtskdGbZti8LkyUOxZUtPmEwa/OEPAzB58lC8+OJXmD17tn2yh7eTPwCIrtmB8dUPIvq73wK77wZyx1m/xxL+QnZHTo51v265nw8dKndUnevqeNiaqGObs/4Woe379iVCpboBH364D//v/6XYx7Zt26LkDq1LCgoKMHz4cId1n3/+Oa688krcdtttOHDgQJvXiNrnnhjbZEkAP/zwQyxatAjZ2dn47rvvMGLECEycOBEVFRVOt9+9ezd+97vfYdasWThw4ACmTJmCKVOmdHkWVOsa2qWlwLRpyv/F8ZiSHCBvGlB7ymF1kLkCKaWPypoEbtsWhUcfTUFFRWCLtRZUVDyNf/3rYQwZcpPHJ3u0J+rCNqSUPopgqdU1gLWl1u+TSeAlycmx7s+nHH8d2+z3vqar46EzIo5t7fW30ttuG9uamm4FsAOA9abyFRWBePTRFL9JAg0GA8rLy2E2m3G6xS+wrUqSs0RQ1D731NimkiRJ6t5bdN3o0aNx9dVX47XXXgNgnYWZlJSEhx56CEuWLGmz/Z133omamhps2bLFvu7aa6/FyJEjsWbNmk4/z2QyQafTATACiHR4TqUCEhOBoiIxDiG7jcVsPWLVKvmzkQA0Behx6PJPAZV3v1izGZg8eejF5E8FYDmANwGMAbABwDOIjV2MLVsOe7/PJTOGnpiMwOYKOL8DoAoITQRuLeLp4C4wm61/HbceIK1MAHQwGo2IjIx0toGsujoetiTq2NZxf3u37UePHsXx48cRHx/v2Q9C67HtJIC+AD4CMO3iFhL0+iZ8+ukhj7fbZDJBpVIhPT39kq75/uKLLzBp0iRcffXVOHXqFMrKypxuFxAQgObmZmRm3oq9e5ehosL5qWGl/r57cmzz+jWAjY2N2L9/P7Kysuzr1Go1JkyYgPz8fKevyc/Px6JFixzWTZw4ER9//LHT7RsaGtDQ0GB/3FHZLUkCSkqs59UzMlxvh/DO5LWb/AHWtCuouRzhtQdQHXaV9+ICcOBAOCoqglqsqQZwBsDnAHIA3I6KCut2V13l3XvxhdceQFBzR0d2JKC2xPr96jO8FZbfy8trPxnwZV0dDzm2WXXW30ptu+PYlgJgEIDVAGrs25SXA3/9qwHJyfUejaWurg4qlQo///zzJSWAW7ZsQWBgIO6++248++yz7W5nOyK4ZcsWSNJmACMBvA7rH/S/Umqfe3Js83oCePbsWZjNZuj1eof1er0ehYWFTl9jMBicbm8wGJxuv2LFCixfvrxLcbXzxwe1p861LyzQ7P1bnZw9G9hqTSOAIABfwTp4tLed57n8fbj4/ZKVv+6/XR0PObZZudompbW97Zh1JYD3AHztsHbdOi8F5AYLFy50aTtJspWIKwCQDWCr0+2U1ueebI8iZwFnZWU5HDE0mUxISkrq8DVeOHqvLCGufWFNGu9fY9erV1OrNS9fXDrbzvNc/j5c/H7JSpT9l2OblattUlrb245Z/wKwrs12f/3rT7jySs+e3bhw4QJUKhXGjh17SUcAhw4ditmzZ+Phhx/GwIEDUVRU1O62arX6Yo3gAQCWAbiz3W2V1ueebI/XE8BevXpBo9GgvLzcYX15eTni4uKcviYuLq5L22u1WpdvKGm7biA93aXNySYm3XqtWm0prFf8ObJdA1gd6v17Oo0aVY3Y2MYW1wC2Zr1OZtQo75diqw4dhcaA2M6vAYzhL2RXpKdb9+PSUuupIH/R1fGQY5tVZ/2t1LY7H9taHhW0jm1XXdUAjcazZzgCAgKgUqkQGBjY5QSwtrYWx48fBwAEBrYfp0qlgiRJ6N+/P5YvfwqLF/8Wp0+rhepzT45tXp8FHBQUhNTUVOTm5trXWSwW5ObmIi0tzelr0tLSHLYHgK1bt7a7vatUF/ef1auVddGoV6g1QKrtqJpjKiNdXHdK/4jXJ4AA1r589FHbRROt9xgJKhXwyCOn5OlzlQan9I9ejKTNk9Yfqas5AaSLNBrg5Yu/jirnmbVPupTx0BVKH9s66m8lt92nx7YuOHjwIDQaDdauXYtvvvkGjY2NDs/bEsrExESMHj0aR44cwZ13Tscrr1jXi9bnnhrbZLkNzKJFi/D3v/8db7/9Nn788UfMnTsXNTU1eOCBBwAAM2bMcLgo+uGHH8YXX3yBF154AYWFhVi2bBm+/fZbzJ8/v0ufm5Dg+DgxEdiwAZg6tdtNElPSVCB9AxDqeCf6Rk0sinqvRFWE9yprtHbjjVVYtaoIsbGOp0z0+iasXFmEG2+skicwAFURN6Ko9yrUq3o6PhGaaP0+k/gLeSmmTrXuz60LI/h6oYTOxkNXiDi2tdffSm+7L49triooKMCAAQOQnZ2N22+/3X4bGNXFDKd///5Yv3491q1bh8TERHtCKGqfe2psk+U2MADw2muvYdWqVTAYDBg5ciReeeUVjB49GgCQkZGB5ORkrGtxJetHH32Exx9/HCdPnkT//v2xcuVK3HzzzS59lu1WCZWVRnz/faRwdw/3uIuVQKTa0/jxZBVKm/qiZ69YuaMCYJ1Cf+BAOM6eDfSpu+U3NTWh8twZXNffgsjAGlYCcaO2d8s3ITrad28DA3Q8HnaEY5v8VSG8eRuYluQe27p7G5iW+vXrhxMnTmDgwIF46qmn8Nvf/hZqtRo7duzAa6+9hg0bNjhsL3efy8XdY5tsCaA32QZJX/4HQCl+/vlnHD582K/rU3pDVVUVAgICMGbMGAQEKHIuls9Q8v6v5Lb5C7kSQLm5MwH85JNP0NTUhKlTpzq8V3sJIFl1d//nvzzkVlFRUdBoNGhubmZi04G6ujpcfvnl/I6ISHi33XZbm3UTJkzA999/j5qaGiQmJuKjjz7q9nX/5Ij/+pBbRUZGIjw8HDU1NRcrFFBrFosFkiShR48ecodCROST/vOf/8gdguLJMgmElCsgIAAxMTGora2VOxSfVVtbi9DQUCbIREQkGyaA5HbR0dGQJOnijTuptZqaGkRHRyM4OFjuUIiISFBMAMntIiMjERoayqOATkiShKamJvTq5f0KKURERDZMAMntQkJCEB0djZqams43FkxDQwNCQkJ4+peIiGTFBJA8olevXmhubpY7DJ9TU1NjnyhDREQkFyaA5BE6nQ5arRb19fVyh+JT6uvrERMTY7/jPRERkRyYAJJHhIeHIzIykqeBW2hqakJAQACioqLkDoWIiATHBJA8QqVSITY2lkcAW6ipqUFYWBgrNhARkeyYAJLHtKwKQtb7/8XGxrL6BxERyY4JIHlMy6ogorPdEzE6OlrmSIiIiJgAkgcFBAQgNjaW9wPEr9U/ePqXiIh8ARNA8qgePXqwKghY/YOIiHwLE0DyKFYFYfUPIiLyPUwAyaNYFYTVP4iIyPcwASSPs1UFkSRJ7lBkweofRETka5gAksfZqoI0NDTIHYos6uvrERsby+ofRETkM5gAkseJXBWE1T+IiMgXMQEkjxO5KgirfxARkS9iAkheIWpVEFv1D41GI3coREREdkwAyStErArC6h9EROSrmACSV4hYFYTVP4iIyFcxASSvEa0qCKt/EBGRr2ICSF6j0+mEqQoiSRKam5tZ/YOIiHwSE0DymuDgYGGqgjQ0NCA4OJjVP4iIyCcxASSvEqUqCKt/EBGRL2MCSF4lSlUQVv8gEoDFjJALe5HQuBPhNd8CklnuiLxDMiOqoQAxtblA+Q7AIki7FSZA7gBILLaqIBcuXFDs5AhW/yASQEkOsP9hXFZ7CpcBQAnQGBCLU/pHURVxo9zReUzUhW1ILF+FoOYK64rtTwGhiUDqy0DSVHmDoy7hEUDyKhGqgtTU1NgTXSJSoJIcIG8aUHvKYXVgcwVSSh9F1IVtMgXmWVEXtiGl9FEE2pI/m9pS6/dRkiNPYHRJmACS10VFRSEgIECxVUFqa2sRExPD6h9ESmQxA/sfBtD2OmbbBR+J5X9R3ulgyYzE8lUAfm1niyetP/Yv4OlgP8IEkLwuMjISYWFhqK6uljsUt2P1DyKFO5PX5shfSyoAQc3lCK894L2YvCC89gCCmiucJH82ElBbYv1+yC8wASSvs1UFqaurkzsUt2P1DyKFqytzabNA81kPB+JdLrfHxe+H5McEkGSh1KogNTU16Nmzp2InuBAJLyTepc2aNMq6CbzL7XHx+yH5MQEkWSixKoit+kfPnj3lDoWIPCUm3TrrtZ2ToRKAhgA9qkNHeTUsT6sOHYV6dS8nVz7aqIDQJOv3Q36BCSDJQolVQerr61n9g0jp1BrrLU8AtE4CpYuPDwY8gKZm5ZzdsFgsKK84i6PhfwSgsrfzVxcfp662fj/kF5gAkmx69eqFpqYmxVQFqa2tZfUPIhEkTQXSNwChvR1Wq0IT0XjNe9AkT0d5ebkirnM2m80wGAwIDw9H72sfgip9A1St2o3QROv3wfsA+hXeCJpko9PpEBwcbK+b6+/q6+vRr18/Vv8gEkHSVKD3bdZZr3Vl1mvfYtKhVWswrKkJISEhOHHiBJqbmxERESF3tJeksbERFRUViI+Px+DBgy/+ceu83Tzy53+YAJJslFQVhNU/iASk1gD6jDarAwMDMXDgQAQHB+Onn35CY2MjoqOj/eqPw5qaGlRVVSElJQUDBgyAVqv99cl22k3+haeASTZKqgrC6h9E1JJarUZKSgpGjhyJgIAAlJeX+81dD86fP4/q6moMGjQIQ4YMcUz+SDF4BFAQZjOQlweUlQHx8UB6OuALhSqioqIQoFEhxLQXwTiPJk0v6+w5lQ8E5wrJbL3hq/EYeiUOg0Y1Ru6I7Hy1z4lEotfrodVq8eOPP+L06dPQ6/UIDAyUOyynLBYLzpw5g6CgIAwbNgy9e/f2q6OW1DVePwJYWVmJe+65B5GRkYiKisKsWbM6rQiRkZEBlUrlsMyZM8dLEfu/nBwgORkYNw64+27rz+Rk63q56Uy5uPHCf2Pw6T8i5fT/w4CSP2Doicl+UUsz6sI2DD0xGQNK/oAr6/6Cy47dD2xO9ol6mL7c50SiiYqKwsiRI5GYmOizk0NaTvYYMWIEEhMTmfwpnNcTwHvuuQeHDx/G1q1bsWXLFuzatQu///3vO33d7NmzUVZWZl9WrlzphWj9X04OMG0acKpV5aLSUut6WROCkhxodt+JIPMZh9X+UFDdl4ui+3SfEwkqJCQEw4YNQ//+/XH+/HlcuHBB7pDsGhsbUVZWBr1ej1GjRqFXL2XdxJqc82oC+OOPP+KLL77AW2+9hdGjR2Ps2LF49dVX8cEHH+D06dMdvjY0NBRxcXH2hddadc5sBh5+GHB2lxXbugULrNt5XYuC6u3cUcp3C6r7cFF0n+5zIsHZJocMHToU9fX1OHv2rOy3waqpqcGZM2eQkpKC4cOH8zZWAvHqNYD5+fmIiorCVVddZV83YcIEqNVq7N27F7fffnu7r/3Xv/6Fd999F3FxccjMzMQTTzyB0NBQp9s2NDSgoaHB/thkMrmvEX4kL6/tUaCWJAkoKbFul5HhtbCsXCyojoo8VGlHei0sV0Q1FCCo9ZE/By2Kont5ppxP9zkRQa1WIzk5GSEhIThy5AgMBgP0ej3Uau/PyTx//jwaGxsxaNAg9O3bFxpeJCwUryaABoMBsbGxjgEEBCA6OhoGg6Hd1919993o06cPEhIScPDgQTz22GM4evQocto5l7VixQosX77crbH7ozIXa3K7up1buVgwPExjQp2PzUALa3bxDwoZiqL7dJ8TkZ2ck0M42YMANyWAS5YswfPPP9/hNj/++OMlv3/LawSHDRuG+Ph4jB8/HidOnMDll1/eZvusrCwsWrTI/thkMiEpKemSP99fxbtYk9vV7dzKxYLhA0dkYKD+Og8H00XlTUCuC39gyFAU3af7nIgc2CaHFBYWoqSkBD179kRISIhHP9NsNqO8vBw6nQ5Dhgxh7XKBuSUBXLx4MWbOnNnhNn379kVcXBwqKhxPnTU3N6OyshJxcXEuf97o0aMBAMePH3eaAGq1Wt63CNbbfiQmWi/+d3aZiUplfT5djtrdtoLqtaWA0/LiKuvzvlhY3Idj9+k+J6I2QkJCMHToUAQHB+PEiRNoamry2DXuLSt7DBkyBGFhYR75HPIPbkkAY2JiEBMT0+l2aWlpqKqqwv79+5GamgoA2LZtGywWiz2pc0VBQQEAIJ6HMTqk0QAvv2yd+alSOSYEtqP9q1fLdG84W0H1vGmwXvHXMlvx8cLiPhy7T/c5ETllmxwSEhKCo0eP4uzZs+jZs6dbT8u2rOwxcOBABAUFue29yT959arTwYMH46abbsLs2bOxb98+fP3115g/fz7uuusuJCQkAABKS0sxaNAg7Nu3DwBw4sQJPPXUU9i/fz9OnjyJzZs3Y8aMGbj++usxfPhwb4bvl6ZOBTZsAHq3qt2dmGhdP1XO2t3tFFT3i8LiPhy7T/c5ETllmxwycuRIBAYGwmAwuK1yiO22M7bKHkz+CABUkpfnoFdWVmL+/Pn49NNPoVar8dvf/havvPKKfer5yZMnkZKSgu3btyMjIwMlJSW49957cejQIdTU1CApKQm33347Hn/8cZcPk5tMJuh0OhiNRmFvH+PTVSEsZv8tLO7Dsft0n3uRkvd/JbdNZEajEUeOHMGZM2e6NTmk5WSPQYMGISEhgZM9FKS7+7/XE0A5cJAkEpeS938lt010dXV13Zoc0tzcjPLyckRFRXGyh0J1d/9nLWAiIiIf053JIQ0NDThz5gwne1CHmAASERH5oA4nh0hmhNceQKD5LJo0vVAdOgpQaTjZg1zGBJCIiMhHOascMjD0MC4784JDRaLGgFgUhs1FtXo0K3uQS7xfe4aIiIi6RK/X48orr0Q/7UFcXvYYAluVowxsrsAw43JcE38K/fr1Y/JHnWICSERE5Ad0EeHob3odgP2Oo3aqi//tefIpqCT33D6GlI0JIBERkT84kwd1fWmb5M9GBQmoLbHemoqoE0wAiYiI/EFdmXu3I6ExASQiIvIHIS6WP3V1OxIaE0AiIiJ/EJNuLTfZwUlghCZZtyPqBBNAIiIif6DWAKkvX3zgfBoIUlf7TDlK8m1MAImIiPxF0lQgfQMQ2ttxfWiidX3SVHniIr/DG0ETERH5k6SpQO/brLN968qs1/zFpPPIH3UJE0AiIiJ/o9YA+gy5oyA/xlPARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaARERERIJhAkhEREQkGCaAREQySU5Ohkqlcliee+45ucMiIgHwPoBERDJ68sknMXv2bPvjiIgIGaMhIlEwASQiklFERATi4uLkDoOIBMNTwEREMnruuefQs2dPjBo1CqtWrUJzc7PcIRGRAHgEkIhIJn/6059w5ZVXIjo6Grt370ZWVhbKysrw4osvOt2+oaEBDQ0N9scmk8lboRKRwvAIIBGRGy1ZsqTNxI7WS2FhIQBg0aJFyMjIwPDhwzFnzhy88MILePXVVx2SvJZWrFgBnU5nX5KSkrzZNCJSEJUkSZLcQXiayWSCTqeD0WhEZGSk3OEQkRd5e/8/c+YMzp071+E2ffv2RVBQUJv1hw8fxtChQ1FYWIiBAwe2ed7ZEcCkpCSObUQC6u7YxlPARERuFBMTg5iYmEt6bUFBAdRqNWJjY50+r9VqodVquxMeEREAJoBERLLIz8/H3r17MW7cOERERCA/Px8LFy7Evffeix49esgdHhEpHBNAIiIZaLVafPDBB1i2bBkaGhqQkpKChQsXYtGiRXKHRkQCYAJIRCSDK6+8Env27JE7DCISFGcBExEREQmGCSARERGRYJgAEhEREQmGCSARERGRYJgAEhEREQmGCSARERGRYJgAEhEREQmGCSARERGRYJgAEhEREQmGCSARERGRYIQqBWc2Azt2AGVlQHw8kJ4OaDRyR0WeZDYDeXnsc5G07vMRI+SOSPlE3c/YbrHaDSis7ZIXPf3001JaWpoUEhIi6XQ6l15jsVikJ554QoqLi5OCg4Ol8ePHSz/99FOXPtdoNEoApIQEowRI9iUxUZI2bryEhpBf2LjR2sfsc3E463Prfg/JaDTKHZ7b2cY2Odsm6n7GdovVbknyvbZ3d//36ingxsZGTJ8+HXPnznX5NStXrsQrr7yCNWvWYO/evQgLC8PEiRNRX1/f5c8/fdrxcWkpMG0akJPT5bciH5eTY+3bU6cc17PPlau9Pm+935P7iLqfsd2O65XebkCZbVdJkiR5+0PXrVuHBQsWoKqqqsPtJElCQkICFi9ejEceeQQAYDQaodfrsW7dOtx1110ufZ7JZIJOpwNgBBDp8JxKBSQmAkVFfnwYlxyYzUByctsd1YZ9rjwd97kJgA5GoxGRkZHONvBbtrFNjraJup+x3c6fV2q7Ad9te3f3f5+eBFJUVASDwYAJEybY1+l0OowePRr5+fntvq6hoQEmk8lhaY8kASUl1nP6pAx5ee3vqAD7XIk663NyP1H3M7bbOaW2G1Bu2306ATQYDAAAvV7vsF6v19ufc2bFihXQ6XT2JSkpqdPPKivrXqzkO1ztS/a5crAvvU/U/Yztds92/kSpbe92ArhkyRKoVKoOl8LCQnfE6rKsrCwYjUb7UlJS0ulr4uO9EBh5hat9yT5XDval94m6n7Hd7tnOnyi17d2+DczixYsxc+bMDrfp27fvJb13XFwcAKC8vBzxLb7Z8vJyjBw5st3XabVaaLValz7Ddu4+Pf2SQiQflJ5u7dPSUuuh+dbY58rTWZ+T+4m6n7HdYrUbUG7bu30EMCYmBoMGDepwCQoKuqT3TklJQVxcHHJzc+3rTCYT9u7di7S0tO6GDpXK+nP1auVdtCoyjQZ4+WXr/9v62IZ9rkwd9Tl5hqj7GdstVrsB5bbdq9cAFhcXo6CgAMXFxTCbzSgoKEBBQQGqq6vt2wwaNAibNm0CAKhUKixYsABPP/00Nm/ejB9++AEzZsxAQkICpkyZ0uXPT0hwfJyYCGzYAEyd2p1WkS+aOtXat717O65nnytXe33e+jG5j6j7GdvtuF7p7QaU2Xav3gZm5syZePvtt9us3759OzIyMqwBqVRYu3at/bSyJEnIzs7Gm2++iaqqKowdOxZ//etfMWDAAJc/1zZVurLSiO+/j1TGHbzJJYq6azu5pG0lEBOio3kbGE8SdT9ju8VqN+Bbbe/u/i/LfQC9zVcGSSLyPiXv/0puGxF1TNH3ASQiIiIi92MCSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCQYJoBEREREgmECSERERCSYALkDIO8wm4G8PKCsDIiPB9LTAY1G7qjIk9jnRETUHq8eAXzmmWcwZswYhIaGIioqyqXXzJw5EyqVymG56aabPBuowuTkAMnJwLhxwN13W38mJ1vXkzKxz4mIqCNeTQAbGxsxffp0zJ07t0uvu+mmm1BWVmZf3n//fQ9FqDw5OcC0acCpU47rS0ut65kQKA/7nIiIOuPVU8DLly8HAKxbt65Lr9NqtYiLi/NARMpmNgMPPwxIUtvnJAlQqYAFC4DbbuOpQaVgnxMRkSv8YhLIjh07EBsbi4EDB2Lu3Lk4d+5ch9s3NDTAZDI5LCLKy2t7FKglSQJKSqzbkTKwz4mIyBU+nwDedNNNeOedd5Cbm4vnn38eO3fuxKRJk2A2m9t9zYoVK6DT6exLUlKSFyP2HWVl7t2OfB/7nIiIXNHtBHDJkiVtJmm0XgoLCy/5/e+66y7ceuutGDZsGKZMmYItW7bgm2++wY4dO9p9TVZWFoxGo30pKSm55M/3Z/Hx7t2OfB/7nIiIXNHtawAXL16MmTNndrhN3759u/sxDu/Vq1cvHD9+HOPHj3e6jVarhVarddtn+qv0dCAx0Xrxv7NrwlQq6/Pp6d6PjTyDfU5ERK7odgIYExODmJgYd8TiklOnTuHcuXOI5yGMTmk0wMsvW2d+qlSOCYFKZf25ejUnAygJ+5yIiFzh1WsAi4uLUVBQgOLiYpjNZhQUFKCgoADV1dX2bQYNGoRNmzYBAKqrq/Hoo49iz549OHnyJHJzc3HbbbehX79+mDhxojdD91tTpwIbNgC9ezuuT0y0rp86VZ64yHPY50RE1BmvJoBLly7FqFGjkJ2djerqaowaNQqjRo3Ct99+a9/m6NGjMBqNAACNRoODBw/i1ltvxYABAzBr1iykpqYiLy+Pp3i7YOpU4ORJYPt24L33rD+LipgIKBn7XH6u3Pi+uLgYt9xyC0JDQxEbG4tHH30Uzc3N3g2UiITk1fsArlu3rtN7AEotzlmFhITg3//+t4ejEoNGA2RkyB0FeRP7XF62G9+npaXhH//4R5vnzWYzbrnlFsTFxWH37t0oKyvDjBkzEBgYiGeffVaGiIlIJD5/GxgiIn+0fPlyLFy4EMOGDXP6/JdffokjR47g3XffxciRIzFp0iQ89dRTeP3119HY2OjlaIlINEwAiYhkkJ+fj2HDhkGv19vXTZw4ESaTCYcPH5YxMiISgVdPARMRkZXBYHBI/gDYHxsMBqevaWhoQENDg/2xqFWOiKj7eASQiMhFnr7xfWdY5YiI3IVHAImIXOTOG9/HxcVh3759DuvKy8vtzzmTlZWFRYsW2R+bTCYmgUR0SZgAEhG5yJ03vk9LS8MzzzyDiooKxMbGAgC2bt2KyMhIDBkyxOlrWOWIiNyFCSARkQcUFxejsrLS4cb3ANCvXz+Eh4fjN7/5DYYMGYL77rsPK1euhMFgwOOPP4558+YxySMij2MCSETkAUuXLsXbb79tfzxq1CgAwPbt25GRkQGNRoMtW7Zg7ty5SEtLQ1hYGO6//348+eSTcoVMRAJRSZKzkvHKYjKZoNPpYDQaERkZKXc4RORFSt7/ldw2IupYd/d/zgImIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEkyA3AF4k9kM7NgBlJUB8fFAejqg0cgdFXmS2Qzk5bHPRdK6z0eMkDsizxN5bBN1Hxe13YC4bXf72CZ5UVFRkfTf//3fUnJyshQcHCz17dtXWrp0qdTQ0NDh6+rq6qQ//vGPUnR0tBQWFiZNnTpVMhgMLn+u0WiUAEgJCUYJkOxLYqIkbdzY3VaRr9q40drH7HNxOOtz634PyWg0yh2e24k+tom6j4vabkkSt+2eGNu8mgD+3//9nzRz5kzp3//+t3TixAnpk08+kWJjY6XFixd3+Lo5c+ZISUlJUm5urvTtt99K1157rTRmzBiXP9c2SAKOg6RKZV2U/osjoo0brX3bsr/Z58rWXp9b93tlJ4Aijm2i7uOitluSxG27p8Y2lSRJUjcPInbLqlWr8Le//Q0///yz0+eNRiNiYmLw3nvvYdq0aQCAwsJCDB48GPn5+bj22ms7/QyTyQSdTgfACCDS4TmVCkhMBIqKxDiELAKzGUhOBk6dcv48+1x5Ou5zEwAdjEYjIiMjnW3gt0Qd20Tdx0VtNyBu2z05tsk+CcRoNCI6Orrd5/fv34+mpiZMmDDBvm7QoEG47LLLkJ+f7/Q1DQ0NMJlMDkt7JAkoKbGeVydlyMtrf5AA2OdK1Fmfi0jJv+ei7uOithsQt+2eHNtkTQCPHz+OV199FX/4wx/a3cZgMCAoKAhRUVEO6/V6PQwGg9PXrFixAjqdzr4kJSV1GktZWZdCJx/mal+yz5WDfdk+JX43ou7jorYbELftnmyPWxLAJUuWQKVSdbgUFhY6vKa0tBQ33XQTpk+fjtmzZ7sjDLusrCwYjUb7UlJS0ulr4uPdGgLJyNW+ZJ8rB/uyfUr8bkTdx0VtNyBu2z3ZHrdcA3jmzBmcO3euw2369u2LoKAgAMDp06eRkZGBa6+9FuvWrYNa3X4eum3bNowfPx7nz593OArYp08fLFiwAAsXLuw0PlGvkxGV7ZqJ0lLraYHW2OfK03Gf8xpApf2ei7qPi9puQNy2e3Jsc8sRwJiYGAwaNKjDxZb8lZaWIiMjA6mpqVi7dm2HyR8ApKamIjAwELm5ufZ1R48eRXFxMdLS0roVt0pl/bl6tbJ+YUSn0QAvv2z9f1sf27DPlamjPheR0n/PRd3HRW03IG7bPTm2eXUWsC3569OnD95++21oWvRUXFycfZvx48fjnXfewTXXXAMAmDt3Lj7//HOsW7cOkZGReOihhwAAu3fvdulzjUYjoqKiEBdXAoPh1yy5d2/gueeAW291VwvJl2zeDDz2GHD69K/r2OfK5qzP4+NNKCtLQlVV1cWjZcoh+tgm6j4uarsBcdvukbHNbTeqccHatWsv3rOq7WJTVFQkAZC2b99uX2e7EXSPHj2k0NBQ6fbbb5fKyspc/tySkpJ2P5cLFy5iLCUlJe4cznwCxzYuXLhc6tgm+30AvcFiseD06dOIiIjAhQsXkJSUhJKSEsVdD9QZk8kkZNtFbTcgbttbttu23yckJHR6yYm/aTm2qbx07lspv1NKaIcS2gAoox1ytEGSpG6NbULUAlar1UhMTAQA+yAZGRnpt79o3SVq20VtNyBu223tVtqpX5uWY5u3KeV3SgntUEIbAGW0w9tt6M7Ypqw/h4mIiIioU0wAiYiIiAQjXAKo1WqRnZ0NrVYrdyheJ2rbRW03IG7bRW23Nyjlu1VCO5TQBkAZ7fDHNggxCYSIiIiIfiXcEUAiIiIi0TEBJCIiIhIME0AiIiIiwTABJCIiIhKM0AngyZMnMWvWLKSkpCAkJASXX345srOz0djYKHdoHvfMM89gzJgxCA0NRVRUlNzheNTrr7+O5ORkBAcHY/To0di3b5/cIXncrl27kJmZiYSEBKhUKnz88cdyh+QVK1aswNVXX42IiAjExsZiypQpOHr0qNxhKYYr40ZxcTFuueUWhIaGIjY2Fo8++iiam5u9G2gXJScnQ6VSOSzPPfec3GF1yp/HtmXLlrX5zgcNGiR3WJ3qbGyVJAlLly5FfHw8QkJCMGHCBBw7dkyeYDshdAJYWFgIi8WCN954A4cPH8ZLL72ENWvW4H/+53/kDs3jGhsbMX36dMydO1fuUDzqww8/xKJFi5CdnY3vvvsOI0aMwMSJE1FRUSF3aB5VU1ODESNG4PXXX5c7FK/auXMn5s2bhz179mDr1q1oamrCb37zG9TU1MgdmiJ0Nm6YzWbccsstaGxsxO7du/H2229j3bp1WLp0qZcj7bonn3wSZWVl9uWhhx6SO6QOKWFsu+KKKxy+86+++krukDrV2di6cuVKvPLKK1izZg327t2LsLAwTJw4EfX19V6O1AVuq0quECtXrpRSUlLkDsNr1q5dK+l0OrnD8JhrrrlGmjdvnv2x2WyWEhISpBUrVsgYlXcBkDZt2iR3GLKoqKiQAEg7d+6UOxRFaW/c+PzzzyW1Wi0ZDAb7ur/97W9SZGSk1NDQ4MUIu6ZPnz7SSy+9JHcYXeLvY1t2drY0YsQIucPoltZjq8VikeLi4qRVq1bZ11VVVUlarVZ6//33ZYiwY0IfAXTGaDQiOjpa7jDIDRobG7F//35MmDDBvk6tVmPChAnIz8+XMTLyFqPRCADcp70kPz8fw4YNg16vt6+bOHEiTCYTDh8+LGNknXvuuefQs2dPjBo1CqtWrfLp09ZKGduOHTuGhIQE9O3bF/fccw+Ki4vlDqlbioqKYDAYHPpFp9Nh9OjRPtkvAXIH4EuOHz+OV199FX/5y1/kDoXc4OzZszCbzQ7/GAGAXq9HYWGhTFGRt1gsFixYsADXXXcdhg4dKnc4QjAYDE73N9tzvupPf/oTrrzySkRHR2P37t3IyspCWVkZXnzxRblDc0oJY9vo0aOxbt06DBw4EGVlZVi+fDnS09Nx6NAhREREyB3eJbH9jjvrF1/8/VfkEcAlS5a0ubi09dJ6JyktLcVNN92E6dOnY/bs2TJF3j2X0m4ipZo3bx4OHTqEDz74QO5QfJpSx42utGvRokXIyMjA8OHDMWfOHLzwwgt49dVX0dDQIHMrlGvSpEmYPn06hg8fjokTJ+Lzzz9HVVUV1q9fL3dowlDkEcDFixdj5syZHW7Tt29f+/+fPn0a48aNw5gxY/Dmm296ODrP6Wq7la5Xr17QaDQoLy93WF9eXo64uDiZoiJvmD9/PrZs2YJdu3YhMTFR7nB8mjvHjbi4uDYzUW37n7f3ue60a/To0WhubsbJkycxcOBAD0TXPUoc26KiojBgwAAcP35c7lAume27Ly8vR3x8vH19eXk5Ro4cKVNU7VNkAhgTE4OYmBiXti0tLcW4ceOQmpqKtWvXQq3234OiXWm3CIKCgpCamorc3FxMmTIFgPW0YG5uLubPny9vcOQRkiThoYcewqZNm7Bjxw6kpKTIHZLPc+e4kZaWhmeeeQYVFRWIjY0FAGzduhWRkZEYMmSIWz7DVd1pV0FBAdRqtb0NvkaJY1t1dTVOnDiB++67T+5QLllKSgri4uKQm5trT/hMJhP27t3rk3fcUGQC6KrS0lJkZGSgT58++Mtf/oIzZ87Yn/PXv6JcVVxcjMrKShQXF8NsNqOgoAAA0K9fP4SHh8sbnBstWrQI999/P6666ipcc801WL16NWpqavDAAw/IHZpHVVdXO/wlXVRUhIKCAkRHR+Oyyy6TMTLPmjdvHt577z188skniIiIsF93o9PpEBISInN0/q+zceM3v/kNhgwZgvvuuw8rV66EwWDA448/jnnz5kGr1cobfDvy8/Oxd+9ejBs3DhEREcjPz8fChQtx7733okePHnKH1y5/H9seeeQRZGZmok+fPjh9+jSys7Oh0Wjwu9/9Tu7QOtTZ2LpgwQI8/fTT6N+/P1JSUvDEE08gISHBnqj7FLmnIctp7dq1EgCni9Ldf//9Ttu9fft2uUNzu1dffVW67LLLpKCgIOmaa66R9uzZI3dIHrd9+3an/Xv//ffLHZpHtbc/r127Vu7QFMGVcePkyZPSpEmTpJCQEKlXr17S4sWLpaamJvmC7sT+/ful0aNHSzqdTgoODpYGDx4sPfvss1J9fb3coXXKn8e2O++8U4qPj5eCgoKk3r17S3feead0/PhxucPqVGdjq8VikZ544glJr9dLWq1WGj9+vHT06FF5g26HSpIkyfNpJhERERH5Cv+94I2IiIiILgkTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEgwTQCIiIiLBMAEkIiIiEsz/B9wS+MtvA6ryAAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cdc6b7727b904332874e154196f49c43", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWANJREFUeJzt3Xt8E3W+P/5Xml6g9MalTdOLUC6C3FkEBCkW7IoIVazIrrsr4M/VrYsKgih8j4KXxSp4Kbi4uLvngJ4966pQUTwebyBYpaCgFSiX5VLsPaWUJrSFXpL5/RESSJu2aZvJZObzej4eWTaTT5L3eybz8d2Z+cxHJ0mSBCIiIiISRoDSARARERGRb7EAJCIiIhIMC0AiIiIiwbAAJCIiIhIMC0AiIiIiwbAAJCIiIhIMC0AiIiIiwbAAJCIiIhIMC0AiIiIiwbAAJCIiIhIMC0AiIiIiwbAAJCIiIhIMC0AiIiIiwQQqHYAv2Gw2lJaWIjw8HDqdTulwiMiHJEnChQsXEBcXh4AAbf3Ny76NSFxd7duEKABLS0uRmJiodBhEpKCioiIkJCQoHYZXsW8jos72bUIUgOHh4QCA2NgilJdHOJfHxQEvvQTcfrtSkfnGRx8BTz4JlJZeWSZC7qLmDYibu7u8Y2MtKC9PdPYDWiJ63yYqUfdvkcnRt+kkSZK8FJ/fslgsiIyMBGAGcKWTdJwx2bIFSE9XJDTZZWcDc+YAzbey1nMXNW9A3NxbyxuwAIiE2WxGRESEm3eql8h9m6hE3b9FJlffJnQBCNh3moQEoKAA0OsVCU82VivQrx9QXOz+da3mLmregLi5t523eAUgoN1tLTJR92+Rydm3aeuK6E6QJKCoCMjJUToS78vJab2jALSbu6h5A+Lm3l7eItLqthaZqPu3yOTs24QvAB3KypSOwPs8zUlruYuaNyBu7lrLx5u4brRD1P1bZHJuSxaAlxmNSkfgfZ7mpLXcRc0bEDd3reXjTVw32iHq/i0yObclrwHU8DUTjmsHSkrcXTyq3dxFzRsQN/e28+Y1gFra1iITdf8WmZx9m9BHAB2jprKytLmz6PXAunX2/9/8HrFazl3UvAFxc28rbxFpeVuLTNT9W2Ry9m1CFYBxca7PExK0P2Q+Pd2eY3y863Kt5y5q3oC4ubeWd/PnWiRi3yYqUfdvkcnVtwl1CriqyoyffopAWZn9vHpysjh/KVmt9tFEouUuat6AuLk3z3vUKAt69dL2KWCR+zZRibp/i8zbfZtQBaAW/wNARG3T8v6v5dyIqG1d3f+FOgVMRERERCwAiYiIiITDApCIiIhIMCwAiYiIiATDApCIiIhIMCwAiYiIiATDApCIiIhIMCwAiYiIiATDApCIiIhIMCwAiYiIiATDApCIiIhIMCwAiYiIiATDApCIiIhIMCwAiYiIiATDApCIiIhIMCwAiYiIiATDApCIiIhIMD4vAL/++mukpaUhLi4OOp0O27Zta7P9rl27oNPpWjzKy8t9EzARERGRxvi8AKytrcWoUaOwYcOGDr3v+PHjKCsrcz5iYmJkipCIiIhI2wJ9/YUzZszAjBkzOvy+mJgYREVFeT8gIiIiIsGo5hrA0aNHw2g04pe//CW+/fbbNtvW19fDYrG4PIiIiIjIzu8LQKPRiI0bN2Lr1q3YunUrEhMTkZKSgh9++KHV92RmZiIyMtL5SExM9GHERERERP5NJ0mSpNiX63T44IMPMHv27A6976abbsI111yD//7v/3b7en19Perr653PLRYLEhMTYTabERER0ZWQiUhlLBYLIiMjNbn/azk3ImpbV/d/n18D6A3jx4/HN9980+rrISEhCAkJ8WFEREREROrh96eA3cnLy4PRaFQ6DCIiIiJV8vkRwJqaGpw8edL5vKCgAHl5eejVqxeuueYarFixAiUlJXj77bcBAFlZWUhKSsKwYcNw6dIl/P3vf8fOnTvx+eef+zp0IiIiIk3weQG4f/9+TJ061fl8yZIlAID58+dj8+bNKCsrQ2FhofP1hoYGLF26FCUlJQgNDcXIkSPx5ZdfunwGEREREXlO0UEgvsILpYnEpeX9X8u5EVHburr/q/IaQCIiIiLqPBaARERERIJhAUhEREQkGBaARERERIJhAUhEREQkGBaARERERIJhAUhEREQkGBaARERERIJhAUhEREQkGBaARERERIJhAUhEREQkGBaARERERIIJVDoAIiKizrJagZwcoKwMMBqB5GRAr1c6KpITt7l3sAAkIiJVys4GFi0CiouvLEtIANatA9LTlYuL5MNt7j08BUxERKqTnQ3MmeNaCABASYl9eXa2MnGRfLjNvYsFIBERqYrVaj8KJEktX3MsW7zY3o60gdvc+1gAEhGRquTktDwKdDVJAoqK7O1IG7jNvY8FIBERqUpZmXfbkf/jNvc+FoBERKQqRqN325H/4zb3PhaARESkKsnJ9pGfOp3713U6IDHR3o60gdvc+1gAEhGRquj19tt+AC0LAsfzrCzeG05LuM29jwUgERGpTno6sGULEB/vujwhwb6c94TTHm5z7+KNoImISJXS04E77uCsECLhNvceFoBERKRaej2QkqJ0FORL3ObewVPARERERIJhAUhEJJOvv/4aaWlpiIuLg06nw7Zt21xelyQJK1euhNFoRPfu3ZGamooTJ04oEywRCYUFIBGRTGprazFq1Chs2LDB7etr1qzB+vXrsXHjRuzbtw89evTA9OnTcenSJR9HSkSi4TWAREQymTFjBmbMmOH2NUmSkJWVhaeeegp33HEHAODtt9+GwWDAtm3b8Otf/9qXoRKRYHgEkIhIAQUFBSgvL0dqaqpzWWRkJCZMmIDc3FwFIyMiEfAIIBGRAsrLywEABoPBZbnBYHC+1lx9fT3q6+udzy0Wi3wBEpGm8QggEZFKZGZmIjIy0vlITExUOiQiUikWgERECoiNjQUAmEwml+Umk8n5WnMrVqyA2Wx2PoqKimSPk4i0iQUgEZECkpKSEBsbix07djiXWSwW7Nu3DxMnTnT7npCQEERERLg8iIg6g9cAEhHJpKamBidPnnQ+LygoQF5eHnr16oVrrrkGixcvxp/+9CcMGjQISUlJePrppxEXF4fZs2crFzQRCYEFIBGRTPbv34+pU6c6ny9ZsgQAMH/+fGzevBlPPPEEamtr8eCDD6K6uhqTJ0/Gp59+im7duikVMhEJQidJkqR0EHKzWCyIjIyE2WzmKRMiwWh5/9dybkTUtq7u/7wGkIiIiEgwLACJiIiIBMMCkIiIiEgwLACJiIiIBMMCkIiIiEgwLACJiIiIBMMCkIiIiEgwLACJiIiIBMMCkIiIiEgwLACJiIiIBMMCkIiIiEgwLACJiIiIBMMCkIiIiEgwPi8Av/76a6SlpSEuLg46nQ7btm1r9z27du3CL37xC4SEhGDgwIHYvHmz7HESERERaZXPC8Da2lqMGjUKGzZs8Kh9QUEBZs6cialTpyIvLw+LFy/G73//e3z22WcyR0pERESkTYG+/sIZM2ZgxowZHrffuHEjkpKS8MorrwAArrvuOnzzzTd47bXXMH36dLnCJCIiItIsv78GMDc3F6mpqS7Lpk+fjtzc3FbfU19fD4vF4vIgIiIiIju/LwDLy8thMBhclhkMBlgsFly8eNHtezIzMxEZGel8JCYm+iJUIiIiIlXw+wKwM1asWAGz2ex8FBUVKR0SERERkd/w+TWAHRUbGwuTyeSyzGQyISIiAt27d3f7npCQEISEhPgiPCIiIiLV8fsjgBMnTsSOHTtcln3xxReYOHGiQhERERERqZvPC8Camhrk5eUhLy8PgP02L3l5eSgsLARgP307b948Z/uMjAycPn0aTzzxBI4dO4Y33ngD7733Hh577DFfh05ERESkCT4vAPfv348xY8ZgzJgxAIAlS5ZgzJgxWLlyJQCgrKzMWQwCQFJSEv73f/8XX3zxBUaNGoVXXnkFf//733kLGCIiIqJO0kmSJCkdhNwsFgsiIyNhNpsRERGhdDhE5ENa3v+1nBsRta2r+7/fXwNIRERERN7FApCIiIhIMCwAiYiIiATDApCIiIhIMH5/I2gtsVqBnBygrAwwGoHkZECvVzoq+TFvsfIGxM5dCVYrsGsX17dIuI+Jp/k2HzWqa5/HAtBHsrOBRYuA4uIryxISgHXrgPR05eKSG/O+skyEvAGxc1fK8OFAaemV51zf2sZ9TDzutnlcXNc+k7eB8YHsbGDOHKD5mtbp7P9u2aLNnZZ5uy7Xet6Af+au9P4vJ0dugBnAldxE+K2Jyh/3MZJXa9scsADofN/GAlBmVivQr59r1X41nc7+l1tBgbYO3zNv969rNW/Af3MXsQAEtP1bE5W/7mMkn7a3edcKQA4CkVlOTus7K2Cv6IuK7O20hHm7p9W8AbFz90dc39rDfUw87W3zrmABKLOyMu+2Uwv3+dg8bKdeom5vQOzc/RnXt3ZwHxOPnNuSBaDMjEbvtlOLlvnsAhAEYHM77dRN1O0NiJ27P+P61o6W2/I3AOLQ/I9rbnPtkHNbsgCUWXKy/ZoMxwW6zel0QGKivZ2WtMz7EOyd1O8B7BYob1dazRsQO3d/xPWtPa772DkA7wMoA/ARAG5zLWqvX+0KFoAy0+vtQ/OBlhvQ8TwrS3sX7LbM+yQAHQArgNsgSfsFyfsKLW9vQOzc/Q3XtzZdvY8Br8LenwLA0wDs4zm5zbWlrX61q1gA+kB6un1ofny86/KEBG0P2XfNOw+ODgqoR2hoKgYPzlcsNjmJur0BsXNXUvP7gXF9a1d6OrBp0znodK/hSp96GL17f8htrlGt9avNn3cUbwPjQ6Leud1qBaKieqGm5rxzmV6vR69evbB37170799fwejkI+r2Bvwrd3/Z/+XgyK2qyoyfforwi/VN8vuP//gPvPjii7DZ7Nf+BQQEYOjQoTh48CB0cpwrJL/QciYQC3r14n0A26Tl/wCogclkQmxsbIvler0eRqMRe/fuRXxX/5QhaoWW938t50bunTt3DomJibh48WKL1z744APMnj3b90GRIrq6//MUMMnu8OHDbpdbrVaUlZVh6tSpOHv2rI+jIiJSn1dffRX19fUtlgcEBODpp5+GAMd0yEtYAJLsDh06hIAA9z81q9WK06dPIzU1FWaz2ceRERGpx7lz5/Daa685T/1ezWaz4fDhw/jwww8ViIzUiAUgye7w4cOtFoCAvQjMz8/HjBkzUFdX58PIiIjUo7Wjfw48CkgdwQKQZPfjjz+iqampzTZWqxW5ubn405/+5KOoiIjUo62jfw48CkgdwQKQZGWz2XDkyJFWX9dfHqqYkJCARx99FL///e99FRoRkWq0d/TPgUcByVOBSgdA2nbmzBlcunTJ+Vyv18Nqtd+8tG/fvsjIyEBaWhqGDh3K2xcQEblhtVqRlZUFSZIQFBTkstxms7kscxwF3LVrF6ZOnapEuKQSLABJVkePHnX+/9DQUMyYMQO333473nrrLQDA8uXLO/W55eXleOaZZ/DGG2+0eX0hEZHaBQQEIDMzE2VlZS7Ld+7ciZMnT+LBBx90WR4cHIxhw4b5MkRSIRaAJKtx48bhmWeewY033ogpU6YgODgYAFBTU4NFixbBbDYjMjKy3c/ZuHEj/vGPf7gsO3nyJIYPH46HH35YltiJiPyBTqfDo48+2mL5smXLYDabkZmZ2e5n8I9mao4FIMkqJiYGq1atarF81qxZWLhwIT777DPMnTu33c/JyMhARkaG83lVVRXmzZuH3/3ud16Nl4hIC/hHM7WHBSAp4pprrsHIkSOxfft2jwrA5sLCwrB161aEhITIEB0Rkbrxj2ZqD48Dk2LS0tLwySeftHuLGHeCg4NZ/BERecjxR3NUVJTSoZCfYAFIiklLS0NVVRVyc3M9ar9q1SqMGDECPXr0gMFgwEMPPYTGxkaZoyQiUj/+0UzNsQAkxYwbNw4xMTH4+OOP220rSRIkScKbb76JI0eOYPPmzdi6dSv+/ve/+yBSIiL1Wb58OWbNmqV0GOSneA0gKSYgIAAzZ87E9u3b8dJLL7XZVqfT4bnnnnM+79u3L1JTU3H8+HG5wyQiUqW8vDyMHTtW6TDIT/EIICkqLS0NR48exalTp9ps9/PPP2PhwoUYPnw4evbsibCwMLz33ntISEhAUVERUlJSMHToUIwcORLvv/++j6InIvJfeXl5GDlypNJhkJ9iAUiK+uUvf4ng4GBs37691TZnz57FuHHjcO7cObz66qv45ptvsGfPHgQEBGDUqFEIDAxEVlYWjhw5gs8//xyLFy9GbW2tD7MgIvIv5eXlMJlMsFqtmDJlCkJDQzFu3DgcOnRI6dDIT7AAJEWFhYVh2rRpbRaA27dvh9VqxTvvvINbbrkFw4YNw9dff43GxkaMHj0aRqMRo0ePBgDExsaiT58+qKqq8lEGRET+Jy8vDwCQlZWFzMxM7N+/H2FhYbjnnnuUDYz8Bq8BJMXNmjULixcvbnVWkN69e8NiseCjjz7C0KFDsX37dmRmZiI+Ph7R0dEubQ8cOACr1YrExERfhU9E5Hfy8vLQrVs3bNu2DXFxcQCA1atX48Ybb0RlZSX69OmjcISkNB4BJMXNmjULTU1N+Oyzz9y+npaWhvvvvx/33nsvJk+ejJKSEsydO9d51M/BcaPTv/71rz6ImojIf+Xl5WHu3LnO4g8AevbsCQCora3lddPEI4CkvL59+7Y5K0hAQAA2btyIjRs3tvoZ9fX1mD17NpYvX45JkybJGS4Rkd/Ly8vDH/7wB5dle/fuRXx8PIKDg5GVlYXRo0ejvLwcY8eOxW233YYePXooFC0pgUcAyS90ZVYQSZKwYMECTJs2Dffee68M0RERqUddXR1OnDgBq9XqXGaz2bBu3TosWLCA100TABaA5CdmzZqFqqoq7N27t8Pv/fbbb/Huu+9i27ZtGD16NEaPHs2RbqQKzzzzDHQ6nctjyJAhSodFKnfw4EHo9Xps2rQJ33//PY4fP465c+fi4sWLePLJJ13a8rppcfEUMPmF8ePHIyYmBtu3b8fkyZM79N7JkyfDZrPJFBmRvIYNG4Yvv/zS+TwwkN0ydU1eXh6uvfZarFy5EnfeeSeqq6uRlpaGPXv2IDw83NnOcd303/72NwWjJaWwpyG/0JFZQTrEZgXO5gAXy4DuRiA6GQjQe+/zibooMDAQsbGxSodBGpKRkYGMjAwAcHtdNcDrpomngMmPeDoriMeKsoGP+gE7pgJ7fmP/96N+9uVEfuLEiROIi4tD//798dvf/haFhYWttq2vr4fFYnF5EHUUr5smgAUg+RFPZgXxWFE2kDMHqCt2XV5XYl/OIpD8wIQJE7B582Z8+umn+Mtf/oKCggIkJyfjwoULbttnZmYiMjLS+eB1W9QZvG6aAEAnSZKkdBBys1gsiIyMhNlsRkREhNLhUBtuvfVWNDU1uVwT1WE2q/1IX/Piz0kHhCYAtxfwdLAA1LT/V1dXo2/fvnj11Vdx//33t3i9vr4e9fX1zucWiwWJiYmqyI28b9myZdi+fTuOHTumdCikgK72bTwCSH4lLS0Nu3fvhtls7vyHnM1po/gDAAmoK7K3I/IjUVFRuPbaa3Hy5Em3r4eEhCAiIsLlQUTUGSwAya+0NyuIRy6WebcdkY/U1NTg1KlTMBqNSodCRBrHApD8ytWzgnRadw//4+lpOyKZPP7449i9ezfOnDmDPXv24M4774Rer8c999yjdGhEpHEsAMnvzJo1q9OzggAAopNh6xaP1i5ulaADQhPtt4QhUlBxcTHuueceDB48GHPnzkXv3r2xd+9eREdHKx0aEWkcC0DyO2lpaZ2eFQQALjU04nTPRwGgRREoXf5f88BnOQCEFPevf/0LpaWlqK+vR3FxMf71r39hwIABSodFRAJgAUh+5+pZQTqqsbERx44dw5ELQ3DK+BIaA2NcXw804Kfwp/HD2X6c+5KIiISlWAG4YcMG9OvXD926dcOECRPw3Xfftdp28+bNLebL7Natmw+jJV+6elaQjrBarTh+/DiKiopgMBhgiUzF4QEf49+Jb6IgbjX+nfgmDg/YDmvcHbh48SLy8/N5I10iIhKSIgXgu+++iyVLlmDVqlX44YcfMGrUKEyfPh0VFRWtviciIgJlZWXOx88//+zDiMnXZs2a1aFZQWw2G06ePImCggL06dMHQUFB9hd0etT0uB7nI25FTY/rAZ0eOp0OBoMBZrMZ+fn5qKurkzETIiIi/6NIAfjqq6/igQcewH333YehQ4di48aNCA0NxX/913+1+h6dTofY2Fjnw2Aw+DBi8rVbbrnF41lBJEnCmTNncPLkSfTs2RMhISHtvsfxe6qsrER+fr7LzXWJiIi0zucFYENDAw4cOIDU1NQrQQQEIDU1Fbm5ua2+r6amBn379kViYiLuuOMO5Ofnt9qW82WqX1hYGKZOnYqPP/643bYlJSU4fvw4wsLCEBoa6vF3BAQEwGAwoKysDEePHkVjY2NXQiYiIlINnxeAlZWVsFqtLY7gGQwGlJeXu33P4MGD8V//9V/48MMP8Y9//AM2mw2TJk1CcbH72R44X6Y2eDIriMlkwtGjRxESEoLw8PAOf0dgYCAMBgMKCwvx73//G1artSshExERqYIqRgFPnDgR8+bNw+jRo3HTTTchOzsb0dHRePPNN922X7FiBcxms/NRVFTk44jJG9qbFaSqqgr5+fmQJAlRUVGd/p6goCBER0fj9OnTOHXqFGw2W6c/i4iISA18XgD26dMHer0eJpPJZbnJZEJsbKxHnxEUFIQxY8ZwvkyN69u3L0aMGOH2OkCLxYLDhw+jvr4effr06fJ3hYSEoGfPnjhx4gR+/vlnSFJrt5EmIiJSP58XgMHBwRg7dix27NjhXGaz2bBjxw5MnDjRo8+wWq04dOgQ58sUQFpaGj755BOXU7O1tbU4fPgwLly4gJiYmDbe3TGhoaEICwvDsWPHUFJS4rXPJSL5WK3Arl3AO+/Y//XLqzhsVsC0Czjzjv1fmz8GCdXEqYptrgKBSnzpkiVLMH/+fFx//fUYP348srKyUFtbi/vuuw8AMG/ePMTHxyMzMxMA8Nxzz+GGG27AwIEDUV1djbVr1+Lnn3/G73//eyXCJx9KS0vDCy+8gNzcXEyePBn19fU4cuQIzp07B6PRCJ1O59XvCw8PR1NTE44ePYrg4GCvFphE5F3Z2cCiRcDVl4MnJADr1gHp6crF5aIoGziwCKi7KsjQBGDsOiDRX4KEauJUxTZXCUWuAfzVr36Fl19+GStXrsTo0aORl5eHTz/91DkwpLCwEGVlZc7258+fxwMPPIDrrrsOt912GywWC/bs2YOhQ4cqET750Lhx4xAdHY3t27ejsbERR48eRVlZGWJjYxEQIM/Pt2fPnpAkCfn5+Th//rws30FEXZOdDcyZ41oIAEBJiX15drYycbkoygZy5rgWVQBQV2JfXuQPQUI1capim6uIThLgYieLxYLIyEiYzWZeD6hC9913H/bt24f3338fp06dgsFguHKjZ5lIkgSTyYTw8HCMGjWKvxsV0/L+r+Xc2mK1Av36tSwEHHQ6+1GhggJAr9SU3zYr8FG/lkWVk85+hO32gk7PS75s2TJs374dx44d63SYvojTG1SxzX2sq/u/IqeAiTpi5syZ2Lx5M7799luMGDFC9uIPgHO2kLKyMuTn52PUqFEduscgEcknJ6f1QgAAJAkoKrK3S0nxWViuzua0UVQBgATUFeHskWzUR3l2/XtzFy5cQFNTU6u3RPNESHUuoj2IE2dzAENKp7+nq1SxzVWGBSD5NUmSMHjwYAQGBuLw4cO4/vrrffbdjtlCHEXgyJEjPZplhIjkddUVQl5pJ4uLnn150YnvUBrUvVNfUVFRgUuXLiEvL69T7weAuMbvEO1JQw/zkUtpqQTgNIAtAE4B+Kvbdopuc5VhAUh+raSkBMXFxRgzZgz27duHBQsW+PT7r54tJCgoCMOGDfPJEUgiap2nN4BQ9EYR3T378rA+gxDXI65TXxEWFobAwEDExXXu/QAQVjsI8ORWuR7m4y1NTU04ePAgcnJykJOTgy+/3A2g8vKrQQDeBNByECBvDuI5FoDktyoqKpyzfEydOhWvvPIKLly40KkZP7ri6tlCgoKCMGTIEOhFuciEyA8lJ9uv9yopsZ/6a85xPVhysu9jc4pOtl87V1cCoGWQEoDGQANqQsf4PLSr1YSOQUNgDIKaKtyUU4DzGsBoeVdmXV0d9u3bh2+++Qa7d+/Gnj17cPHiRQQEBECn0zWbpWkZmhd/frHNVUYVM4GQeKqqqnD48GHnLB9TpkyB1Wptc75oOTWfLUSAsVNEfkuvt9/2A7D/h/9qjudZWQoPBgjQ22+hAkBqVqzYew8dig2PAzqF/5jU6VFsWAagZZnqjHtslmwDQA4dOoTrr78eERERmDZtGp599lns3LkTFy9eBGC/T7Br8RcEYJFrCv6yzVWGBSD5HccsH5cuXXLO8mE0GjFw4EDk5OQoFtfVs4WcOXNGsTiIyH7Pty1bgPh41+UJCfblfnFPuMR0NN7wDuoDXGcragw0oCB+DarDpykUmKvq8GkoiF+LxkDX+57aQoxA8hZZ7wN46dIl/Pjjj84iz2q1tvoHdmBgIKZO/R0SElzj9KttriI8BUx+pa6uDvn5+bBYLC1mepkyZQq2bt0Kq9Wq2CnY0NBQWK1WHDt2DMHBwYhv/l8fIvKZ9HTgjjvsIz/LyuzXfyUn+9dRoIqQyfgh9K+4NsqEYNs5NOr72E/7Kn3kr5nq8GmoDrsJYXU/IshaiXKzDmFJMzAicbSs33vgwAH069cPp0+fbrdtU1MTsrIWY9gw/97masEjgOQ36uvrkZ+fj8rKSsTGxraY5SM5ORlmsxkHDx5UKEK78PBwBAcH48iRI6ioqFA0FiLR6fX2237cc4/9X38qBGw2G0pLSxEc0h21YeNwPuJW1PS43u+KPyedHjU9rsf5iFvR1GsyTBWVqK2tlfUrMzIycPLkSWRkZLQ5s5Ner8dNN92EkSNH+vU2VxMWgOQXrp7lw2AwuJ3lY9iwYejZs6eip4EdOFsIEbXHbDbj3LlzqrxJd2hoKOrq6nD27FnZv0un02H9+vW46aabWi0CrVYrli5dKnssImEBSIqzWq3497//jcLCQhgMBgQGur8yQa/XY/Lkyfj66699HKF7vXv3xsWLF3H48GFYLBalwyEiP1NRUYHGxkZV3j9Up9MhNDQUJSUlaGpq8sn3DRw4EJIkuS0C+/bti5kzZ8oeh0hYAJKibDYbTp06hdOnTyM6Orrde+xNmTIFBQUFKCry5MZV8tLpdIiJiYHZbEZ+fj7q6uqUDomI/ER9fT1KS0t9ftsqb4qIiEB1dTWqqqpk/Z7FixfDaDRi06ZNWLVqFcLCwlyKQJ1Oh6VLl8o2/7uouDZJMZIk4cyZMzhx4gR69uzp0V/JEyZMQFBQkF+cBgbsN4qOjY1FZWUl8vPzUV9fr3RIROQHKisrUVNTg7CwMKVD6TTH2RiTySTbd5w4cQJ/+9vfUFNTg88//xzPPPMMtm7d6lIAhoaG+nwSABGwACTFlJSU4Pjx4wgLC/N4nt0ePXpg7NixflMAAq6zhRw9ehSNjY1Kh0RECnIO/ggOVv1Rq4iICJhMJlkGg+zcuRMTJkxAfX09MjMzMW2a/bY4v/zlL7F+/XoA9qN/Dz74oKqPpPordf8ySR1sVsC0Czjzjv1fm9Vllo+O7thTpkzBgQMHcOHCBVnC7YyrZws5ceKE/Z5WbvImIu1T8+CP5uQaDPLmm29i+vTpGDFiBKxWK2JiYjBlyhSEhoZi3LhxmDJlCh566CEEBgbikUce8ep3kx0LQJJXUTbwUT9gx1Rgz2+AHVNh/eAamPb/xTnLR0cpPStIaxyzhZw6dcqe34f9XPLGR/3s64OINE3Ngz+a8/ZgkKamJjz66KPIyMhARkYGnnjiCQBAVlYWMjMzsX//foSFheGee+7Bhg0bUFRUhKSkpC5/L7XEApDkU5QN5MwB6opdFgfUl2J49TMYGNK5+/k5ZgX55ptvvBGlV4WEhGBgyEEYTz0CXHTNG3Ul9vXBIpBIs7Qw+KM5bw0Gqa6uxsyZM/HGG2/gL3/5C15//XUcOnQI3bp1w7Zt23DjjTdi6NChWL16NfLz83Hu3DkYDAYvZUHNsQAkediswIFFcDcJuuPS3gTTy4DUudOiycnJ+Oabb5rNEekHJCsGVF++dqXli/Z/Dizm6WAijdLC4I/mvDEY5MSJE7jhhhvw/fff47PPPkNGRgYAIC8vD3PnzkVcXJyzbc+ePQHYr6W888470bNnT8yZM6cLGZA7LABJHmdzWhz5u5oOQHCTCWF1P3bq46dMmeIXs4I0F1b3I4KbKtwUfw4SUFdkXz9EpClaGvzRXFcGgzgGe0iShH379uHmm292vpaXl4fRo0e7tN+7dy/i4+MRExODRYsW4e233+5q+OSGtn6h5D8ulnnULMha2amP96dZQa7mcT4erh8iUg8tDf5ozjEYpLKyY322Y7DH2LFjsXfvXgwaNMj5Wl1d3ZVBc5fZbDasW7fOeduXlJQUTZ1O9ycsAEke3Y0eNWvU9+nUxztmBfG3AtDjfDxcP0SkHloa/NGcYzBIcXGxR5feNB/s8X//93/OU7sOBw8ehF6vx6ZNm/D999/j+PHjmDt3Li5evIgnn3xSrlToMhaAJI/oZCA0Ae6uhAPsV8M1BBpQEzqm018xZcoUnD59GsXFrZ9q9rWa0DFoCIxxc+Wjgw4ITbSvHyLSDC0O/mjOMRjk3Llzbba7erDHG2+8gddff93tFJ95eXm49tprsWrVKtx5550YO3YsgoKCsGfPHk2vR3/BApDkEaAHxq67/MS1CJQuLys2PA7o9J3+CsesIP4yNzAAQKdHsWEZgDaGv4zNsq8fItIMLQ7+aM6TwSAnT550Gezx0EMPtdo2IyMDhw8fxty5c1FcXIyamhq888476N27t9djp5ZYAJJ8EtOB5C1AaLzL4sZAAwri16A6fFqXPt4fZwUBgOrwaSiIX4vGwBjXF0IT7OsjMV2ZwIhIFloe/NFcW4NBvvrqK4wfP97tYA/yPy2PyRJ5U2I6EH8HSn96F+VnfkRYn0H2075dOPJ3tSlTpuCVV17BhQsX/OqUQXX4NFSH3QT9uT0IbDqLIaOnQh+bwiN/RBrkGPwRGRmpdCiyCw0Nxfnz51FZWYkePXo4l7/55pt4+OGHkZKSgvfee6/F9X6dlZqaip9++gm1tbVISEjA+++/j4kTJ3rls0Wn7T9VyD8E6HEp8gaUBt2Emh7Xe634A+z3A7Rardi7d6/XPtNrdHqYu41BRfebIcXcxOKPSKO0PPijueaDQZqamrBo0aI2B3t0xZdffomzZ8+irq4OxcXFLP68iAUgqVpcXBwGDBjgd6eBiUgMIgz+aM4xGOT06dOYNWsWNmzY0OZgD/JPLABJ9aZMmeKfs4IQkeaJMPijucDAQJSWlmL69OnYt28fPv300zYHe5B/YgFIquevs4IQkbZJkiTM4I+rff/993j88cfR2NiIr776CqmpqUqHRJ0gzi+WNMtfZwUhIm1z3BNPizN/tGbr1q1YuHAhhgwZgpdeesmr1/uRb7EAJNXz11lBiEjbRBr80dTUhLVr1+KFF17AXXfdhfXr1yMmJsbjmUHI/7AAJE1ITk72u1lBiEi7RBr8ceHCBSxevBjvv/8+nnzySTz55JMICgryeGYQ8k8sAEkTbrjhBv+bFYSINEuUwR9FRUVYsGABDh8+jNdffx1z5851vubJzCDkv1gAkib466wgRKQ9ogz++P777zF//nxIkoS33noLEyZMaNGmrZlByL9p95dLwpkyZQoOHDiAmpoapUMhIg0TYfBHdna2c7DH5s2b0bdvX7ftQkNDUVdXh8rKSh9HSF3FApA0wzErSG5urtKhEJGGnT17VrODP5qamvDyyy9j9erVuOuuu7Bu3bo2C93mM4OQerAAJM3grCBEJDctD/5wDPZ47733XAZ7tIeDQdSJBSBpCmcFISI5VVZW4sKFC5ob/NHWYI/2cDCIOrEAJE3hrCBEJBetDv7wZLBHezgYRH208wsmAmcFISL5aHHwh6eDPdrDwSDqwwKQNEWv1+PGG29kAUhEXqelwR8dHezRHg4GUR8WgKQ5U6ZM4awgRORVWhr80dnBHu3hYBB1YQFImsNZQYjI27Qy+KOoqAj33XdfpwZ7tIeDQdSFBSBpjmNWkG+++UbpUIhIA7Qy+GP//v2YP38+bDZbpwd7tIeDQdRDvb9kojZwVhAi8hYtDP7Izs7GH//4xy4P9mgPB4OoBwtA0qTk5GQ0NTVxVhAi6jI1D/7w9mCP9nAwiHqwACRN4qwgROQNah78Iddgj/ZwMIg6sAAkzdLarCBWqxUlJSXIyMiAzWZTOhwiIah18Iecgz3aw8Eg6sACkDTLMSvIoUOHlA6l0zZu3IjJkydj8uTJ6NOnD/r374933nkH69evVzo0Is1T6+APx2APq9Uq22CP9nAwiP8LVDoAX7JagV27gLIywGgEkpMBvV7pqHzDagVycsTKfdiwYYiKisJ77+1FeflU9OnTiDFjalSVd0ZGBjIyMgAAo0aNwsGDB9HQ0IA1a9agR48emD9/PoKDg92+V8RtDrTMe9QopSOSn8h9myxsVuBsDmorT0Iqr0JE70lKR9SC1QqUlwehtlaP/fvDnH1bdnY2XnzxRYwdOxYvvfSSYgNXQkNDcf78eVSeNaFHTSFwsQzobgSik4EA/jg7w9t9m2J/0mzYsAH9+vVDt27dMGHCBHz33Xdttn///fcxZMgQdOvWDSNGjMAnn3zS4e8cPhyYOhX4zW/s//brB2RndzIBFcnOtucqWu67d/fGpUtp+Oyzb/Ef/5GEP/zhWsyaNRw7d0YpHVqXlZeX48EHH0T//v3xt7/9DQ0NDS6vi7rN3eU9fLjSUbWvo/1hc6L2bbIoygY+6gfsmIqwnx7A+AtPYmzxXYi6sFPpyJx27ozCrFnD8cUXvVBZGYQ//OFazJw5BIsX/xmrV69Geno61q9fr+ioZZ1Oh74BBxC77wZgx1Rgz2/s/37Uz76OqUPk6NsUKQDfffddLFmyBKtWrcIPP/yAUaNGYfr06aioqHDbfs+ePbjnnntw//3348cff8Ts2bMxe/ZsHD58uEPfW1rq+rykBJgzR9sdZXa2Pcfmk2JoPfedO6OwbFkSLl26HcARAKcBABUVQVi2LEn1RaAkSQCA0tJSPPjggxgwYAD+/ve/o6GhQdht3lrezfd7f9PR/tAdEfs2WRRlAzlzgDrXH1FQUwWSSpb5RRHo6NsqKq4ezGHG2bN3ISfnbdx557NYvny5TwZ7tCXqwk6MtDyHYOtZ1xfqSuzrmEWgx+Tq23SS478kPjRhwgSMGzcOf/7znwEANpsNiYmJeOSRR7B8+fIW7X/1q1+htrYWH3/8sXPZDTfcgNGjR2Pjxo3tfp/FYkFkZCQAMwDXv4h0OiAhASgo0N4pE6vV/hdDazOi+TL306dP48iRI4iLi5P3i2DPe9as4Zc7yBoAfQCsAbDocgsJBkMjtm8/LHveNTU1sFqtSE5Odl4Y3VGrVq1CdnY28vPz0druqtPpIEkS4uMTUFe3CufPzwPQ8tSwVn/vbf/WLQAiYTab/fI+bh3tD68mat8mC5vVfnSqzn2HKQFoDDTg8IDtgE6ZFerat+kALAOQDSAEQBmA92Aw3OSTvq1NkhXDT81CUFMFdG4b6IDQBOD2Ap4OboecfZvPrwFsaGjAgQMHsGLFCueygIAApKamtnrPttzcXCxZssRl2fTp07Ft2za37evr61FfX+98brFYWo1HkoCiIvt59ZQUz/NQg5yc1os/QLu5//hjGCoqHMVPOIAJAF4F8LOzjckErFhxHrGxjbLG0tDQAEmS8OGHH3bqInJJkpCbm4thw4ahpKQE58+fb7UdAJSUFAN4AMBjAF4A8Eizdtrc5u391v1VR/tD9m0yOpvTavEH2Mut4CYTwup+RE2P630X11Vc+zYAqABwBsAAAPsAXAuTyd7u+uuVuwl+WN2PCG5q6wi2BNQV2de5IcVXYamSnH2bzwvAyspKWK1WGAwGl+UGgwHHjh1z+57y8nK37cvLy922z8zMxLPPPtuhuMrKOtRcFTzNSWu5V1Y2P/UxC/YjgJ+5LD10qBEFBfLeIsZms0GSJBw5cqRLn3Po0CHU1dV14B01AL5G8wLQQWvbXK35dLQ/ZN8mo4ueraggq3IzXLTs2/oCuA5ADoCebbTzLY/XkYfrXGRy7r+aHAW8YsUKlyOGFosFiYmJbb7HaJQ7Kt/zNCet5d6nT/Ojek9cfrh6/vl/y/5XcldPAf/8889Ys2YNdu/ejaampjbbBgYGXm5zJ4BnAIxsta3WtrnW8mkN+zYZdfdsRTXq+8gcSOta9m3PXX601863PF5HHq5zkcm5//p8EEifPn2g1+tb3CDSZDIhNjbW7XtiY2M71D4kJAQREREuj9bodEBiov22CVqTnGy/Bkjn/iIMzeY+ZkwNYmIaYL9qxx0JBkMDxozx73mCz549i3HjxuHcuXN49dVXMWDAALftHKeW09LS8MMPPyEhIRs6nfviT6vbvL3fur/qaH/Ivk1G0cn269JauWpNAtAQaEBN6BifhnU1tfRtNaFj0BAY02qU9msAE+3rnNokZ9/m8wIwODgYY8eOxY4dO5zLbDYbduzYgYkTJ7p9z8SJE13aA8AXX3zRantPOVZoVpY2L5LW64F16+z/v/mPR8u56/XAsmWOiyaad0ESdDrg8ceL/T7v7du3w2q14p133sEtt9yCbt26ubzuOKI4adIkpKamIjs7G2PGjBR2m7eWtz/rTH/oCS1va9kE6IGxl39EzYpA6fKyYsPjig0AAVTUt+n0KDYsuxxVixft/4zN4gAQD8jZtylyG5glS5bgb3/7G9566y0cPXoUDz30EGpra3HfffcBAObNm+dyUfSiRYvw6aef4pVXXsGxY8fwzDPPYP/+/Xj44Yc79L3NB6AmJABbtgDp6V1OyW+lp9tzjI93Xa713KdNq8batQWIiXE9FWIwNGLNmgJMm1atTGAd0Lt3b1gsFnz00Uc4ceIEzp51vZ1CWloafvrpJzz//POXR4LaibrNW8u7+XN/015/6AkR+zZZJKYDyVuAUNcfTUOgAQXxa1AdPk2hwK5QS99WHT4NB7qvQFNQsyPZoQn2dZzIH6en5OrbFLkNDAD8+c9/xtq1a1FeXo7Ro0dj/fr1zulqUlJS0K9fP2zevNnZ/v3338dTTz2FM2fOYNCgQVizZg1uu+02j77LcauEqiozfvopQsi75Ss9K4QvbwNzNavVPiKusjJIkZlAunINoM1mwx//+Ef885//RPfu3aHT6WAymWAwGPD5559j5Ej7ad5du3bhz3/+M7Zs2eLyfqW3uVJa3i3fgl69/Pc2MEDb/WFb2LfJ5PJMINbaYhwpOI8KaTB69lLu2j93lO7b2tPQ0IDq6mpMGH89ejYe5kwgXuDtvk2xAtCXHJ2kP/8HQOuUKgCV5o37ADocOXIEkiRh2LBhLstbKwDJTsv7v5Zz8xcFBQU4dOgQ4uPjoVPT9QUKO3v2LHr16oWxY8eqah5lNenq/q/JUcBEWjR06FClQyASTnR0NLp3746LFy8iNDRU6XBUwWazoaGhAXFxcSz+/Bi3DJGKpaam4u6778Ynn3yChISEVm+mTkSdExYWhpiYGJjNZqVDUY2amhqEhYWhd+/eSodCbeARQCIV+/LLL5UOgUjzjEYjiouL0dTU1OVLOURQU1ODgQMHtrhzAfkXHgEkIiJqQ69evRAVFYULFy4oHYrfa2hoQGBgYIvZbcj/sAAkIiJqQ2BgIOLi4lBbWwsBxk12idlsRu/evV1uTUX+iQUgERFRO64eDELucfCHunALERERtYODQdrHwR/qwgKQiIjIA0ajEQDQ1NSkcCT+qaamBkajkYM/VIIFIBERkQc4GKR1HPyhPiwAiYiIPMDBIK3j4A/1YQFIRETkIQ4Gackx+MNoNHLwh4pwSxEREXmIg0Facgz+6NOnj9KhUAewACQiIuoADgZxxcEf6sQCkIiIqAM4GOQKDv5QLxaAREREHeAYDFJXVyf8YBAO/lAvFoBEREQdFB0djW7dugk9GISDP9SNW4yIiKiDOBiEgz/UjgUgERFRJ4g+GISDP9SNBSAREVEniDwYhIM/1I8FIBERUSeIPBiEgz/UjwUgERFRJ4k4GISDP7SBW46IiKiTRBwMwsEf2sACkIiIqAtEGwzCwR/awAKQ5Gezopt5L+IadyOsdj8gWZWOyDckKyIv/YiYizugq9gN2ATJm0gwIg0G4eAP7QhUOgDSuKJs4MAixNUVIw4AioCGwBgUG5ahOnya0tHJJurCTiSY1iK4qcK+YNdqIDQBGLsOSExXNjgi8irHYJDDhw8jKioKOp1O6ZBkw8Ef2sEjgCSfomwgZw5QV+yyOKipAkklyxB1YadCgckr6sJOJJUsQ5Cj+HOoK7Gvj6JsZQIjItmIMBiEgz+0hVuQ5GGzAgcWAWh5awTH38YJppe1dzpYsiLBtBbAlTyvetH+z4HFPB1MpDEiDAbh4A9tYQFI8jib0+LI39V0AIKbTAir+9F3MflAWN2PCG6qcFP8OUhAXZF9/RCRpmh9MAgHf2gLC0CSx8Uyj5oFWStlDsS3PM7Hw/VDROqh5cEgHPyhPSwASR7djR41a9Rr61SCx/l4uH6ISD20PDMIB39oDwtAkkd0sn3UaysnQyUADYEG1ISO8WlYcqsJHYN6fYybKx8ddEBoon39EJHmaHEwCAd/aBO3JMkjQG+/5QmA5kWgdPn5yciHAZ3ex4HJy2oDDgb9fwCu5HnF5edjs+zrh4g0R4uDQTj4Q5tYAJJ8EtOB5C1AaLzr8tAEmAZtwOnG0Zr7K7m8vBxSwp1oGP9P6NzkjeQtvA8gkcZpbTAIB39oE28ETfJKTAfi77CPer1YBnQ3QhedjBjoMOD4cZw4cQIxMTEIDg5WOtIukSQJ5eXl6NWrF4YNG4aQHuOB/nNd8kZ0Mo/8EQng6sEgPXv2VDqcLuHgD+1iAUjyC9ADhhTXRQAGDRqExsZGnDlzBrGxsQgMVO/PsaKiAuHh4Rg+fDh69OhhX+gmbyLSvsDAQBiNRuTn56t+ZhAO/tAungImxQQGBmLIkCGIj4+HyWSC1arOmyOfO3cOISEhGDZsGDtJIgIAxMTEqH4wCAd/aBu3KCkqODgYQ4cORUxMDEwmE2w2m9IhdYjZbIbNZsN1113HC6SJyEkLg0E4+EPbWACS4rp3745hw4ahZ8+eMJlMqrl/Vk1NDS5duoTrrrvOedE3EZGD2geDcPCHtrEAJL8QFhaGYcOGoUePHqis9P/ZQS5evAiLxYJrr70WiYmJSodDRH6oV69eiIyMVOXMIBz8oX0sAMlvREVFYfjw4QgMDERVVZXS4bSqoaEBVVVVGDhwIJKSklR9gTcRyUfNM4Nw8If2qXfYJWlSnz59MHToUBw8eBAWiwURERFKh+SiqakJFRUVSEpKwqBBg3hhNJHCrFYgJwcoKwOMRiA5GdD70d2WYmJicOrkvxF8fg/CAi+gUd/HPgOSP94EX7IirO5HBDaexaU6HYxDf+uXfZy/b3O1YAFIfsdoNKKhoQH5+fnQ6/VXbquiMKvVivLyciQkJGDw4MHQs8chUlR2NrBoEVBcfGVZQgKwbh2Q7if3Ww87/zluqv4jgptMzmUNgTEoNixDdfg0BSNzFXVhJxJMaxHcVAEA6A9A2v8GgPV+dfN6NWxztfC/0p4IwDXXXINBgwbBbDb7xW0UHLN8xMbG4rrrrlP9jauJ1C47G5gzx7UQAICSEvvy7Gxl4nJRlA3kzEHQVcUfAAQ1VSCpZBmiLuxUKDBXURd2IqlkGYIuF38OuoulQM4cex5+QBXbXEVYAJJf0ul0GDBgAAYMGIBz586hoaFBsVgkSYLJZHLO8tG9e3fFYiEi+ynARYsAd5fVOZYtXmxvpxibFTiwCG3MCo4E08uApPD9TyUrEkxrATSftR0ALq/MA4vt+ShIFdtcZXgKmPxWQECAX8wWUlFR4TJKmYiUlZPT8ijQ1SQJKCqyt0tJ8VlYrs7mAHWtB6kDENxkQlPZVzgfNMp3cTXTs/En52lf9ySgrsiej4IzG6lim6sMC0Dya47ZQhobG1FaWorY2FifXntXVVXlnOUjKirKZ99LRK0rK/NuO1lc9OzLDRE2hETGyhxM66LMPwIWDxp6mI9cVLHNVYYFIPk9x2whTU1NMJlMiI2N9cnINLPZDKvVimHDhvFO+ER+xNP7rit6f/bunn1538E3oK9BuSOAMJ0H2jiy5uRhPnJRxTZXGV4DSKrg69lCampqcPHiRc7yQeSHkpPtIz9buwWnTgckJtrbKSY6GQhNgLsr6+x0QGiivZ2SVBKnKra5yrAAJNXw1Wwhjlk+Bg8ezFk+iPyQXm+/7QfQsiBwPM/KUvjecAF6YOzlIFsbBjI2y95OSSqJUxXbXGV8XgBWVVXht7/9LSIiIhAVFYX7778fNTU1bb4nJSUFOp3O5ZGRkeGjiMmfyD1bCGf5IFKH9HRgyxYgPt51eUKCfblf3BMuMR1I3gKENgsyNMG+3F/ur6eSOFWxzVVEJ/l4fpoZM2agrKwMb775JhobG3Hfffdh3Lhx+Oc//9nqe1JSUnDttdfiueeecy4LDQ31eJYIi8WCyMhImM1mv5tZgjqnrKwMBw8eREhIiNe2aVNTE8rLy5GUlIShQ4fyRs8aoeX9X8u5eUoVs0LYrPZRtBfL7NfSRScrfkTNLZXEqYpt7gNd3f99Ogjk6NGj+PTTT/H999/j+uuvBwC8/vrruO222/Dyyy8jLi6u1feGhoYiNla5kVLkX7w9W4jVaoXJZOIsH0Qqo9er4LYfAXpFb6HiMZXEqYptrgI+PQWcm5uLqKgoZ/EHAKmpqQgICMC+ffvafO///M//oE+fPhg+fDhWrFiBurq6VtvW19fDYrG4PEh7vDVbiGOWD4PBwFk+iIhICD49AlheXo6YmBjXAAID0atXL5SXl7f6vt/85jfo27cv4uLicPDgQTz55JM4fvw4sluZ9yUzMxPPPvusV2Mn/+OYLaSpqQknTpxATExMh4s3zvJBREQi8koBuHz5crz00ktttjl69GinP//BBx90/v8RI0bAaDTi5ptvxqlTpzBgwIAW7VesWIElS5Y4n1ssFo7m1KiuzhZy9uxZzvJBRETC8UoBuHTpUixYsKDNNv3790dsbCwqKlynnGlqakJVVVWHru+bMGECAODkyZNuC8CQkBCEhIR4/Hmkbp2dLaSqqgpBQUGc5YOIiITjlQIwOjoa0dHR7babOHEiqqurceDAAYwdOxYAsHPnTthsNmdR54m8vDwA4A16yckxW0hjY6NHs4U4ZvkYOXIkZ/kgIiLh+HQQyHXXXYdbb70VDzzwAL777jt8++23ePjhh/HrX//aOQK4pKQEQ4YMwXfffQcAOHXqFJ5//nkcOHAAZ86cwUcffYR58+ZhypQpGDlypC/DJz/XvXt3DB8+3HW2EMmKsNr96Gn5FGG1+wHJylk+iIhIeD6fC/h//ud/8PDDD+Pmm29GQEAA7rrrLqxfv975emNjI44fP+4c5RscHIwvv/wSWVlZqK2tRWJiIu666y489dRTvg6dVMBxPV9eXh4CSrZh2KW/IrjpymUH9fpoHAr+PeJH3s/rQomISFg+vxG0EnizVPFY8jcj/Kf7ALhObiRdXiLd+B4C+s5RIDLyNS3v/1rOjYja1tX9n3MBk/bYrIg48TSAVme2RMCPS+x3vSdSUL9+/VpMc/niiy8qHRYRCcDnp4CJZHc2B6grblH8OeggAXVF9nYquOs9adtzzz2HBx54wPk8PDxcwWiISBQsAEl7LpZ5tx2RjMLDwznNJRH5HE8Bk/Z093Bkr6ftiGT04osvonfv3hgzZgzWrl2LpqYmpUMiIgHwCCBpT3QyEJoA1JXAMezDlc7+enSyryMjcvHoo4/iF7/4BXr16oU9e/ZgxYoVKCsrw6uvvuq2fX19Perr653POc85EXUWjwCS9gTogbHrLj9pZRjI2Cx7OyIvW758eYuBHc0fx44dAwAsWbIEKSkpGDlyJDIyMvDKK6/g9ddfdynyrpaZmYnIyEjng7cyIqLO4m1gSLuKsoEDi4C64ivLQhPtxV9iumJhkW/5ev8/e/Yszp0712ab/v37Izg4uMXy/Px8DB8+HMeOHcPgwYNbvO7uCGBiYiL7NiIBdbVv4ylg0q7EdCD+Dvto34tl9mv+opN55I9k5enUmO7k5eUhICAAMTExbl/nPOdE5C0sAEnbAvS81Qv5pdzcXOzbtw9Tp05FeHg4cnNz8dhjj+F3v/sdevbsqXR4RKRxLACJiBQQEhKCf/3rX3jmmWdQX1+PpKQkPPbYY1iyZInSoRGRAFgAEhEp4Be/+AX27t2rdBhEJCiOAiYiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISTKDSAYjEagVycoCyMsBoBJKTAb1e6ajkx7zFyhsQO3clWK3Arl1c3yLhPiae5tt81KiufR4LQB/JzgYWLQKKi68sS0gA1q0D0tOVi0tuzPvKMhHyBsTOXSnDhwOlpVeec31rG/cx8bjb5nFxXftMnSRJUtc+wv9ZLBZERkbCbDYjIiLC59+fnQ3MmQM0X9M6nf3fLVu0udMyb9flWs8b8M/cld7/5eTIDTADuJKbCL81UfnjPkbyam2bAxYAne/bWADKzGoF+vVzrdqvptPZ/3IrKNDW4Xvm7f51reYN+G/uIhaAgLZ/a6Ly132M5NP2Nu9aAchBIDLLyWl9ZwXsFX1Rkb2dljBv97SaNyB27v6I61t7uI+Jp71t3hUsAGVWVubddmrBvL3TTk1Ezt2fcX1rB/cx8ci5LVkAysxo9G47tWDe3mmnJiLn7s+4vrWD+5h45NyWvAZQZo7z9yUl7i7g1O41G8xbrLwB/82d1wBq77cmKn/dx0g+bW9zXgPo1/R6+9B84MooLQfH86ws7e2szFusvAGxc/c3XN/axH1MPG1t865iAegD6en2ofnx8a7LExK0PWSfebsu13regNi5K6n5/cC4vrWL+5h4WtvmzZ93FE8B+5Cod25n3mLlDfhX7v6y/8vBkVtVlRk//RThF+ubfMOf9jHyjZYzgVjQqxfvA9gmLf8HgIjapuX9X8u5EVHburr/8xQwERERkWBYABIREREJhgUgERERkWBYABIREREJhgUgERERkWB8WgCuXr0akyZNQmhoKKKiojx6jyRJWLlyJYxGI7p3747U1FScOHFC3kCJiIiINMynBWBDQwPuvvtuPPTQQx6/Z82aNVi/fj02btyIffv2oUePHpg+fTouXbokY6RERERE2hXoyy979tlnAQCbN2/2qL0kScjKysJTTz2FO+64AwDw9ttvw2AwYNu2bfj1r38tV6hEREREmuXX1wAWFBSgvLwcqampzmWRkZGYMGECcnNzW31ffX09LBaLy4OIiIiI7Py6ACwvLwcAGAwGl+UGg8H5mjuZmZmIjIx0PhITE2WNk4iIiEhNulwALl++HDqdrs3HsWPHvBGrx1asWAGz2ex8FBUV+fT7iYiIiPxZl68BXLp0KRYsWNBmm/79+3fqs2NjYwEAJpMJRqPRudxkMmH06NGtvi8kJAQhISGd+k4iIiIiretyARgdHY3o6GhvxNJCUlISYmNjsWPHDmfBZ7FYsG/fvg6NJCYiIiKiK3x6DWBhYSHy8vJQWFgIq9WKvLw85OXloaamxtlmyJAh+OCDDwAAOp0Oixcvxp/+9Cd89NFHOHToEObNm4e4uDjMnj3bl6ETERERaYZPbwOzcuVKvPXWW87nY8aMAQB89dVXSElJAQAcP34cZrPZ2eaJJ55AbW0tHnzwQVRXV2Py5Mn49NNP0a1bN1+GTkRERKQZOkmSJKWDkJvFYkFkZCTMZjMiIiKUDoeIfEjL+7+WcyOitnV1//fr28AQERERkfexACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIZrF69GpMmTUJoaCiioqLctiksLMTMmTMRGhqKmJgYLFu2DE1NTb4NlIiEFKh0AEREWtTQ0IC7774bEydOxH/+53+2eN1qtWLmzJmIjY3Fnj17UFZWhnnz5iEoKAgvvPCCAhETkUh4BJCISAbPPvssHnvsMYwYMcLt659//jmOHDmCf/zjHxg9ejRmzJiB559/Hhs2bEBDQ4OPoyUi0bAAJCJSQG5uLkaMGAGDweBcNn36dFgsFuTn57t9T319PSwWi8uDiKgzWAASESmgvLzcpfgD4HxeXl7u9j2ZmZmIjIx0PhITE2WPk4i0iQUgEZGHli9fDp1O1+bj2LFjsn3/ihUrYDabnY+ioiLZvouItI2DQIiIPLR06VIsWLCgzTb9+/f36LNiY2Px3XffuSwzmUzO19wJCQlBSEiIR59PRNQWFoBERB6Kjo5GdHS0Vz5r4sSJWL16NSoqKhATEwMA+OKLLxAREYGhQ4d65TuIiFrDApCISAaFhYWoqqpCYWEhrFYr8vLyAAADBw5EWFgYbrnlFgwdOhT33nsv1qxZg/Lycjz11FNYuHAhj/IRkexYABIRyWDlypV46623nM/HjBkDAPjqq6+QkpICvV6Pjz/+GA899BAmTpyIHj16YP78+XjuueeUCpmIBKKTJElSOgi5WSwWREZGwmw2IyIiQulwiMiHtLz/azk3ImpbV/d/jgImIiIiEgxPARMRkWpZrUBODlBWBhiNQHIyoNcrHRXJidvcO1gAEhGRKmVnA4sWAcXFV5YlJADr1gHp6crFRfLhNvcengImIiLVyc4G5sxxLQQAoKTEvjw7W5m4SD7c5t7FApCIiFTFarUfBXI3hNGxbPFiezvSBm5z72MBSEREqpKT0/Io0NUkCSgqsrcjbeA29z4WgEREpCplZd5tR/6P29z7WAASEZGqGI3ebUf+j9vc+1gAEhGRqiQn20d+6nTuX9fpgMREezvSBm5z72MBSEREqqLX22/7AbQsCBzPs7J4bzgt4Tb3PhaARESkOunpwJYtQHy86/KEBPty3hNOe7jNvYs3giYiIlVKTwfuuIOzQoiE29x7WAASEZFq6fVASorSUZAvcZt7B08BExEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQnGpwXg6tWrMWnSJISGhiIqKsqj9yxYsAA6nc7lceutt8obKBEREZGGBfryyxoaGnD33Xdj4sSJ+M///E+P33frrbdi06ZNzuchISFyhEdEREQkBJ8WgM8++ywAYPPmzR16X0hICGJjY2WIiIiIiEg8qrgGcNeuXYiJicHgwYPx0EMP4dy5c222r6+vh8VicXkQERERkZ3fF4C33nor3n77bezYsQMvvfQSdu/ejRkzZsBqtbb6nszMTERGRjofiYmJPoyYiIiIyL91uQBcvnx5i0EazR/Hjh3r9Of/+te/xu23344RI0Zg9uzZ+Pjjj/H9999j165drb5nxYoVMJvNzkdRUVGnv5+IiIhIa7p8DeDSpUuxYMGCNtv079+/q1/j8ll9+vTByZMncfPNN7ttExISwoEiRERERK3ocgEYHR2N6Ohob8TikeLiYpw7dw5Go9Fn30lERESkJT69BrCwsBB5eXkoLCyE1WpFXl4e8vLyUFNT42wzZMgQfPDBBwCAmpoaLFu2DHv37sWZM2ewY8cO3HHHHRg4cCCmT5/uy9CJiIiINMOnt4FZuXIl3nrrLefzMWPGAAC++uorpKSkAACOHz8Os9kMANDr9Th48CDeeustVFdXIy4uDrfccguef/55nuIlIiIi6iSdJEmS0kHIzWKxIDIyEmazGREREUqHQ0Q+pOX9X8u5EVHburr/+/1tYIiIiIjIu1gAEhEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQmGBSARERGRYFgAEhEREQkmUOkAfMlqBXbtAsrKAKMRSE4G9Hqlo/INqxXIyREvd1HzBsTNvXneo0YpHZH8RO7bRCXq/i0yr/dtkgDMZrMEQIqLM0uA5HwkJEjS1q1KRye/rVvtuYqWu6h5S5K4ubvL277fQzKbzUqH53Wi922iEnX/FpkcfZtOkiSpy2Wpn7NYLIiMjARgBhDhXK7T2f/dsgVIT1ckNNllZwNz5th/LlfTeu6i5g2Im3treQMWAJEwm82IiIhw8071ErlvE5Wo+7fI5OrbhC4AAftOk5AAFBRo7/C51Qr06wcUF7t/Xau5i5o3IG7ubectXgEIaHdbi0zU/VtkcvZtwg8CkSSgqMh+Xl1rcnJa7ygA7eYuat6AuLm3l7eItLqtRSbq/i0yOfs24QtAh7IypSPwPk9z0lruouYNiJu71vLxJq4b7RB1/xaZnNuSBeBlRqPSEXifpzlpLXdR8wbEzV1r+XgT1412iLp/i0zObclrADV8zYTj2oGSEncXj2o3d1HzBsTNve28eQ2glra1yETdv0UmZ98m9BFAx6iprCxt7ix6PbBunf3/O3J10HLuouYNiJt7W3mLSMvbWmSi7t8ik7NvE+IIoNlsRlRUFGJji1BefqVKjo8HXnwRuP12BYPzgY8+Ap58EigtvbJMhNxFzRsQN3d3eRuNFpSVJaK6uvry0TLtEL1vE5Wo+7fI5OjbhCgAi4uLkZiYqHQYRKSgoqIiJCQkKB2GV7FvI6LO9m1CFIA2mw2lpaUIDw/HhQsXkJiYiKKiIs1dD9Qei8UiZO6i5g2Im/vVeTv2+7i4OAQEaOuql6v7Np2Pzn1r5TelhTy0kAOgjTyUyEGSpC71bULMBRwQEOCsjh2dZEREhGp/aF0lau6i5g2Im7sjb62d+nW4um/zNa38prSQhxZyALSRh69z6Erfpq0/h4mIiIioXSwAiYiIiAQjXAEYEhKCVatWISQkROlQfE7U3EXNGxA3d1Hz9gWtrFst5KGFHABt5KHGHIQYBEJEREREVwh3BJCIiIhIdCwAiYiIiATDApCIiIhIMCwAiYiIiAQjdAF45swZ3H///UhKSkL37t0xYMAArFq1Cg0NDUqHJrvVq1dj0qRJCA0NRVRUlNLhyGrDhg3o168funXrhgkTJuC7775TOiTZff3110hLS0NcXBx0Oh22bdumdEg+kZmZiXHjxiE8PBwxMTGYPXs2jh8/rnRYmuFJv1FYWIiZM2ciNDQUMTExWLZsGZqamnwbaAf169cPOp3O5fHiiy8qHVa71Ny3PfPMMy3W+ZAhQ5QOq13t9a2SJGHlypUwGo3o3r07UlNTceLECWWCbYfQBeCxY8dgs9nw5ptvIj8/H6+99ho2btyI//f//p/SocmuoaEBd999Nx566CGlQ5HVu+++iyVLlmDVqlX44YcfMGrUKEyfPh0VFRVKhyar2tpajBo1Chs2bFA6FJ/avXs3Fi5ciL179+KLL75AY2MjbrnlFtTW1iodmia0129YrVbMnDkTDQ0N2LNnD9566y1s3rwZK1eu9HGkHffcc8+hrKzM+XjkkUeUDqlNWujbhg0b5rLOv/nmG6VDald7feuaNWuwfv16bNy4Efv27UOPHj0wffp0XLp0yceRekAiF2vWrJGSkpKUDsNnNm3aJEVGRiodhmzGjx8vLVy40PncarVKcXFxUmZmpoJR+RYA6YMPPlA6DEVUVFRIAKTdu3crHYqmtNZvfPLJJ1JAQIBUXl7uXPaXv/xFioiIkOrr630YYcf07dtXeu2115QOo0PU3retWrVKGjVqlNJhdEnzvtVms0mxsbHS2rVrncuqq6ulkJAQ6Z133lEgwrYJfQTQHbPZjF69eikdBnlBQ0MDDhw4gNTUVOeygIAApKamIjc3V8HIyFfMZjMAcJ/2kdzcXIwYMQIGg8G5bPr06bBYLMjPz1cwsva9+OKL6N27N8aMGYO1a9f69WlrrfRtJ06cQFxcHPr374/f/va3KCwsVDqkLikoKEB5ebnLdomMjMSECRP8crsEKh2APzl58iRef/11vPzyy0qHQl5QWVkJq9Xq8h8jADAYDDh27JhCUZGv2Gw2LF68GDfeeCOGDx+udDhCKC8vd7u/OV7zV48++ih+8YtfoFevXtizZw9WrFiBsrIyvPrqq0qH5pYW+rYJEyZg8+bNGDx4MMrKyvDss88iOTkZhw8fRnh4uNLhdYrjN+5uu/jj71+TRwCXL1/e4uLS5o/mO0lJSQluvfVW3H333XjggQcUirxrOpM3kVYtXLgQhw8fxr/+9S+lQ/FrWu03OpLXkiVLkJKSgpEjRyIjIwOvvPIKXn/9ddTX1yuchXbNmDEDd999N0aOHInp06fjk08+QXV1Nd577z2lQxOGJo8ALl26FAsWLGizTf/+/Z3/v7S0FFOnTsWkSZPw17/+Vebo5NPRvLWuT58+0Ov1MJlMLstNJhNiY2MViop84eGHH8bHH3+Mr7/+GgkJCUqH49e82W/Exsa2GInq2P98vc91Ja8JEyagqakJZ86cweDBg2WIrmu02LdFRUXh2muvxcmTJ5UOpdMc695kMsFoNDqXm0wmjB49WqGoWqfJAjA6OhrR0dEetS0pKcHUqVMxduxYbNq0CQEB6j0o2pG8RRAcHIyxY8dix44dmD17NgD7acEdO3bg4YcfVjY4koUkSXjkkUfwwQcfYNeuXUhKSlI6JL/nzX5j4sSJWL16NSoqKhATEwMA+OKLLxAREYGhQ4d65Ts81ZW88vLyEBAQ4MzB32ixb6upqcGpU6dw7733Kh1KpyUlJSE2NhY7duxwFnwWiwX79u3zyztuaLIA9FRJSQlSUlLQt29fvPzyyzh79qzzNbX+FeWpwsJCVFVVobCwEFarFXl5eQCAgQMHIiwsTNngvGjJkiWYP38+rr/+eowfPx5ZWVmora3Ffffdp3RosqqpqXH5S7qgoAB5eXno1asXrrnmGgUjk9fChQvxz3/+Ex9++CHCw8Od191ERkaie/fuCkenfu31G7fccguGDh2Ke++9F2vWrEF5eTmeeuopLFy4ECEhIcoG34rc3Fzs27cPU6dORXh4OHJzc/HYY4/hd7/7HXr27Kl0eK1Se9/2+OOPIy0tDX379kVpaSlWrVoFvV6Pe+65R+nQ2tRe37p48WL86U9/wqBBg5CUlISnn34acXFxzkLdryg9DFlJmzZtkgC4fWjd/Pnz3eb91VdfKR2a173++uvSNddcIwUHB0vjx4+X9u7dq3RIsvvqq6/cbt/58+crHZqsWtufN23apHRomuBJv3HmzBlpxowZUvfu3aU+ffpIS5culRobG5ULuh0HDhyQJkyYIEVGRkrdunWTrrvuOumFF16QLl26pHRo7VJz3/arX/1KMhqNUnBwsBQfHy/96le/kk6ePKl0WO1qr2+12WzS008/LRkMBikkJES6+eabpePHjysbdCt0kiRJ8peZREREROQv1HvBGxERERF1CgtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISDAtAIiIiIsGwACQiIiISzP8PVJWryqX2JIMAAAAASUVORK5CYII=", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_lattice(square_lattice)\n", + "plot_lattice(tilted_lattice)\n", + "plot_lattice(honeycomb_lattice)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ef0a5d74-739f-4688-ad7f-fed91c39dcaa", + "metadata": {}, + "outputs": [], + "source": [ + "simple_cubic = Lattice([1,0,0], [0,1,0], [0,0,1])\n", + "graphite = Lattice([0.5,-0.5 * 3**(0.5),0], [0.5,0.5 * 3**(0.5),0], [0,0,1])\n", + "fcc = Lattice([0.5,0.5,-0.5], [-0.5,0.5,0.5], [0.5,-0.5,0.5])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "364f3ddb-21d0-4586-8b3b-acad8ba20d9b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[6.28318531 0. 0. ]\n", + " [0. 6.28318531 0. ]\n", + " [0. 0. 6.28318531]]\n", + "[[ 6.28318531 -3.62759873 0. ]\n", + " [ 6.28318531 3.62759873 -0. ]\n", + " [-0. 0. 6.28318531]]\n", + "[[6.28318531 6.28318531 0. ]\n", + " [0. 6.28318531 6.28318531]\n", + " [6.28318531 0. 6.28318531]]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "df0857086c404361b741af2dfc96f07d", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd8JHX9/18z27Kb7GbTe7tcLte4O64nR1UUkaIo3QLY+Crli+XLzy7YULEgfL8i+vULoiICil0RkHZynAeX3nty6dndlO27M/P7Y/OZm91s39mSy+f5eKCXzWZmdnbmPa/PuzKCIAigUCgUCoVCoWwY2HQfAIVCoVAoFAoltVABSKFQKBQKhbLBoAKQQqFQKBQKZYNBBSCFQqFQKBTKBoMKQAqFQqFQKJQNBhWAFAqFQqFQKBsMKgApFAqFQqFQNhhUAFIoFAqFQqFsMKgApFAoFAqFQtlgUAFIoVAoMvDSSy+BYRi89NJL6T4UCoVCiQgVgBQKRXa6urpw9dVXY9OmTdDpdCgsLMR5552HP/3pT2vee8EFF4BhGDAMA5ZlYTAY0NjYiA984AN47rnnot7nTTfdhJycHFmOv7u7G3fffTdGR0fX/O5HP/oRHn30UVn2Q6FQKOlCme4DoFAoZx5jY2NYWVnBjTfeiPLyctjtdvz2t7/FFVdcgYcffhgf+9jH/N5fWVmJe++9FwBgs9kwODiI3/3ud/jlL3+Ja665Br/85S+hUqlSdvzd3d245557cMEFF6C2ttbvdz/60Y9QWFiIm266ye/18847Dw6HA2q1OmXHSaFQKPFCBSCFQpGdd77znXjnO9/p99ptt92Gffv24fvf//4aAZibm4v3v//9fq9961vfwh133IEf/ehHqK2txbe//e2kH3cisCyLrKysdB8GhUKhRAUNAVMolJSgUChQVVWFxcXFqN//wAMPYPv27fjv//5vLC0tJXwMY2Nj+MQnPoHGxkZotVoUFBTg6quv9gv1Pvroo7j66qsBABdeeKEYnn7ppZdQW1uLrq4uvPzyy+LrF1xwAYDQOYDHjx/HO9/5TuTl5SE7Oxu7du3CD3/4Q7/39Pb24qqrrkJ+fj6ysrKwf/9+/PGPf0z481IoFEooqAeQQqEkDZvNBofDgaWlJfzxj3/E3/72N1x77bVR/71CocD111+PL33pSzh69CguvfTShI7nxIkTeO2113DdddehsrISo6OjeOihh3DBBRegu7sbOp0O5513Hu644w488MAD+PznP49t27YBALZt24b7778ft99+O3JycvCFL3wBAFBSUhJyf8899xwuu+wylJWV4T//8z9RWlqKnp4e/PnPf8Z//ud/AvDlSx45cgQVFRX47Gc/i+zsbDz55JN497vfjd/+9re48sorE/rMFAqFEhSBQqFQksQtt9wiABAACCzLCldddZVgNpv93nP++ecLO3bsCLmNZ555RgAg/PCHPwy7rxtvvFHIzs4O+x673b7mtWPHjgkAhMcee0x87amnnhIACC+++OKa9+/YsUM4//zz17z+4osv+v2N1+sV6urqhJqaGsFisfi9l+d58d9vfetbhbPOOktwOp1+v29ubhYaGhrCfh4KhUKJFxoCplAoSePOO+/Ec889h5///Oe45JJLwHEc3G53TNsglb0rKysJH49WqxX/7fF4YDKZsHnzZhiNRpw8eTLh7UtpaWnByMgI7rzzThiNRr/fMQwDADCbzfjnP/+Ja665BisrK1hYWMDCwgJMJhMuvvhiDAwMYHJyUtbjolAoFICGgCkUShLZunUrtm7dCgD44Ac/iLe//e24/PLLcfz4cVEERcJqtQIA9Hp9wsfjcDhw77334pFHHsHk5CQEQRB/J0eOoZShoSEAwM6dO0O+Z3BwEIIg4Etf+hK+9KUvBX3P3NwcKioqZD02CoVCoQKQQqGkjKuuugq33HIL+vv70djYGNXfdHZ2AgA2b96c8P5vv/12PPLII7jzzjvR1NSE3NxcMAyD6667DjzPJ7z9WCH7/MxnPoOLL7446Hvk+NwUCoUSCBWAFAolZTgcDgDRe9s4jsPjjz8OnU6Hc845J+H9P/3007jxxhvxve99T3zN6XSuqUwO552M1nNZX18PwCdgL7rooqDv2bRpEwBApVKFfA+FQqEkA5oDSKFQZGdubm7Nax6PB4899hi0Wi22b98ecRscx+GOO+5AT08P7rjjDhgMhoSPS6FQ+IV9AeDBBx8Ex3F+r2VnZwNA0JY12dnZUbWy2bt3L+rq6nD//feveT85huLiYlxwwQV4+OGHMT09vWYb8/PzEfdDoVAo8UA9gBQKRXZuueUWLC8v47zzzkNFRQVmZmbwq1/9Cr29vfje9763ZmTb0tISfvnLXwIA7Ha7OAlkaGgI1113Hb72ta9FtV+Px4Ovf/3ra17Pz8/HJz7xCVx22WX4xS9+gdzcXGzfvh3Hjh3D888/j4KCAr/379mzBwqFAt/+9rextLQEjUaDt7zlLSguLsa+ffvw0EMP4etf/zo2b96M4uJivOUtb1mzT5Zl8dBDD+Hyyy/Hnj17cPPNN6OsrAy9vb3o6urCs88+CwD4n//5H5xzzjk466yz8NGPfhSbNm3C7Owsjh07hlOnTqGtrS2qz06hUCgxkd4iZAqFciby61//WrjooouEkpISQalUCnl5ecJFF10k/OEPf1jz3vPPP19sFQNAyMnJERoaGoT3v//9wj/+8Y+o93njjTf6bUf6X319vSAIgmCxWISbb75ZKCwsFHJycoSLL75Y6O3tFWpqaoQbb7zRb3s//elPhU2bNgkKhcKvvcvMzIxw6aWXCnq9XgAgtoQJbANDOHr0qPC2t71N0Ov1QnZ2trBr1y7hwQcf9HvP0NCQ8MEPflAoLS0VVCqVUFFRIVx22WXC008/HfXnp1AolFhgBCEgHkKhUCgUCoVCOaOhOYAUCoVCoVAoGwwqACkUCoVCoVA2GFQAUigUCoVCoWwwqACkUCgUCoVC2WBQAUihUCgUCoWywaACkEKhUCgUCmWDQQUghUKhUCgUygaDCkAKhUKhUCiUDQYVgBQKhUKhUCgbDCoAKRQKhUKhUDYYVABSKBQKhUKhbDCoAKRQKBQKhULZYFABSKFQKBQKhbLBoAKQQqFQKBQKZYNBBSCFQqFQKBTKBoMKQAqFQqFQKJQNBhWAFAqFQqFQKBsMKgApFAqFQqFQNhhUAFIoFAqFQqFsMKgApFAoFAqFQtlgUAFIoVAoFAqFssGgApBCoVAoFAplg0EFIIVCoVAoFMoGgwpACoVCoVAolA0GFYAUCoVCoVAoGwwqACkUCoVCoVA2GFQAUigUCoVCoWwwqACkUCgUCoVC2WBQAUihUCgUCoWywaACkEKhUCgUCmWDQQUghUKhUCgUygaDCkAKhUKhUCiUDQYVgBQKhUKhUCgbDCoAKRQKhUKhUDYYVABSKBQKhUKhbDCoAKRQKBQKhULZYFABSKFQKBQKhbLBoAKQQqFQKBQKZYNBBSCFQqFQKBTKBoMKQAqFQqFQKJQNBhWAFAqFQqFQKBsMKgApFAqFQqFQNhhUAFIoFAqFQqFsMKgApFAoFAqFQtlgUAFIoVAoFAqFssGgApBCoVAoFAplg0EFIIVCoVAoFMoGgwpACoVCoVAolA0GFYAUCoVCoVAoGwwqACkUCoVCoVA2GFQAUigUCoVCoWwwqACkUCgUCoVC2WBQAUihUCgUCoWywaACkEKhUCgUCmWDQQUghUKhUCgUygaDCkAKhUKhUCiUDQYVgBQKhUKhUCgbDCoAKRQKhUKhUDYYVABSKBQKhUKhbDCoAKRQKBQKhULZYFABSKFQKBQKhbLBoAKQQqFQKBQKZYNBBSCFQqFQKBTKBoMKQAqFQqFQKJQNBhWAFAqFQqFQKBsMKgApFAqFQqFQNhhUAFIoFAqFQqFsMKgApFAoFAqFQtlgUAFIoVAoFAqFssGgApBCoVAoFAplg0EFIIVCoVAoFMoGgwpACoVCoVAolA0GFYAUCoVCoVAoGwwqACkUCoVCoVA2GFQAUigUCoVCoWwwqACkUCgUCoVC2WBQAUihUCgUCoWywaACkEKhUCgUCmWDQQUghUKhUCgUygaDCkAKhUKhUCiUDQYVgBQKhUKhUCgbDCoAKRQKhUKhUDYYVABSKBQKhUKhbDCoAKRQKBQKhULZYFABSKFQKBQKhbLBoAKQQqFQKBQKZYNBBSCFQqFQKBTKBoMKQAqFQqFQKJQNBhWAFAqFQqFQKBsMKgApFAqFQqFQNhhUAFIoFAqFQqFsMKgApFAoFAqFQtlgUAFIoVAoFAqFssGgApBCoVAoFAplg0EFIIVCoVAoFMoGgwpACoVCoVAolA0GFYAUCoVCoVAoGwwqACkUCoVCoVA2GFQAUigUCoVCoWwwqACkUCgUCoVC2WBQAUihUCgUCoWywaACkEKhUCgUCmWDQQUghUKhUCgUygaDCkAKhUKhUCiUDQYVgBQKhUKhUCgbDGW6D4CSWQiCAI7j4HK5wDAMVCoVFAoFGIYBwzDpPjwKhUJJCEEQ4Ha74fF4RPtGbByFspFgBEEQ0n0QlMxAEAQsLi5ieXkZDMPA6/Vifn4ejY2NUCgUfsaSZanzmEKhrB8EQQDP8/B4PPB4PHC73aIdY1kWSqUSSqWSCkLKhoF6ACkAAJ7n4Xa7MTMzg6GhIfA8DwBgGAZZWVnIzc1FTk6OaBgDjSUVhBQKJVMRBAFerxderxcARBvGMAwEQYAgCHC5XHC73QB8gpAseJVKJViWpYKQcsZBBeAGh4R8PR4PZmdnMTQ0BIVCgebmZszOzmJ0dBR2ux2Tk5PgOA65ubkwGo2iIGQYJujqmQpCCoWSCRCvH1nUsizrt8Alwk6hUIhiUBAEOJ1O8T1EEBIbRwUh5UyACsANjCAIYiikv78f09PTqKysxOLiIpRKJbRaLZRKJXbu3AlBEGCz2WCxWLC4uIiJiQkIguAnCLOzs0XDSAUhhUJJJ9KQL8/zfqItlHijgpCykaACcINCvH7Ly8vo6OgQvX7Ly8uwWCzi+0iKKMMwyMnJQU5ODqqqqiAIAqxWqygIx8fHAUAUg0QQEoMqFYQk9EKhUCjJgCxuOY4DgLgFWjhBuLy8jJ6eHuzevVu0b1QQUtYTVABuMEgujMfjweTkJPr6+lBdXY2GhgawLIuVlRU/0ReqRohhGOj1euj1elRXV0MQBKysrIiCcHR0FCzL+glCrVYLlmXBsqwoBInBpMaSQqHIAfH6cRwnuxALFITLy8tiSJl4CImNo4KQkulQAbiBIIbR5XKhp6cHZrMZZ599NgoLC8X3SEVfLAaLYRgYDAYYDAbU1NSA53lREJpMJgwPD0OhUCAvL08UhFlZWX6CkLZkoFAo8SLNZxYEIazoIl68RCDbJvuRegg5jgPHcXA6nVQQUjIWKgA3ANJcGIvFgo6ODuh0Ohw5cgQajcbvvYFGKV4jybKsKPRqa2vB87wYXp6fn8fQ0BCUSqWfINRoNEGNJRWEFAolHIIgiNGHsrKylAosQRD8cgtJjiD5nVQQkv6qgVXGtM8qJR1QAXiGQ3JhvF4vRkdHMTw8jM2bN6O2tjaowQn0AMrVJpKEg41GI+rq6sBxnCgIZ2dnMTAwALVavUYQhqoypsaSQqEAp/OZl5aWMD4+joqKinQfkkg4Qej1esXfB0uJoTaOkmyoADyDIV4/u92Orq4u2O12HDhwAEajMeTfJEsABkLCwXl5eQB8RnxpaQkWiwXT09Po7++HRqPxE4RqtZoKQgqFAmBtbz+WZZNmr4KRSFFJoCAkedlSQUgb71OSDRWAZyDSFeb8/Dw6OztRUFCAs88+G0pl5K88nhzARFEoFMjPz0d+fj4AwOv1ioJwcnISvb290Gq1ohfRZDIhOzsbVVVVVBBSKBuMwN5+RFSlY7BVIvukgpCSTqgAPMMgIV+Px4PBwUFMTExg27ZtqKioiEoUBXr90jUpUKlUoqCgAAUFBQB8gnBxcREWiwUTExOwWq1QqVRwuVwwGo0wGAxQqVS0RxeFcgYTqbffep9sGkkQAsHH1lFBSIkHKgDPIEgujNVqRWdnJ3ieR1NTE3JycqLehlQoZZJBVSqVKCwsFCuWOzs7AfiM4djYGGw2G7Kzs0UPoV6vp4KQQjmDiNTbL9X2KhU2JJQgtNlsOHnyJA4dOkQFISVuqAA8A5DmwkxPT6Onpwfl5eVobGyEQqGIaVvxtoFJNSzLQqvVoq6uDgDgdrtFD+HIyAjsdjtycnL8BCGptgtMuKaCkELJbKLp7RetAHQ6nWhvb4fNZhPzkPPy8pCVlRXXsaVadBIb5na7xdYzJOpD3kMb71OigQrAdQ4xjG63G319fZibm8NZZ52FkpKSuLZHjCgxNJniAYyEWq1GcXExiouLAQAul0sUhENDQ3A6nWsEIRF/tEcXhZKZSPOZA0O+gURjr+bn59He3o7CwkJUVFRgeXlZzDHOysryE4RqtTrsttJpI6SLdKm3Txoid7vdayYx0cb7FClUAK5TpDf68vIy2tvboVar0dzcDK1WG/d2MyUHMFE0Gg1KSkpEIex0OkVBODAwAJfLBb1eL04qMRgMohikgpBCST+xjnMLJwB5nsfAwADGx8exfft2lJaWwu12o6ioCIB/jvHY2Bi6urqQnZ0tikGj0QiVSiX/h0yQwPNBvIOEYIKQNt6nEKgAXIdIe/tNTExgYGAAdXV1qK+vT/hGXi8h4FjJyspCaWkpSktLAQAOh0M0+P39/XC73TAYDGsEIW3aSqGkHpLPHMnrJyWUAHQ4HGhtbQXHcWJONKkeJgTmGEtTSoaGhmC326HX6/0EISGTK4+jFYS0i8LGhArAdQbP81hYWADLshgYGMDS0hL27dsntk+Rg1T0AUwUaff9eNBqtdBqtSgrK4MgCH6CcHp6Gl6v108Q5uTkiIaRNm2lUJKDNJ850ji3QILZq9nZWXR0dKCsrAxbt26NOic6WEqJxWKBxWJBb28v3G439Ho9AGBxcREFBQXrovBCKgjJueJ5Hm63229KCRWEGwMqANcJ0lyYN998E4IgIC8vD0eOHImYqxILwW70RMVWpsMwDHQ6HXQ6HcrLyyEIAux2uygIJycnwXEccnNz/QShdAYo7dFFoSQGz/Pwer1Rh3wDkfYB5HkefX19mJycxI4dO1BWVrbm/bFsW6PRiBEEQRDgdDphMpmwvLyM3t5e0T4QD6Fer0+6HZAj2gOACsINDBWA6wBpyHd4eBhutxtVVVXYvn277DciwzB+zVXJ/jfSDc8wDLKzs5GdnY2Kigqx7YK0D6EgCH6CMDs7mwpCCiUOpGFJaQFarBDbZbPZ0NbWBgBobm6GTqeT9XgZhhGjB/39/Th48CC8Xq/oIRwfH4cgCDAajaIgzMnJkdWGJiMyE0wQkv9cLhfcbjeA4H0IN9Lz4UyCCsAMh6zG7HY7Ojs74Xa7odVqUVRUlJSbLrCvFsV3HnJycpCTk4PKykoIggCr1SoOnx8fHwcAP0HY1dWFXbt2QafT0R5dFEoIAse5JZJOQQTgsWPHUFFRgcbGxqTea9IG1GTBGGgfSFsqMgudCEKdTpfx9lX6XZB2M+S/kZEROBwObN68mfZZXcdQAZihSA3j7Owsuru7UVxcjH379uHf//530nLzguXRZGoeYLpgGAZ6vR56vR7V1dUQBAErKyuih3B0dBQcx2FoaAj5+fnIzc2FVqsVDSMVhBSKb3FrNpsxOTmJxsbGhEQDx3EYGBiAIAgJtcGKh0D7GGgfeJ7HysoKzGYz5ubmMDg4CKVS6ddyJp7ODakWWVJByPO8WKBDQuLkPVQQrh+oAMxASC6M2+3GwMAApqamsH37dpSXlwPwD9PKTbCwLxWA4WEYBgaDAQaDAdXV1eA4Di+//DL0ej3MZjOGh4ehUCjEHoREEAb26KJNWykbAWk+s8PhwPz8PLZu3Rr39qxWK1pbW8WFVCrFXzSwLIvc3Fzk5uairq4OHMdheXlZLDjr6+uDRqPxE4QajSbsNtNtk0mBDjnngR5CqSCkjfczFyoAMwhpLozVakV7eztYll2Tx5LMoefrSfRlqhEhx1VVVQW1Wg2e50WDv7CwgKGhISiVSj9BqNFo1ngIadNWyplGYG8/hUKR0GJ2cnIS3d3dqK6uRlVVFV555ZWU5SzHuw+FQiEKPcDXg3BpaUnML+7u7s74HoTBznGokDHP81QQZihUAGYI0oHfU1NT6O3tRXV1NRoaGtaECFPlAZQeW6aRicdECOyjSPJ/SO8wqQdgdnYWAwMDUKvVawQhbdpKOZMg+czS3n7xLma9Xi+6u7sxPz+PPXv2oKioCC6XC0Dqi9YStUVKpRIFBQUoKCgAAHg8HjGdZHh4GDabza8HYW5uLoD0TyKJtP9wgtDlcsHpdNLG+2mGCsAMgHj9XC4Xenp6YDabRaMWjGR6AKWsJ29gJhGpkXagB4DjONEDMD09jf7+fmg0Gj9BqFaraUsGyrqEhHxJla/0Ac+ybMyL2ZWVFbS2tkKtVuPIkSPiDN8zxV6pVCoUFRWJ9l/ag7Cvrw8ulwvZ2dngeR4WiwUGgyHmme+JEo/IDizwIYKQ4zhwHOfXdoY23k8NVACmEWkujMViQUdHB3Q6HY4cORI2B4TmAGY2sU5SUSgUyM/PF5t5S0NCZE6pVqv1E4QqlYoKQkrGE2mcWyzN5gVBwKlTp9Db24va2lps3rw5aNeCVNmrVO1P2oMQ8E02mZmZgc1mQ1dXF7xeb8p7EBIhnwhE2JHtSAWh1+sVf08b7ycPKgDThLS339jYGIaGhlBfX4+6urqIF3eqcgBpdWp8JDpKLzAkJJ1TOjExgZ6eHuh0OlEQGgwGKggpGUW0vf2i9QB6vV50dnbCYrFg79694r0hZaMsWEkbsImJCRw5cgR2u130EE5MTIDn+aT2IASSE2YPJQhJalQoQUifU/FDBWAaILkwTqcTXV1dsNlsOHDggN98yXDEsmqOlfWSAwhkbhGI3LOUA+eUSnOExsbGYLPZkJ2dLQpCvV4vToehgpCSamLp7RdNNGNpaQltbW3QarVobm4OGR2RCodUka57SWpjIvUgZBjGr8JYjh6EPM8n/bOHE4SLi4uYnJwUx/vRxvvxQQVgCpHmwiwsLKCzsxP5+flobm6OqcorFSFg6b8zVQBmKoGTVOQmMEdIOrh+ZGQEdrsdOTk5YrjYYDCIuTSB+TU04ZoiJ8TrR+6BSA9jEs0I5lESBAFjY2MYGBiIKjoi7VGXStJlH4Odi1A9CC0WC+bn52XrQZiO6VBSQUg6KzAMI3oIgeALXioIQ0MFYIogIV+Px4OhoSGMj49j27ZtqKioiPlGSkUI2Gw2i8nVmSgAM/GYCKk2jsEG10urCB0OB/R6vSgI9Xo9HA4HlpeXUV1dTZu2UhJGGvKVVvlGIljOMeBb1HR2dmJ5eRn79+8XC6aiPRaKD2kPwtraWvA871dwFk8PQiD940GlfQgDPYQejyfs2DoqCE9DBWAKIF4/m82Gjo4OcByHpqYm5OTkxLW9ZHoASdimv79ffK2vrw+FhYXIz89fFyOM0k268yc1Gg1KSkrEhrjSKsLBwUG4XC5oNBoIgoDs7Gzo9XoxNEx7dFFiJVKhRziChW0tFgva2tqg1+vR3NwspjNEgniINlIIOFZYlo3Yg1Cn0/kJwmDRqXTbuGAh6GAhY7IoIR5C2njfHyoAk4g0F2ZmZgbd3d0oLy9HY2NjQmX7yfIAWq1WtLS0AAD27NmD7OxsvPLKK8jJyfFrYJyXl4f8/Hzk5eWJXkLKadK9Og4kWBXhyMgILBYL+vv74Xa7YTAY/DyE5CFOBSElHOQBy3FcXNcGeVgTr+HIyAiGhobQ0NCAmpqauFqNpNoDmEkh4FgJ14NwZGQEnZ2dyMnJ8WtKrVQq027jyPUSDmK/CFJB6Ha7RcG4kRvvUwGYJKQrj97eXszNzck2ozIZHkDSUb+mpgbDw8N+VaVlZWXIyckRGxiT+Z2kPUmk1eJGI93GMRJarRZ6vR4cx2Hnzp1wOByi0Z+enobX610jCMm1QJu2UoDwvf1igfyNy+VCW1sbbDYbDh48KDY7jmd7NAQcP8Hyi0n0YGBgAE6nE3q9Hh6PBxqNBhzHpbwHIRCdAAwkGkG40RrvUwEoM9KLamlpCR0dHVCr1Whubo4r2TYYLMuK4ZZE4TgOPT09mJ2dFZtPj46Oir+XXvzBRhhJq806OzvFjvX5+fnIzc1NqnHI1Bsz0wUgAL88LZ1OB51Oh/LycgiCALvdLgrCyclJcByH3NxcURDm5OT4TXKgTVs3FomEfAMhD/F///vfyMvLi7kgLhAaApYXtVrtl07idDrF3OKZmRlMTk769SA0GAwpCQ3HIwADiVYQnsldFKgAlBFBELC0tASr1Qq73Y7+/n7U1taivr5e1ptCLg+gzWZDa2srFAqFn0ANNKKhjI1SqQzasd5sNqOnpwcejwcGg0EMF6eiQWkmsJ4EYCDSthIVFRUQBAE2m82vD6EgCH6CMDs7O2TImArCMwuO4zA1NQW9Xo+srKyEvltBEDA0NAQAqK6uRn19fcLXCg0BJ5esrCyUlZVhdnYWRUVFyMvLE50Ap06dAs/za5pSJ+M4k5GDKBWE5DslLdukU0rOJEFIBaBMkJXDzMwMhoeHwbJsyIaliSKHkZuZmUFnZycqKyuxZcsWv5sp3k790lwzQRDgcDhgNpthsVgwPj4OAGKD0kQLSjI5zLOeBWAgDMMgJycHOTk5fn3GiCAcHx+HIAh+U0p0Ol3YHELK+kOaz9zd3Y1du3YlFNFwOp1ob2+H0+kEwzAoKyuT5Z6J1l6RVlxGozHqIhPKaYgAI9ED6WKRCMLR0VEwDOPXlDo7O1uW71kOD2A4yDGGE4ROpxNOpxMlJSXrVhBSAZgg0tE1JpMJw8PDEAQBR44cSZphSaQIhOd59Pb2YmpqKmROotTDGO/FLA0tEuFA+lFJC0qId/BMKig5kwRgINI+Y1VVVeL3SgSh1OgTQajVav0EIW3aur4I7O2nUCgSikAsLCygvb0dhYWF2Lt3L1588UXZcpqjEYBLS0toaWmBIAhwuVxikUN+fj6MRmNMaStnegg43P6DVeGSxWJVVRV4nhebUptMJtHmSwWhVquN6xymohG1lGCC0Gq1YmpqCkajMWzbmUx+FlABmADScW4jIyMYGRlBaWkplpeXk7qqjGeAOgDY7Xa0tbVBEAQ0NzdDp9OFfK/ck0AYhoHBYIDBYEBNTU3YghJiiNdrQcl6EYBKZeK3v/R7DWw8azabMTw8DIVC4ScISeiQ9ujKbEL19ovX/vA8j8HBQYyNjfn1QJWzq0E4ASgIAiYmJtDX14dNmzahvLwcHMeJHqu+vj64XC4xhJmfnx9V2spGCgETorFxLMv62XzSvNlisWB2dhb9/f1Qq9WiGMzPz4+qByGQfA9gJIiTRKlUQqVSiT0IyaJCGjLO5Mb7VADGCamAs9vt6OzshMvlwqFDh+ByubC0tJTUfccTAp6bm0NHRwdKS0vF8TnRbD9ZOTWBBSXS9gNDQ0Ow2+3Q6/WihzDZBSVysl4EYDIMqLTxLNkPMfpSz69UEGo0GioIM4xwhR7xCECHw4G2tjZ4vd41PVDjFZTBCLUt6Szhffv2wWg0wuPxQKFQ+BU5SNNWSL6rVKBkSh/UTPQARoJlWfG+r6urA8dxYg/CyclJcca5tOVMKEdKugVg4DFIc50VCoWfIHQ6neJ7iCDMlC4KVADGiDQXZn5+Hp2dnSgqKsK+ffugVCphMpmSPoooliIQnucxMDCA8fFx7NixA+Xl5VFtX/rvVBibwPYDwQpKpCvzdBvAcGxkARiI1OgDED2/FosFc3NzGBgYgFqtXuMhBPwNptfrhUajoflaKSBSb79YBRtZfJaUlGDbtm1rFnJy2phg21pZWUFrays0Go04S5jn+aAzu7VaLSoqKsScNqvVCrPZHDRtJT8/P+Pv82Qhh41TKBTIz89Hfn4+AIgzfkkqidVqDdqDkOw/3QIwXAucaAUh8QwqFAoxHSGVn4sKwBgghtHr9aK/vx+Tk5NrRJWcq9lQRBsycTqdaGtrg8fjiWnySKAHMB0EFpTY7XYxVDM+Pg6O48QEcrkGnMsFFYChCfT8Sr0AMzMz6O/vh0ajEQXh9PQ0ioqKcP/990Ov1+P73/9+Uo7r3nvvxe9+9zsxFaG5uRnf/va30djYmJT9ZSLSfOZw49yitXE8z6Ovrw+nTp0Ku/iU02YGCsCpqSl0dXWhpqYGmzdvjumal+a7Bktb6enpAQCMjY2hpKQEeXl5sqRVxHJ86SIZNk6pVKKwsBCFhYUA/GecDw4OiiMt8/LyYLfbw6YwpQKyQIqGUIKQ53k4nU6YTCZs2bIFy8vL0Ov1yTxsP6gAjAJpLozVakV7ezsYhkFzczOys7P93psKARiNB3BhYQFtbW0oLi7G9u3bY05sljsHMBGkrUlIQcnJkyehUqn8BpxLV+bR5pIkg1QnKMdDJoRQgOBeACIIp6amsLCwgJtuugk8z2Pfvn2Ynp5GWVmZ7Mfx8ssv49Zbb8WBAwfg9Xrx+c9/Hm9/+9sxNjYm+74ykVh6+0Vj4wLzjQPtpBQ5G9sT2xWsv2miBEtbOXbsmNjOhggUadpKsu6xdNvkVNi4wBnnpAch+c9kMmFlZSXlPQgJPM/HnZYUKAgdDodYOJlKqACMgNQwTk1NoaenB1VVVWtapxDS7QEUBAGDg4MYHR3Ftm3bUFlZGfP2U5EDmAgMw4iCr7KyMmwuSToKStaDBzCW1WsqCRxN9a9//Quf/vSn8d3vfhcnTpwQ2xY9/vjjOPvss2Xb79///ne/nx999FHxwXOmQ/KZw3n9pESycaTFVHl5ObZu3RrxOpO7CMTpdOL48ePiIl2uBvyBqFQqsCyLmpoaGAwGUaCYzWZMTU3B6/X6TUnKycnJeLsQLemwcaQHYVlZGXieh0ajgU6nE3sQchznV2GcrB6EBI7jZHuu2Gy2tFwfVACGgXj9XC4Xent7YTKZIq4m0+kBJOOUXC4XDh8+HLcrOR05gIkQ6EVKd0HJehCAmZBDEw0KhQJXXHEF/vCHP+DKK6/EDTfcgFdeeQV1dXVJ3W+yC7kyAWk+cyzj3ELZOI7j0Nvbi+npaezcuVOcPR3v9uLB6/Wir68PFRUVUYlPOSD2USpQpD3xzGYzRkZGwLKs3xz1RIXpmRYCjnX/Go3GL19T2oOQeO6T0YOQkIgHMBCbzSb78UUDFYBBkObCLC4uoqOjQ8wLitSrjhizZN4gwVbMZrMZbW1tyMvLw969exPKRcmEHMBECFZQQir7ghWUyL1STLdxjIZMCQFHgiRaEwOZl5eHd73rXUndJ8/zuPPOO3HkyJGk7ied8DwPr9cb1zi3YILNarWira0NLMtGbDEViByLTFLsZrfbUV1dje3btye0vWgJdc6C9cQj+YPT09Po6+tDVlaWXx/UWLxJ6V6Up3sBGbj/wPMt7TtL+vMSAZ5oD0KCnHOQbTZbWnIaqQAMQNrbb2xsDIODg6ivr8emTZuiXh2T7SRLBEg9gIIgYHh4GMPDw2hsbERVVZXs+023sUkUjUbjtzIPLCgB4GcYEi0oSbdxjIb1KACjLWJKlFtvvRWdnZ04evRoSvaXSqT5zMRGxdPOQzqLnBRahEuNibS9RDyA0mI3g8EgVpyHQ+4FXyQCq+GlFa/pmKOeKOle5EayX4F9ZyP1IIxnEIGcNpR6ADMAMubF6XSiq6sLVqsVBw4cEJN+o4FcEMl8wJIVs9vtRkdHB6xWKw4ePCj2XpNr+4H/zjTiuVmCFZSsrKzAbDaLBSUqlSqu5qSEdBvHaMjUHEApxBPPsixsNltKquNuu+02/PnPf8Yrr7wSV/5sJiMN+QKIS/wBpwWb1+tFT08P5ubmsHv37rhzJhOxMSaTCW1tbSgsLMS+fftw8uTJqLeV1v5rARWvkdpeBYtSpDsEm24BGMv+I/Ug7O3tRVZWlp8gjNRySk4PIGl5k2qoAIS/YTSZTOjs7EReXh6OHDkSc5KnVAAmC5Zl4fV68dprr8FgMKC5uVnWIofAHMAzGelKsba2NmRBCQnVRFNQkm7jGA3rwUtJWiWkwgMoCAJuv/12PPPMM3jppZeSnmOYaiL19osFlmXhcDjw+uuvQ6VS4ciRIwmNcYzHAyiNfGzduhWVlZWioE3lglWu+zxS2ysAfovSZOeZRyLdNi5RB0u4HoRjY2Po6uoSU05C2X05F9GpjHBI2fACkKxkPR4PhoaGMD4+7mdQYoVcENIQiZwIgoDZ2Vm4XC5s3boVNTU1st+ImdYGJhjJOqZQBSVms9mv1QMxDMFCNek2jtGwHkLA5B6S5gAmi1tvvRWPP/44/vCHP0Cv12NmZgYAoi5kyFSi7e0Xy/asVisWFhawadMm1NfXJ3wdxSoA3W432tvbYbfbcejQIRgMhri3JQdy26LAKAWZqWs2m8Xm6UqlEoIgYGZmBvn5+SlvkJ5uGye3/Qr0yHo8HlGASwsJpYJQ7iIQmgOYQqS5MHa7HR0dHfB6vQlVzwKnwyrJMEIej0ccZ6RSqVBbWyv7PoDTOYbkJs9EAZgqwhWUdHd3w+v1rgnVpNs4RsN6EoAMwyR9hfzQQw8BAC644AK/19fztU/E2tjYmCjUErkuvV4vurq6YDabkZeXh4aGBlmOMxYbs7i4iNbWVhgMBjQ1Na3xypyJ9ko6U5dEKcbHx3Hq1ClMTEygu7s75MSMZJFuG5fsCIZKpfLrQUhC9NKZ0QAwOzsrjr9M5HioBzCFSEO+MzMz6O7uRllZWcQZudGiUChkF4BLS0tobW1FdnY2du3ahba2Nlm3L2W9tYFJJaEKSsxmsxiqUavVUCqV4qouE8XgehGACoUCTqcTgiAkNQfwTLvGpfnMo6OjCYu15eVltLa2QqvVoq6uDisrKzIdaXReO0EQMDY2hv7+fjQ0NKC2tjbofZWOEHCqrx2FQoGcnBxoNBocOHBAnJhhNpvR398Pl8sFg8EgRjL0er3s93q6BWCq7Zc0RA/4Zkb/+9//htvtRldXl58jgPQgjOX4qABMEcTr53a70d/fj5mZmZh6VkWDnGEIQRAwMTGBvr4+bNq0CZs2bYLVak260TnTHojJIFRBydDQEGw2G06cOJFwQUkyIN7d9SIAbTYbACQ1BHymQEK+pMpXqVSC47i4H9iCIGB8fBz9/f2i/ZmYmJB1gRtJRHm9XjHyEakobyMuWAMnZjgcDjFKcerUKfA872eD5OhysNEEYCCkh2NDQwN0Ot2anE1BEPx6EEZq8myz2aKqXpebDSMApbkwy8vL6OjogFKpxJEjR2TvFC+XAJSGXPbu3StOR0hWiJlwJlcBJxNSUJKbmwutVouGhgaxoOTUqVNrCkpSPTuUQL7P9SAAWZaF1WoFy7JJm+hwphBsnBu5vuLJVyIpJ4uLi9i3b5+YFyt3nl247a2srKClpUXswxppAbVei0Dk3LdWq/VrkGy1WsV+eENDQ1AqlX4NqeMt4Em3AEx3CFqaUxvoCCDnnLT5IVXIoVqN2e12WbsOvPLKK7jvvvvw5ptvYnp6Gs888wze/e53+x3/V77ylY0hAEnLFJI7MjQ0FNdw8GiRw0CurKygtbUVGo1mjeGTc3RSMNaDAMzEYyKQ1bG0oKS+vj6ugpJkQK7N9SAASSg9Ozs74483nUi9ftL2LtKuBLFcW4uLi2hra0NOTg6OHDniV2QgtwAMZWMmJyfR3d2N2tpabN68OaoHfjrsVTpsUSytbvR6PfR6Paqrq8HzPJaWlmA2m8X2J1qtNqZFaSYMCUi3B1DaoSCQYOecNKWWzq4n+Zp2ux1Wq1XWCIfNZsPu3bvxoQ99CO95z3vW/P473/kOHnjggTNfAJJcGJfLhZmZmTXetGSQqIGMZPiIkUuWG369TwJJN6FWp4EFJdLh5tKCEmKMkzXLcj0JQNIDMB35MeuBSL39yAMq2rmlgiBgdHQUg4OD2Lx5c9Bcu2R7ADmOQ09PD2ZnZyOO3gwkUxesmYJ0GgawdmymdFFKGlIH2gnyXaXbA5dO+yX1skeCFInk5uaKRTykKXVHRweuv/56KJVKmM1mVFZW4sILL0RZWVlCx3fJJZfgkksuCfo7QRBw//3344tf/OKZKwCluTDkRDMMgz179oihjGQRr4HkOA7d3d2Ym5sLa/iSPW0kcJvUoMZGtN9L4OxQaUEJmWUpzd1JdHQRgeO4uJsApxKSA7i0tJSWFgmZDslnDifoyfccTVsq0lh+ZWUFBw4cCJmTlAwPINmezWZDa2srFAoFmpubYw770xBwbIRalJrNZrG4wWg0iovSnJyctDsHpOHXdEGu13giNgqFQrTrmzZtwvDwMC666CIYDAZ873vfwwc+8AH09fVh8+bNch82AGBkZAQzMzO46KKLzkwBKB3nNjIygpGRETQ0NIjzAJNNPAbSZrOhpaVFzEsMl5dBbrxkGbr1EALOZOJZnYbr/RU4oYQY43gLStK9eo6WwDnAmS5YU4W0hVU0vf2i6UpAZokbjcaIDfCT4QH0eDyYmZlBZ2cnKioq0NjYGNc1Gou9ksu2ZXIIOFYCF6U2m21NLhuZOOV0OtPimc+EHGY5GqoTiC3/yEc+gve+971im6VkQXqclpSUnHkCkHj97HY7urq64HQ6xTFp4+PjSWvQLCVWAzk9PY3Ozs6oZ2nGm9cTLQm3gbn5Zmh/+1sAgGPHDuDYMTkPL+ORwzMbrPcXKSghvb+knepjKShJ9+o5WogATNeYpEwkWKFHpGtNoVCEtHvSiRpbtmxBdXV1xO0lwwNosVhk6ciQqgWr2mCAAsB5ACaHh5O+v3TAMAxycnKQk5ODqqoqMZdtbm4OAHDixAloNBoxz9loNKakIXUmhKDltKFEaJM2V8mOUEo5YwSgNBdmfn4enZ2dKCoqwt69e8UHY+AQ82QRrYHkeR69vb2YmprCrl27UFJSEtX2k+0BJMdG8opiYnwc2aviDwCyu7pgu/lm4JFHZDw6H5nqEUpGaD6WgpJQuTuE9SQAlUol7HY7FYCIf5xbKHvkcrnQ3t4Oh8OxZqJGPNuLB6fTiVOnTsHr9aKpqSnhRPhYOiR4PB4oFIqY71WNwSA+OFkAVZs2wbG8HNuBJkg62rAQ759Go8HExATOOecccVE6OjoKq9W6ZlpGMhwUmZDDLOccYAAptXFkgTU7O3tmCEBiGL1eLwYGBnDq1Cls374dFRUVfu9LRoPmYEQjNO12O1pbWwEAzc3NMeU4kRs/WZ+F4ziMjY2JI4e8Xq/ojYp4073tbWteUv/2t3DLLAAzOSydCuMcTe5OqIISOWdYJhNpG5iNnAOY6Di3YB7AhYUFtLe3o6CgAGeffXZM7YjkEoALCwtoa2uDTqeDwWCQpQoyGg+gIAgYHBzE0NAQ1Gq1uGiKtk9n4GM/8+8keSH2TaVS+Y1Pc7vdYv/B3t5euN1u0QaRhtRy2MVMCgHLRbJHXUqpq6tDaWkpXnjhhfUtAKW5MFarFR0dHQB8girYyQwXCpGTSG1a5ubm0N7ejvLycmzdujWufDEgOSJoZmYGJpMJubm5OPvss9HT0yMmh5OGouSGDlqUcNVVwIMP+r3kTqFLOxNIx+o8WEEJMcaBBSXroQAE8BlZjUazoauA4wn5BiJdkPI8j6GhIYyOjmLbtm2oqKiIa3uJCEAiwMgxcBwHk8kU9/akRPIAejwetLe3w2q1Yv/+/eA4DhaLBZOTk+jp6UF2drZfSDOYl0cAwAT8vJEIZd/UarU4LUMQBL+G1GRKkhxFbaTLQrpDwHJ5AEkIWE4bZ7VaMTg4KP48MjKC1tZW5Ofno7q6GnfeeSe+/vWvr18BKDWMU1NT6OnpQWVlZdjk4VQKwGD74Xke/f39mJiYwM6dO+Mu9U7GvGGe5zEwMIDx8XEYjUYUFBRAq9VCp9NBq9WitrbWryhhYGDAL/8jLy/Plzj+jW/A8+CDICnkHACMjsp2nOuBdBdZSAtKpLk7FosFc3NzWFpaAgB0d3cnXFCSTEiYZaOGgEk+czxePykk8uF0OtHW1ga3253QzPNEUmncbjfa2tr8ws5yThYhBSXBIE2ls7Oz0dTUBMB3r5JqTNIxwmw2o6+vb40Hi0xzcHzhC9B94xtg4BN/c83NSPXVmc5JHNHsm2EY6HQ66HQ6vylJchS1ZUIKi5weQLvdLvuoyzfeeAMXXnih+POnPvUpAMCNN96IRx99FHfddRdsNtv6FIDE6+dyudDX14f5+Xns3r1bHIUTinTmADqdTrS2tsLr9Yb0UMa6D7k8gMQoO51ONDU1YWRkZM22pc0ta2pqwHGcmIM2MjKCrq4u6PV6n7EcH48uXHyGku4xSYEE9qGamprC+Pg41Gp1wgUlyURaBJLKxOh0E9jbL9FqQ5Zlsbi4iJ6eHhQXF2Pfvn0Jfb/SIrRY7nGLxYLW1lYYjUY0NzeLxyBn4UaobU1NTaGrqwt1dXWor68HgDVCUaVSiSPVpB4ss9mM0dFRsCzrs28f/CDy77wTGo0GJ06cQE1NTcoFYDqJx76RKUmBRW1ms9nPBhExaDQaQ16j6Z4CQo5BLg9gMkZdXnDBBWHvKYZh8NWvfnV9CUBpLszi4iI6OjqQlZUVsW0KIZU5gNL9zM/Po729HSUlJdi2bZssF45cRnNpaQktLS3Izc1FU1MTlEplVG1gFAoFCgoKxIbaLpdLNJZRh4vPUDJNAAZDo9GIfaaI5yOwGSwxxuEKSpKJtA1MdXV1yvefDgJ7+yUa6uJ5Hg6HAxaLBTt37kR5eXnCxxirAJQ2l25oaEBNTY3fZ5KzqCTQXvE8j76+PkxNTfn1Vo1kOwM9WDzPY3l5WZygQcLFbrcbKysrKCgoSMkUn0xADvsmLWoD/G3QwMAAnE4nDAaD+AyROhQyxQMopwBUKBRxj+RLhHUjAKW9/cbHxzE4OCgOJ4/2YkxVCJjsR5rrEqwoJRHkMJoTExPo7e1d0/E/nj6AGo3GLwctqnDxGUqmC8BAAyr1fAD+BSVTU1NiM1hijCMNNpeLwD6AZzLEvi0tLYlj7xI9x3a7XQz5VldXyyL+gNPNb6OxP2Se8NLSEvbv3x+0v1myBCAJeZMK40QKicgsV6PR6BcuJuKSpM4EhouTRaaHgGMl0AaRRQsR3DzPi+c3nsptuZFThJIxcOkQtetCAJJcGKfTie7ubqysrIQ0JuFIZQjY6XTixIkTcLlcCeXbhCKRHEDpqKVgY/ESHQUXKVzc2dkJg8EgGst4wsWZLLIy+diAyMYrXEHJ6OgoGIbxy91Jlnd3o+QAEvG3uLiIEydO4K1vfWvC55M0VS4vL0d2dras3impJyYcy8vLaG1thU6nQ3Nzc8gecckIAZNwc0FBAXbs2CG7d44IlvHxcVRWVsJgMAQPF8dQXbxeSIV902q10Gq1KC8vFx0KRBBaLBbwPI+uri7RDqXaeyZnDmA6i9wyWgBKc2FIaDGaTvWhUCgUIROE5cTpdGJ2dhYlJSV+fQjlJF6j6XA40NLSAoZhwo5akm47UeO80cLFmZCjEo5YVq/hCkpmZ2fR398PtVrtN0xerofdRvAASnv7KZVKcUxfvHAcJ3qlSFPl7u5u2Rs3h1uACoIghklJzl24zyR3Y2mbzYY33ngjqsbWcoiZSOHi3t5e6HS6iNXF64VU2zepQ6G6uhpzc3MYGhqCVqvF1NQU+vr6oNVqxWeI0WhMeoRJ7hBwutpcZawAlPb2Gx4extjYGBobG1FVVZVQNZzT6ZT5SE9DuupPTU1Br9dj165dSbtR4ikCIX23SkpKsH379pAiIOFJIBEIFy4eHBwUBcV6DRevdw9gOIINNg+WzC01xvEugKQC8EzzAAbr7adUKhOac2qz2dDW1gbAv7doMiIfoUQbx3Ho6urCwsICzj77bLFHXDjksjFerxfT09Ow2Ww4cOBAUsdpEYIde6hwMakudrlcCYeLz7QQcKyoVCoxBczr9frlMNvt9jX5g3ILbrmLQNI16jLjBKC0t5/dbkdHRwe8Xq8sYdRk5gC63W60t7fDZrOhpqYGdrs9qV9oLCFgQRAwMjKCoaEhbNu2DZWVlVFvO9kXZSrCxYFIO/nbc3MhTEwk/kEkZIKBDIec+SvRJHPHW1BCwix2u132FIp0Eqq3H3mgxBNeIlWuwVphKRSK+Kb6hCGYAJTOM29ubo46LCeHB5Dsm0QTUiH+oiXq6mK5wsW33w7dz38OBgAPwNHZCchYRJVu+xbogVQqlX5N8UmEyWKxrGmKL1d+JvHYywENAa8iNYyzs7Po6upCaWmpbJWzycoBtFgsaGtrQ25uLpqbmzEzMwOr1Sr7fqRE6wH0er3o6OjA0tKSOBM5EoGr2lRO3Yg2XOxyueByuWI2RmxJidijUACgW1qC7ehR4JxzZPsM6TaQkUhmFZ1cBSU8z0MQhDPOAxiut59UAEbr9Zbm84ZqhZWMhW+gaJuZmUFHR0fU88ylJNrTlDTWr6ioQHZ2tjirNhXE0w5FrnBxqH1nr4o/wDe1RLtzp6yj6tJt3yLZr8AIU2AOM8uyaxpSx3MMcnsA00HGCEDi9XO73RgYGMD09HTCg8EDkbsNjCAI4sg0aXsDuXNaghGN0bRarWhpaUFWVlbYJOxg25YWgaSidU4oQoWLFxcXMTw8jFOnTiE/Px8FBQVRhYvVDof4b9GEfeELwMsvy3bM6TaQkSDCKhUEFpTYbDbRQ0iMMQmHSQtKiGA5U3IApfnMpFF44DVCbEe03jqr1YrW1lbR4xbqQZYMe0S2SdqsTE5OxjTPPHBb8SwypV0WduzYgfLycpw6dSrlYyIT2V+ocDGpMHa5XKL3qqCgQFwwRbvPwKklcpBu+yZHDrPZbBZzmDUajV9RWzTPSTmLQEgVcDpIuwCU5sIsLy+jo6MDCoUi5vm40SDnStjj8aCjowPLy8s4cOAAjEaj+LtUCMBIRpOsyGtqatDQ0BDTDRtPG5hUIA0Xz8/Po6KiAmq1WgyldHZ2nm5GnZ8fNNzo0uuhXFkBIBnh9ItfyHqc6TaQkeA4LurFgJwwDIOcnBzk5OSENMYk/zMnJ0c8j8n2AL7yyiu477778Oabb2J6ehrPPPMM3v3ud8u2fZ7n4fV6oxrnFo2NkhZZ1NTUYPPmzWEfRsnyADocDvT19UEQhITsdTz2kqTc2O12v/SgVNjeZBLoQQ8c6Ui8V9JFUjgYrE5jkpF027dEJi1Jc5jr6ur8Uo7GxsbQ1dWFnJwcv4bUwRbLcheBbMgQMPEICIKAmZkZ9PX1RWXQ4kUuQ7i0tITW1lbk5OQE9ayl0wNIRrpNTEzEvSJfL7AsGzJc3NXVBY7j/JKtdTodMDkJt8EghoFtFRWy5scA6TeQkciERqpAaGNMZrP+/e9/x5133gkAOHbsGAoLC2EwGGQ/DpvNht27d+NDH/oQ3vOe98i2XWk+M7kmIl0XkWyU1+tFd3c3FhYW/BobhyMZqS88z6O7uxtlZWUJp+jEushcXl5GS0sLcnJy0NTU5Of1T/WCNdn3eWC4eGVlBSaTCTMzM3A6nXj99df9CuYUCgVst98O3YMPijmAzs5OWY8p3fZN7hxm6TPE7XavKdghHti8vDzo9Xrx+S7nKLgNJwAFQYDb7cYbb7wBwJcrFKwnnZwkaggFQcDExAT6+vpQX1+Purq6oDdCujyALpfLb9ZnvBdVpnoAIxEYLrbZbDCbzVhYWMDQ0BBUKpXPWA4MID8/P2nVxek2kJHIFAEYiNQYFxcXw2w2o6amBp///Odx991348Ybb8RVV12FJ554Qtb9XnLJJbjkkktk3SbgO89utxtA9BM9SCuYYJC+eiSlI9oiCzlTX0jY1eFwoLq6Gtu3b094m7HYy8nJSXR3d4ccAhCtvZLz/kyVfZQumFQqFUwmEyoqKmA2m8WCq9zcXOR/9KPI/3//D3q9Pil2KN32LZltaNRqNUpKSlBSUiIW7BBBOD4+Ls6Odjgcfgu7RLBarVFVyyeDtAlAhmGwtLSElZUVsVFosptlJmIIvV4vOjs7YbFYsG/fvrCzSdPhAVxcXBTnbCbae3C9CkAp0nBjdXW1X7sS4uqPFC6Ol3QbyEhkqgCUQry3l1xyCb785S+jt7cXk5OTmJC5YjuZENEXy7UQzAMoXXhG01cvmm3GA1lgulwuGAwGv7SXRCA2Jtx9w/M8ent7MT09HdbzGYu9yuR7NBpYlvWrfrXb7X5iRdqwXc5myem2b6myX9KCnYqKCgiCIPZANZvNGBwcxPj4uF/+YDwaxmazoba2Vv4PEAVpDQHPz89Dp9OhvLw8JZ3S4zWEKysraGlpgVarjUqopmLiCPEACoKAU6dOBR3pFi9nggAMJLBdicvlEm/kUOHieM9jIjkqqWC9CECFQuE3Jqm6unpdzQSOVfwBa22Ux+NBV1cXLBZL3BESORakZrMZbW1tyMvLw969e9HS0iKbjSPXYihh4XQ60draCo7jIo50O9NCwLHsWypWpPm109PTYrNkaXVxvE6CjSIAA2EYBgaDAQaDAadOncK2bdsA+LqAJNID1W63b8wikMbGRjgcjpQl7cYjAE+dOoWenh7U1tZi8+bNUV34qfIAchyHzs5OzM/Px/ZweOghKD/5STFHhOvv98uDWy+iLxEjpNFoUFpaitLSUr9wsclk8g8Xx1AZRki3gYzEehCApM3Ceq4AjucakPbsI7nG2dnZCUVIEvEACoKA0dFRDA4O+k3WkHt+LxD8ujSbzWhtbUVhYWFUI91E25WVJeb5egoKgMlJWY41GOmwlZH2GZhfS5olrwkXr9q4WMLF6V7gpnv/gO9aValUYhSpvr4+aA/UwIbUwY57wxaBkOanqZjPC5z2mkXzAOQ4Dt3d3Zibm4u6o710P8kWgDzPY2xsLOZ8IABQrYo/wNcnClu2gJNMSDkTPYDhkDtcTAVg4ni9Xj8BmMnnU06IABwdHcXAwEDYXONoidceparTgdQDSJC22IplAhTDMDjwnvdAulxTm0xwy9zrU7q/9UBgs2RpM+pYw8Xptm88zydlvGosBGsDE6wHKqngJj1spT1QiV1L5iL37rvvxj333OP3WmNjI3p7ewFkQBuYZHSpD7cvIPIDkPTXUqlUOHLkSMy5E3L3GwxkYWEBJpMJer0ehw4divlhHnjrsgjdKiBTBWAyjykwXOx2uyNWF0sNYroNZCTWgwA8EzyAQOz3D8MwmJycBM/z2L9/vywTLeJZZEfqdCCnjSPXItme1+tFV1cXzGZzzOeAYRhogzU9vvbaNV5Aue7RdNnHRI5fq9WioqIirnBxuu1bumetEydSJG90VlYWysvLUV5e7hdlslgsGBkZwdzcHJ544gmMj4/DIelPKzc7duzA888/L/4s/S7TLgCVSiVcLldK9iXttB9qBTE9PY3Ozk5UV1ejoaEhrgelND9P7mqz4eFhDA8Pw2AwoKCgIK7jC2wOGmi+Aj2AGx21Wh1TuFiO711rMIB8s7bbbwe+8Y3EP8gq60EASj2AyQ6PWK1WDA4Oij+PjIygtbUV+fn5Kc05tFgsmJubg1qtjqlxeySIWIvmupQWnISqtAXk9QCS7ZN7q6WlBSqVKq6wN8MwcKvVUK5WX4t88YuyHGumIKfojDVcLIsA27YN2auC3AvAFcOkknTbL3Ldx9L6KDDKxPM8+vv7cfz4cbz88sv4+Mc/ju9+97t461vfih/84AeyFewAPo0VaqBGRoSAU+UBJEnZwVbDHMeht7cXMzMzIUcqRYt0RStXs0hpOObgwYMJdbz3XHMNVE8+CcAn/rz9/X6/T+couEwnmnAxAExMTKCkpCSu6uIsgwHSqyb7wQdh22ACMJUewDfeeAMXXnih+POnPvUpAMCNN96IRx99NKn7Bvxndefm5kKn08naqDtaeyTtMRgpp1huAcgwDObn59HX14fKysqYx8lJt3X0j3/EW97xDvEe8iiVwMc/vua9cti1M3GBHClcTPLfpqam4qsuHh9HjsQbqwLA5efDazZH9efptl/Shu7xwrIstm7divvuuw/PPPMMfv3rX8PhcOD48eOyF8QODAygvLwcWVlZaGpqwr333isubDPCA5iqHMBQyct2ux2tra1gGCZilVk0yC0ASRUyaZejVqvFMFFcPPYYPI89FvLXGy0HMBGChYuPHj0qVm96vV6/3JpoqosDrxi5HzHpNqDREFgFnEwuuOCCpF3jke4fl8slTrQ4ePAgFhYWYLPZZD0GaeQjlD2Spr1Ek1MspwAk0ZLe3l7s3LkTZWVlcW9LzPN2OhHp6Ox2O3ieT/j6Wo8h4FgIDBf39fVhZWUl/uri229f85LK60W0bqB0F4GQ616uY7DZbCguLsZZZ52Fyy67TJZtEg4dOoRHH30UjY2NmJ6exj333INzzz1XnJqVdgGYSg8g2Z9UcM7OzqKjowPl5eXYunWrLF9qYE5LIpCQdGAVcrzzM6OBPLQyfXWbicdHmks3NDRAo9HEVV3Mw18Eyv0trxcBqFar01ohl2xMJhPa29uRl5eH5uZmqFQqWCyWpIxtAxByu1NTU+jq6oop7YVlWXg8noSPjYx0AyDL5KJQE5KkkDB3b28vBEHwEzBkmkamky7RybKs6KHatm1bfNXFDz4I7Nzp95I3BluebvtFCkDkeP7wPJ/USSDSBve7du3CoUOHUFNTgyeffBIf/vCH0x8CTqUHEDgtAEkM/tSpU9i5c2fIGHk8SNsaxIv0+IKFpKMxdPES2JiVegCjR+o5jbe62NHZCd3OnaLnz9bUJOsxptuARgPxVqWzR1ayINM0RkdHsXXrVlRWVoo2IxkL4lCRD2lz5VjTXuTwAJKRbnq9HkqlUpa8p0j2ioywm5ubw549e6DT6cR7sr+/H263G7m5uSgoKPCr1Ay3v42G1DkQKVwMwE9ca7VaoLoadq0W2tXCBx6AZ2kp6v2nuwhEztQu4u0ns6yTjdFoxJYtW8Sc54zwAKZaADocDvT394uNReV+wCTaJ8vlcqG1tRUejyfk8cm1Ag/GeggBZ+IxAf4CMJBI1cV+4eLp6YSaUYdC7vBFsiAC0GazpW1MkhwEfn9OpxPt7e1wuVw4fPjwGsOfLHsYuF2S9gIgrrSXRAVg4Ei3l156SbacvFDbIQ2leZ5HU1OT6HwgAoaM/jKZTDCbzRgeHhY99gUFBcjLyws6PjJdfQDTJYLC7VsaLhYEAcvLy8Gri7u64m5Gne4FbLAWMPFCBGCqFrlWqxVDQ0P4wAc+ACADBKBSqUxpCJj095NjiHk44jWQi4uLaGlpQV5eHvbt2xfyBkmmMAu8uTNVbGUisVRPh6ouNpvNGBoaglKpFAVjfn6+LIUB600AWq1W1NXVpftwZGF+fh4dHR0oLCwMOa4xWQJQao/m5ubQ0dGBsrKyuNNe4rVvPM+jp6cHMzMzfv1V5YpohLKLxK4WFBSIDaUDF9DS0V9VVVWix95kMmFkZARdXV0wGAyiIEyV1ybTiFZ8MgwTsrqYzJMOPJ/RbDcTBKCcHkCVSpW0SWif+cxncPnll6OmpgZTU1P4yle+AoVCgeuvvx5ABgjAVHkAeZ4XL7qqqirs2LEjqfuL1UBK2y80NDSgpqYmYugh2SFg8m9K9MR73oK1CVhcXITZbBbHDOXk5PglW8djBNebAHQ4HOs+BMzzPAYGBjA+Po7t27ejoqIi5HuT6QH0er3o6+vD+Pg4duzYgfLy8ri3F48AdDqdaGlpgSAIa7yOcuU0BxOAZJpToF2NWIwV4LEnjX3JPUnewzAMXC5XSsaZZgLxeh9DhYvJKDUAfgVzWq025P7TXQQipwBMZqP7U6dO4frrr4fJZEJRURHOOeccvP766+J3kPYcQNKjKpmqXhp2MRqNMBgMSdmPlFgMJMdx6OrqwsLCAvbt2ycanEjbT6ZnjuM4TE5Owuv1xi40n34aWR/6EBgATr0eQjxjmOrroZufhwDA0dnpN6ouk5FLOLMsGzJc3NPTA4/H49eMOlojst4EoNVqXddFIE6nE2+++Sa8Xi+ampoifpZkLohJ0UM0xxGJWAUgGelWVFSE7du3r3mAylVVLBWA0hzHeOcoS5E29mXKy5FltUIA8MJdd+Ffzc3iAq2goCBy+6fxcWTt3AkWgCM3F8KqAIqWdIeA5bAfgeHilZUVmEwmzM7Oor+/H1lZWX75g8RjngkeQLn2n+wuB0888UTY36fdA0hyKuQ8qVJMJhPa2trEsEt7e3tKPI7RGjSSi8OybEwj3ZLpAXQ4HLDZbJienobdbocgCOju7o46FKlbFX8CAN3KCmz19cDQUNT7Z6qqkC1JCs7euRO2II1CM9E7mSzPaWC42G63i4JweHg46nAxSaDOxHMnhdiD9V4FPD09Db1ej61bt0blNUhGUZzJZILD4YDRaAybVhIL0do36SzhcCPd5EppIdt2Op1oa2sThXeirb38qK+HblX8sQAu+s53sLSwAIvFApPJJE4LCmz/JCVbUuSVvbQER1ERuPl5+Y4xiSRDfDIMA4PBAIPBIIaLSQRkaGjIL1zs9XrPqCKQdI66TLsAlPaoCpZgGy/SqRnSSrtkj2kjsCwb0ZDPz8+jvb09rlycZHkAZ2ZmMDAwAJVKhf3792Nubg4jIyPQaDRiKFKv16OgoEDM2wg8bibg/7Pm5+HEWsrKypCXl4fHH38ce/bsEV/XBlSEMQAwPr4uvICpCJ0zDIPs7GxkZ2ejqqoKPM+LlYzBwsW5ublRj0HMFMi0nvU+Cq6uri4mQUc8gHI8ZKU2kHhb5JqhGo1983q96OzshMViWTNLONj25PIAAsDrr78eUfDGe36zVoUa+WsWvgVaSUkJSkpKIAgCrFYrvvjFL+Kxxx7DlVdeiZtvvhnFxcUoKCiA0Whc09szy+WCvN0fk0cqvI9KpRKFhYVijqjD4RDzB71erzipJ1K4OBnIXQSSTvuWdgGYjGkgpLeU3W7HoUOH/EK+qco5DGfQpIY5Uk5QKOT2AAqCIOYp1dXVYXZ2VqxmViqVqK+vR319Pdxut1gl197eDkEQxJuwoKAAGo1mzag5LuBmWVxcRENDA1wuF2w2G8477zyAYVGQn4drr70WDwQ7wADxl6mFKcQ4pnJFx7Is8vLykJeXJ35HxFgGhos1Gk3Ge/+A00bWbrev62T7WM+1QqGQZYyk2+1GR0cHrFYrDh48iIGBAdnHh4WzP2SkGxlrFyk/Ti57Njs7CwCorKxEfX19Uq51jmWhkBxrsFGaX/jCF8QpMk8//TSe/u1voVQoUFdXh5tvvhmfDfibWL+ZdIeAU71vrVYLrVaL8vJyvPjii9i6dSscDkfEcHEykLsIJJ0RjowRgHKJMovFgtbWVhiNRjQ1Na3xKqZbAJKRbisrK2vEaazbl8ugezwetLe3w2az4fDhw3A6nZiZmRF/L92PWq1GWVkZysrK/PI2pqam0NfXh+zsbOytqIBhNe+PB+BZXBT//ujRo7j00ssgCAJUxXXwzI1AVVQHCBxMplP40Y9+hHYAL+O0iExdjXjiZEID7UBvhDRcbLFYxF5oclYXy4l02Hq6DWSixCMAAZ/3LN7vZWlpCS0tLTAYDGKDabntXjgBSJrrxzLSLVF7Ju2bCgC1tbVJuw89i4tQSGZ1L9XWQvqUOeecc9De3g4mOx+CcwUAkFW1E+7ZQQwMDODzn/88PoPTD18BwBuf/CQKZmeRn58vayQsGaS7CAMADAYDSkpKUFtbGzZcTJpRy3m8ckZRNrwHEJCnFYw012TLli2orq4OOcQ8FQIwWKhZOtKtqakpoQevXDkzNpsNJ0+ehFarFQWzy+WKqg9gYN6Gx+PxdYT/3e9gMplO58GcOoWCggI88MAD+MY3vwmwShS//Rawlbsx++ht4KxmbPnPn0PgOJg7XsCbAyegmu7HZ+xL+I5vR9BXVOCSSy7Bd7/73bChpHSTCQJQSmC4eGFhAb29vX4h/VDh4nRB7s9UzQLOJKQpMbEi7SSwefNmPxEkt90LZt9IFGFsbAxnnXVWTM31EwkBu91utLW1wel04uDBg3jttdei3la8NtS5mpPc3d0NrVaLOvjyDuvr67GysgJ12RYUXfYpLLf8DStv/AGaikbUf+AbWDnVi8X2F5E90QnP3AjuAvAdhgH7wx+i4umnccMNN+Diiy8WIyoGgyGkPdlIHkDpvgMFaGC4OFi1djTVxdEitwdwwwvARFenxKu2vLwcMddEoVDA7XbHva9oCTRooUa6ybX9eJifn0dbWxuqqqqwZcsWv2OKJ5dNpVL5eZ5sNhtMJhPm5uZw/fXXo62tHaxWj/KrvoDc2rOwOD8Nw6GrsHT0V5h84RFUv+MWFB+4DMUHLoPH7cFjC+PQd/wTrvEOrMyP4cknn8STTz4FlmVRWlqCT3/60/joRz+a0DmQm0wTgMFQqVR+If1Q4eJYqovlhNgC0ph3PXsAY4WkXcRqD6X5dsE6Ccid+xxof6QiLJ4q43gXtCsrKzh58iT0ej2amppEYRDNtuQMiff39+PgwYO+2cLbL0D1lf8F65IJhv1XwNr+HJbf+BM8zVdBX7kV+sqt8Lg9sHMc/rf7ZegGjsM53Y+JiQl8+9vfxre/cx+0WRrs2bMHt956KzZt2uSXYiP3scdKOm1cNF0MpNXaJEplNptlCxfzPC9biDndEY6MEICJeACXlpbQ2tqKnJwcNDc3R/SqpToETIZnT05OxjxuKRyJeAAFQcDIyAiGhoaC9gML3HY8+yF97bKysvD2t78d09PTUBZUofqGr0GlL4TX6/sO9Hsuwcobf4S19Vm4zrkOmpxccRvqkjqoSz6MLI6DggUs3Uex3HsMrqk+TE1N4dOf/jQ+/ZnPQKfVorm5GQ888AAqKyvjOidykekCMDB8ES5cPDIy4tcLLVXhYpL/51gdFbWRcgCB2G3UysoKWltbodFoQubbye0BlApAEnLOzc0VJ2wksr1omZmZQUdHB+rq6sR8P2KrUiWQGIbB73//e3zl7rsBMMg//4MoO+86v/fkXfhhmJ99EFP/+F/UXHGH+DqrViNnz9tQeNZboFKrYJ+bgKX9edhH2+GcH8GxY8dw7NjrYFgGxUVFeNe73oWrr74aBQUFcDqdSc1zC0emC0Ap0iiVXOFiMqdcDja8BzDeHEBBEDA+Po7+/n7U19ejrq4uqosyVSFglmXhdrtx4sSJsCPdEtl+PCt6juNET8HBgweRm5u75j3S85iI0FxYWEDj1q3wuN3QbtqH2mu/DFbpy2+RbjH/Hbdi4fffwtQ/HkbNlf8FNljoXqlCwa4LUbDrQgCAbWESS+3/hH2sDY7ZITz//PPYvn0HGJZBaUkJbrnlFtxxxx0pN5LrTQBKSaS6WE6kLWAAbCgPIBBbKxgyUq2mpgYNDQ0hr71k5QCSJsux2OBgxGJnpAVru3btQklJid92yHtSwVe/+lX85S9/BaPOQum7PoP8rafndpMzYdjzdiwe/SVsnS/Ace710OYVBd2WrrgKuotuBgDwPAdL7zGs9PwLzslezM7O4ic/+Ql+8tP/hVqlRGNjI/7jP/4DLpdL9A5qtdqU2J5MEIDx7l+OcLHcbWCk12+qSbsABGIfgB4p3BFpX6loA+PxeDA3N4fi4uLYem/dey/U99wj/ugGAOfaJirxCDOHw4GWlhYoFAo0NTWFrMyTYxbwCy+8gCvf815AEJB74N2ofMfH/Pch+be+8RxYDMWw97wK25HroC2ogBChLk6TV4ayC98PhvkAeF7A0sC/sdx9FM7JHkxPT+Puu+/G3ffcA7VKhbPPPhv33XefX6uZZLGeBWAgsVQXyxkuls4BVqvVGZ8ULzfRiDWO49DT04PZ2Vns2bNH7Owfbptyp76Q6IZ0pFs0sFlZfgUQnv7+qBe0gQVrwRYHqZpffvjwYXR3d0NhKEL19V+HrrgqxDsFFF3+acw+8SVMP/tjbLruSxG3zbIKFGw/BwXbzwEAuJYXYG59HvaRFrhmBtHR0YFbb70VYFjkGXPx1re+FTfddBNKSkqSXglLeommA7kb2ccTLpa7DQwNAcew4iWFFNrVsF+s43eSHQImnkmTyYT8/Hzs2rUrtjw6ifgDADVWRWAAsbZNIJ34S0pKsG3btrAXcKKj4L7xjW/g29/+DhilCkUXfxxFey+O+DdFV34OM499CnPP/RSb3v818O7Tn42HAE7SwDjwiFiWQV7jIeQ1HgIAuK2LMLe9ANvQG3DPDuH48eN+rWauvvpqfPOb30yKgUyncYyGRCrYYgkX5+XlxT0aSyoA09kkVQ6SEQImzeMZhkFzc3NUSe1yRj4cDgdaW1sB+ERQTJGNo0f9HjoMAMWWLWBOnIhoz6xWK06ePCkW0YVaGCRbADqdTmyqr4d1ZQXq8q2ouf5rUOuCnYPT372uZg+U+eVwDB7HyuQAsopqY9qnxlDoCy2fd51vwTvcguXuV+A81QOLedKv1UxtbS0+9KEPobm5WfQO5uTkyHYfpdsDmKwK5GjDxS6XCzk5ObIci91upyHgaEUZCTdIcz5iJZkCkIx0M5lMKC4uTqpLPpa2CePj4+jr60NjYyOqo2imnEgO4OWXX46XX34FrM6Aymu+DH3Vtqj+TlvaAFVRHZwjJ7E03I7sytN/x8An+nheAIRVgSUAggAEO73qHCNKj7wXOPJeAMDyWBeWOl+CY7wTJvMpfPfHP0bWj38MHsCe7dvxta99DW9729ui/ozhOJM8gOFIZrhYOgZuI1UAE8JFREiLlfLy8piax8sV+ZBOVlpZWYld5P/qV2teYhDZns3NzaG9vR3V1dVhQ91AcgVgZ2cnzjnnHPA8j5ydb0H55Z+Ego3ufi+56suY/OnHMfuPn6Dmfd+M+xhYloFh0x4YNu2BgmXhsVth6fgnrIMn4JoewHsGB/Ffn/88AGAAwI0XXYRPfOITKC8vlyWXN91VwKlqQRMqXDw4OIhTp05hcnIy4eridI+6TLsABHwn2uPxhPy91+tFd3c3FhYWYg43BJKsHEC73e4XXh0bG4trP17Ar6dUKDMWjZHjeV4ME8USKo8nBOz1erFt2zbMzs5CVViNmvd/Exp9NPs7ve3iq76CyYduxvwLP0P2jd89fTzwfW/s6rsFQYDA8eB5ATzPgGER0jsIAIaaHTDU7AAAvPm1d4rnVwGgrbsbqve+19dqJicH73jHO/C9730vqlYzGoNB3BYPwL68vGEEYCCB4WLSEkgaLs7NzUVBQUHEcPGZ5AEEYhckwRapPM+LeW87d+5EWVlZTMeQqN2TttnaunUrysvLMTU1FbuofOgh4JFH/F7yGgwhQ8CCIGBoaAgjIyNRf+5oz3es19UjjzyC/7zzTl8k4cKbUXrO1eBi+PzqvAqoy7fCdaoLS0NvQrPlYEz7D4VKl4PiQ1eg+NAVAIB7v/ZO8XeNAD7y/PN4zwsvgGUYVFRU4LrrrsM73vEO8V40rJ7/NRw9iux3vlO0qXadDvzMzBnrAYwECRefOnUKdXV10Gg0fuFijUYjnlOj0RhV6goNAcNn8JxB8twAn0JubW2FSqWKaVZuuH3JnQMYbKQby7JhRW0oBKcT7qwsqOATO97+/qDvi5Qz43K50NraCo7j0NTUFPPqJJaJFjMzM9ixYwc8Hg+09QdQe80XxWKPWFDrC5BVuwfOkZOw9LwK7c4L1ryHwWr4m2FWV94MBIGHwAvgBR5gGLAMQh574AXPAsg99F44xtqxMj+Kp556Ck899TRYlkFVVRVuvfVW/Md//Mfagx0f9xPqLIAsgwHC8HBGC5ZUGdDAlkAkXGyxWMRwsXT1LPUkBQrAjUagACRzbUkxWTwPjETsHsm5XlxcFNtsEYEVzzbdP/gBlJ/8JBgAnqwsYG4OTG/vGtHm9XrF9l6xNM1PhgfwIx/5CJ586ikwai3K330XjLGIN8lopNKrvozxB98H80uPokwmASjl4YfuWPPalQB0DU1wTfVhYmIC9913H+777vegzdKgoaEBX/nKV1BaWiqKF/KM1UnEHwDo7HZYkf4QcLrtKxlTKQ0Xcxwn5kcPDw+LE4xICD5UdXG6bVzaBWC4UXBTU1Po6uoS3f5yPLjkDAFLV6eB7VQS6tPndCKSdAyXA0jaMhiNRpx11lkxVyzF4gF87rnn8N6rrgLgE1KVb/9wTPsKpPjKz2H8/utheeVX0Gw/H2yE8ArDAAyz2vsLpxuFSsPFDOsTg263a82YOgEQj5n3emDp+RdW+o7BMd6BsbEx3HXXXcEF4Fe+suYlFhsnBBwL4cLFk5OT6OnpQXZ2tigGPR5PyqaA/M///A/uu+8+zMzMYPfu3XjwwQdx8KD8D+ZYkOZES0Ou+/fvj7v6MF67Z7Va0dLSIraYIaFDssCKy8Z9/OPwfvzjfi8FLpjtdjtOnjwJtVodc9N8ueek79+/H/39/VDklqD6hq9DVxj76E6CIisHuoYm2PuOYuXNv0O/7x1xbyuYlXl827loenXQ7zUbo0LdtV8EANgXJmFpex720TY4pvvR3t6Oj33sY/jnP/+J6elp9PX1QafTIT8/H3tC7DfdAjDdU0iCFYEoFIqQ1cWTk5Pged5vwavT6cSFcbLbXIWzcWkXgMDaIhCO49Db2ysesFy98wD5QsCkGs1qtQZdnSa73UwoI0dEcyJtGaLNAfzyl7+M+3/4QzAKFYovuQ2Fey6KeV+BKFRa5Jz1Fljb/gHr8d/D0HRl9MeN1bCO2ApiVRDyAjycCwqWw82X3IFH//aAaDxb8mvEv2eVKhScdQGg1MA+fBLBTewqjzwC/Pa3fi95Vr8TKgDDIw0XA757yWKxwGQyobe3Fy6XC7/+9a8xNzcHr9ebtGP+zW9+g0996lP48Y9/jEOHDuH+++/HxRdfjL6+PlltTjwhYK/Xi6GhIQwPD2Pr1q2orKxM6LqKZ0FK8g2rqqqCLsDltHHSc0QiKuXl5WhsbIz5u49WmEY6n1arFQ0NDbDZbNBUbEftDV+DMiuGSEqIzRde8V8Y//5xLL/2BLLPlif3mON4cLwTL5x7CdyvPgIilzkA537xD+L7dIUV0Fz4AYw9MQwIvnOk1+tRV1cnTnMiniwevjQZgnSBvZEFYDRtYAKri61WK0wmE+bn5zEwMIDJyUk899xzMJvNSS1YimTjMkIASj2A8VS4xbovnucTuohJJXJ2drY4azMQOSZ1hCOYSOvv93WTj6YtRKRtB/u3lIsvvhjHjr0OVpeLymvvhr5yS9z7CyT/7bfC1vUylo8/jZwDlwFMfDc8sxoKdrldUCg4AAJO7DkXW3ddCAWr9MsbJJ9y+vU/wPLiIxA4L1T5lfBYJkNu39rUhOxjxwD4cjc9i4sQZmczXgBmWlsVlUqF4uJiFBcXQxAE9PT0oKqqCq+//jomJydRVlaGt73tbfjkJz+Jffv2ybbf73//+/joRz+Km2/29V778Y9/jL/85S/4v//7P3z2s5+VbT/xMDs7C5ZlE5oXLiUWDyCxJePj42FHuslp44iYHBkZweDgILZv346Kivg8bXLcf62trTj/ggsg8Dxydr0NVZffGTEaES0KVgH93suxcuJ3WHn1N9Cdc21C2/N5Tt1gWd/zYNdnn4ZSoQ16vB6nHaO/+BzcMwNQ5JaCW5rxS7+Q3ov2pSXocnPFmcct112HhWPH4PV6sby8DKPRmJY+q+kWgLG2gWEYBnq9Hnq9XgwXt7S04NVXX4XNZsPFF1+MAwcO4NJLL8UXv/hFWY81ko1LuwBkGEb0AM7MzKCzsxMVFRVxrfyigSj3eJs5Eg9bpErkZAtA4gEUBAFerxdtbW1wOByyNJwOFwL2er1obGzE/Pw8VEW1qH3/N6HOMSa0v0AUrAKG5muw9MovsPTiY9C95aa4t+VyO1bFHyAIDAReBY1a7VvN8qvhYq8vd3D6+Z9h+cQfAFaBiuu/AfPx34UVgHj2WdgCXsoEAxWOTFhBh4OMQnvf+94HwCeEPvKRj+C5556T9X5yu91488038bnPfU58jWVZXHTRRTi2KurTweLiIiYnJ6FUKsO2OomVaO1RLCPd5LZxFoslbIP6aInGAygIAoaHh2GxWFBQUCA2UgaAhx9+GP91112+Yo+3fgSlze8Jv60IxyNAWOMMLHjLzbC2/R3Lb/wRBYeugEod3/fscrvAsl4wjO8oOE4BjTq408S+MIWJX38J3sVpqCu2o/baL6P/+9eFfA4yDAPH6sxjAKjnOBQsLqKzsxPT09MYGxuDwWAQcwf1en3SF7/ptl/EeZRII2iFQoH9+/djz549+PWvf42jR4+ip6cHY2NjMh5pdDYu7QIQWL3QHA50dnZi586dMQ0RjxXpsPVYvkTpSLdoPGyp8AACp8dAZWdn4/Dhw7I8MAK76ZP/P3XqFHbt2gWv1wttw2HUXvMFsKz8kyAAIK/pGqz8+/ewtv4Nnqb3QKUuiOnveZ6Hl3NCofB9BwLPgGE0UKl9lzwDgGFP+/5GnvoW7L2vgFHrUPXhH0KXVwbT60/7/jYGbzENAScOx3HIysqCzWaDwWDAeeed5+vjKCMLCwvgOG5NF/6SkhL09vbKuq9orgdBEDA2NoaBgQEUFPiudTk9tdF4AGMd6SaXjXM4HBgfHwfP8zjnnHPi7h9JiBRylxaXlJaWimE5rVaL++67D8899zwYjQ7l7/ksjJvl8zgHYrzwZlie/R/M/fPnqLn89pj/3uN1Q8FyACMAAgOOV0CjDl4kuTjSjunf3QvevozsHReg9j13wbViBoCovXgKhQIFBQVQqVTYvn27WAVrNpsxNjYGlmXFoodkjY1MdxEIud7lmARitVoBAFu2bMHhw4cT3l4g0di4tAtAp9OJ3t5ecByHc889N+kVMeThF0vuCqnC83q9aG5uhk6ni/g3yZ44Qm6C48ePRxwDFZSHHgI++UlAowGWloJum4gZQRDwl7/8BdffcAMABsama1Bx0U0yfZLQ5L394zD98TuYfeH/UPee/4r67zweLwCXGBLheTZkSITzejDyyy/ANdEJRU4BNt/2v1CoNL4HyOr3969//cvPsIV7MFMBmDjSKuBY252sR6STjfbv3w+r1YqZmRlZ9xFJAJIeq5s3b0ZtbW1U17AcNs5kMomz3BUKRcLiD5AIwIoKMCYThGuuAR57DIBPbJ48eRIqlQqHDvkax9fV1cHr9WLfvn2+CnVjKSqvuwfa/ArwpBtCwke1Fv2eS7B09Fe+EXHnXQdtbvRpO16vW0xriST+5lqex8KzP4LgdSPv3Peh/IIbAAAC50u7itUeEBun1WpRUVGBiooK8DyP5eVlmEwmsQ8oqYIlfUDlsDvptl9yTiLJhFGXaReAarUaBQUFKSuHJiGmaAWgxWJBa2srCgoKsGPHjqiVfzI9gMRbAADbtm1DZWVlbBv47Gehuv9+n1FzucBnZcEracMTKAB/9rOf4Y9//BMYpRoll96Bgl0X4vZnvo8PdT6PCV0ervj02uaucpC97TwsvvQI7D2vwD5/PXRFkT9nLCER17IZo7/6PLwL41AVb8KWW/5b/J2v2bTv+9uxYwdMJhPGxsZEwybtoSV9WFIBmDipaANTWFgIhUKB2dlZv9dnZ2eTGoEIRDrZ6MiRI1Cr1XA4HLIXkElTRqTXJ8/z6O7uxuzsLPbu3St6H6PdZrw2TjrLfevWrQCw5ruIF4ZhUFJVdXrc3JNPwnPsGCz//jdaWlpQWloq7tPtdsNqtaK+vh4OhwOaqp2ou+GrYNVZOP61y6AGj8ve9wWM1zSBYQA2ytZY0VJ46acx9+SXMfP3h8VK3UgEprXwvBIadXDhPPnir7D42m8AAKXvugsFZ0k86asCMFZvVjAbx7IsjEYjjEajODbSbDbDZDKhs7MTPM+LYjDepslA+u0Xx3GihkgUm80GjUaTtDzKaGxc2p8ECoUCdXV1q607kj+jl+wzmhyRsbExvPHGG9i0aVPM7VTibpEQAZLvNznpy02Lp9iDJeKP/AwA994b9L2XXnop/vjHP4HNNqL6xvtQsOtCvPKNd+Njnc9DCaDObkGrpPGo3BS++7MAz2P62YcjvtfldkEhij8GHKcMKf6WJ/sx8rP/hHdhHNrNB/zEn8hqGCkvLw+bN2/GwYMH0dzcjIqKCthsNrS1teHVV18Vc2JcLhcVgDJABKDdbk/a6litVmPfvn144YUXxNd4nscLL7yApqYmWfcV6nqYnJzE66+/jrKyMuzfv18MmcUyGjNapKkvBIfDgePHj2NlZQXNzc0xiT8gfhvHcRw6OzsxPDyM/fv3o6qqStYFM8MwftWrDADlxATeeOMNbN68Gdu3bxfvgTfffBMVlZVwOBzQ73kHNn3w21Cos9DxtXciGzxUAJ791Tfw9tf+5Dt2XoDXy4HjePARqzcj24GsurOhzCuHfeB1rEwNhn0vzwtwe+ynxR/PAIImpPgb/cP9WDz6OBiFArUf+oG/+APAr14LsQqQaGycWq1GaWkpduzYgXPOOQd79+6FXq/H7OwsXn/9dbz++uvo7++HyWSK6VpPd4613HOAk9noPhobl3YPIHA610XOkxuOSOEQYqDMZjP2798vtquIdR9yC0AybUSlUqGpqQkvvviifCXkkskX5IKsrq7GysoKoFCh9NL/RE75Zt9bef/pxMnJAvShKWuEqrgWzpGTWBzthLF2Z9D3udzOqPNhTD2vYfZPP4DgtiN3/7tQecktQd8nCGu/P41Gg7KyMpSVlUEQBDHsQfrZaTQasCwLi8USf9hjfByKvXshKBTgT5wAohjfFy3rSQAme0zSpz71Kdx4443Yv38/Dh48iPvvvx82m02smEsWHMeJE3qCTTZKxrhK8p0Tm0RCryUlJX6CKBbisXFOpxMtLS0AgKamJrHpsJzNm0M9UAM9nMPDw3jrW98KAFBX7kD5JZ8AyzJ48KefWiPdfvDSw9h97rsA4HQB2WoRGcCAAx+3d7D4PV/E1P99ArP/+An0N30n6Hu8Xi8EwQ2W9Z1vnmfBMhoolWutL8fzGPv13XAMvwFGa0DDrf8LlTbIfcT7PIDJEIBSAqtgvV4vnJddhrzXXsPEOefg1bvugtFoFNNsdDpdyO2n237FWzwajFSMuoxk4zJCAJIT6vV6U9KiIlwImIgspVKJ5ubmuHNS5A4BE4MtnTYCxNeJn3/sMQgf/KBo5DgAkDRmlRaY+N7gwdSTd2MKDNhsY/wfIk6K3vMlTD38Ecw//78wfuT+Nb+PJSQy/dozML/0KCDwKLr4Eyg+cGnoHUd4IDEMg9zcXOTm5mLTpk1wu90YGBjA0tISurq6wHFc7GGP8XFk79wpfjf8zp2wd3bKJgLTbUCjQRoCTqYAvPbaazE/P48vf/nLmJmZwZ49e/D3v/99TdK0nNhsNrS2tkKhUODIkSNBJxslUwB6vV6cOnUKQ0ND8aWPBGwzFvtjsVjQ0tKCoqIibN++3e9BKrcHUDpSUwCwfOjQGg/nb37zG/Hf7lNd6Lv3CkChgooL34ZfWkDG8bxYBswFNJ+PFnVhJdRlW+Ga6IS57wTyGw/4/d7tdoNhPWDY02ktSqUmqH/R7VjB2C++APfsIJR55aj/jx+HFHgCnzwPYDi0hYUwrn7Xm48eRcWJExg9eVKcoqFSqUQxmJeX56cJ0l0Esp48gEBkG5cRApBMA0lm42QpoVauZOC4HG1o5DJo0lyZQIMdd8f7a66B5/BhYP9+n7B44w2/X5MLUqlUQtDlwXjwvVhufxZeyzR4mwUOANIymGQH7tW5Rciq2Q3naAvmO15G0Vnn+/bLC+B4h1+lrwA1NCFaKoz/7WGsvPknX5uXG74OY93u8DsO4gEMe5xqtbii2759u9j8k8yK1Gq1frMig60kVbt2rQnPM01NECbDtKOJgfUkAO12e9JXyLfddhtuu+22pO6D3E/RtrlKhi0keUtdXV2w2WwJt1oBYrNxExMT6O3txZYtW1BdXR00h0xOATjc04OsG29EUVsbhIcegu6GG9a8j8xGzzvvA3DNDME51Qvetohz4VsUS4/w+2dfHnxfAAQGUKx+l77m877RlOICUhAiRoNLr/4Sxh/8ABZefMRPAJK0Fog5zUpo1FlBZxDbFiZx6vEvwbs0A03lDmy++b6w+yTnO1YBmKgIUwcce5bLhaqqKlRVVYHjOCwtLcFkMmFkZARdXV0wGAyiIExVlDAUcnoAU2HfgPA2bsMKQOm+BEHA4OAgRkdH14x0ixc5DBrP8+jq6sL8/HzQUHRCYZPqamBuLuiv/G5uQUDhgUtR2uQbNO4wz6DoHz/BPwZex2EANgBGAPj6pWCz82HY9TaUnH9D9EYlysMvfs/nMX7/9TC//AsU7DgXPM8B8PiFRBRsFhSK4MZh5Mlvwt53FIxGh7qP/Q+0xshennjOrXSGcmDYQzrtwuPxiKOBSA+yUEaV4bhoT1NE1osAZFkWNpst6WOSUgHP8+jp6cHk5GRUba5IY3w580mtVquvNdJqJwM5WnREY+PIZ5+ZmcG+fftE0RWInCFgr9eLwcFBVP3kJyhtbAx5DolnSaHW+hVgzB57Blltz8E6PwoWwLUAftfyJ6DjH9CUbUbZxf+B7LL6EJ/j9GhKv+Iw8X8Zyc+nUWQZoG04DEffvzD7xt9Qsv+SmNJaFofaMP37b622ebkQtVF0TRBSFAKOBYVCIUZMgNMj1Uh1Mc/zyMrKwvT09JoZ4qkg1vZx4Uh2iks0ZIQABHwXYbB5wMlAKgDJSDebzYbDhw/L9sBJVAA6nU60trZCEAQ0NzcHDRUlq9KY3Nw+o+y/fW1+KTZd92WQ6bjTR5+EquNFeBdnwFtNWHztCSy+9gSg0kBTugVll3wc2SW1CR+TQqVF9o4LYet4DjPHfo+igxf7hURCFXtwbhdGfvVFuE51QaEvxOZbfwqlKkqjEaMHEAhtHJVKJYqKilBUVCTOgDSZTDCZTBgaGhKr4fNfeAG1F14oOgwEAPy//x3zcYQi0wUgKQZLdhVwKjGZTDCbzVE3aU+0WX0gMzMz6OjogEKhQGNjo2z92SLZH5fLhdbWVnAcF3Gqkxy2jERLVlZWUFFRIVb6hoKIB0HwdzyUNF2JkqYrsReA3TSJmWd/CnZmALx9Ea6JLoz+7+0Aw0CRUwD97rej8Mg1UAQ7p0zgP5mgCzkiC4uuuAvj378KlqO/huGs86BSEg8iAy5MWsvcyX9g4R8/XtPmJSKrAjCW60E6ICBePACke3SFSfuSjlTjeR6dnZ3weDxi26KcnBxxES1Xq5lwJCMEnE4yRgCm0gNIcgCXl5fR0tKCnJwcWbvuk33EOzdxcXERLS0tEVvPyLlqjnf7Zedcg7JzrgEA2OcnMPOPn8I1MwjevgTXRAdGf/IJgGGh0Bcgd++lKDv3mriPp+Adt8HW8wqWXn8ahfvfAoZVhhV/zmUTxn75eXhNE1CV1GPLxx6MbYfC2g7+kf8k8vfNMAyys7ORnZ2N6upqcByHxcVFmEwmDLrd6HzwQbztjjsAlsXiv/6F7Koq2fqQZboAJDYgFTmAqaKoqAhNTU1Rn/d4m9UHwvM8BgYGMDExgV27dqGvr0/WBWM40ba0tISTJ08iPz8fO3fujPg5ErVlxNM4OzsLo9EYVXhbFKRhzomuoAKbbrhb/Hnq5V/D2vUSvEuz4FYWsHj0cSwefRxQZSGrvBFl77wNusLQI+ykCzspAgSwrAL6vZdi5cTvYXrtGZSe925fWovgm14UjFP//AWWjj0JgEHplZ9FwY5zIn5uAs/FHgKWQwC6l5fhvvhiqI8dg/vCC4E//CHyH8F3valUKnF2MWk1YzabxZzrwKiK3MgZAqYCcBUyDi6VHkCLxYL+/v6II93iRVqkEcsFMzk5ie7ubjQ0NKCmpibscSXbAwhAzGM5HbwIja6oCpve91UAgMfrxfzR32Cl+xWfsVyeh/mlR2F+6VEwqixoKrch9/B1UOVHH25nWAa5TVdh6dVfYfalp1B84QdChkSWJ/sx9eRXwVkt0G4+hE3XfyXq/RB83s/YHkrxCH7SYZ8kqdt378boW98Ks9kMy/w8FGazmDsYqRF1JDJdAJLrWRAEuFyuM0IAxto3LFjLllhxu91obW2F2+3G4cOHkZOTg8HBwZQIQGLDYmkqnYgtc7vdaGlpgdfrRVNTE3p6eqISk0QgCDHst/z864HzrwcA2GZGMPP8z+CeHQJvX4ZzrA0jD33Ut+A1FEK/62Jk77gg6HYYnLYsvnISBgIE5L/lQ7C2PYuVN/6IgoPvhEqTC5Uq+PNj/E8PwNb+HBiVBjU3fR/ZpbVRfw4AogcwFnsihwAEADz7LNyR37UGaf4haTVTWloKQRBgtVphNpsxNzeHgYEBZGVliXYzLy9PFuEmtwcw3fYtIwQgkDoPIM/zWFlZgcPhwNlnnx1XH71okE4ciebCI6PmpqamgraGCEayPIDShzARgOTGY6O88T/1pwdwydC/8dM9l+GZi94P62Q/Zv/5c5+xdKzAOdIC50gLwLBQGoqg3/8uGPdfEfqYwIOBgLzma7By4g9Yafk7is+5FggiAOc7j2L+rz/0tXk58C5UvuNjcZwFRKwCDv4niefH6HQ66HQ6VFZWgud5LC4uwmw2Y3R0FN3d3X5J0bHM3yTh1UwWgF6vFwzDwG63A8AZkQMYK4nmRC8uLqK1tRVGoxF79+4VPTyxNMCPhsDtxWPDCPHaspWVFZw8eRIGgwH79u2DUqmMeluihyiOVA+Mj+Mfv/0yFtU5+OAnfwWe5zH/yuNY6TkK79IcuKU5LL76Cyy++gswai00ldtR+PbboAox7YOHAAY8GAB5538Q5ucextw/f4WKS26F18v7cgtZRuy9OPr4l+EcOQlWa8DmW38GlTZ2TxKpAk51CDgRQtkvac51TU2NmHNtNpvR398Pl8sFo9EoCsJ4q2+pBzBJkMTnZELy6txuN8rLy5Mm/oC1fbfCQQawu1wuNDU1RTVqDkhOs2mPx4PW1lYAqwZeUuPL8wJ40uZgtdVBsFvo+W9dhSKP7wF+97HH8Y6Bf+OWjz+AnA98w7cPrxezLz4GW/8xeJfm4F2aheWFn8Dywk98xrJqJwrfdivYXN8DxDdM/bRBz7/o41j4832Y/sdPUHvlZ/z27dfm5R23oXj/JfGfDBlzAOOFzNfMz8/H5s2b4XK5xJyyiYkJMAwj/r6goCCsMSfGO5MFoDT/D0jvmKR0Eq8AJNW2wbxvcvcmZVlWtNlSj2MsNky6rViPjXRtqKmpwebNmwNyl8MLQEEQxLxqgeeiinCIjI+j9ef/sfp+E9q/cRnO/tJfUf6WDwJv+SAAYGWiB7MvPgbP3Ah4xzKcw2/i1I9v9i14c4uhP/Bu6Pde5tt/gH3T770Ui//6DWydL8B73g3QGArEymKXYxkTj38RntkhKPMrUH/LQ3FPkjiTBGAg0pxrwFdxS4pJhoeHoVQq44qqyFkEYrPZUFEROl0gFWSMAExG93spZrMZbW1tKCgogMFgSNp+CNEKQLKC1ev1OHz4cEw3c9xtYEJgs9lw8uRJaLXa00ZBEABpCEuAmNvIe3mAYdaMSCpcFX+Egwv+He5VSiUq3/YhLO65BIxCDa9lCpajv4J7fgSCYwXOoRMYGbpJHFPTp9DinZ95AiRYot9xPiwvPwJb9yuwn3u9mHPja/PyR4BVofJ930Ju7Y7ETkicHkC5DEQwNBqNX1L0ysoKTCaTmBRN5m+S61xqLOWcY5kspD0As7KyknouU0U8D8tYF8SkufTc3FzIkW5yR1mIaFteXsbJkyeRm5vr53GMhVgWs4IgYGRkBENDQzjrrLPWVFVHEoCCIIDjuNMCcLUIRPoX4b6x5x//1JpWTZ978pu495rPi6/pq7aBeddd8LqdQJYBK//6FeyD/4Z3eR7exRn84bkf48hzPwbga6NVd+sjUObkQwADFiwKL70Tc0/djelnf4y6a74AhmFhW5jExONfBLc0C03VTtS+/16QXoTiojzy6Tt9HvjT+bZR/02aF5HxRjAiRVXCjfeUY//BoB7AVUjIIxkeQDLSbWBgAI2NjaiqqsLg4CBcLpfs+wok0qp2dnYW7e3tqK2t9VvBRoucIWBpo+nNmzdjeXkZwOkbnvNyp71+LANiaogYlDZBjQVB4KAqrEbxe74IhlWAEwQM/+Aqv+kijZwDo99+FxhNNrJqdqHgbZ9A4RX/D7O/ugvTzz6M2uvvxtjT98LR9y8wmmxsuuUhZK16DzE+jtd+fiv+1NjkZ6CjO7Z4Pk/qRsGxLLumETVJiu7o6PCbv1lQUCAarvUiAJPdJDWVxHqvxiLWHA4HWlpawDBMyI4BQHJCwDabDcePH8emTZuwadOmuL+vaBezHMehq6sLZrM5ZC/DcOeaiD9BEE57l3l+1Z6dzncOJwb5IPePVbX2nJPcQoZzI7f5OhjPeR8YhRKOiS4c+c0Xxe0qAAz/z81QMwoo80qRe/hqGM66yDcirv8YVqaH4bUvY+aZb4F3rCDnrItQefmdouj7yY9vQ6NlEufc9bRvsb7aiibiV7EqAGNppZJuD6Aco+AiRVUA+NlN6fnhOE62Knq73Z72FJeMEICAzwPo8YTvwB4rXq9XNBbSPnqpyjcMFXKR9h3ctWtX3JMH5CoCId6jLVu2oKysDGazGZ2dnb6VoVeAUqGAAEEcf8QLAZ4/0TvoE4OzmhyUuqzi9o+W+rdjEAAsL6wOqOY58G5/j2HgepRZ/U9w2eDoP4ZT/ccAVgEolHAOv4Ghn90Jz8wgFPoibL71J2Kblyd/eDO2Lc+CAXBD31Fc+7V3Ys+X/hr9iUlTDmC8BEuKNplMmJmZQX9/vygMFhcXQzaiTjfSMXDpXh2nk2ht1MLCAtra2lBaWopt27aFfTjKGQIWBAELCwtYXl7G2WefjeLi4oS2F03XhMAxcqGESygByPO8+B/LsuL1dboIhJH8LyAVhFLeft13JSFgX9PoB6/8lP+xOmzgvL4yB8Hj9NuGKq9sjahkfQcOr3kSpr/eD9Nf7wej1gICj1O/vReC1QTB60b++R9E2XnXglut4O34+jtF+9hz7+W48Z3/hRNnny9W+DIsQnsHVz93PCHgdJGMHGZpVIWM9zSbzZiamkJvby+ys7NF76DX6w25wIqVTLBxGSMAFQoFnE6nbNuz2Wzi3NzAkW5yr4RDEUygeb1etLe3Y2VlJeG+g4nmAAqCgL6+PkxOTmL37t0wGo2YnJzEwMDA6VFNq15ZBtLxRgJ44vnjfOtl0dCwLN5+15O4+a8P4129R/HA/vfiuSNXAKseREEQYLXM+/5GlQVFVjY4lx2C1y2uSL3w7xMlACj/j5/B43HA9u8/wjneBm5lAVgd2eSZGQSbnYeGW38Kher0X25dnvX7vDHLnQz3AIYjsBG1x+MRJ5IEa0Qda85WsjhTPYCxEkkASsOg0Y50k8vueTwetLW1wWq1Ijc3N2HxB5z2KIW6f5aWltDS0oL8/PywrbHItqRChRQ/SVMgGIY57QEMmesrFYQS72B1NXZ/6a949H8+Dqtai098+Lt+tsW6vAivy+HL99PlQuA58G4nBM7jtx3pp+QAVHzsYTgmumFt+Qs8pgkILl8eLG/xTQHKv+AmvzZa733hV37bYAA88tf7sHvfhQB7eioJvxqdCfQO8qv2NhZBI210nw6SPQpOOt6zrq4OHo9HjKp0d3fD7XbDZrNBqVQiPz8/Ibtpt9vTnuOcEQJQ7hAwSQ6urKzEli1b1qwYUuUBDBRodrsdJ0+ehEajQVNTU8Ku5ERyAL1eL9ra2mC323HgwAGo1Wr09/djdnYW+/btg9Fo9N1oQbe/Wg3MYNXQCH6GhmEY/N87PopHLvmYr2EqAAgCPB437Etm37FrsqHIyvFtQuvLyRQggPe4sPn2X2H4wfeJRvVEbgVYTTaysvOhfsuH4Bj8N7xLs/DaFuHofRW8Yxm8zYK+798A3ZbDKD7/fdDll60xjjGfqXXmAQyHSqUSvX7Nzc2w2Wwwm81YWFjA4OAgsrKyRDFoNBrjTixPlFSOgUslcoaAvV4vOjo6sLS0FNNINzk8gCsrK2hpaUF2djbq6+sxOzsb+Y+iQJozHWivSSPr+vp61NXVRdVnk5xrachXuh8AkiKQaM7JWu/gTbc+BI7j/WyL1bIAzusBWAWUOXlgGZ8VU6z2KuV5L3i3E/8srMdbFoZ8rwGov/1XYJUa5Gw7F+qCCjgnOsE57XBPdsM13g4AML/0KFa6X0HuvsuQv/sinD3bH3BMAf9eFXvs6vGJudur3kGB8645J5FIt31LdRcDlUqFkpISlJSUQBAEvPnmm9BoNJifn8fAwAA0Go3YwitWu0lzACXIUQQiDa3u3LkTZWVlQd8ndzVcKKT7IaGa8vLyhOcME+LNAZQK0X379gEA2tvb4XK5cOjQIbE9AsuyUYkg34pQsWpoBH9DsxoqdjvtcNlWADBQaPVgVw2i/9YZKFRZUKiy0Pj//iwaS8Hrhnd5Ae7JbnD2JUAQwGr1yKnZDddYK3inFYbDV2H5xB9g6/wnRrpfhqZqJ9xY60mMhUzPAYwVYjyJ9yMnJ0dsRE1aJgwMDMDpdMrSMiEepCHgdK+O00koAWi1WsVCrVhHuikUioTSbAJzlmdmZmSd3wv4F80Rez42Nobdu3dH7WkkdlHq+SPXvRTxYR3HZxAAUfwpWFZMaxEEHoxCBWVOHoKVZLCsEmxWDj724R/6FrxuJ3ivG4LXDddUHzzzYxA4DxhWAU1hFVhWAdd4O7SN58JjGodnfhQLf3sAlld/iZt3XIArR97wO6ZeQ/B0Imb1vPjydla9g6ufe3JyEm+88YZf8Vio+z3d9i2dbaxIP8+ioiKUlpYGtZu5ubmi3czJyQl7HjNh1GVGCcBEPIButxvt7e2w2+0RQ6up8gCSkMvo6KgYVpWz7DueHECLxYKTJ0+itLQUmzdvhtPpRFtbG3Q6HQ4ePOi3gmEYX3PSWGCwGh6QeAdtKxZ4XU4xJMIo1WtMoyD+/+ngCMsq4XUswz50ArzTBjCAQpcHRW4RWKXGZ7hX/9B4+CrknfcB2IdOwPS3B+Eab0cWABN8s4o5ALu/8GfEZDriaAOT7BBFIoQyngqFAoWFhWLftsCWCSqVSnw45OXlyToxJ5DAEPBGJdiCmHjCampq0NDQEPN1Fm8IWLqwllbdytmInlyXZEFLvJzLy8s4dOhQTA9KEnnhOC6k+JMSOAouEj6vIg+WBVhWAZ7nsGzyeUIZVRZUuug8sgwYMCo1nCMn4TFN+IpRlGqo8ivBZueCYVi45kcBAKxai4qbHwDHe2D+0/dhHzyO5eO/gwK+0WoAcDKvCjff9nB0+2YAZtW+bdu2DRUVFWI3AdJaiggZ6SIj3fZNjiKQRJC2gQm0mw6HQywmGR0dFecak/MYaDdTbeNqa2sxNjbm91pGCMBEG5+SkW56vT6qkW6pygFkGAajo6NimNVoNMq+/Vg8gNIpI+Xl5VhcXERHRwfKysqwZcuWNTd2tB7AcFgX/UMizGpIRAjIgpH+SwDgmu6DY7wTgsd1ull03S5kF5RBAGBfXoTbtij+lWtmCIxCBZWxDOU3PwB43Zj9/bdQMDsECDxYXS6y//ZjFBy5DipdNgAmsvckjtVuulfI4Yh29RyqZcLIyAi6urribkQdDVQA+pCmxPA8j/7+fpw6dSqhorF4Ih/hcpblFIBSD6DD4cDJkyehVCrjSpVhGAZWqxVOpxNZWVmRr88YFnq8wIPneLAKFizDwutxw7q4AMCX1qLMis5rzXkcsPW+Bu/ynC+iodFBnV+B/C0HwCpYcF4v7IsLIOVxPOeBc7IHrFqLvLd8GIWXfhLLJ/+CpWO/gdLtyzdUZ+th7DyK3C0HAQhQKtVg2TDCdzUHUK/Xo6ysDGVlZWJbH5PJhPHxcbHxPAlzptu+pbuRfbj9a7VaVFZWinZzaWkJJpMJY2NjfnYzJycHubm5aZkE8tWvfhUf/ehHxZ8zQgAC8TeCJqImljYEqfAAOp1O2Gw2Md8v5sqhe+8FfvAD4He/A84JPt8x2iIQQRDQ398vzgTNy8vDzMwMent70djYGDKBPBEBKEAQQyJQqKBaExKRplafDh07RlvhnhmEwHnBKJRQ5ZfDsHkvVFoDsLryZhgGGp0BOr0Rc6tbUBuL4bWvgHMsg7MtAgyDwnfcBkGlxfJrv4a991WsnPwzrG3PIqtuH/Kar4ZQVi8eRVBjeYaGgGMhsGWC0+kUvYPSRtTBvAXxwHEclEplRiRIy0k84wHdbjdcLhfa2trEBsuJiOJYF76kL2hWVlZQIZawAGxoACorgRdfFAsLFhcX0dPTg5KSkohVzYGQsG9eXh5MJhP+9a9/wWAwoLCwEEVFRSFCckzUo+B4ngPPAwoFC4Zh4XTY4LQuAWCg0OmhUEWePeuxmWHvf/10KovOAG1xHfI2neX3PoVSCX1hKZZXOxoolGootAbwbsdq8/w5ZFXthK7hEDyWKZifexjuyR7MneqG2ViGnF1vQ/6hK6BglSAlJ4HfH/F8BhZIGo1GGI1G1NfXiy1SyP3uOw88ZmZmUFBQkNRoQDDSLQCjbQTNsizy8vLEziMul0ssJnn00Ufx05/+FG63G3/5y1+g1+ujKuKSA71e79c3M2MEYKw5gDzPo7e3F9PT09izZ09MUz2SnQNosVjQ2toKpVKJ2tramMUfk5UF8ba66CK4q6qAgYE174umCISs4K1WKw4cOICsrCwMDQ1hcnISZ599NvLz80MfBxNX6cRqSGQOpNI3XEiEgS8x2tZ/DB7zpC8MotJAXVCJvIb9UKg1p422pAk1IICTfIeGwjIAPu+gY2URrhULeLcDgssO/a63w7D3MjhGWrB84hk4Bo/DMXgc6rLNMOy7HMYd58Hj9Ugkqc9YxpNfeaYJwECysrL8GlETb8HExITYUDVUI+poIH22MqFFQjpRKBRwOBx47bXXkJeXF3eD5cBtRmv35ufn0dbWhqqqKjQ0NAT9HuMWgOPjUG3Z4rvfJibAZ2XBu9oBoqOjA42Njaiuro7pPpIWe+Tn5+PQoUNwu91YWFjAwsICRkdHoVQqxZBdQUHB6Qd5FB5AjucgCIBCyYIBA9uKBR7naqVvdi5YRfiFj8s0Acfwm+Bddl8qS3Y+siu3wlC+KXzfwdVjY5RK5JXXAgC8Hg9slnlwTis4+zJYtQ6Fl30KPIDFlx6FZ7ofi688huV//w66xiPIP3It1Pp8uNxuvwUvyX0UR+IFIbDx/NTUFIaGhjA+Pi42nifeQbmjAcFIdwg63lnAGo1G9LJ++ctfxsGDB3HDDTfgqaeewmc/+1lcfvnleOaZZ5JwxP5861vfwte+9jVUV1fjhhtuyAwBGGsImIx043k+rrFDyfQASnvqzc/Px7WNwDWVamICwVK3I3kApaGUAwcOQBAEdHR0wG634+DBgxEfsAqFImYPYCwhEc5th7X3X76WLoIAVpMNdWEl8rfs9wlDQVitLBZ8OSuSJtScl4PUYeeVNKrW6o3Q6Y0AAI/bDcfSArwOK7Kqz8LfW/+OAy6br3JvegAX/Pn7OPbKL5Gz8y3Ib3oPFEqfIXe53YAggOe8mBofR3l1dVSf/0wXgFICvQWkEbXJZEJHR4fojSHewWgWQsQDaLPZwi5OzmRILzKTyYStW7eipqZGlmsqGrsnbS+zY8cOlJeXh3xvvAKQJeKP/Axg8dAhCPfcg+3bt6Oqqiqm7YUq9tBoNKioqEBFRQV4nofFYsHCwoI4G5Z4Z8ILQEHsuadUsAAYrFjmg1b6BsMx2QPnRJevzRXrGwNn2LQburzTXpg1bWaCbUjy/StVKuQUlIqjOO0ri3CvLIJxO5B//o2Y+PXnfB0UnFbY2p6FoeMFZNXsRt7h9yK7ejsABh6vB/xqFfCbR5/DpZdeGuYc+CC9E1UqFQ4ePOjnHRwfHwfLsqIYjGW8WrSQxX+6Q8CJ9k9VKpXYvXs3AODo0aOwWq2idzWZ3HHHHdi7dy/y8/Px2muv4XOf+1xmCEDAd1KkN3EozGYzWltbUVRUdLpXXYyQUIicD2upR5KMYjKbzUkNNYfzAC4uLuLkyZMoKirCli1bxHnDarUaBw8ejOrm9H0P0QtAv5CIVi+2PgjEs7IA28Dr4B3LgAAodLnQltbDGDC6TSE6/gQIPH+6CTWwWl1M2tQwUChWG8kGNKpWqlQwFPkeYoIg4IB1QXz4MAD+CUBtNWHptSew/MYfoGs4jLwj1yErr8TX2BoMnnri98gVnFApLNCX1+KKG24JeQ42kgAMJLARNRlTNz09jb6+Puh0OvHhYDQagx4LWWGfiW1gooHjOHR3d8NkMsFgMKC2tla2Y4gk2LxeLzo7O7G4uIhDhw5FHJkZby51sDORNTUFlUoV85hO4vmLVOwhFSdbtmyB3W7HwsICwPhy4bwcJ+mRRyQZSTmRVvrOhElr8cELAhzDb8A9N7KayqKCqqACeVsOQK0NVcwSvAm1dAEebF4xwzDINuQh2+ATsy9980q/noTZAM7lvXh15CSmR96EqrgO+j2XIHf3RWLoe36Fx4+/9UMY2EU4WSs+9Jn7Qhyjv30L9A6SnDcyXk2aOxiuIjZa0j2GjlxrcuzfbrdDq9VCoVD4hYpj5bOf/Sy+/e1vh31PT08Ptm7dik996nSz8l27dkGtVmeWAARCu1iDjXSL94IiolGuhzUZhO7xePw8kvGukDn4Ny0O1bghlAdwamoKXV1dqK+vR2VlJZaXl9He3o6ioiJs3bo16gs4lhxA28oiPE572JCIa34U9pEWCG6Hrz9gTgFyqrdDX1Ibdtu+JtSK0wbZ9+JqE2rfvwUADMuKBjLYiDomSEI0A6D0/d/FStuzsHe9CFvXi7CttpERvC6wDAOvwgMTFAAKMTNlw8Pfuh/6Ux346GNPiftzMQw8S0sbWgBKYRgGBoMBBoNBbKhqsVhgMpnQ09MjNqImgpDcM9IikFS3SPjGN76Bv/zlL2htbYVarcbi4mJK92+329Ha2gqWZbFlyxZMTU3Juv1wHkC73e7XOD+aXM647dudd0Jx//3izwIAxfAw2KNHY9pe4GSPaO87hmGQnZ19eoEhCFCwjC/iQCZoMKvPB5aBQqz0DZ/WwnNu2PqOwWOZ9tkcVRY0hdXIbzwIhTJWb5j/Z2GY1Spp6YtBFKGeWzvi9NbS7eg9/G5YXnkMnvkxmP/xIyz+69dQ5fq8kCq1EjaVFzbkAMjBD7/zAIyCEx/7xtfFaJQAwNbZCSFESyhpzhvJFSYVsWNjY2JFbGFhYdydBNI9y5wIUDkmKJEUl0SfFZ/+9Kdx0003hX3Ppk2bgr5+6NChzBGA5KR6vd41FwdZmVosFlmqacm+5FDzZBC60Whck6cTt4F0OsHpdFDwPLjiYmB8POj7Aj2A0r5ZZ511FvLz8zE3N4eenh7U19fHnFcT7YUeKSRin+iEa7J3NQyigNJYitz6s6El83qj4HTrBeb0dyb56qRNqH3trtaOqBN4ATz8xfUKo0JBTSPyqhtgP+8GrAycwOKrv4RrogMQBHgBlAoL8HjzsciqwSm8sKo4fFIi/gBAIwjwIP1tCsKRzgRqlUqF4uJiFBcXiz2wzGaz2FA1KysLBQUFcDqdYgFVqj2AbrcbV199NZqamvCzn/0spfsmfULLysqwdetWLCwsyB49COWxk84Bj3WBGGl8W1C+9S1M2+0o/slPfP30+vqgUqmibmwvLu5WP0ss4i/4BnkwDOuLOLCk2EMAGAYCL8DlccKxfLqBfWBaC+dcgbXvNXBWsy+VJSsHmsJq5DWcDZZJ7H4TxIgHK84r5nl+1c4wa3IHn248B9f3HT399wC+9tHvohiAcct+WE3TsLz4CJyjrXDZLACAAoUFpZwRK3wubEoOXoUHC1D4pSIxALQ7d0IYHo7q+sjKyvILvxPvoLSTQKzewXQLQOn1lihy2beioqKY6h+ktLa2Zo4ADJUHSEa6qdXqNSPd4oV8gRzHJZSnQPpyhapATqhKzm5HJPMvbQPDcRza29uxvLyMffv2ITs7GyMjI5iYmMBZZ50V10Vyuju/Fyy79lIJV+nLCwLsg8d9jU15DoxSBVVhFfK3HIAqK7YLP7D1QuBRADg9r5gIPf50GJiIQQbAni/9FSe/9k6wACwqLc77zFNgVhOLs42FyDlwCbKLKjDxxD2Ax4GLLroI7/vMvQCAqfFxPPfkf0PJ5wQNYwEbOwQcLYGNqL1eLxYXF8Xw0RVXXAG1Wo26ujo0NTVh27ZtKTmn99xzDwDg0UcflX3b4RrCDg8PY3h42K9PaDLylAOLQKRRlWjHyUmRTu+IxSsyPj6Ovssvx7a77kJlZeXplIwouhoETvZIfCwZc1pkIUKl72oDe+J48yzNwTZ4HLxzxZfKkm2EtmwzjNXbEjieAAL0MMfzq8UoClEQkrcJAL55zeeR/+hncdFEOwQAH730LvFv1Zos5JfXwXj9PRh76uuw9x8DwzD4wn2PiO956mffh9tignvYikAYxGffQnkHSYsUhULhlzsYqtiJXBvpHEMHZJYHMFqOHTuG48eP48ILL4Rer8exY8fwyU9+MvMEoLQVTKSRbvFCVozxGlhBEDAwMIDx8fGwHerl7JMVDPIZnE4nTp48CZZlceDAATAMg66uLiwtLeHAgQNxt9MQQ+UcBwQIwFAhEd7rgrXvNXgXZ30ra7UWmvxyFDQeAKuIz+3P84JokMMhNqH2zZ7zJYeLhSS8+LDY+8W/iqEThTgxwPeexZ6jmPvzDwDOgx/+8Ie4+eabxe2XV1fjxs98BwDg+fp3g04ZoQIwdqTVmXNzc/jrX/+K66+/Hj09Pdi/fz9KSkrQ29sry+Ivk/B4POjo6MDKysqanLtkCUCyTY7j0NXVBZPJFHdUJVYBSPKkZ2ZmsH///jV5T5E8gNHm+8UMf7qrgH+lb/C0FufsEBxjbRDcToBhoNQXIqd6B3KKoysUi43TQlesRFawOJ17KM0d9L33v2761prMbfJuzuvByC8/D9dEFwoLC9Hf3+/3vqs/fDpPTPjlo34LXbdSKYt9C/QOksUf8Q6SaRoFBQV+IolUAKfLvpKIoRz7T3WOs0ajwRNPPIG7774bLpcLdXV1mSUAgdOtYIjAIqFMad8auYi3FYzH40F7eztsNhsOHz4cVlyxLCvbfONQ23e5XDh27BgKCgrQ2NgoHh/DMDh06FBCfdlOC0AvoDr98A1W6cs5ln1hEJsFZFRbVlENjPW74w6DBLZeCErI54XPUPgVkoTxDioAzL3+Byy88L+AwOOeu+9GQ0MDenp6gq5M3cvLgMEA1eoh2P/v/3z7oQIwIXiex44dO6DRaPDd734Xhw4dQmtr6xkn/shMXZ1OF7THnpyz0QlkQepwONDS0gKWZePrUSo5RgBR2dHAPOlgrUfCLZiTJv7gC7OGrPRlFFDqfWkt9rE2uKb6xVFtqrwyGDbtgTonD4IgBC0kkRXh9PEFhwn4l7930GNfwejP/x88C6PYsmUL3njjjSDbOI3tvvug+6//8nk7AXjNZgizs7J+NmmfUcDXuYJ0EhgZGfGbQqTRaNLeA1Cu/ad61OXevXvx+uuvr3k9owSgQqGAy+XCm2++CbvdjqampqSdpHhW2KQxqlarjXriSDI9gDabDfPz89i8eTOqqqpgtVrR1taGvLy8uCukpfgJwFVcThscK6dDIpx9CYud/wTv9IUMFNl50FVsQW7llgT27Mv3ExC42g3+3miI5B2cfekxLB57GgzL4LXXXkN9fT2Wl5exuLiI4eFhv5VpYWEhdDod3MvLcAceDRWAcSOtsiM5MllZWTh8+HDc24ylSi6ZSK+J6elpdHZ2ijN1g10vxD7JeT0pFAoIgoDXXnsNJSUl2L59e0LXQ7D5vcEg84v1en3YfoahJhvFW+wRNQLv680XpNJXmW2Avf843KYJgOfAKNVQF1Ujv/EQlGqpcJbYFFJIwq7Oj2UYhBZtkY6NFLopoAgr/oJx2jvotExj9LHPgluex7nnnotnnnkGbrdbPJ9kzq0ft9wC+y3+HQ+Sbd+0Wm1Q7+Dw8DAcDgcAYGxsbI13MBXI0QKGkCmTjjJGAJIvsqenB/n5+Whubk648Wk4YhWA0saowcamBSNZAlAQBAwNDWFubg65ubmoqqqCyWRCZ2cn6urqUFtbG/n4jh6F6uKLwQBwGwzA9HTQ4wd8OYCAtNKXAbdihq33Vb9RbTm1ZyGnMNFZxwK8q5W+4Ve7ieDvHRz7/fdg7XgeCoUSjz32c9hsNpw6dQp5eXmoqalBbW0tnE6n30g0tVothiny8vJkryxPBjzPp7xzfyxIc2zkGpOUSJWc3PA8j76+PkxOToZNHQFOd0WQ66EjCAKmV+/x+vp6WdrLEOEQzsYRu1lTUxNS7BIC7WXCxR7l5VAvLfm8X88+u2aiktlsXt0Pv6bSF2DgHG2BdynYqLZg34fEprCnW1fxq22pyLkifUyjwRe1IGIyfltonRrAxONfBO9YwQc+8H786Ec/EhcXRFgD8BOCoRYGqbRvUu9gQ0MD5ubm0Nvbi8XFRdE7KLXBydQLgLweQCoAAzh16hRWVlZQXFyMPXv2JP0ii1acxdIYNZBkTBzhOE6siK6vr8fg4CBeffVVeL1e1NXVRd00VrMq/gAga3kZzvJyIKDthNQDuGKZh8fthndhDJ6FMb9RbcaGfdBkGxP+bP59t6J76AXOFI4Fnvdi9Nf3wDH8BnJycjA5OQme52EymbCwsIDu7m4AQF5entjCoLS0FBzHYXl5GRaLBf39/XC73TAajSgoKADHcRktADPZAyjNT/N4PLK0gUmkSk5OXC4XTpw4IYZAo2rCjuhHT4WD53l0d3djbm4OAFBWVpbQ9qSEsnGCIGB0dBSDg4PYuXNnVPuUislQ4iRqamuRtbQk/shefDFcNpv489TUFHp6enw/8Dy8Hg+si/PgXHa4J7vB2ZdXU1kMyCqpRf6m3dHvG6dbV/k6qUrST7yn009Y8TOt/VwkLJ2oJVkceANTv/smBLcTX/nKl3HXXb6iEGn+pjS8Lj3nwbyD6ZzEoVKpxCbKHMeJC/KhoSE4HA7RBufn5yfFOyinBzBTRl1mjABkGAZGoxF5eXkpucCi8QBKxdbBgweRmxt6pFkw5PYAulwunDx5EgBw4MABKBQKcWJAQUEBJiYmMD4+Ls6+DDerMfAMq5eW1oQzyYrKap6Fd3ke3sWZ06Pa8ivxxGu/xUBxFR7c89aEP9vpNi8AG6X48/1hfPvj3A4MP/Y5uKf7UFZWhsHBQfF3ZGSPIAhYWlrCwsICJicn0dfXB4PBIFa01dXVoa6uDg6HA4uLi5ifn4fH40FXV5d4/kM1PE4H60UAklBPqg3k+Pg4zGYzxsfHwXEcWltbsWfPHlm2rVAoxIkp0XgqpJ0KEiFwatIrr7wia3FJMBvH8zw6OzthMplispvStjJEkAQNTUaBOmAKk7Q/6NDQECYmJsTvVhB4LJ7qg3uqz29U2zZewE+OP41rrvxqzPv337c0/cS3Pz5Ij1KG8XkHpV0PSAg4nmfiQutzmP3rgwDvxf/9389w7bXXrnkPObfSfE5y7okIJ/sn33U6q3Clx0u8fw0NDbDb7WLu4PDwcFK8g+s5BzAUGSMAKysrMT8/n9TJGVIiCUCSKK1QKNDU1BRXErqcApD0G8zLy0NjY6P4gOI4TkzklgqWkZERdHZ2wmg0oqioCIWFhWG9DuGO0t5/DKxa5wuDFFYhP6sYnY99HAyAC+f68JHO57H7S3+L+7OR1W7wNi/y47FaMPzz/4LXPIldu3bh2LFj/7+98w6Pqsr//3vSe0+GhJAGISGQTmgigtIDJKyra0fXn7pgXdFdXF1FXcS2rmtfV1dYV9dCQhUQhABfpGjKJCENkpCeTEmfZPrc3x947s4Mk2QmuTNzQ87reXx8MgkzZ9q57/Mp74/ZvyOHkoCAANa+gMwWbW5uhouLC4KCghAYGAihUAihUIjz588jPDwcCoUClZWV0Ol0CAwMZOePWvI5cvX3hzPDQBkfDxQVcfa8x4MAJOlfAHZPkTz//PPYuXMn+3N6evqo5kGbw9XVFQkJCRb/vbXjMc3R09ODkpISBAcHY+bMmXB2dub8UGp6fyqVCiUlJWAYxuoGExIB5KLZQw8jm1AA/+t87uvrM3BHYKBXyqG8XGI0qq3qvfvYLv/ynQ+hyk+IWx/fMaq1mMJ6DoKkio0nGIFhrt4LzZjYD0fH6W/QeeLKZ7ng+HHMmTPHon9nmP41jQ7qdDqoVKorDS9a7bCp4mHJyYFHQQH0+KWZzkKG27+8vLzg5eWFyMhINjrY2dmJ2tpaKJVKNjoYHBwMLy+vUX2uuIjGEwYGBhASYrkPrq3gjQAEbNP5NhTDjTEi4+aEQiFmzJgx6osmV5utWCxGWVkZYmJiEB0djcHBQZSWlsLX1xezZs1iP5SmgkWhUEAmk7Fmu56enmx0MMDXF179/QCuBNG0JB1iQP8vv+8v3AeXwHB4xWTAIzYFpZ9uvGqW5473f4d7H/7I6udGTruW2LyYx7oL9KCsGU2fPwOdvAurV6/Gt99+a/G/9fDwQGRkJCIjI41mizY0NEChUMDJyQlubm4IDAxEREQEpk6dioGBAfT09KCtrQ01NTXw9vZmNyI/P7+rPluefn7shcv70iUMJCQANTVWPcehGC8CcHBwEF5eXnZf644dO2ziAUgYqslhKMYiAMlM8vj4eKOyEK7tZQz3OMNDquG+ZM19qdVqTpo9tAMDcPL2Zr9LCi8vFP1ymJozZ87/uq4ZBhpxHfp6OuAePh1uidfB3ScApt4JiX3iUa9lOK6kiq88T51ed6UfRSCAXsdAj//5HWKYecOmtBz+CL0/74WTkzMuXChHdHT0qNZmGG3T6/Vob29HS0sLZsyYwYpA4H/RQYuitStWwPuXA7czABc/PwxaKAItNdk3jA4CV9KtxHewvr5+yPrtkeA6BUxrAE1wcXGBRjPU4DNuGap2pampCTU1NUhISEBU1Nh8ncYqAE3rD0NCQtDd3Y3y8nJMmTIFU6dOHXaT9PT0xJQpUzBlyhRotVp28kJ5eTn0//0vgoOD2eiguVRxcXExtm7dih07dkAqa0NfVyv6ivebrUuJ6e2w+vnp9TrojUxNbUt/UwVavt4KvWoAv/vdQ/jrX/866vsynC0aHR2NwsJCODk5wd3dnbUtIdHByZMnIzIyEhqNBj09Peju7kZZWRkAsLWFQUFBcHNzuypq4dneDsUYnrMh40UA2tskla+M5kBsbia5IaOd3zsUZI8jpvhTp05FbGysVe8dSfv6+vqirq4OHR0dbO2mv7//qD8H6l8iyXK5HCKRCH4eHmwklHD27Fk88cQTKCkpgbJRBGVDCaRHrD/Ijg0D1wMDyyujwwIDtr54qEYSPaNHU95rGKg6BTd3dzQ3NXGWZmxpaUFtbS3S0tIQHBxsVC9IooMEEhk0t9d4mGRbBABw+vRVDTrmGO3+RaKDU6ZMMYoOXrx4ESqVyuLoINdNIPYedWkO3ghAkvJQKpV2eTzTk7Ber0dVVRXEYjEyMzNZX6KxMBYBSOpourq6kJmZyTYpENd+a5pRgCvi2nAUV19fH6RSKRobG1mLE7LpGn4Jtm7diq1btwIATp06haeffhr/uHABm0zuP+G6WxHU3wV3X0teNwPT1RFtXka8K4voqj6Djt2vg9Gp8eYbb2Djxo2jf0wDiDVQUFAQGy3W6XRGY87I3FsiCENDQ8EwDPr7+9HT04OmpiZ2ePoNnKzKPFyeYG2BYQqYD6djR2NttE6lUkEkEkGr1RrNJDe9Ty5TwAKBAK2trZBKpSN2NpvDsNkjOjoakZGR7HdHJBIBgFFNs7W1XF1dXax7g7kDc0pKCo4fPw7gysjRp556Ct988w30vb1GhzEtgJ6LP8EvfjbHZSrMVR6EhCtr/WWDc3KCwEkwZCOJXqfB5S+eh7KxFAEBAWhsbOSk7o3UTLa0tCAzM5Ot5zSXKibv43DRQbPbtQXijzzOWA+FprWDCoXC4uggtYGxMfZMARturmTjJPV05kxKR8NoT9ukjkav17PNHhcvXmTF6VhnIQsEAvj7+8Pf35+tbZNKpZDJZKirq4O7uzsbGQwMDGS/6IsWLcL58+cBAB0rVyLs//4PDICpALpOfY6uU/+BS2AEPKOTEZi6FL5RM808+tAb3ugYWQFKfv4O0iMfAoweX3/1FdasWTPGx7xCX18fSkpKEB4ejvj4eKM0GxHTDMNALpezqfja2lp4eXmx9gZRUVGIioqCWq1Gd3c3VE5OcDe4QDc++yyCtFpONnNHFnBbwrUeAbRlCri3txclJSUICAhAZmbmkJ8XLlPAZAqRUqnEvHnzrI5omI51I6KC1NMyDIOenh52XyovL2cPUKGhoSPu062traiurrb4wOzi4oK3334bb7/9NlQAXLy94QxgAIA/BMDXL6DNzQvu4fHwiZ+L4PTlcLFyrKXR8zdyPRhiL2SbQHBFeJr4mOr0DLTKfjR98Sw04jpER0ez7gVjhWEYVFdXQyqVYvbs2UNGE4dqJCGi0PDzphWJ4JeWxj5Ta672XGcwBALBVdHB7u5uNjpo6O4QHBzM1j1ygVwupxFAU8gkEHtAxBnZOEdbtzLSY1h72u7v70dRURECAgKQmJgIvV6PsrIyqFQqzJ07lzNxaoiHhwebKtbpdKwNyoULF6DX61nz45CQELZ2xv/wYah++fdVAN599138/e9/R0dHO/q7W9EvOgwnTz+4RyTCd8YCBCcvgcDFdeQNbzQMczdtBZ+j+8f/QgABzp07h1mzZnHykN3d3RCJRIiJiUFsbOzQSxMI4OvrC19fX8TGxkKj0RjZzDAMw0YHg4KCMCiRQN7QgP4PPkD3pk3o6upCxf/935DjkaxhvKSA+VIf42gs3Q/b2tpQUVFhUfqVq7pkMn6SYRhMmzZt1OJvuHo/gUDAdtyTTk+pVAqJRIKLFy/C29ubjQ4apooZhkFtbS1aWlqQnp4+6myOdmAAWly5SFY2NuLhhx/GmTNnoGwqg7KxFLJjn8A1JApeMWkISl8BL2GM5c//F/HnJLDQ9cCoBvB/noOqPikadv4Bup4OzJo1C9u2bcPZs2fZ/drf339U33mSgerv70dWVpZV153hGkn0kZHokcmAN9+E04IFEFx/PQQW7ku23r+cnZ3Z141hGLZ2UCaToba2Fk5OTvD09IRMJrOqdtAUct/mIvT2hncC0J4RwJ6eHvz000+YNm2aZebJVjLSbEtTJBIJa5oaExMDhUKB0tJSeHp6Ys6cOTY3ugSuvC6mqWKZTMamKf39/dlN11CIPProo3j00UcBACKRCI899hhKS0uhqP8ZirqfIDn0PtzCYuEVm47gzFVwDhDa/Lk07X8H/aJDcHZ2wcWLNZyNFCR1lNOnT0dkZKRV/9bV1RWTJk3CpEmTjF7f9vZ2Y5uZ559HtLe3VSbUIzFeBCCJAE50RorW6fV6XLx4ES0tLUhLS7PI75CLCCDpLg4NDYWrq6vVnynDFKE1zR5eXl6Ijo5GdHQ0e5CSSqUoKSmBQCBAaGgogoKCIBaLIZfLMWfOHM4+R9HR0Thw4ACAK6niF198ETt37kSnrAm90gb0/rwHzj7B8IicAb+ZNyBgxoIhU8Ws64ElXbQkAmimC3iwox6NXzwL/WAvfv3rX2Pnzp1GB8zS0lIwDMOKmqFqvU3R6XQoLS2FWq1GVlbWmMaJDmkz84c/XIkQ/vJZtKSRxJ77l0AggLe3N7y9vREVFQWtVovy8nJotVqz0UFrxRytATSBC9sDS2EYBt3d3ejp6UFGRobNjGItTQEbmqbOmDEDYWFh6O3tRVlZGZtedMSF2zBVPHXqVNYGRSqVor6+Hu7u7qwYNEwVp6Wl4dSpUwCuRAp+97vf4cCBA1B0XIK6/SJ6znwNZ/9J8IyaBf+UG+EXO/p5wTBjBK1n9Gj8+i8YvHQWnp6eaGlpGfW8U1OIgeysWbMgFI5NxJq+viqVir2otba2sk74JO1laELd09Nj9UY0nmoA+eCRxTXWHjCH2w/VajVKS0uhVCotMpYmjLUJpLW1FZWVlWx3MSlVsQTS7EGiQmPp9DU8SJGRYWKxGJWVldDr9QgMDERXVxcbteESFxcXvPzyy3j55ZcBAEeOHMEzzzyDS5cuYaD6RwxUn0aHqwfcJk2Dz7QsBKevgKv3ldo5Q48/y/Y8EkAwfp16L4vQ+s3LYDQKbN78JF566YpXoekBk9iCGdZ6EzHo4+Nz1euv0WjYOdGzZ8/mPOgwks2Mub8j/7e0C9gWuLi4sHOJo6KirooOenh4sHtwQEDAiPssrQE0gz1qADUaDUpLSzEwMICgoCCbTgmwJN1CXPqlUikyMjLg6+uLjo4OVFdXIyEhweoIky0xtEExbHSoqKiAVqs16iomp0aZTIZ77rkHr732GoRCIf7zn/9g27ZtaG5pgbz8B8jLf0Cbuzc8IhLhkzAXwalL4exmxYZtEmDVa9Wo//czULVWIjQ0FA0NDZw9/8bGRtTV1bGdcFzj7u6OiIgIREREsBc1En2trq6Gv78/goKCEBAQgJiYGDZKTP6utrYWnp6eRhuR4YY5XmoAaQr4CkMJwP7+fna27vz58626SI+2CYRhGFy8eBHNzc1IT09nPcysmahkbsoEFxD7JZlMhrCwMMTExKCzsxNisZi1XiJ1g35+fpx/B5YvX47ly5cDuLLfbdy4EQUFBVC0VEDVfAGdJ3bCJWgyvKJT4J9yE3wjEy1eA7u9GYjFzvICiPf/DYxeiw/efx8bNmww+2+H8zElDQ9EDAYFBUGj0aC4uBheXl5ITk62+WFxJBNq00YSLrtwRwM5QJuLDpLawerqarbpj+zD5g4gdBKIGWxdA0iGknt7eyM2NpadBWkryOY41PxEtVqNkpISaLVaZGVlwdXVFXV1dWhtbR1T7Yo9MG106O/vh1QqRXNzM9vRKhAIIJfLkZaWxj6Xu+66C3fddRcA4OLFi3j44YdRWFgIRUMxFJeLID3yD7iGxmBAXEeM81EeEIE7H/10xDVpBvtweefT0MiakJiYyPp+jZWhOuFsieEczOnTp7OejsR30M3NjY0OTpo0CREREdBqtejt7UVPT4+RCTXZiMZLCvhajQBai7kDMbFbiY2NHdEGyhyjiQBqtVr20Dxv3jyj98YSAWiu2YNLOjs7UVZWhqioKMTFxbF1tzExMdBoNGzWori4GE5OTkZdxVyLnJCQECNv0ddffx0ffvghJNJW9HU2o6/4Ozh5BeDo4CAW/zJ7SQ8gbUgjfeNJIB1n89F57Mpe+N2BA1i8eLHFazM9wBMf0+rqaqjVV9bi6+uL6dOnOyRTYBodNLWZUSqVbJnYqE2ox8BQAtTFxcXoWjgwMICuri5IJBLWfzcoKIg9lGu1Ws5GXQ7Ftm3b8N1330EkEsHNzQ09PT1X/U1TUxN/BCBJAdsqAiiRSNhNIj4+Hm1tbTZPNxuGrk03arlcjqKiIvj6+iI1NRUMw+DChQsYGBjgtHbFHggEAvj5+cHPzw9Tp06FQqFAWVkZayRNRqORkyZ5XaZPn46jR48CuHKR+eMf/4ivvvoKHeI6ow9mck8bemrOwW/6nCHTJsqudjR8/kfo+mRYsmQJW68zVizthLM1hp6Ohpt3XV0dmwYmgjA4OBhxcXGsCXVHRwcuXrwIhmHQ0tICoVBo1oTa0eh0Ori5ufFmTJKjcXZ2Zi/MDMPg0qVLaGpqQkpKyqjLD6yNAA4ODqK4uBju7u6YP3/+VTVkIwlAw8gfl1E/QktLC2pqaobs9HV1dWVHO5KoOrFnMu0q5qpMxJDNmzdj2bJlUCgUUKvV2LJlCyorK7EYOjap6wyg+OVVmPnEf+Dua5pZIALQCS1HP0XvuTwInAQoLirC9OnTR70uw4aH8PBwlJSUsNecM2fOsA02Y2kkGQumYrChoQFdXV1ITk4evQn1GLGkhEYgEMDHxwc+Pj5mo4PHjh3DyZMnAVyJFltr52YparUat9xyC+bPn49PP706eKLT6ZCdnc0fAQhcUdJkw+DqzWQYBvX19aivr0dycjLbCGCPekPDD7Dh85FKpaw3VWxsLFQqFUpLS+Hq6oo5c+ZYVKjLV8gsXIZhsHDhQri4uKC7uxtSqRRVVVXQaDRGXcVkNJqLiwv++te/4q9//StcTMSvAEDrNy+izc0T7uHT4R0/ByHpK36xYLgyT/Pyv56AXtGPDRvuwQcffMDJcxlLJ5wtMdy8ExISMDAwwEYH6+rq2DSwoQm1SqXCzz//DJVKhfLycjAMw55Kg4ODx1TozRWGEUBr/eTGA6OtAdRoNCgrKzMbgbMWa/a9zs5OiEQiREREICEhweyePJwAtKTTd7SQTl9rsiWGUXXyvZFKpejo6EBNTQ18fHzY6CAXqWK1Wg2RSAQnJyc2w3Pu3DkAgMBkj3MGUPv23XAJDIdnVDICUpfCL3oWmwPuLT8OdccluLq6oqGhYcxWYATiZhAbG4uYmBgAuKqRBIDRnm3P6xMZhtDc3IzMzEz4+fmN2oR6rIwmBW0aHQwMDERPTw9+/vlnZGZmYtq0aXjooYfwxBNPcLrWF198EQCGnGx05MgRVFZW8k8AAtw5bpPOnd7eXsydOxd+fn7s77h2xDeHYW0DcOXD3NTUhIsXLyIxMRFCoRB9fX0oKytDaGgoEhMTeReVsQZiDeHp6Ym0tDT2/TRsrZfL5WyTQ1VVFXx9fdkvCClK1gJGo5gYADfeeKORBUPnsU/hGhwFvUoB6HXQK/vx4otb8dRTT/3vH776KjxefhnETlW5Ywdwyy0WPRetVouysjJOOuFsieGJMyYmBlqtlt28q6ur2TSwVquFm5sbpk+fzqbmu7u72ZFhfn5+rBj09fV1SK0gOWHTGsArODs7Q6VS4ezZs/Dy8jIbgbMWMm5tJJqbm1FdXY3ExERMmTJl2DWa20cNL9Bciz+dTmd0MBvtZ4XUcQ2VKiZZi9Gkiknk1M/PD7NmzbpqXzdtXdMCiIgIR3t7B/q729Bf+j2cPH3h5HnlmqXuuARfX1+0tLQY1Xy6enuzF3ENrljXWMpQbgZDNZI0NDQYNZKYOkFwDYl6t7e3G2VfhmokIU1GtooOjrWJTiAQICkpCQ888AD++9//oqWlBQUFBZwas1vK2bNnkZyczC8BSF5crVY75o1ucHAQJSUlcHV1xYIFC666gHPtiG8O03oGMmkkPT0dfn5+kEgkqKqqwtSpUxEVFcXrAv2R6O/vR0lJCUJCQoYUsoaeeHFxcVCpVEZ1ba6urlfEYkMDImJi4IwrG6UqMxP79+8HcOWzsW3bNnz66afo7GxkbRI+//e/8atf/cro8Yj4A65sth733gulBQLQ1p1wtsTFxcXISLevrw9VVVWQy+VgGIZNewUGBmLKlCmsCTUZUdfU1ARnZ2d2RF1gYKDdTvxarZaNAPLBIsHRDA4Ooru7G7GxsUZG42NhpH3PcJScJRORnJycjMZ3koswEYVciz9i2u/k5GQ803eMDJUqJuPCSMNgSEjIiKni3t5eiEQiTJo0iT1wmaJcvRruBw9CAEAHQDcwgEu//O7ChQt4+OGHUVpaCk23HMCVkZHNzc3GdxIRYXQBdwWgXbQI+MWBYTgsdTMYqpGEOEGYNpJwVTvIMAxqamrY0puhRL41JtRjjQ6SDMVYITZX/v7+WL9+/ZjvbzR0dHRAKBTySwByZQVDUhfh4eFDihF7pIAFv4zpIWk3lUrFRpMaGhrQ2NiI5ORkm3Yi2wNShE06Uy3d8N3d3TF58mRMnjwZer0eXV1dbOSqbN8+Nu0QGhoK91/+jYuLC1544QW88MILAID9+/cjLS3NbJTCdBWWrIpEMe3VCWdLGIZBc3MzdDodFi5cCCcnJ1ZwV1RUQCAQsHWDQUFBCAsLg16vZ0fU1dfXQ6FQcGJCbQnkhM0XiwSusbjz06DpyNPTc0y1XqYMl/nQaDQQiURQqVRDjpIzd3+GGQ5bNnvI5XLWtD8pKclm2RLTBiySKm5vb0d1dTV8fHzYrIVptFwmk6GsrAxTp05FdHT00A/y7beskb4ps2bNYuvElEol8vLycOedd171d269vVfd5lpUBM1VtxozFjeDkRpJyMFxLDWVDMOgsrIS3d3dmD17Nncm1Ga60K2JDnKVmRzt/rZlyxa89tprw/5NVVUVEhMTLb5P3gnAsZhBG6ZYZ8yYMayFir08BwUCAUpKSuDr64vZs2cDACorK9Hb24usrKxxH+kgJ8mkpCSEh4eP+n5Idx6payPj09ra2lBdXQ1fX192YzHcdNeuXTvkfZqmWUay5DY313e8QuoXBwYGMHv2bLbW0tBmhqR2SCG9n58fKwijoqIQHR3NmlB3d3fj8uXLbJTWWhNqS6BdwP8rW+nr68P06dPR2trK6f0PFQEkDgk+Pj6YN2+exVFvQ6cDWzZ7mOv0tQeGJRaxsbFQq9VsBIzM2yX7klKpxKVLl5CUlMSZ6byHh4dZ8QcAan9/eJqIQE1m5pD3xbWbwVC1yKSmcqhJLcOh1+tRUVGB/v5+zJ49e0yNOSPZzJDvgaWpYq58VIkAtPYzvHnzZtx7773D/k1cXJxF9zVp0iT89NNP/BKAwOiFGfngyGQyzJ49G4GBgcP+vT1qADs7O1lT0hkzZkCtVqOsrAwCgQBz587lbV2ZJZDi3MbGRs4ta0zHpw236Q6XdlD++c9X1wAOwVBzfccjZHygUqlEZmam2c+Zk5OT0ZgtQ4+wxsZG1vSURAaJ4W5fXx+6u7s5ccM3hZywr9UI4EiYdtz29/dz7opgbn8lTWnEIcGazz7ZR23V7AH8r9N3rIdMLnBzczM6RJEGtwsXLkCr1cLf3x9arRYqlYo9dNmMtjZoTWoAh0r/MgyDqqoq9vrI9QHLtBbZsJFEJBIBGLmRRK/Xo7y8HIODg5g9ezbn10drTagNxSCXzamj3d9I1JkL5s+fj23btl0bAlCpVKKkpATAlSdmyanB2dmZ845jQ5qamlBTUwMXFxd4eXmx3mwBAQFISkoa16lFUidENhNbRzGH2nRramqGr8/ZsgXKLVtGvH9znXDjFTLGSaPRIDMz0+L6PcPUDnmNiWGsUqk0spmJjY1FbGwsFAoF+3cjmVBbuvZruQZwOGFEOi4NO25tkaUwPPgyDIPGxkZcunQJM2fOHJUlhUAgwODgIHp6eiyO8lgKaQJoa2tDRkbGiId6e0MOUWKxGE5OTkhNTcXAwMCIWQsu0QwMjJjydYSbgbWNJHq9nt23Zs+ebfO6Y2tNqEm0kMsaQFvS1NSErq4uNDU1QafTsSJ82rRp8PHxwfLly5GUlMQvATiaFDCZSxkcHIyZM2da/AYZvvFcCkC9Xo+amhq0tbUhLS0NcrkcTU1NqKurg4eHB3x9faFSqUaMlhh2d+kBqKzo7rIlpDtWpVJhzpw5NvHOGg4nJydWZBDTTXP1OSEhIRZZOYxlri/fIF90nU6HzMzMUTevGL7GpjYz9fX17NijwMBAhIeHIyIiAjqdDr29veju7kZVVRW0Wq2RCfVInxNyGr+WawDNYTgGMikpCZMnT2Z/ZwsBSFLAhhmTrKwsq21FSLNHQEAAW3NNUoJhYWFGfp9meeYZeLzzzv+i8+HhQG0t+2vS6Utm+o41umwLdDodG2mfO3cu+xkfKmtBIjhcl04MBx/cDCxpJGEYBi4uLsjIyHCIDdpIJtQq1ZWKTS6CRvYocXn++eexc+dO9uf09HQAQEFBARYvXgxnZ2ccOHCAXwIQsG4cnOlcSmtOWOQLqNPpOOvyJGPmFAoFsrKy4OHhgd7eXqjVarYwUyKRoLa2dvjxRI88YvTGOAFw8vWF/hdjZUehUqnYzmp7nNJGwlx9Dpml29TUNKKVA5dzfR2NVqtFSUkJBAIBMjIyOO1cJnYZ0dHR0Gq1bLPOxYsXWaFHRtQFBQUhLi6O7WAlJtTe3t6sGDRnQk0EhZOTE2/GJNkaInK6u7sxZ86cq2qyiAAcapLQaHBycoJWq8XPP/8MnU5nccbEEMNmD09PT9ac15zfJ9njTPcK91/EH/BLh357O5S//GzY6ctXCyYyxcnZ2dnsXmiatSDfmaqqKqjVaqOxmbZKFRv6EPLJzcAw26BUKlFUVMSWEfz444+cNJKMBVMxqNFocPHiRTYCPVabGXvYXO3YsWNID0BCdHQ0/wSgJePgDKNshnMprYFsqFydsAcHB1FUVARPT09kZWUBuNKR09XVZVRwO2XKFLY+wtRzKiws7MrpcO/eq+7fWa+H/d2C/oe9OvDGgpub24hWDmRjEYvFNp3ra0+IbY2zszPS0tJsGl1wcXFBWFgYwsLCWF9HmUzGjj3y9vZmBSHZ5LVaLdtIMpQJNfkearVaaLVau6WAGxoa8PLLL+P48ePo6OhAREQE7rrrLjz77LOcCw9DEadQKFBcXAwXFxfMnz/frAggF2yuis+BK+UypLN7NF3uQ5k7CwQCo6ixXC6HRCJBU1MTW/pCxKCXl9eQHfr9/f0QiUS83mdG8vgzZagGt+G8UMfKeHAzIALVy8sLKSkpbP2voTn3aBpJuITUU5O9VSAQjNlmhk+TjnglAC2xgVGr1SgtLbXKqmC4x+LCC7Crq4ttIJg6dSrbyafT6cymSQ3rIwxr2tiT8wcfYO5ttxltkpr588e8ztFCauSmTJkyqvmjjsDUymFwcJDdWKqrqwFc6Ygl02esfk633AKPgwcBXPHx0jgoRa/RaFBUVAR3d3ekpKTYdaM3bdYhZrqdnZ2orKxkhR6JDhqagZuaUPv7+0OtVkMuv+J7Zq8Nsrq6Gnq9Hv/4xz8wbdo0XLhwAQ888AAGBgbw5ptv2uQxLbGpAoyzFFy8r2KxGJWVlWy9mrWfeUsnexh+LqZOnQqlUgmpVMqOYPP29sYiGF989LhSB1leXo7o6GjExsbycp/p7e1FSUkJIiIiRtUsZvqdGcoLlTS4jUYAc+Vm4Ortzc5jV2ZmWuQvaCkqlcpIoJI1GmZ0yH5i2EhChHRwcLDNM1Akq+Lk5GR0sB7KhNrQZma46CCfapwFDDFt4gGkpsLJycmsl01/fz978kpOTh5zSPv48eNjbocnF7H4+HhMnjwZAwMDKC0tha+vL2bNmmXVxk0ujhKJBJ5PPYXYI0cAAPKwMGgqKhxSB9PR0YGKigokJCSM+xo50gknlUoRHR2Nvr4+dHZ2Gg2IDwoKsuhz5eHtbSzQYZ0LPxeo1WoUFRVdtYnyAcPCb5lMBrlcDl9fX7aRxMvLCwKBgDWhlkql+PTTT7Fnzx709fXhv//9L1auXMnZyCtreOONN/Dhhx+ivr6e0/slTQ1kEtBwEzbI33///fdYtGjRmL77huMw4+PjcenSJSxbtsyq++Bqsodh9iN93jzW7L00Px9tLi686PQdClIvPG3aNERFRXF+/8RXTyqVQiaTGY3NDA0NtSgi3dfXh+Li4lELVIKzt/dV05iUHO1vJO3r5+eHmTNnWrRvkf2EvDYDAwPw9/dn0+hc+5MOJf6Gw9SEmkgrQ79BJycnPPTQQ5g2bRpeeuklztY7WngVAQSupD0MneUJHR0dKC8vR2xsLGdRqLFYwRCn8paWFqSmpiIgIABdXV0oLy8fdaTM8HSI3bvRa3By7jpzBl5eXggLC+NsVuVwkA7B+vp6pKSkjHuzasNOuDlz5rCdcKYD4hUKhVFX8VAdc6avvDOujHOyFyqVCkVFRfDx8bEoDWVvzBV+E1uI5uZmdtoISQU7OzvjV7/6FWbNmoU//elP2LZtG+6++25s3rwZr776ql3X3tvby6mtEUGv10MikVhkUwVwY4yv0+lQXl6Onp4ezJ07F66urqiurrY46s31ZA/D7Ie6v5+1FJLL5XDClRpphmEQEhLCq9o/YkVjy3phQ189w7GZhpFysi+ZSxV3dXWhtLSUEzcDU2EgAICmJmCMwlehUKCoqIiNTlr6WTLcT+Lj46FQKIzmn7u5ubGvzVibbEYj/gDLTaglEolVZs22hFcCkGx4CoWCvY0M/W5oaEBKSgqnX77Rbq5arRalpaUYGBhgU7ytra24dOkSZsyYMSo7BXN4eHhgypQpw9YNjuSFNxqIuBWLxZg9e7bRDOXxCHm/tFrtVUXl5gbEy2QyiMVitgaFbCyGNSimJtP2rM8kJ2h/f3/MnDmTl6kyUzw8PIymvvT09LCeg4ODgygsLERXVxcuXrwIgUCAoqIidHR0oN/OjU+1tbV49913bZL+dXZ2xpw5c2BN0mUsApDUgTk7O7N1hmQOsCUC0PACRqIYXNu8NDc3Q6/XY8GCBaxAHqpu0BGQ6GlTU5NdrWjMjc0k0S/SOWvYVSyTyXDhwgUkJCQYdZKPFh2uNB8aMUbxNzAwgKKiIoSFhSEhIWFMnyVPT0/22qjT6a5qsrFmdJ8hoxV/pgxlM1NTU4PTp09z8h5xAa8EIGDcBEJa2Pv7+zFv3jzO8+ajqQEkJxg3NzdkZWVBIBDg4sWLEIvFyMzMtFnKaqi6werqaqOOu7GenEnEgIhbe3hG2RJSaOzs7GyRNYphx6uh6CYdtiQdEzx5Mnx+mdLAwH41gKM9QfMJQ9E9adIkFBYWws/PD5988gna29sRGRmJzZs344477sD8Uda+jmZsUmtrK1auXIlbbrkFDzzwwKgedyQEAoFdBCCxxwoJCTFKs5H/jzTWylT8cR1hViqVEIlEcHFxwZw5c9h6rqHqBu2Z/SCQ+e1dXV3IyspyaOG+u7u70Qi2rq4uSKVSVFRUQKPRQK/XIzIykrNMjXZgAE7e3qwIVI4xIi6Xy1FUVISIiAhMmzaN0/fP2dmZFcPmrMGGOsSbwpX4M4eTkxPq6uqQm5uLxx57zO5ZjaHgVQ2gXq/H5cuX0d7ejqSkJJSUlMDd3R2pqak2SQecP38eU6ZMsThi193djZKSEoSFhSE+Pp5NKyqVSqSnpztELBnWDUqlUsjl8lGfnIlYEggESEtLc7jNy1ghERBvb2+r6zFNIaPTyCl8cHAQgYGB7Otsj/eedJqHhoaO+QTNB/r7+1FUVISYmBj8+9//xo4dO3Dw4EG0t7fj4MGDmDlzJjZt2jSq+5ZKpejs7Bz2b+Li4th9pa2tDYsXL8a8efOwY8cOm6XUycXaUk6fPo3p06cjLCzM4n/T1taGiooKs/ZYpK5w8eLFQ0ZGLG32GC39/f2sd6slTQqGBzGZTGbT7AfB0O80PT3dIXYkltDQ0IC6ujoIhULI5XLI5XI2VUxMlh29T5C6xKioKLs39xg2kpD9wFwjiS3FHwBcvnwZK1euxK9+9Sv87W9/403JDq8EoOEsX41GY+SKbwt+/vlnTJo0acRibOB/noPTpk1DZGQkBgcHUVZWBg8PD6SkpPDGY8nw5NzV1WXxydnQ2sAaQ22+Yuu5vqSrWCaTobu7G15eXuymawu7ApI+mTRp0rgfVQdciQgUFhYiKioK33zzDT788EMcP34cycnJdl9La2srlixZgszMTPznP/+x6WffWgF47tw5REdHW9QYQZpMmpqakJqaOmQ06Pvvv8f1119v9nBoa/FHGilInZq192+Y/ZBKpZxmPwiGHn+pqam8PAgbzvVNT09nGxkNTZa7urrg7u5uVBtnb+FBItF8mLJERlmaNpIEBwdDIpHAxcUF6enpnH//m5qasHLlSqxatQrvv/8+b8QfwDMBqNfrUVJSgpaWFiQnJ9s8T04EwnAfTMNNNSUlBQEBAejt7UVZWRk7N5ZPb6ghlp6cx2ptwDfIiXPy5MmcpxvMYTj3UiaTAYBRV/FYLyAkfTJ58uRxY8MzHAMDAygsLMTkyZOxf/9+/PWvf8UPP/yAjIwMu6+ltbUVixcvRnR0NHbu3Gm0+U+aNInzx9NqtValdH/++WeEh4eP2IFPIlZyuRwZGRnDpit/+OEHzJ0716ikxrTZg+t6P+DKhZBMPOHiteUy+0EYGBhASUkJW1/Lx73dcK5vZmbmkKbChqliqVQKvV7PimXiv2lLurq6IBKJEB8fb1GQxd4oFApIJBLU19dDq9XCw8ODs0YSQltbG1asWIElS5bg448/5t3niR9hq18YGBiARCKBm5ubXYokR6oBJH5+fX197AxF4iM3HmxRLKkbdHd3R2trK+Lj421ibWBvuOyEsxRzcy+lUinq6upQXl6OwMBAVhBae1EyTJ/ExcXZ6BnYD5LGjoiIwOHDh/Hmm2/i+++/d4j4A4CjR4+itrYWtbW1V32f+XA2tmQyEoneu7u7Y968eSNe2E33PXMeZlw3e9TU1KCjowMZGRmc1UmP5Ddobd3geDgIWzPX17Q2rr+/nx1NR+bxGplzc/h8ZTIZysrKkJiYyFlTJNe4urpCIpGwtnLEtspwWgtJF4+mBKCjowPZ2dm47rrr8I9//IN34g/gWQSQYRhIJBIUFRXhpptusvnjXbhwAe7u7oiPj7/qd4ZO/cRJvb6+Hq2trUhJSRnX0yPIybm2tpaNWBnWs1kkUtLS4HHpEoAr9if29sAzh0Qi4bQTjgsGBwfZlAxJFRs62w+3KfT29qK4uJgX6RMuUCgUKCwsRFhYGE6cOIGtW7fi0KFDWLBggaOXZjesjQCWlpbCx8cHU6dONft7QxP64UylDTl58iSSk5MRFBRkZGQLgPOLFDlEKxQKpKWl2a2b19q6QXMef26GTRCPPQZs326XtQ+FoZtBenr6mCJ4Q6WKQ0NDERAQMKbPgUQiQXl5OWbOnGmTKDoXDFfzZzjhSCaTobe3Fz4+PqwYtKTERyqVYvXq1UhJScHnn3/OmxIxU3glAIErG9rp06exYsUKmz8WccU39eTp6elBcXExQkNDMX36dOj1elRWVmJgYABpaWnjflA9sdZpbW1FWloaPDw8rKsbbGqC54wZRjcpXVzA9Pba8VkYQ+b6JicnW1Uwb0+0Wq3RRQmAUUrGMFVMamemTp16TURmifgLDQ3F2bNn8cwzz+DAgQNYtGiRo5dmV3Q6ncWzzoErh1Q3NzdMnz79qt81Nzez2QhrPiOnT59GQkICQkJCbFrvRzp9XV1dkZKS4rBaOmI7RFLFpnWDEokEFy9exMyZM1mbMTeDKRgAt0bIo4HUJbq4uCA1NZVTQaHT6Yz2JcNUcUhIiFXvGxkcwPd92JqGDzJjnghC4gYx1ESSzs5OZGdnIz4+Hl999RUva0gJvBOA/f39OH78OJYvX27zkGlNTQ10Oh2SkpLY29rb23HhwgXExcVhypQpUKlUKC0thaurK28Lgq2BpBD6+vqQnp5+lZjVarXsyXDIk/OaNfAsKDC+XwAqB22QxLA6NTXVJga+tsBwUoZUKsXAwABbv0TMeqdPn877MgNLUCqVKCwsRFBQEEpKSvDkk09i7969uPHGGx29NLtjrQCsqqoCAMwwOHAZzkIfzSzrM2fOIC4uDiEhITYTf319fRCJRBZ3+toLQ4NliUTC+kxGRkYiOjqajVCaTvoBAIWD9jcu3QxGgmEYtlHCcF8iWYvhgh+tra2oqalBSkoKQkJCbLbGsTDWbl/iBkHEIHl9/P390d/fj5iYGKxbtw6TJ09GXl4er8zMzcG7uCR5Q7Rarc1fPGdnZyNj1NraWjQ2NrLpkf7+fpSWliI0NNTi9Aqf0Wg0KC0tZWcUm3t9XVxcjOoGycnZyG/wuecw1UQAjn5Wwegx7ITLyMgY00g/e2M6KYM427e1taGvrw9ubm4YHBxEV1fXmFMyjoRMLAkMDER5eTl+//vfY9euXRNS/I0GFxcXqFQq9meNRgORSDTqWegMw8DJyQmDg4PsjGG+dfraElI36O3tDYVCAbVajYiICPT19eHML9OWQkNDMQtXT/txBIZuBklJSTZ/LQUCAfz9/eHv72+0L0mlUtTW1sLT05ONDBruS83Nzbh06RLS0tJ4ewjX6XRjtnpxcnJCYGAgAgMDjSaSnD17Fg8++CAAIDw8HC+++KLVHsOOgLcCcCzjj6x5LJ1Ox5of9/b2Yvbs2fDy8oJEIkFVVRWbguPTJjYaFAoFSkpK4OnpaXGru+mUDHJyblIoEAnA/Ze/08P+NYCkE66zsxNZWVnjPi3v6ekJDw8PDAwMYMaMGXBzc2MvpGNJyTgSMqvY398fFy9exKOPPoqvvvoKK1eudPTSxg2GRtDECsjb2xvz5s2zOg1Imj1CQkJQV1eH5uZmhIaGIiwsDAEBAZzscaTT1zCdyjcMPf7IJCdyOxE7hz/4AKs2bYIAV9K/A5Mnw97GWPZ2MzCH4cQNrVbLdhWTfYlE+qRSKacNPlyj0+lQXFzMetxyFUUlr09gYCDS09OhUCgwb948PPzww9Dr9WhqauL14Z13KWCNRoPvv/8e8+fPt7nzemNjI8RiMXQ6HQQCAVJSUuDs7IzGxkY2EjjeZ+ACVzYSYmCdmJjIyUZizm+QXExs7dSv1+vZaSUZGRm8NWm1BlI4bTpr1FxKxpbde1xBxJ+Pjw8aGxtx33334T//+Q/Wr1/v6KU5FL1eb3bW+VA0Njais7MTUVFREIlEmDJlCqZPn271e27a7MEwDLq6uti6OADs93c05sp6vZ6diJSWlsbbaLxKpUJJSQlb0jOUiB6pbtAeFir2djOwBlLCcunSJfT09LAZDUeP7jOHofizhc/f4OAgbr75ZgDAd999Bx8fHzAMg9bWVt6X8PBSAB47dgzp6ek2P01cunQJ9fX1CA8PR0JCAhtV6u3tRVpaGuej5xwBace3ZTrGorpBDh+Lq044vmBN4TQR3jKZjPPuPa7QaDQoKiqCp6cn2tvbcc899+DTTz/Fb37zG0cvzeFYKwCbm5tx+fJlqFQqJCUljaq7fSRzZ1LXJJFIIJFIoNFo2JovSyLOhp2+jpqIZAmj9fgzrRuUy+Xw9/dnG+W4Fjt8dDMwhZRMtbW1ITMzE87Ozkb7kjVuB7bE1uJPoVDg1ltvhVKpxKFDh+Dn58fp/dsaXgrAEydOYObMmTa1Wuno6EBZWRnc3NywYMECqNVqlJWVQSAQIDU1Fe7u7iPfCc9pbW1FdXU1kpKSLJokwAW2PDnbshPOUbS1taG6unpUhdOke4+Ib5IqJh1qjhDHGo2G9aSTyWS444478NFHH+HOO+/kZaTS3lgjAPV6PQoLC9Hd3Y25c+eO6kBsGPmzxN/P0FxZIpFgYGAAQUFBbHTQdF9UKpUoKSmBm5ubQzt9R6KnpwcikYiTdKotsx/jwc2A+DpKJBKzRtTm3A6G65q1FaTmD4BNxJ9KpcLtt9+Orq4uHDlyhLfp7+HgpQD8v//7P0ybNs0mNSQMw6C+vh719fWIjY1FXV0dfHx8oFAoEBgYyHr+jWfIcyQjoRxVlMvlydmwEy45OZkXka6x0tLSgosXLyI1NXXMhx2SKiZikLzWht17thZgWq0WxcXFcHV1RV9fH2699Vb8/e9/x3333UfF3y8wDMM2ng0HOewolUoIBIJR2eUQc+exdPqSkYcSiQS9vb3w8/Njv7/kAsv3JjkSUbPFRAoidiQSyZizH42Njairq+N1IwXJknV1dSEzM3PEaK+hMT7pmiWesyEhITZLFdta/KnVatx9991obW3FDz/8wNv3ayR4JwC1Wi3OnDmDKVOmcO4grtPpcOHCBXR3dyM1NRXe3t5ob29HdXU1PDw8oFQq4ePjg7CwMISFhfFikLa16PV69guanp5u8zpKaxjtyZl0whFLifH2npijubkZtbW1SEtLQ2BgIOf3b87olYhBW8wEJakWJycnKJVK3HzzzXj99dfx0EMPXRPvF1dYIgD7+/tRXFwMf39/REREoKqqCjfccINVj2GLyR5qtZqN7Hd2doJhGLYb0tZ1v6OFdKfOmjXL5hE1kv0ggtnS7IehL6vhXF++odfrUVFRgb6+PmRmZo6q9lqhULDXAFvNULe1+NNoNLjvvvtQW1uL48eP89byxhJ4KQDPnz+PsLAwTg1wVSoViouLAQApKSlwcXFBS0sL6uvr2Y41tVoNmUwGiUSCzs5OeHh4sGKQrxucIaS7Ta1WswbPfMXSkzMfOuG4hvgW2qPOFTCeCSqTyaDVajktaDfccHU6HdavX4+XXnoJjz766DXxfnHJSAJQIpGwxf9Tp05FX18fioqKLLbNsfVkD4Zh2E7fyMhIds90dnZm90o+1KIaWkSlpaXZPT1nmP2QSqXo7+9nm7fCwsLYyJehm0FGRgZv3QxI493g4CAyMjI4KZEaKlVMjPFHU+Jja/Gn1Wrx4IMPoqysDAUFBbztdLcUXgpAYh0RGxvLyX329/ejqKgIAQEBbBdsTU0NZDLZkB1rOp2OjaBIpVJ2rmJYWJhNIihjhdTiuLu7swJ3vGB6clar1Wx6oLm5GXFxcbzshBsNly9fRmNjIzIyMhxSMGw4E1Qmk6G/vx9+fn6sGPTx8bFKtOl0OohEIuj1eggEAuTk5ODZZ5/F5s2bqfgbAkNfP4JhaUpycjI7Qksul+Ps2bNYtmzZiPdLIn86nc4m5s7EgFoikRjtm3q93qijWK/Xs3tlcHCw3UtqyOSm7u5u3mRBzGU/QkJC0NfXB5VKNeqImj3Q6XSsbU5GRoZNaosZhkFPTw97zR0cHDQaT2pJY5GtxZ9Op8PDDz+Mc+fO4cSJE7ydcWwNvBOA5E309PTEtGnTxnx/5EQdExOD6OhoNkqm0+ksjpLp9Xp0d3ezhdGO3uBMkcvlKCkpQVBQEK9c90cDOTk3NDSgo6MDAFh7AcOTs8U0NQFffgls2WKD1VoOucA3NzcjMzOTNx3mJFUsk8nQ2dkJNzc3VgwGBQUN+1nS6/UoLS2FRqOBq6sr1q1bh82bN+OZZ56h4m8YTAWgYWmK6cFAoVDg5MmTWLFixbCv6UidvmPF0DsvLS1tyAsyqfkie6VKpUJwcDDCwsLs0phkmAVJT0/nZTOfVquFRCLBpUuXoFar2e/cqF0TXn0VuOMOwAYjI8kBT6fTIT093W4NHKT2VCaTobu7G97e3kZdxaafb1uLP71ej8cffxwnTpxAQUHBNTGeE+CpACwrKzM7o9caGIZBQ0MDamtrkZSUhNDQUAwODqK0tBS+vr6jHqljWNQqkUigVCrZDY6M8bInxC8qKioKcXFx18SF17ATzs/Pz2zdoCU1I67e3kZO54q//hX43e9s/wRMMLVM4ENEwhwkVUxO4SRVTDr4DC+mer2eFQReXl5Yu3YtNm3ahBdeeMEhn8Ht27cjPz8f1dXV8PT0xIIFC/Daa68hISHB7msZCbVazaZoSeSe2FSYCha1Wo3jx49j2bJlQ+5XXDR7DIdCoYBIJIK7uzuSk5Mt3uMYhsHAwAArBuVyOQICAti9kmu7GEs9/hyNoZtBcnKyUaMcyX5YVJ5x+jQ8V6xgf9QBUHNoyE+mzhDzZEe9nhqNxihVLBAI2NcnODgYAoHA5uLv6aefxqFDh1BQUMBZZpIP8FIAVlZWQqPRYObMmaO6D1KsKpPJkJqaCh8fH3R3d6O8vByRkZGc1ZKZ2+ACAwPZDc7WIf329nZUVlYiMTGRt35R1jLcXF9rO+48TeppHDGvmGEY1iDXnGUCXzFXw+Tn58duupcvX4ZSqYSfnx/Wrl2Le++9F6+88orDDiArV67EbbfdhqysLGi1WvzpT3/ChQsXUFlZybvXnAjA3t5etrlp1qxZZqOtOp0OR48exY033niVGGAYho38Adw1exjS29sLkUjESaevaQMAlw13pFEsMDAQSUlJvM2CDOdmYGndIMHd2xumz5KrecXEzomIaUdnuQjEs5K8RgqFAs7OznB1dTU7256Lx/vTn/6E3bt3o6CggJOsJJ/gnQDU6/Worq6GXC5Hamqq1f+enK50Oh1SU1Ph6uqK1tZWXLp0CTNmzLBp3p5scGKxGL29vfD19TXa4LiCRDcvX77M68Hb1mDYCWdJfdxQdYOGJ2dTAcgAUNpRADIMg+rqashkMsyePZu3BrmWoFKpjMy+//a3v8HDwwM//fQT7rrrLvztb3/j1UVXKpUiLCwMJ0+eHJWFii1Rq9Voa2vDhQsXMG3atGEN2hmGwffff49FixYZCQDTZg9biD9inxIXF4fo6GhO799cwx0ROtZ2g3Lp8WdLrHUzGMo1gWQ/PH18rppXrKiqGnMqmEzx8fLy4rXllk6nQ2FhITQaDdzd3dHb2wtvb2/2NRpr46Zer8fWrVvxxRdf4MSJE7zMJowVXgrA2tpativKGoh9gp+fH5KSkthOsI6ODqSmptrEbmMo1Go1K046Ozvh5eXFikFfX99RfzCJqJBIJEhPTx93zuPmGGsn3FAn5+sXLzbaIJUuLmB6e7ld/DBrIoXolvhljQcYhkFFRQV6e3tRXl6OP//5z3BycoJer8eyZcvw3HPPYfbs2Y5eJgCgtrYW8fHx7Hg9vkA+Fw0NDUhNTbVo1OTRo0cxb948tm7U1s0eDMOwkXh72KcQQ3PSREIi+2Qs3XACxJYef1wyVjcDw45Z8hotWr8eXgb1pFwccJVKJYqKiuDn52fVtBR7Y67mT6PRsPXMJENk2FVsTRSTYRi88sor+OSTT3D8+PFRZyP5Di8F4OXLl9He3o6srCyL/51UKmVr4WJiYtjCaqVS6fDxRGRUGkldurq6Gg1ht/RLRuoj+T5yyRpsMdeXPTkXFWHenXfCCYDS1RU9DQ2ceU0NBylB6O/vv2ZmFRPh0tPTg/DwcKxduxbLly/HBx98gMrKSuzfvx9r1qxBSkqKo5cKvV6PdevWoaenB6dPn3b0cq6iqqoKYWFhFteCFhQUsJZBtm72IBkYqVTqkJm+hpOEJBIJdDqdUWTfsA7Nnh5/Y4Hrub6G2Y/4666Dp0IBALh87BhCxtClq1AoUFRUxKbR+RpJtaThg7xGJGuhVCqNuoqH25MZhsGbb76Jd999F8eOHRtVJnK8wDsBSHymLl++jPnz51v0942NjWyKVygUQqFQoLS0FB4eHryzRDG1TGAYxqIh7CS17ezszKa2xzv2mOtr7uRsqznFgG38shyNofv/5MmTkZubi+uvvx7//Oc/eVMbZMjGjRtx6NAhnD59mpfD2DUaDWvSbAmnTp3CzJkzERgYaNNmD41Gg/Ly8hE7fe0FmW5DMimDg4Osf6VcLkdHR4dDPP6sQSKRoLy83GZ12sPVDZIJQJZA0tOhoaFISEjgvfhjGAYZGRkW7z8DAwPsa9Tb2wsfHx/2YGGYKmYYBu+88w7eeOMNHD16FJmZmbZ8Og6HlwKwtbUVNTU1WLhw4bB/S/yeJBIJUlNT4evri97eXpSVlSE8PBzx8fG8DWED//M+ImJQrVYbWSYQkUeGmPv5+Q1ZLD7ecMRcX8OTs1QqhUqlsrzjzsL7Lysrg1KptJlflr0hcz9lMhmio6ORm5uLzMxM7Ny5k5fi75FHHsHevXtx6tQp3nbrabVatnHDEk6fPo1p06ax4wJtUe+nUChQUlLCy0MzgTTcNTY2QqPRwNfXF+Hh4VaPlbQX5DpmzwjlSHWD5j43crkcRUVFiIiI4HUN5WjFnykkVUwm2jg5OaG1tRUMw0AikeDNN9/E4cOHMXfuXI6fAf/gpQAUi8UoLS3F4sWLh/w7tVoNkUgEjUaDlJQUeHh4sGPdEhISeHnyH46hhrD7+PigtbWV0+5lR8OHub5cnZwJOp2O9cTLyMi4JiK0pINZIpEgNjYWN998M2bMmIEvv/ySdwKBYRg8+uij2L17N06cOIH4+HhHL2lIrBGADMPg3Llz8PPzQ0xMDNzd3W3W6RsWFoaEhATeHjBJxkCj0SApKYntBu3q6oK3tzdbY22tmbktIE16jpzFbkn2g9QmTpkyhdc2YoaG82MRf6aQoMAnn3yCt99+G729vZg/fz42bNiANWvWXDPuGkPBOwEIXKnn+/nnn3HTTTeZ/b1cLkdxcTF8fHzYWoX6+nq0trYiJSWFPSmPZwYHB1FfX4/29nYAgL+/P7vB8fG0ayl8nes7mpMzwXBzSk9P5504Gg2kK7u9vR3Tpk3DLbfcgujoaHzzzTe8jGxu2rQJX375Jfbu3WvUrefv7+/wVKYplgpAUu9Hol59fX2sj15YWBgntaVisRgVFRWYOnUqoqKiePN9NEWpVEIkEsHNze2qCKVhRIfUWBMrrsDAQLs+J2vdDOyFueyHn58f+vr6EBMTg6lTpzp6iUNi6/2VYRh8/vnneOqpp/DBBx9ALBZj3759SElJwfvvv8/pY/ENXgrArq4unD59GisMTC4JMpkMIpEIkZGRiIuLY30D5XK5TXyAHAWZtzlr1iz4+/uzdTB8PO1ayniZ62tN3aBWq2WNfB1plso1ZI7q9OnT8Zvf/AZCoRD5+fm8rWkc6rP02Wef4d5777XvYkZAp9NBq9UO+zfmmj3IIUUikaC7uxu+vr4QCoWjOhTau9N3LJBJR5Z4/BnOvZZIJABgUY01F4yXub4Mw7Bm++7u7lCpVGPKftgSe4i/r776Co8//jj27NmDpUuXGv3OVteoU6dO4Y033kBRURHa29uxe/du5ObmGj32Cy+8gH/+85/o6enBddddhw8//JDzzAYvBWB/fz+OHz+O5cuXG33Zm5qaUFNTg8TEREyaNAlKpRJlZWVwcXFBSkoKLyMT1kLSbu3t7UhPT7+qC4+cdom9DBkjRDqK+SqquO6EsxfmTs6kTtPf3x8VFRVsHSMfa+JGQ319PZqampCYmIg77rgDfn5+2Ldv3zXRzcwHRhKAlkz2MLWZIodCoVA4oqmyYacv362kenp6UFJSgilTpmDq1KlW7W+W1lhzgS3cDGyFTCZDWVkZEhISMHny5DFlP2yJPTIreXl52LhxI7755husXr2a8/sfikOHDuHHH39EZmYmfvWrX10lAF977TVs374dO3fuRGxsLP785z+jvLwclZWVnH62eCkABwcHjdzvyYZF/Px8fX3R39+P0tJSThzq+YJOp0NFRQX6+vqQkZEx4qmenHbJBkdG5Fjin2VPiFcX2XDGK6aTX/r7++Hi4oKYmBjOzb4dRUNDAxoaGjBjxgzcc889cHFxwYEDB66J58YXhhKAo53sYXgolMlk8PDwYDMEpma4Go3GaFYun4UKSU9Pnz59zDXd5mqsuZraZA83A64gXclJSUkIDw+/6vf2dk0YCnuIv3379uH+++/Hl19+iZycHM7v31IEAoGRAGQYBhEREdi8eTOeeuopAFfqdIVCIXbs2IHbbruNs8fmZb6KfMh0Oh07j1ClUiErKwvu7u6QSqWorKzkfd2KNZDnyTAM5syZY9Em4uzszH45Df2zqqqqoNFoEBISwp52HZWabG1tRXV1NZKTk3mdZrIEgUAAHx8fuLm5QSwWs3NyZTIZ6urqeHNyHi2NjY24fPkykpKS8Nvf/hYAsH//fir+OMbc54KYOxN7GGs6fV1dXREeHo7w8HDWVFksFqO4uBguLi6sGHR3d4dIJIKnpyeysrJ4Xa5gWALDxb4hEAjg6+sLX19fTJ06FQqFAhKJBB0dHaipqYGfnx97eLbm827oZpCZmcnr17SjowMVFRXD7sUuLi4QCoUQCoVG2Y+amhqj7AcXrglDYQ/xd/DgQdx///3YuXOnQ8WfOS5fvoyOjg6jdLS/vz/mzp2Ls2fPXvsC0MnJCc7OzpDL5exw99mzZ0MgEKChoQGNjY1ITk62yEV/PEAsGMjondGcspycnBAUFISgoCAkJCSgv78fEokE9fX1qKioQFBQEHvatdcJlXTCpaenO6wTjmtUKhWKiorg4+PDWvJERUUZnZxLSkocdnIeLc3Nzaivr0dSUhIeeughKJVKHD582GKzYsroMaz3EwgEY4rcOzs7s4LP0HNUJBJBq9XC29sbkZGRvMkOmGLaRGErjz9PT09ER0cjOjraKJ1eX18PT09PVgwON06MD24GltLW1obq6mqkpqZaPDrU8Joyffp0NvvR3NyMyspKm9QN2kP8/fDDD7j33nvxySef4Ne//jXn9z9WOjo6AABCodDodqFQyP6OK3gpAIErH77S0lJMnjwZU6dOZT3/ent7kZWVxY5FGu/09fWhpKQEQqGQMwNOgUAAPz8/+Pn5Ydq0aewXt7W1FVVVVUYdxbbokDTcxDMzM3ldY2QNZEySv78/Zs6cafRe8eHkPFpaWlpQW1uLpKQkPPLII+jq6sLRo0ftPgViImLLyR5kFJZOp0N7ezs7Kq2qqgo6nY4VOdaOybIVZIIO2ePtFXl2c3PD5MmTMXnyZPYgJ5FIUFxczApq0lFMRB5f3QzMQSampKWljfogTrIfPj4+iIuLg1KpZMsOamtrOcl+2EP8nTx5EnfccQc++OADTiNp4xVeCsCmpiZoNBpERUVh2rRpUKlUKC8vBwDMmTOHt52I1iKVSlFeXm6TYeuGeHt7IzY2FrGxsUadhJcuXYKPjw8rBkcqHrcEw044e27itoaMSQoKChpxw3fEyXm0tLW14eLFi0hOTsZjjz2G1tZWHDt2zK5zsycqth7rxjAMG4VPSUlhMyYJCQno6+uDWCzGxYsXoVarHV4uQmoTNRoNW+rjCEwPct3d3WwNs16vR2hoKHx8fHD58uVx4c1KOr25jqZ6eHggMjISkZGRRtkPkUjE1qJbk/2wh/j78ccf8Zvf/AZvv/027r77bt6+b5MmTQJwpQbWsE5TLBYjLS2N08fiZRNIZWUlWlpa4Ofnh+DgYNTV1bEWAHw4qXJBS0sLampqMHPmTPYNtzcajYYt9pXJZHB3d2fF4GhOceOpE84aBgcHUVRUxMmYJMOTs6M77trb21FVVYVZs2bh6aefRlVVFQoKCq6Z0gq+otfroVKpbDrWTa/XswextLS0IaPwhs0RYrEYCoUCQUFBEAqFdotWK5VKlJSUwN3dnbdTSMhYusbGRojFYggEAiPRzLeoPvC/bn57+hEO5ZpA9jhzr5M9xN/58+eRm5uLV155BZs2beKV+BuqCeSpp57C5s2bAVzJFIaFhXHeBMI7ATg4OIh77rkHN9xwAzo7O3H8+HE8/fTTmDx5MoRCIa+tTiyBYRjU1dWhubkZaWlpvIm0kOJx0lHs5OTEikHD1MdQjKdOOGsYGBhAYWEhO1qQy8+e4clZJpMZXVRsXTfY0dGByspKzJo1C88++yyKi4tRUFDgsMPIROLDDz9EfX09cnJybGIfZBhNS0tLs+ogZtrlTjplSRMJ1xCPPxJZ53MdHYkEJiYmws/Pj82k9Pf3swbdoaGhDjceJyU4bW1tyMjIcFi5FHFNMHydTLMf9hB/RUVFWLduHV544QU8/vjjvNAPcrkctbW1AID09HS89dZbWLJkCYKCghAVFYXXXnsNr776qpENTFlZ2bVvA9Pb24u33noLH3/8MTo6OjBz5kzcd999SEtLg0qlgkAgsEqY8AlSx9jd3Y309HTeFtgbpj6kUil0Op3Radf0guWIub72gMzIJHWottw4RnNyHi3ECmLWrFl48cUX8eOPP+LEiRPj2qJnPHH06FF8/PHHOHz4MEJCQpCTk4Pc3FzMnj17zPvZ4OAg2+mbnJw8pu8i6ZSVSCTo7e3lvHa4u7sbIpFoVB5/9ma4ub6mBt1cl9VYA/GRFYvFyMzMdHiJiSEk+0H8Bj08PKDX6+Hi4oLZs2fbZHxmaWkpsrOzsWXLFjz99NO8+YydOHECS5Ysuer2DRs2YMeOHawR9Mcff4yenh4sXLgQH3zwAaZPn87pOngnAHU6HR566CEcPHgQb7/9Ni5evIj8/HxcuHABixYtwtKlSzF79mxoNBowDIPQ0FAIhUJe+d6Zw/BUnp6ePm7qGEnqg1wIlEol29AQGhoKnU43bjrhrIFMLYmKikJcXJxdH9uSk/NokUqlKCsrw6xZs/DKK6/g2LFjKCgoQHR0NIfPgGIJAwMDOHz4MPLz8/Hdd9/Bz88P69atQ05ODubNm2d1ZLCnpwcikQjh4eGYPn06pxc7lUrF7gFE5JApJKP5PIrFYtYblO9z262Z68t1WY01GNZfZ2Zm8npkqEqlQnFxMVQqFRiGYRuWuMx+VFRUYNWqVXj88cfx3HPP8Ub88QneCUCGYfD666/jzjvvZDcGkjbNy8tDfn4+iouLsWDBAixfvhyzZ89mi6n51tVGGA81LpZgaoQsl8tZf63k5GSHpz64ore3F8XFxbyZWmJ6ciY2FdbWDcpkMpSWliIpKQlvvfUW9u/fjxMnTthd4FKuRqFQ4OjRo8jPz8e+ffvg7u6OtWvXYv369bjuuutG3DNISj8+Pp7t9rUVROSQKSSenp7sFBJLRlMSjz++W3mNda4vKashgtCWRv2GLhmZmZm8rr82Tfs6OTlxnv2orq7GqlWr8OCDD+Kll16i4m8IeCcAR4JhGDQ1NbFi8Ny5c5gzZw5WrFiBOXPmwNnZme1qI4XMjhSD/f39KCkpYe0CrpUIGRFJfn5+7MglX19fo9THeISMniIm43xjtHWDnZ2dKC0tRWJiIt5//3188803OHHiBOezJSljR61Wo6CgALt27cLevXsBANnZ2Vi/fj0WLVpkdEFkGAaXL19GQ0ODQwSVVqs1mkLi5uY2ZMSLYRhcunQJbW1tZsdc8gmu5/oaGvVLpVJOjfoNm+8yMzN5nV0aqeaPi+zHpUuXsGrVKtx111149dVXr5lrri0YdwLQEDLUOj8/H/n5+Th9+jTS0tKwatUqzJs3D66urlAqlewXLTQ01K7Rt87OTpSVlSE6OhqxsbHXzCnE3FxfQzNVwyjVSGaqfKKrqwsikYiT0VP2wNK6QfK8EhMT8cknn2DHjh0oKCjAjBkzHLb2kYahU66g1Wpx6tQpfPvtt9i7dy+USiWys7ORm5uL+fPn45lnnsGqVauwZMkSh3ujmjaSGZpS+/n5obKyEn19fUhPT+f1AdHWbgYMw7BG/VKpFAMDA0ZG/dYIOJ1Oh7KyMqhUKmRkZPC6+W40DR/WZj8uX76MlStX4uabb8Zbb71Fxd8IjGsBaAjDMBCLxdizZw/y8/Nx4sQJJCUlYfXq1Zg3bx68vLyMLA5CQ0NtUnRKaGtrQ1VVFWbMmIGIiAibPY69MeyEG+p5GZqpymQyowtBQEAAL7+UhhGy8fh+DXVy9vHxwYULF7BgwQJ8/vnn+PDDD3H8+HEkJyc7dL0jDUOnXI1Op8OPP/6IXbt2IS8vD2KxGF5eXti2bRtuv/12XtV8kUYysVgMiUQCrVYLFxcXJCQkQCgU8nIPABzjZmD4ve3r62MjXmFhYcO+p0RQ6XQ6pKen2/R6Nla46PYdKvvh7u4OoVCI7u5urFixAtnZ2Xjvvfd4+xnjE9eMADSEYRh0dXWxYvCHH35AfHw8Vq9ejQULFsDX19fo1BUWFsbZF52YrzY0NCAlJQXBwcGc3C8fGK4TbigMx1FJpVIwDMNGZPlSq0kMuWfMmGF2QPp4RKVSobGxEXV1ddiwYQNcXFygUqnw4Ycf4u677+bF604w9cGiDE9dXR1Wr16NsLAwpKWl4eDBgxCLxVixYgVycnKwcuVK3jgMkHFpLi4u8PX1hUwmg1arHdZVwFHwwc1ApVIZZVK8vb1ZMejr68tGvLRaLUpKSiAQCJCWlsbrunJbWL0YZj8++OAD/Pvf/4azszNmz56Nb775htpZWcg1KQANYRgGvb292LdvH/Lz83HkyBFMmTIFq1evxsKFCxEYGAi5XM6J35Ver0d1dTVkMhnS09MdnpLhEms64YaCvBekiUSlUhldCBxxgiXdiLNmzbpq9uJ4htRoTp06FV999RVef/11LFmyBOfOnYOLiwsOHDiArKwsRy8TABWA1vLll1+isLAQb7zxBpydnaHX61FcXMzWRTc3N2Pp0qXIycnB6tWrHVaCIZfLjcalOTk5mXUVcPQeAPxPqBrO+HY0pvWVrq6urP1ZfX093NzcbOIjySU6nY6NqGZkZNhEqLa3t7Meeu7u7igqKsJdd92FHTt2cP5Y1xrXvAA0pb+/H9999x3y8vJw6NAhhIWFITs7GwsXLoRQKGRD8MTiwNL6D61Wi/LyciiVSqSnp/O6C8saxtoJN9z9kgkEEomEjciS0649Cpk7OjpQUVFhNCbrWqC/vx+FhYWIjY3FkSNHsHXrVhw6dAjz58+HVqvFmTNneHVAoQKQOxiGwYULF/Dtt98iPz8fly5dwo033oicnBysWbMGgYGBdhGDpE6Y2CiZe0xStkDSxLbKyozEeJjrSzIpHR0d6OjoAHBlZBifMimm2EP8SaVSrF69GikpKfj888/h4uKC9vZ2NDc3Y86cOZw/3lBs3boVL774otFtCQkJqK6uttsaRsOEE4CGEB+uvLw8fPfdd/D398fq1atxww03IDw8HH19ffDz82M3pKHqMVQqlVHqgM+1GNbAdSfccJiazlryuo+FtrY2VFdXIyUlBSEhIZzfv6OQy+UoLCxEdHQ0Tp48iS1btuDAgQNYtGiRo5c2JFQA2gaGYVBdXY1du3Zh9+7drJdqbm4u1q5di5CQEJuIHXKwstbjb3BwkN0D+vr62Oka1hzEraW3txclJSWIjIzkvRk1iVJ6e3tjypQpbHSQZFJIcwQfrj/2EH+dnZ3Izs5GfHw8vvrqK4c+761bt2LXrl344Ycf2NtcXFx4f22Z0ALQEFMfLg8PD1YMRkVFobe316z56cDAAEpKSuDv74+ZM2fyInXABTqdDhcuXHDIXF9L62BGS0tLCy5evIi0tLRRp7P5CJlcEhkZibNnz2Lz5s3Yt2+fWcd5PkEFoO0hXqpEDBIv1dzcXKxbtw6TJk3iRPyQutOxWtIolUpWDPb09NjkQEiilHFxcbw3QlcoFCgqKkJgYCCSkpLY94pkUsh+aVjOFBoa6pBMlD3EX09PD9asWYPIyEjs2rXL4d3PW7duxZ49eyASiRy6DmuhAtAMarUax48fR15eHvbs2QOBQIDVq1dj8eLFiI2NRV9fH7y8vODm5oa+vj5MnjyZ8zmxjoR0wul0OqSlpTn0yzVUHQzpKLb2NW9qakJdXR2v5jBzAZlZPHnyZBQXF+ORRx5BXl4eVqxY4eiljQgVgPaFYRg0Njay9lnnzp3D3LlzkZOTg5ycHERGRlr9vSIjyNrb2zn3+FOr1awYJAdCw4P4aPZdMg5xPLg0DA4OoqioCCEhIUhMTBz2+SoUClYMGnqzhoaG2qUxyB7ir6+vD+vWrUNwcDB2797Ni3KrrVu34o033oC/vz88PDwwf/58bN++nZdesoZQATgCWq0WJ0+exK5du7Bnzx6oVCqsXr0abm5u2LdvH9577z0EBwezGxIXESpHwodOuKHQ6XRGHcUAjJz1R6qDIY0sGRkZvDahtZbBwUEUFhYiPDwc5eXleOihh/D1119jzZo1jl7akIw0DJ1iHxiGQWtrKysGf/zxR6Snp7Ni0BL/Ur1ejwsXLqCvrw8ZGRk2taPRaDRGB0IPDw8jr0FL9t7RuBk4ChLVDw8PtzrIQLxZpVIpOjs7R/VaWYM9xJ9cLkdubi68vLywf/9+3kyfOnToEORyORISEtDe3o4XX3wRra2tuHDhAm9qrc1BBaAVEB+uZ599Fj/++CM8PDywbt06LF68GImJiZDL5cM64fMdpVKJoqIi+Pr68qYTbijI9BESGRjJWb++vh5NTU2cNrLwAYVCgcLCQoSFheHixYv47W9/i//85z9Yv369o5c2LCMNQ6fYH0Mv1by8PJw8eRIzZ85ETk4OcnNzzQoQjUbDZgvs5ZtH0Ol0rBiUSqUWZQe4cDOwF/39/SgqKsKUKVOGbKSxFEMPPWLSTQ7PgYGBY97r7SH+BgYGcPPNN0MgEOC7777jjdWROXp6ehAdHY233noL999/v6OXMyRUAFrJn//8Z3z88cfYt28f9Ho9W1MjlUqxbNky3HTTTZg1axbkcjlrgCwUCkeVrrQn46ETbihGctZvbm5GS0sLMjMzeX0asxalUonCwkKEhISgoaEBd999Nz777DPceuutjl4aZZxj6KWal5eHY8eOYfr06Vi3bh3Wr1+PGTNmoL6+HmfOnMGsWbOQkpLi0E5UvV5vNIVEIBCwYpB0PtvCzcBWEBunmJgYxMbGcnrfxKSbvFY6nc7Im9Va8WYP8adQKHDrrbdCqVTi8OHD42Ifz8rKwtKlS7F9+3ZHL2VIqAC0krNnz0IoFCIuLo69jfhw7dq1C/n5+WhpacHSpUuxdOlSJCcnQ6FQXLUh8Sm6Np464SzB0Fm/t7cXAoEAUVFRmDJlCm9SBmOFiL+goCC0t7fj9ttvx0cffYQ777xz3L9/FH5h6qX6/fffQygUQiqV4sYbb8QXX3zBq1IRw7m7YrEYer0erq6u0Gq14+IQ2N3dDZFIZJd55Ia+jFKplJ2WRQ7PI0V07SH+VCoVbr/9dnR3d+PIkSPjonxHLpcjKioKW7duxWOPPebo5QwJFYAcQ+phiBisra3FkiVLsGzZMqSnp0OpVIJhGISGhkIoFCIoKMihYpDMiZ06dSrvO+GsgWEY1NTUQCwWIzIyEj09Peju7oa3tzcrxH18fMalWFKpVCgsLERAQAA6Oztxyy234J133sG99947Lp8PZXzx3Xff4dZbb0VUVBSampogFArZNHFmZiavDrdarRYikYjNyIxUKuJoyEhKR80jHxgYYMtqyDhJsl+aHp7tIf7UajXuvvtutLa24ocffuBt2v6pp57C2rVrER0djba2NrzwwgsQiUSorKzktccsFYA2xNCHKz8/HxUVFbjhhhuwbNkyZGZmQqPRQKfTsbUY9jb0JFMwxkMnnDUY+hfOnj2b3bhMC8jd3d3HXb2mWq1GYWEhfH190d/fj1/96ld4/fXX8dBDD42L9VPGN/39/YiPj8crr7yC3/72t1d5qQYEBGDdunXIycnB3LlzHZoWNnUzcHV1hVwuZ42nFQoFgoOD2WiXo/3z+DaSUqlUspmU7u5u+Pj4sNcqT09PlJWV2VT8aTQa3HfffaitrcXx48d57al322234dSpU+js7ERoaCgWLlyIbdu2YerUqY5e2rBQAWgnyEQNMq6ppKQE1113HZYvX46srCwwDAO1Wo2QkBAIhUKbz8gcT51w1sAwDCorK9Hd3Y3Zs2cPaRGg0+nYmiEyWNywo5hPUQyCWq1GUVERvL29oVAosH79erz88st45JFHqPij2I3u7m6zFkrESzUvLw/79+9nm+Ryc3OxYMECu0bbLHEzIP55YrGY9c8TCoUIDQ21yyQiQ/g+ktL08AxcMTqeOXMmgoODOd9/tFotHnzwQZSVleHEiRPX1DWKT1AB6ACIDxcRgz/99BPmzp2LFStWYO7cuRAIBEYzMkNDQzndPMdTJ5w16PV6VFRUoL+/3yrzasOaIYlEMuaiaFug0WhQVFQET09PaLVarFu3Ds899xyefPJJKv4ovEOtVuPYsWPIy8vD3r17IRAIsGbNGqxfvx6LFi2yabRNoVCguLjYKjcD00lEw6U+uYZMJRqrebY90Ol0EIlEUCqV8PPzQ2dnJ3t4Dg0NtciOy5LH2LRpE86fP4+TJ0/yIhp6rUIFoIMZyodr1apVmDdvHlxdXdnCXHI6He3myTAMLl26xJq18r0Tzhr0ej3Ky8sxODiIzMzMUdtRjLUo2hZoNBoUFxfDzc0NTk5OWLNmDZ566ils2bKFij8K7yFeqt9++y327t0LtVqN7Oxs5ObmYsmSJZxG2wYGBljT5NG6GahUKlYMdnd3s2bKhhOguIJMJUpNTUVwcDCn98015mr+yOGZpIpJjWVoaChCQkKsvlbp9Xo89thjOHXqFAoKCjBlyhQbPRsKQAUgryA+XLt370Z+fj7rw7V69WosWLAAnp6ekMvloxqYrtfrUVVVha6uLpvP9bU3er0epaWlUKlUyMjI4FSkmRZFk/mkoaGhduko1mq1KC4uhouLC9zd3bF69Wo8/PDDeOGFF6j4o4w7dDodTp8+jby8POzevRv9/f1YtWoVcnNzsXTp0jF9p2zhZkDMlCUSCTo7OzltImtsbER9ff24mEpkKP7S09PNCjtix0VeL1M7rpGEvl6vx1NPPYXDhw/jxIkTiImJsdGzoRCoAOQpDMOgs7MTe/fuNfLhys7OxoIFC9gmADL3MSwsbMgvmCPn+toasjFpNBpkZGTYNLVE5pNKpVK2KNrwYsA1Op0OxcXFcHJygpeXF7Kzs/Hb3/4W27Zto+KPMu7R6/U4d+4cKwalUilWrFiBnJwcrFixwqrvFOmetaWbgelYSmL6LxQKrZ6scfnyZTQ0NIyLqUSWiD9zDA4Osvtlb28vO885NDT0qgCEXq/HM888gz179qCgoADTpk2zxVOhmOAwAdjQ0ICXX34Zx48fR0dHByIiInDXXXfh2WefdfhgZ75Bpl7s378feXl5OHLkCKKjo5GdnY3rrrsOQUFB6Ovrg7+/PzuSjog8Ps315RqdToeSkhIwDIP09HS7F5mTi4EtxiyRWhuGYeDv74/Vq1fjtttuwxtvvMHLBhUKZSzo9XoUFRWxddEtLS1YtmwZcnJysHr16mFHbIrFYlRUVCAxMdFubgaGTWRksoap8bQ5GIZBXV3duDGmH634M0WlUhmNpfPy8kJYWBj6+/uRnJyMl156CV9++SUKCgqQkJDA8bOgDIXDBODhw4fx9ddf4/bbb8e0adNw4cIFPPDAA7j77rvx5ptvOmJJ44a+vj589913yMvLw+HDhyEUCpGdnY1FixYhNDSUPW0FBgayJ1W+zfUdK1qtFiUlJRAIBEhLS3PoczMcSSWTydiLQWho6KhMv8mmq9PpEBgYiLVr12LdunX4+9//TsUf5ZqH1PMS+6y6ujrcdNNNWLduHdasWWM0Vam5uRmXLl1yqJuBXq83mlHOMAwrBg0dBRiGwcWLFyEWi5GZmcn7MhydToeysjJoNJoxiT9TSCS1ubkZa9euhU6nA8MweO+993DPPfdcU9cpvsOrFPAbb7yBDz/8EPX19Y5eyrhhYGAAhw4dQl5eHg4ePIiAgABkZ2dj+vTpePfdd/H444+z1gK2KGJ2BBqNxsjiwZFeY6YYjlmSSCTQ6/VW+TySekaNRoOwsDBkZ2djxYoV+OCDD6j4o0w4iKcnGblJvFRzc3Nx4cIFXLx4ETt37uSNmwHJ1hCvQeLzGhoaCplMhq6uLmRmZsLLy8vRSx0WW4k/QxiGwfbt2/H3v/8dK1euxOnTp6FWq7F3714sXLiQ88ejXA2vBOBzzz2Hw4cPo7Cw0NFLGZcoFAocOXIE//rXv1gfrttvvx033XQTIiMj0dvby4behUIhvL29x10tmVqtRnFxMdzd3R0+f3QkyAgtIgZVKhXbIWeum1uv16OsrAxKpRIRERFYu3Ytrr/+evzzn//kxfN8//338cYbb6CjowOpqal49913MWfOHEcvizJBIF6q3377Ld599110dHQgLS0NGzZswEGS0GoAACAjSURBVLp16yAUCnm1nxFHAbFYjJaWFuh0OgQHByM8PJxzay8uMTyE2lL8vfPOO3jjjTdw9OhRZGZmQq/X4/z580hKSnJIXeRE3N94IwBra2uRmZmJN998Ew888ICjlzNuKSwsxMqVK/Hggw/iuuuuw+7du1kfruzsbCxevBhxcXHo6emBh4cHGxkcrsaGLxAjZC8vLyQnJ4+riBjDMEYdxcR41tBehjTqREVFYe3atZg9ezZ27tzJC/H39ddf45577sFHH32EuXPn4u2338a3336LmpoaatJKsRs6nQ4PPvggjh07hs8++wzFxcXIz8/H+fPnMW/ePOTk5CAnJweTJ0/mxX5GRoP29/djxowZbHZgYGDAaAoJX2qz7SX+PvzwQ/zlL3/B999/j7lz53L+GNYyUfc3zgXgli1b8Nprrw37N1VVVUhMTGR/bm1txQ033IDFixfjk08+4XI5E44LFy7g5MmTePjhh9nbNBoNTp06hW+//RZ79uyBRqNhxWB8fDx6e3vH1NFmD1QqFYqKiuDr64uZM2eOK/FnDlPjWYFAgP3792PdunXYsmULZs6ciS+++II3UYK5c+ciKysL7733HoArF4opU6bg0UcfxZYtWxy8OspEgWEYbNu2Dffddx8mT57M3ka8VPPy8nDmzBlkZGSwYjAmJsYh+xlJo5qzpzK1lzI8DDrKpYGIP7VabTNHBYZh8Omnn+LPf/4zDh48iOuuu47zxxgNE3V/41wAki6f4YiLi2O/DG1tbVi8eDHmzZuHHTt2jPsLO98hPly7du3Cnj170N/fj5UrV+Kmm25CYmIi+vr64OzszEYGDQuuHYVSqURhYSECAwORlJTk8PVwCcMwKCsrQ2NjI/7617+yc34feeQR3HzzzcjIyHD481Wr1fDy8sKuXbuQm5vL3r5hwwb09PRg7969jlvcNcS2bdvw3XffQSQSwc3NDT09PVf9TVNTEzZu3IiCggL4+Phgw4YN2L59O28OCo6GYRh0dHRgz549yMvLw8mTJ5GcnIycnBzk5uZi2rRpdvk+kS5+nU43YiSN2EuJxWIjuxShUGgXr1HAfuLv888/xx/+8Afs27cPixcv5vwxRsNE3t843zVIfZMltLa2YsmSJcjMzMRnn31GxZ8dcHZ2xg033IAbbrgBf//733Hu3Dns2rUL27dvh1QqxfLly7F06VJ4e3ujvb0dAoGA3YwCAgLs/h4pFAoUFhYiODh41M7+fIUUuMvlcsybNw8Mw2DZsmW45557cODAASxZsgQnT55Eenq6Q9cpk8mg0+mumlEqFApRXV3toFVde6jVatxyyy2YP38+Pv3006t+r9PpkJ2djUmTJuHMmTNob2/HPffcA1dXV7zyyisOWDH/EAgECA8Px8aNG/G73/2O9VLdtWsXXnnlFSQkJLDziW21nxCHAgDsxIzh8PDwQFRUFKKioli7FIlEgtraWpt7jQL2E39fffUVnnrqKezZs4c34g+Y2Pubw2oAW1tbsXjxYkRHR19V5zRp0iRHLGlCQ3y4SLdda2srli5diqVLlyI1NRUDAwND2hvYioGBARQXFyM0NBQJCQnXnPirrq5GZ2cnEhIS8Jvf/AZ+fn7Yt28fmwJSqVRwc3Nz+PNua2vD5MmTcebMGcyfP5+9/Q9/+ANOnjyJ8+fPO3B11x47duzAE088cVUE8NChQ1izZg3a2trYi9VHH32EP/7xj5BKpbypI+MjpDt33759yM/PZ71Uc3JysH79eotnBo8Elw4FGo3GaAqJp6cnu/9yVbNtD/EHALt27cKmTZvwzTffYPXq1TZ5jNEykfc3h+UNjh49itraWtTW1iIyMtLodzzpS5lQODk5ISsrC1lZWdi+fTvKysqQl5eHjz76CHV1dbjxxhuxfPlyeHt7o7KykrU3EAqFnAwAN0Uul6OoqAjh4eGIj493uAjiEuIHJpPJMGPGDNx5553w8vLC7t27jep/uJyROhZCQkLg7OwMsVhsdLtYLKaHNTty9uxZJCcnG0UqVqxYgY0bN6KiosLhkWI+IxAIEBgYiA0bNmDDhg3o6+vDgQMHkJ+fj6VLl0IoFLJp4oyMjFGJQeJQ4OHhgZSUlDELSldXV0RERCAiIgJarRadnZ0Qi8UoLCyEq6srm5nx9/cf1f5oL/G3b98+bNy4Ef/97395J/6Aib2/OSzneu+994JhGLP/URyLk5MT0tLS8PLLL+PChQsoLi5mazSXLVuGt956C1VVVRgYGEBNTQ1OnjyJ8vJyiMVi6HS6MT9+f38/CgsLMXny5GtS/F26dAlisRgzZszAhg0bIBAIsG/fPt56NLq5uSEzMxPHjh1jb9Pr9Th27JjRiZliWzo6OsymqcjvKJbj5+eHO+64A7t27YJYLMZrr72G9vZ2rFmzBjNnzsQf//hHnD171uL9TKVSobCwEF5eXpyIP1NcXFwgFAqRkpKCG264AYmJidBqtRCJRDh16hSqqqrQ2dkJvV5v0f3ZS/wdPHgQ999/P/79739j3bp1NnmMsTKR9zdadEcZFoFAgKSkJDz//PMoKSlBRUUFlixZgq+//hrLly/H9u3bWfuS2tpanDhxAqWlpejo6IBWq7X68fr6+lBUVISoqCi7FWzbCzIGqr29HbNmzcL9998PpVKJAwcO2Ky+hyuefPJJ/POf/8TOnTtRVVWFjRs3YmBgAPfdd5+jl8ZrtmzZAoFAMOx/13qdEd/x9vbGr3/9a/z3v/+FWCzGO++8g97eXtxyyy1ITEzE5s2bcerUqSH3M4VCgZ9//hl+fn52sadydnZGaGgoZs6ciUWLFmHWrFkArjhAnDp1ChUVFZBKpUOKQXuJv6NHj+Lee+/FJ598gptvvtkmj8EVE3V/440PIGV8wTAMGhoa2NmdP//8M+bNm4cVK1Zg7ty5EAgEUCgUCAoKglAoNGt8bEpvby+Ki4sRGxuLmJgY+zwRO0JmgCYnJ+PBBx+EVCrFkSNHEBgY6OilWcR7773HGqWmpaXhnXfe4YWHF5+x1hUBGLoG8Pnnn8e+ffsgEonY2y5fvoy4uDgUFxfTFDDHqNVq/PDDD8jLy8PevXvh7OyMNWvWYP369bj++uvh6uqKmpoaNDU1ITIyEomJiQ49sBLjeTKFRKPRICQkBEKhEMHBwXBxcbGb+Dtx4gRuvfVWfPDBB7j77rvHxUF+Iu5vVAAOgSWWDJQrMAyDlpYW5OfnIz8/n/XhWrVqFRYsWAAXFxfI5XIEBQWxRcymBevd3d0QiUSYOnUqoqKiHPRMbMfly5fR2NiI1NRUbNq0CY2NjTh27BiCg4MdvTQKzxipCaS9vZ01p/3444/x9NNPQyKR8KZm9FpEo9Hg5MmTrH2WRqPBggULcPLkSTz66KP405/+xCuRwzAM+vv7WXsZpVKJoKAgKJVKCAQCZGZm2kz8nT59GjfffDP+9re/4f777+fV60IxhgrAIXjhhRcQEBCAlpYWfPrpp1QAWgjx4dq9ezfy8/NZH67s7GwsWLAAHh4eRsanYWFhGBgYgEgkwvTp069qCLoWaGhoQENDA1JTU/H444+juroaBQUFFtslUSYGTU1N6Orqwr59+/DGG2/g//7v/wAA06ZNg4+PD3Q6HdLS0hAREYHXX38dHR0duPvuu/H//t//ozYwdkSn0+Gzzz7DY489BmdnZzg5OSE7Oxu5ubm46aab7ObdZw19fX0oLy+HUqkEwzDDHsbHwvnz55Gbm4tXXnkFmzZtouKP51ABOAJDncYpI8MwjJEP1/Hjx5GQkMCKQT8/P5w8eRKTJk1Camoq4uPjHeaCbyuamppQV1eHtLQ0PP300xCJRDh+/Pg1311GsZ57770XO3fuvOr2goIC1jetsbERGzduxIkTJ+Dt7Y0NGzbg1VdfpUbQdqSlpQWpqanYvHkz/vjHP+LcuXPIy8vD7t27IZPJsHLlSuTk5GDFihW8aOwyTftqNBp2CklfXx/8/f1Z4/+x7L9FRUVYt24dtm7discee4yKv3EAFYAjQAUgNxj6cOXl5eHo0aMIDg6GWCzGww8/jPXr1zvMBd9WNDc3o7a2FqmpqXjuuefw448/4sSJE+wIKwqFz8TExKCxsdHotu3bt1/To7EsgWEYnDp1CjfccIPR7ea8VJctW4acnBysWrUKfn5+dl/rSDV/SqWS9Rrs7u6Gr68vu/96eXlZ/DilpaXIzs7Gli1b8PTTT1PxN06gAnAEqAC0DZ9//jkeeOABpKSkoKKiAuHh4cjOzsaiRYsQFhaG7u5u+Pj4sCdTPpykraG1tRU1NTVIS0vDiy++iGPHjqGgoADR0dGOXhqFYhExMTG4//778cADD7C3+fr6jrvvoiPQ6/UoKyvDrl27kJ+fj/r6eixduhTr1q1Ddna2XUZsWtvwoVarjYynvb29jaaQDLXeiooKrFq1Ck888QSeffZZKv7GERNKAG7ZsgWvvfbasH9TVVWFxMRE9mcqALmnvb0dM2bMwOeff461a9dCLpfj0KFDyMvLw8GDBxEUFITs7GwsXrwYkyZNQk9PD7y8vNiTqbe3N683mba2NlRXVyM1NRWvvvoq9u/fjxMnTiAuLs7RS6NQLCYmJgZPPPEEnnjiCUcvZVzDMAwqKyvZyGBlZSUWL16M3NxcrFmzBsHBwZzvZ2Pt9tVoNJDJZJBIJJDJZPDw8GDFoJ+fH7ve6upqrFq1Cg8++CBeeuklXu/LlKuZUAKQS0sGytiQSqVmmyAUCgW+//575OfnY//+/fDy8sKaNWuwePFiTJkyBd3d3fDw8GAjg1yNROKK9vZ2VFVVISUlBW+99Ra+/fZbnDhxAvHx8Y5eGoViFTExMVAqldBoNIiKisIdd9yB3//+97TecAwQI3giBkUiERYuXIjc3FysXbsWQqFwzPsZ11YvOp2OnUIik8mg1WrxzTffYN68eXjllVdwzz33YPv27XafE08ZOxNKAI4GKgAdh1KpxLFjx5Cfn2/kw7V48WLExsaip6cHbm5ubGTQ8GTqCMRiMS5cuIDU1FS8//772LlzJ06cOGEUUaZQxgtvvfUWMjIyEBQUhDNnzuCZZ57Bfffdh7feesvRS7smMPVS/emnnzB//nzk5ORg3bp1mDx5stX7ma19/vR6Paqrq/GnP/0JP/zwAzw8PHDXXXfh17/+NZYsWWIzaxmKbaACcAhGsmSg2BdzPlxr1qzBkiVLEB8fj56eHri4uLBpCnvU2BgikUhQXl6O5ORkfPrpp/joo49QUFDAuvRTKHxgNGUwhH/961946KGHIJfLqecgx5jzUs3MzEROTg5ycnIQHR094n5mL5PnpqYmrFixAqtWrcKtt97KWn4dO3aMN4dd2sBkGVQADoEllgwUx6DVanH69GlWDMrlcqxevRo33ngjEhMT0dfXB4FAwEYGAwICbJqekEqlKCsrw6xZs/DFF1/gb3/7G44dO4a0tDSbPSaFMhpGUwZDqKiowKxZs1BdXY2EhARbLXHCY+ilmpeXh1OnTiElJYUVg+ZGZJKmE6VSaVOT57a2Nixfvhw33XQT/vGPf7D7ql6v51UKmDYwWQYVgJRxjU6nw7lz51gx2NnZiRUrVmDp0qWYNWsW+vr6wDAMGxkMCgridKOSyWQoLS3FzJkz8e233+K1117D999/j6ysLM4eg0LhA1988QXuueceyGSycTO+cLzDMAxkMhnrpVpQUICEhATk5OQgNzcXiYmJUKlU2LVrF6ZNm2ZT8dfR0YGVK1di/vz5+Ne//gVnZ2ebPA4X0AYmy6ACkHLNoNfrUVhYyBZYt7W1YdmyZVi2bBlSUlIwMDAAnU6H0NBQCIVCBAUFjWkT6+rqgkgkwowZM7Bv3z68+OKLOHToEObPn8/hs6JQ7M/Zs2dx/vx5LFmyBL6+vjh79ix+//vfY9WqVWYzIxTbwzAMuru7sW/fPuTn5+Po0aOIjo6GQqGAq6srzp8/bzPvVIlEgtWrVyMtLQ3//ve/ed8IRBuYLIMKQMo1CamHIQXW9fX1uOmmm7BixQqkp6dDoVBArVYjNDQUYWFhCAkJsUoMdnd3o6SkBAkJCThy5AieeeYZHDhwAIsWLbLhs6JQ7ENxcTE2bdqE6upqqFQqxMbG4u6778aTTz5J6/94glQqxcqVK1FXVwe1Wo2IiAg2Mpiens5ZpqOzsxPZ2dmYPn06/vvf/46LRg/awGQZVABSrnkMfbjy8/NRVVWFJUuWYOXKlcjIyIBarYZSqURISAiEQiFCQkKGPSn29PSguLgY06dPx4kTJ7B582bs27cPS5YsseOzspxt27bhu+++g0gkgpubG+1op1CuATZu3IiffvoJP/zwA1xdXa/yUl23bh1yc3ORlZU16kxHd3c31q5diylTpuDbb7/ldG6wtdAGJu6hAnAc8f777+ONN95AR0cHUlNT8e6772LOnDmOXta4wtCHKz8/H6Wlpbj++uuxcuVKZGVlQafTQaFQIDg4GGFhYQgNDTU68fb29qK4uBjTpk3D2bNn8cgjjyAvLw8rVqxw4LManhdeeAEBAQFoaWnBp59+SgUghZfQ/c066uvrERgYeFU95uDgII4cOYK8vDwcOHAA3t7eWLduHXJycjB//nyL06B9fX1Yt24dgoODsWfPHocLJ9rAxD1UAI4Tvv76a9xzzz346KOPMHfuXLz99tv49ttvUVNTg7CwMEcvb1zCMAwuX77MpokLCwsxf/58rFy5EvPmzQMAyOVyBAUFQSgUwsPDA2VlZZg6dSqKiorw0EMP4auvvsKaNWsc/Ewsg3paUvgK3d9sA/FSzcvLw759++Di4oI1a9Zg/fr1WLhw4ZDpXLlcjtzcXHh5eWH//v3jfi47bWAyDxWA44S5c+ciKysL7733HoArNW5TpkzBo48+Sr2NOIBhGDQ3NyM/Px+7d+9mfbhWr16NBQsWoK6uDgcPHkRTUxMSExOxd+9efPHFF1i/fr2jl24xVABS+Ard32yPRqPBiRMnsGvXLuzduxdarRZr1qxBbm4uFi9ezEbOBgYGcPPNN0MgEODgwYPjzjqFNjBZDhWA4wC1Wg0vLy/s2rULubm57O0bNmxAT08P9u7d67jFXYMwDIP29nbW4PTkyZMAgPT0dISGhuL7778HAFx33XW4+eabce+998Lf39+RS7YIKgApfITub/bHnJdqdnY2Vq1ahU8//RQajQaHDh2Cr6+vo5dqNbSByXL449xIGRKZTAadTgehUGh0u1AoREdHh4NWde0iEAgQERGBhx9+GO+99x6CgoKwatUq+Pv749ChQ3jzzTfR3NyM2267Dfv374dWq7X7Grds2QKBQDDsf9XV1XZfF4ViLXR/sz8uLi5YvHgx3nvvPTQ2NuLAgQMICwvDo48+ivLycnz33XfjUvwBQEZGBs6dO4eenh4oFApUVlbimWeeoeLPDNQUh0IZhpdffhkPPPAA/vKXvwAAGhoaEBMTA4FAgE2bNmHTpk0OWdfmzZtx7733Dvs3cXFx9lkMhUIZtzg7O2PhwoVYuHAhXn31VUil0nGR0aCMHSoAxwHEo04sFhvdLhaLMWnSJAetamLw2Wefwc3NjR29FBsb6+AVXSE0NBShoaGOXgaFMmbo/sYf3N3dERkZ6ehlUOwETQGPA9zc3JCZmYljx46xt+n1ehw7doxOnbAx7u7uIw5h5ztNTU0QiURoamqCTqeDSCSCSCSCXC539NIoFLq/USgOgkYAxwlPPvkkNmzYgNmzZ2POnDl4++23MTAwgPvuu8/RS6PwnOeff96o+y09PR0AUFBQgMWLFztoVRTK/6D7G4Vif2gX8DjivffeY41S09LS8M4772Du3LmOXhaFQqGMGbq/USj2hQpACoVCoVAolAkGrQGkUCgUyoRm69atV9komZspS6FcS9AaQAqFQqFMeGbOnIkffviB/dnSmbkUyniFRgApFAqFMuFxcXHBpEmT2P9CQkIcvaRrmm3btmHBggXw8vJCQECA2b9pampCdnY2vLy8EBYWhqefftohxvvXKlQAUjjj1KlTWLt2LSIiIiAQCLBnzx5HL4lCoVAs4tKlS4iIiEBcXBzuvPNONDU1OXpJ1zRqtRq33HILNm7caPb3Op0O2dnZUKvVOHPmDHbu3IkdO3bg+eeft/NKr12oAKRwxsDAAFJTU/H+++87eikUCoViMXPnzsWOHTtw+PBhfPjhh7h8+TKuv/569Pf3O3pp1ywvvvgifv/73yM5Odns748cOYLKykr85z//QVpaGlatWoWXX34Z77//PtRqtZ1Xe21CixwonLFq1SqsWrXK0cugUCgUqzDct1JSUjB37lxER0fjm2++wf333+/AlU1czp49i+TkZKMZ0StWrMDGjRtRUVHB+plSRg+NAFIoFAqFYkBAQACmT5+O2tpaRy9lwtLR0WEk/gCwP3d0dDhiSdccVABSKBQKhWKAXC5HXV0dwsPDHb2UccWWLVuustMx/a+6utrRy6T8Ak0BUygUCmVC89RTT2Ht2rWIjo5GW1sbXnjhBTg7O+P222939NLGFZs3b8a999477N/ExcVZdF+TJk3CTz/9ZHSbWCxmf0cZO1QAUigUCmVC09LSgttvvx2dnZ0IDQ3FwoULce7cOYSGhjp6aeOK0NBQzl6z+fPnY9u2bZBIJAgLCwMAHD16FH5+fkhKSuLkMSY6VABSKBQKZULz1VdfOXoJE46mpiZ0dXWhqakJOp0OIpEIADBt2jT4+Phg+fLlSEpKwt13343XX38dHR0deO655/Dwww/D3d3dsYu/RqA1gBTOkMvlEIlE7Bf58uXLEIlE1E+LQqFQzDCSdyrDMHj++ecRHh4OT09PLF26FJcuXXLMYjnm+eefR3p6Ol544QXI5XKkp6cjPT0dhYWFAABnZ2ccOHAAzs7OmD9/Pu666y7cc889eOmllxy88msHAcMwjKMXQbk2OHHiBJYsWXLV7Rs2bMCOHTvsv6BxQkNDA15++WUcP34cHR0diIiIwF133YVnn30Wbm5ujl4ehUKxEYcOHcKPP/6IzMxM/OpXv8Lu3buRm5vL/v61117D9u3bsXPnTsTGxuLPf/4zysvLUVlZCQ8PD8ctnHJNQFPAFM5YvHgx6HnCeqqrq6HX6/GPf/wD06ZNw4ULF/DAAw9gYGAAb775pqOXR6FQbMRw3qkMw+Dtt9/Gc889h5ycHADAv//9bwiFQuzZswe33XabPZdKuQahApBCcTArV67EypUr2Z/j4uJQU1ODDz/8kApACmWCcvnyZXR0dGDp0qXsbf7+/pg7dy7Onj1LBSBlzNAaQAqFh/T29iIoKMjRy6BQKA6CmB2bM0OmRsgULqACkELhGbW1tXj33Xfx0EMPOXopFAqFQrlGoQKQMuHYvn07srKy4Ovri7CwMOTm5qKmpobzxxmNK35raytWrlyJW265BQ888ADna6JQKOMDYnZMzI8JYrGYGiFTOIHWAFImHCdPnsTDDz+MrKwsaLVa/OlPf8Ly5ctRWVkJb29vzh7HWlf8trY2LFmyBAsWLMDHH3/M2TooFMr4IzY2FpMmTcKxY8eQlpYGAOjr68P58+exceNGxy6Ock1ABSBlwnH48GGjn3fs2IGwsDAUFRVh0aJFnD2ONa74ra2tWLJkCTIzM/HZZ5/ByYkG5ymUax25XI7a2lr2Z+KdGhQUhKioKDzxxBP4y1/+gvj4eNYGJiIiwsgqhkIZLVQAUiY8vb29AOCwpovW1lYsXrwY0dHRePPNNyGVStnf0VQPhXLtUlhYaOSd+uSTTwL4n3fqH/7wBwwMDODBBx9ET08PFi5ciMOHD1MPQAonUCNoyoRGr9dj3bp16OnpwenTpx2yhh07duC+++4z+zv69aRQKBSKLaACkDKh2bhxIw4dOoTTp08jMjLS0cuhUCgUCsUu0BQwZcLyyCOP4MCBAzh16hQVfxQKhUKZUFABSJlwMAyDRx99FLt378aJEycQGxvr6CVRKBQKhWJXqACkTDgefvhhfPnll9i7dy98fX1ZV31/f394eno6eHUUCoVCodgeWgNImXAIBAKzt3/22Wcj+vZRKBQKhXItQCOAlAkHPfNQKBQKZaJD3WYpFAqFQqFQJhhUAFIoFAqFQqFMMKgApFAoFAqFQplgUAFIoVAoFAqFMsGgApBCoVAoFAplgkEFIIVCoVAoFMoEgwpACoVCoVAolAkGFYAUCoVCoVAoEwwqACkUCoVCoVAmGFQAUigUCoVCoUwwqACkUCgUCoVCmWBQAUihUCgUCoUywaACkEKhUCgUCmWCQQUghUKhUCgUygSDCkAKhUKhUCiUCQYVgBQKhUKhUCgTDCoAKRQKhUKhUCYYVABSKBQKhUKhTDCoAKRQKBQKhUKZYFABSKFQKBQKhTLBoAKQQqFQKBQKZYJBBSCFQqFQKBTKBIMKQAqFQqFQKJQJBhWAFAqFQqFQKBMMKgApFAqFQqFQJhhUAFIoFAqFQqFMMKgApFAoFAqFQplgUAFIoVAoFAqFMsGgApBCoVAoFAplgkEFIIVCoVAoFMoEgwpACoVCoVAolAkGFYAUCoVCoVAoEwwqACkUCoVCoVAmGFQAUigUCoVCoUwwqACkUCgUCoVCmWBQAUihUCgUCoUywaACkEKhUCgUCmWCQQUghUKhUCgUygSDCkAKhUKhUCiUCQYVgBQKhUKhUCgTDCoAKRQKhUKhUCYYVABSKBQKhUKhTDCoAKRQKBQKhUKZYFABSKFQKBQKhTLBoAKQQqFQKBQKZYJBBSCFQqFQKBTKBIMKQAqFQqFQKJQJBhWAFAqFQqFQKBMMKgApFAqFQqFQJhhUAFIoFAqFQqFMMKgApFAoFAqFQplgUAFIoVAoFAqFMsGgApBCoVAoFAplgkEFIIVCoVAoFMoEgwpACoVCoVAolAkGFYAUCoVCoVAoEwwqACkUCoVCoVAmGFQAUigUCoVCoUwwqACkUCgUCoVCmWD8f5pBdn+q7VncAAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2efe0ed3548944a1ad811b2f1637c40a", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXecJGW5/n1VdY7T05PzzO7shM15d2YXWBREoqhEDwp6DEdQ5OBRTKCivogRUVF/Jo5iwsBRwQQICwsbgN3JOefU3RM6h6r3j56qre7pWF09PbPzfD8fwsx0he6uuut67kixLMuCQCAQCAQCgbBhoDN9AgQCgUAgEAiE1YUIQAKBQCAQCIQNBhGABAKBQCAQCBsMIgAJBAKBQCAQNhhEABIIBAKBQCBsMIgAJBAIBAKBQNhgEAFIIBAIBAKBsMEgApBAIBAIBAJhg0EEIIFAIBAIBMIGgwhAAoFAkIAXX3wRFEXhxRdfzPSpEAgEQlyIACQQCJLT3t6OG2+8EZs2bYJWq0Vubi4uvvhi/PWvf13x2mPHjoGiKFAUBZqmYTQaUVtbi3e/+9149tlnEz7mHXfcAb1eL8n5d3R04Atf+AKGhoZW/O2xxx7D448/LslxCAQCIVPIM30CBALhwmN4eBhLS0u4/fbbUVxcDKfTiT/+8Y+47rrr8KMf/Qgf/OAHQ15fWlqKhx56CADgcDjQ19eHP/3pT3jiiSdw00034YknnoBCoVi18+/o6MAXv/hFHDt2DJWVlSF/e+yxx5Cbm4s77rgj5PcXX3wxXC4XlErlqp0ngUAgiIUIQAKBIDlXXXUVrrrqqpDffeQjH8G+ffvwrW99a4UAzMrKwm233Rbyu69+9au4++678dhjj6GyshIPP/xw2s87FWiahlqtzvRpEAgEQkKQEDCBQFgVZDIZysrKMD8/n/DrH330UWzduhXf+973sLCwkPI5DA8P484770RtbS00Gg1ycnJw4403hoR6H3/8cdx4440AgEsvvZQPT7/44ouorKxEe3s7jh8/zv/+2LFjAKLnAJ4+fRpXXXUVsrOzodPpsHPnTnznO98JeU1XVxduuOEGmM1mqNVq7N+/H3/5y19Sfr8EAoEQDeIBJBAIacPhcMDlcmFhYQF/+ctf8Pe//x0333xzwtvLZDLceuutuP/++3HixAlcffXVKZ3Pa6+9hldffRW33HILSktLMTQ0hB/84Ac4duwYOjo6oNVqcfHFF+Puu+/Go48+is985jOor68HANTX1+ORRx7BRz/6Uej1enz2s58FABQUFEQ93rPPPotrrrkGRUVF+NjHPobCwkJ0dnbi6aefxsc+9jEAwXzJI0eOoKSkBJ/61Keg0+nw5JNP4vrrr8cf//hHvP3tb0/pPRMIBEJEWAKBQEgTH/rQh1gALACWpmn2hhtuYK1Wa8hrLrnkEnbbtm1R9/HUU0+xANjvfOc7MY91++23szqdLuZrnE7nit+dPHmSBcD+4he/4H/3+9//ngXAvvDCCytev23bNvaSSy5Z8fsXXnghZBu/389WVVWxFRUVrM1mC3ktwzD8/7/5zW9md+zYwbrd7pC/NzY2slu2bIn5fggEAkEsJARMIBDSxj333INnn30W//u//4srr7wSgUAAXq83qX1wlb1LS0spn49Go+H/3+fzwWKxoLq6GiaTCWfPnk15/0LOnTuHwcFB3HPPPTCZTCF/oygKAGC1WvHvf/8bN910E5aWljA3N4e5uTlYLBZcccUV6O3txfj4uKTnRSAQCAAJARMIhDRSV1eHuro6AMB73vMevOUtb8G1116L06dP8yIoHna7HQBgMBhSPh+Xy4WHHnoIP//5zzE+Pg6WZfm/SZFjKKS/vx8AsH379qiv6evrA8uyuP/++3H//fdHfM3MzAxKSkokPTcCgUAgApBAIKwaN9xwAz70oQ+hp6cHtbW1CW3T1tYGAKiurk75+B/96Efx85//HPfccw8aGhqQlZUFiqJwyy23gGGYlPefLNwx/+d//gdXXHFFxNdI8b4JBAIhHCIACQTCquFyuQAk7m0LBAL49a9/Da1Wi6NHj6Z8/D/84Q+4/fbb8c1vfpP/ndvtXlGZHMs7majncvPmzQCCAvayyy6L+JpNmzYBABQKRdTXEAgEQjogOYAEAkFyZmZmVvzO5/PhF7/4BTQaDbZu3Rp3H4FAAHfffTc6Oztx9913w2g0pnxeMpksJOwLAN/97ncRCARCfqfT6QAgYssanU6XUCubvXv3oqqqCo888siK13PnkJ+fj2PHjuFHP/oRJicnV+xjdnY27nEIBAJBDMQDSCAQJOdDH/oQFhcXcfHFF6OkpARTU1P41a9+ha6uLnzzm99cMbJtYWEBTzzxBADA6XTyk0D6+/txyy234Etf+lJCx/X5fPjyl7+84vdmsxl33nknrrnmGvzyl79EVlYWtm7dipMnT+K5555DTk5OyOt3794NmUyGhx9+GAsLC1CpVHjTm96E/Px87Nu3Dz/4wQ/w5S9/GdXV1cjPz8eb3vSmFcekaRo/+MEPcO2112L37t1473vfi6KiInR1daG9vR3//Oc/AQDf//73cfToUezYsQMf+MAHsGnTJkxPT+PkyZMYGxtDc3NzQu+dQCAQkiKzRcgEAuFC5De/+Q172WWXsQUFBaxcLmezs7PZyy67jP3zn/+84rWXXHIJ3yoGAKvX69ktW7awt912G/uvf/0r4WPefvvtIfsR/rN582aWZVnWZrOx733ve9nc3FxWr9ezV1xxBdvV1cVWVFSwt99+e8j+fvzjH7ObNm1iZTJZSHuXqakp9uqrr2YNBgMLgG8JE94GhuPEiRPs5ZdfzhoMBlan07E7d+5kv/vd74a8pr+/n33Pe97DFhYWsgqFgi0pKWGvueYa9g9/+EPC759AIBCSgWLZsHgIgUAgEAgEAuGChuQAEggEAoFAIGwwiAAkEAgEAoFA2GAQAUggEAgEAoGwwSACkEAgEAgEAmGDQQQggUAgEAgEwgaDCEACgUAgEAiEDQYRgAQCgUAgEAgbDCIACQQCgUAgEDYYRAASCAQCgUAgbDCIACQQCAQCgUDYYBABSCAQCAQCgbDBIAKQQCAQCAQCYYNBBCCBQCAQCATCBoMIQAKBQCAQCIQNBhGABAKBQCAQCBsMIgAJBAKBQCAQNhhEABIIBAKBQCBsMIgAJBAIBAKBQNhgEAFIIBAIBAKBsMEgApBAIBAIBAJhg0EEIIFAIBAIBMIGgwhAAoFAIBAIhA0GEYAEAoFAIBAIGwwiAAkEAoFAIBA2GEQAEggEAoFAIGwwiAAkEAgEAoFA2GAQAUggEAgEAoGwwSACkEAgEAgEAmGDQQQggUAgEAgEwgaDCEACgUAgEAiEDQYRgAQCgUAgEAgbDCIACQQCgUAgEDYYRAASCAQCgUAgbDCIACQQCAQCgUDYYBABSCAQCAQCgbDBIAKQQCAQCAQCYYNBBCCBQCAQCATCBoMIQAKBQCAQCIQNBhGABAKBQCAQCBsMIgAJBAKBQCAQNhhEABIIBAKBQCBsMIgAJBAIBAKBQNhgEAFIIBAIBAKBsMEgApBAIBAIBAJhg0EEIIFAIBAIBMIGgwhAAoFAIBAIhA0GEYAEAoFAIBAIGwwiAAkEAoFAIBA2GEQAEggEAoFAIGwwiAAkEAgEAoFA2GAQAUggEAgEAoGwwSACkEAgEAgEAmGDQQQggUAgEAgEwgaDCEACgUAgEAiEDQYRgAQCgUAgEAgbDCIACQQCgUAgEDYYRAASCAQCgUAgbDCIACQQCAQCgUDYYBABSCAQCAQCgbDBIAKQQCAQCAQCYYNBBCCBQCAQCATCBoMIQAKBQCAQCIQNBhGABAKBQCAQCBsMIgAJBAKBQCAQNhhEABIIBAKBQCBsMIgAJBAIBAKBQNhgEAFIIBAIBAKBsMEgApBAIBAIBAJhg0EEIIFAIBAIBMIGgwhAAoFAIBAIhA0GEYAEAoFAIBAIGwwiAAkEAoFAIBA2GEQAEggEAoFAIGwwiAAkEAgEAoFA2GAQAUggEAgEAoGwwSACkEAgEAgEAmGDQQQggUAgEAgEwgaDCEACgUAgEAiEDQYRgAQCgUAgEAgbDCIACQQCgUAgEDYYRAASCAQCgUAgbDCIACQQCAQCgUDYYBABSCAQCAQCgbDBIAKQQCAQCAQCYYNBBCCBQCAQCATCBoMIQAKBQCAQCIQNBhGABAKBQCAQCBsMIgAJBAKBQCAQNhhEABIIBAKBQCBsMIgAJBAIBAKBQNhgEAFIIBAIBAKBsMEgApBAIBAIBAJhg0EEIIFAIBAIBMIGgwhAAoFAIBAIhA0GEYAEAoFAIBAIGwwiAAkEAoFAIBA2GEQAEggEAoFAIGwwiAAkEAgEAoFA2GAQAUggEAgEAoGwwSACkEAgEAgEAmGDQQQggUAgEAgEwgaDCEACgUAgEAiEDQYRgAQCgUAgEAgbDCIACQQCgUAgEDYYRAASCAQCgUAgbDDkmT4BwtqCZVkEAgF4PB5QFAWFQgGZTAaKokBRVKZPj0AgEFKCZVl4vV74fD7evnE2jkDYSFAsy7KZPgnC2oBlWfh8Pvh8PlgsFmi1Wt4wymSyEGNJ08R5TCAQ1g8sy4JhGN7Geb1e3o7RNA25XA65XE4EIWHDQAQgAQDAMAy8Xi+cTidaW1uxsLAAiqJgNBphMpmQlZUFvV7PG8ZwY0kEIYFAWKuwLAu/3w+/3w8ACAQCCAQCoCgKLMvy4pATfTRN8wteuVwOmqaJICRccBABuMHhQr4+nw/T09Nob29HQUEBNm3aBI/Hg/n5eczPz8NmsyEQCCArKytEEHKhYb/fD71ez4tCIggJBMJagPP6MQwDICjuODEYbqc4McgJQgCgKIoXhEL7RgQhYb1DBOAGhgv5er1e9PT0YHJyEtu2bUNhYSG8Xi8A8EaOZVk4HA7YbDZeELIsi6ysLGRlZWFwcBAHDx6EWq0mHkICgZBxhCFfhmFCRBu36I1nl4ggJFzIEAG4QeEM4OLiIlpbWyGTybBr1y5otVo+SRpAVKPGsizsdjtsNhtsNhssFgtkMhmys7N5UajT6XgPoVAQyuVyYiwJBELa4Ba3gUAAAFYUsSUqACPtl/vH7Xajs7MTu3bt4u0bEYSE9QSpAt5gcLkw3d3dWFpagsViQXl5ObZs2ZKUMaQoCgaDAQaDAWVlZXjhhRewbds2OBwOzM/PY2hoCDRN8+HirKwsaDQa0DQNmqZ5IcgZTGIsCQSCFHBev0AgILkQEwpJmUyGxcVF0DQNhmHgdrsBgLdxRBAS1jpEAG4gOMPo8XgwOTkJt9uNvXv3Ijc3V5L9GwwG5ObmoqKiAgzDYGlpifcODgwMrPAQqtXqEEFIWjIQCASxCPOZWZaNKbo4L14qCAtGuE4J3H65IhO3200EIWHNQgTgBkCYC2Oz2dDa2goAKCoqkkT8CfMEOWia5oVeZWUlGIbB4uIibDYbZmdn0d/fD7lcHiIIVSpVRGNJBCGBQIgFy7J8fnJRUdGqCiyWZfljcR5CLpoSLgi5/qrhVcakzyohExABeIHD5cL4/X4MDQ1hYGAA1dXV8Hq9fEsEKY8VDS4cbDKZUFVVhUAgwAvC6elp9Pb2QqlUrhCEFosFarUaZrOZCEICgbACzuu3sLCAkZERlJSUZPqUeGIJQr/fz/89UkoMsXGEdEME4AUM5/VzOp1ob2+H0+nEgQMHYDKZ0Nvbm3IIREiyxooLB2dnZwMIGvGFhQXYbDZMTk6ip6cHKpUKQDC0rFAooFQqeWNKPIQEwsYmvLcfTdOS2rR4iLE50QSh3++Hz+cLEYSk8T4h3RABeAEiXGHOzs6ira0NOTk52LNnD+Ty4FfONUCV+rhikclkMJvNMJvNAAC/34+FhQX09vZicXERp0+fhkaj4b2IRqORF4hEEBIIG4vw3n6cqMpEU4tUjkkEISGTEAF4gSEc59bX14fR0VHU19ejpKQkRBRJLQClFlxyuRw5OTmYnJyE0WhEcXEx339wdHQUdrsdWq02RBAqFArSo4tAuICJ1dsvHYva1SaeIAQiL3iJICSIgQjACwguF8Zut6OtrQ0Mw6ChoQF6vX7Fa9eaBzAecrkcubm5fNGKz+fjBeHw8DAcDgd0Oh0vCLmwMRGEBMKFQXhvv/D7eLUF4GrYkGiC0OFw4OzZszh06BARhATREAF4ASDMhZmcnERnZyeKi4tRW1sLmUwWcZu17gGMh0KhQF5eHvLy8gAAXq+XF4SDg4NwOp3Q6/UhgpCrtgtPuCaCkEBY2yTS2y9Rm+Z2u9HS0gKHw8HnIWdnZ0OtVos6t9UWnZwN83q9fOsZLurDvYY03ickAhGA6xzOMHq9XnR3d2NmZgY7duxAQUFBzO3iGcv1Fk5RKpXIz89Hfn4+APBzjG02G/r7++F2u1cIwq6uLtTU1ECj0RBBSCCsQYT5zOEh33ASsVmzs7NoaWlBbm4uSkpKsLi4iPHxcXR1dUGtVocIQqVSGXNfmbQR3PsUege53wufCeGTmEjjfYIQIgDXKdyNPj8/jzNnzvBVso2NjdBoNHG3T4cHcC0JRpVKhYKCAl4Iu91uXhD29vbC4/GAZVmMjIwgJycHRqOR70FImrYSCJknXsg3nFg2iGEY9Pb2YmRkBFu3buXnnXMRBL/fH5JS0t7eDp1Ox4tBk8kEhUIh/ZtMkfDPg/MOckQShKTxPoGDCMB1iLC338TEBLxeL8rLy7F58+aEb+S1JtjSjVqtRmFhIQoLCwEALpcLJ0+ehM/nQ09PD7xeL4xGIz+6jhOEpGkrgbD6cPnM8bx+QqLZNJfLhaamJgQCAT4nmqse5gjPMRamlPT398PpdMJgMIQIQo61XHmcqCAkXRQ2JkQArjO4m9ftdqOjowPz8/MAgOrq6qT2c6F7AOPB5fts2bIFKpUKLpeLN/iTk5Pw+/0hglCv1/OGkTRtJRDSgzCfOd44t3Ai2aDp6Wm0traiqKgIdXV1UXOiw4mUUmKz2WCz2dDV1QWv1wuDwQAAmJ+fR05OzroovBAKQu6zYhgGXq83ZEoJEYQbAyIA1wnCXBiLxYK2tjYYjUYcOHAAr7zySsg4okRYL4It3efIiTetVgutVovi4mKwLAun08kLwvHxcQQCAWRlZYUIQuEMUNKji0BIDYZh4Pf7Ew75hiPsA8gwDLq7uzE+Po5t27ahqKhoxeuT2bdKpeIjCCzLwu12w2KxYHFxEV1dXbx94DyEBoMh7XYgVVHGbU8E4caFCMB1gDDkOzAwgKGhIdTU1KC8vBxer5d/TaYF4HoQlBzxCmB0Oh10Oh1KSkr4tgvCPoQsy4YIQp1ORwQhgSACYViSs2Nip2wwDAOHw4Hm5mYAQGNjI7RaraTnS1EUNBoNioqK0NPTg4MHD8Lv9/MewpGREbAsC5PJxAtCvV4vqWhKh62NJAi5fzweD/+sIYLwwoEIwDUOtxpzOp1oa2uD1+vFoUOHYDQaAZy/ablcmURZ721gUkVYRRcPiqKg1+uh1+tRWloKlmVht9v54fMjIyMAECII29vbsXPnTmi1WtKji0CIQvg4t1TSKTgBePLkSZSUlKC2tjat95qwATW3YAy3D1xbKm4WOicItVrtmreZwu+CazfD/TM4OAiXy4Xq6mrSZ3UdQwTgGkVoGKenp9HR0YH8/Hzs27ePH+cGIKRBaDJsdA8gh1hPg8FggMFgQHl5OViWxdLSEu8hHBoaQiAQQH9/P8xmM7KysqDRaHjDSAQhgRBctFqtVoyPj6O2tjYl0RAIBPj55om0wZKScLsXbh8YhsHS0hKsVitmZmbQ19cHuVwe0nImkc4N4ay2yBIKQoZheKcDFxLnXkME4fqBCMA1CJcL4/V60dvbi4mJCWzduhXFxcUrXsvdWJkWgOvtBpf6vRuNRhiNRpSXlyMQCOD48eMwGAywWq0YGBiATCbjexBygjC8Rxdp2krYCAjzmV0uF2ZnZ1FXVyd6f3a7HU1NTfxCajXFXyLQNI2srCxkZWWhqqoKgUAAi4uLfMFZd3c3VCpViCDk5pxHI9OLba5Ah/vMwz2EQkFIGu+vXYgAXEMIc2HsdjtaWlpA03TMPBbuBgxvaxCPRARgsnmFmTZKYkiHIeL2WVZWBqVSCYZheIM/NzeH/v5+yOXyEEGoUqlWeAhJ01bChUZ4bz+ZTJa07RIyPj6Ojo4OlJeXo6ysDC+99FLSdkssYo8hk8l4oQcEexAuLCzw+cUdHR1rvgdhpM84WsiYYRgiCNcoRACuEYQDvycmJtDV1YXy8nJs2bIloRAh8QAmRzrFanh+IZf/w/UOE3oApqen0dvbC6VSuUIQkqathAsJLp9Z2NtPWLmbDH6/Hx0dHZidncXu3buRl5cHj8cDIPmFa6qkakvkcjlycnKQk5MDIHTO+cDAABwOR0gPwqysLACZn0QS7/ixBKHH44Hb7SaN9zMMEYBrAK5y7Y033oBGo4HVauWNWjy4myzTAhAgHkCOeAUm4R6AQCDAewAmJyfR09MDlUoVIgiVSiVpyUBYl3AhX67KV/iAp2k6aQ/g0tISmpqaoFQqceTIEb6np9h0mLVG+JxzYQ/C7u5ueDwe6HQ6MAwDm80Go9GYcH9DqRAjssMLfDhBGAgEEAgEQtrOkMb7qwMRgBlEmAtjs9mwsLAAmUyGI0eOxM0BESLGiBIP4Op5AOMhk8lgNpthNpsBhIaEuDmlGo2GF4QzMzMwGo0oKysjgpCwpok3zi0ZO8SyLMbGxtDV1YXKykpUV1ev2Bf3utVgtY4n7EEIBCebTE1NweFwoL29HX6/f9V7EHJCPhU4YScsZBQ+E7m/k8b76YMIwAwh7O03PDyMvr4+AMCePXuSzvcgHkDxZMIDGI/wkJBwTuno6CjsdjsWFxfh8XhgMplgNBqhUCiIh5CwZki0t1+ii1e/34+2tjbYbDbs3buXvzeEXCgewHhoNBrk5eVhdHQUR44cgdPp5D2Eo6OjYBgmrT0IgfSE2aMJQi41KpogJF0UxEMEYAbgcmHcbjfa29vhcDiwf/9+nDlzRpTx4vpfpXubePtbT6wlD2A8wueUnjt3jm8rMzw8DIfDAZ1Ox3sIDQYDlEolANK0lbD6JNPbLxE7tLCwgObmZmg0GjQ2NkaNjohtiZUKmbqXhDYmXg9CiqJCKoyl6EHIMEza33ssQTg/P4/x8XF+vB9pvC8OIgBXEWEuzNzcHNra2mA2m9HY2Mj39hMjysQkUqfT87WeSMfnwH2H6TKQXNsZri2QcHD94OAgnE4n9Ho9nz9oNBr5XJrw/BqScE2QEs7rx90D8R7GnO2K5FFiWRbDw8Po7e3F5s2bUVVVFfNaFfaoW00yZfcifRbRehDabDbMzs5K1oNwtQttgFBByHVWoCiK9xACkRe8RBBGhwjAVYIL+fp8PvT392NkZAT19fUoKSkJuZHEGC+pQ8Asy8JisUAmk8FoNCZ0A603EZFuD2A6P4/w1XekwfXCKkKXywWDwcALQoPBsEIQkgo8QioIQ77CKt94CMO2wtd7vV60tbVhcXER+/fv5wumEj0XQhBhD8LKykowDBNScCamByGQGQEYfnyugjjcQ+jz+WKOrSOC8DxEAK4CnNfP4XCgtbUVgUAADQ0N0Ov1Ia8TU8wBiA8BRzKUXHuFmZkZAMGbijMMZrM5ZvhgPRleqcO04ftOp5GJN/ZPpVKhoKCAb4grrCLs6+uDx+NZIQi50DDp0UVIlniFHrGIFLa12Wxobm6GwWBAY2Mjn84QD7EdEVIh0yHgZKFpOm4PQq1WGyIII+Wkp9vGxSNSCDpSyJhblHAeQmGfVdJ4nwjAtCLMhZmamkJHRweKi4tRW1sbsWxfbE8ssSHg8G3sdjvOnTsHpVKJw4cPQyaTweFwrGhgzInB7OzsFS0Y1hPpOud0r46TNb6Rqgg5D2FPTw+8Xi+MRiMvCFtbW7F//35oNBoiCAkx4R6wgUBA1LUhbGRP0zQGBwfR39+PLVu2oKKiQlSrkdVeiK6lEHCyxOpBODg4iLa2Nuj1+pCm1HK5POMewHiLYOB802kOoSD0er28YNzIjfeJAEwTwpVHV1cXZmZm4s6oTMUDKEYACo/FddSvqKhAdXU135uJG3FWUVHBNzDm5ndy7Umys7NDkr7XAxdSCDhZNBoNNBoNioqKwLJsiCCcnJwEy7Lo7u7m5xgbDAZ+ZU2athKA2L39koHbxuPxoLm5GQ6HAwcPHuSbHYvZ33qKRKw1wnsQer1ePnrQ29sLt9sNg8EAn88HlUqFQCCw6j0IgcQEYDiJCMKN1nifCECJEV5UCwsLaG1thVKpRGNjY9xkW7GVuakUgQQCAXR2dmJ6ejqk+TQXzhESaYQRZxy8Xi86OjowOjrKewizsrIyYhwSZaN4AGNBURS0Wi20Wi2Ki4vh8/nw8ssvIz8/H4uLixgfH0cgEEBWVhbvIdTr9SGTHEjT1o1FKiHfcLjr+MyZM8jOzkZjY2NKY89ICFhalEplSDqJ2+3mc4unpqYwPj4e0oMw0ZzxVBEjAMNJVBBeyF0UiACUEJZlsbCwALvdDqfTiZ6eHlRWVmLz5s0JXaxiQ8BicwADgQBOnToFmUyWkEANRy6X86vFhYUFFBcXQyaTwWq1orOzEz6fD0ajkQ8Xr0aD0kTZyB7AWHCfS0lJCcrLy8GyLBwOR0gfQpZlQwShTqfjRQBp2nphEwgEMDExAYPBALVandJ3y7Is+vv7AQDl5eXYvHlzytcKCQGnF7VajaKiIkxPTyMvLw/Z2dm8E2BsbAwMw6xoSr1e8qyFgpD7TrmWbcIpJReSICQCUCK4lcPU1BQGBgZA03TUhqXRWM0Q8NzcHAAgJycHNTU1K24mMbk3CoUC+fn5KCws5EOLVqsVNpsNIyMjAMA3KI1XULIarFcPoBSr31j7Bs57ZiiKgl6vh16vD+kzxgnCkZERsCwbMrZOq9VGFYRrZQFASA5hPnNHRwd27twpqn0Ih9vtRktLC9xuNyiKQlFRkST3TKK2kGvFZTKZEi4yIZyHE2Bc9KCkpIRfLHKCcGhoCBRFhTSl1ul0knzP6bSBwPlnQyxB6Ha74Xa7UVBQsG4FIRGAKSIcXWOxWDAwMACWZXHkyJGkDYvYEHAy2zEMg66uLoyPjwMAamtrI16wqa5qhaFFTjhw/aiEBSWcd1BYULIarGcPYDor8OK18BD2GSsrK+O/V04QCo0+Jwi5ptWcICRNW9cX4b39ZDJZSr325ubm0NLSgtzcXOzduxcvvPCCZL37EhGACwsLOHfuHFiWhcfj4YsczGYzTCZTUmkrF3oIONbxI1XhcovFsrIyMAzDN6W2WCy8zRcKQo1GI+ozXI1G1EIiCUK73Y6JiQmYTKaYbWfWsiAkAjAFhOPcBgcHMTg4iMLCQiwuLopaVaa7CtjpdKK5uRksy2L//v04ffq0ZGIlnuHlmhcnUlDCGeJUcoESPed0sJ5DwMmurIXfa3jjWavVioGBAchkshBB2Nraip07d0Kr1ZIeXWuYaL39xEYqGIZBX18fhoeHQ3qgirV7kYjX33R0dBTd3d3YtGkTiouLEQgEeI9Vd3c3PB4PH8I0m80Jpa1spBAwRyI2jqbpEJvPNW+22WyYnp5GT08PlEplSJuxRHoQAun3AMaDc7rI5XIoFAq+ByG3qBCGjNdy430iAEXCVcA5nU60tbXB4/Hg0KFD8Hg8WFhYELXPdPYBnJmZQWtrKwoLC1FXV5eWit1kDGF4QYmw/UB/fz+cTicMBgP8fj+USqXk1WbEAxiZVA2rsPEstz/O6HOeX4ZhMDg4yBcKqVSqqPk1RBBmhliFHmLslMvlQnNzM/x+/4oeqGLtXiSi7Us4S3jfvn0wmUzw+XyQyWQhRQ7CtBUu3zXRPqiryVr0AMaDpml+IVhVVYVAIMD3IBwfH0dnZ2dID8JY4flMC8DwcxDmOstkshBB6Ha7+destcb7RAAmiTAXZnZ2Fm1tbcjLy8O+ffsgl8thsVhEG7NUQsDRDALDMOjt7cXIyAi2bdvGjw/jDLtUN1KqF3F4+wGueXF/fz+mp6cxOTm5YmUuRcJ4OkinAOS8MunaP9fPTSqERh8ItpU4ceIEtFotZmZm0NvbC6VSGeIhFPaW5AQh13aC5Guln3i9/ZIVbNzis6CgAPX19SsWclIWbkTa19LSEpqamqBSqfhZwgzDRGwGr9FoUFJSwue02e12WK3WiGkrZrN5TYjBTCCFjZPJZDCbzTCbzQDAz/jlUknsdnvEHoTc8TMtAGM5JRIVhJxnUCaT8ekIq/m+iABMAs4w+v1+9PT0YHx8PERUAamtZqUOAbvdbjQ3N8Pn861YdaerMksquObFs7OzyMrKQk5ODh+qERaUcMY42ZX5evUAcue9Vj2AibJp0ybQNB3iBZiamkJPTw9UKlWIIFQqlbjvvvtgMBjwrW99Ky3n89BDD+FPf/oTn4rQ2NiIhx9+GLW1tWk53lpEmM8cKxc0URvHMAy6u7sxNja2wk6K2V8ihAvAiYkJtLe38/1Nk01v4PJdI6WtdHZ2AgCGh4dRUFCA7OxsXqCsBms9BJwscrkcubm5yM3NBRA647yvr48faZmdnQ2n0wmtVivp8ZMlmcVyNEHIMAzcbjcsFgtqamqwuLgIg8GQztMOgQjABBDmwtjtdrS0tICiKDQ2NkKn04W8NlUBKJUHcG5uDs3NzcjPz8fWrVsjrrqB1R+cLgaKoqDT6aDT6UIKSqxWa8iAc+HKPJFcknTm0REBGJlAIMCHQoDIXgBOEE5MTKC1tRWf+MQnEAgEsG/fPkxOTqKoqEjy8zp+/DjuuusuHDhwAH6/H5/5zGfwlre8BcPDw5Ifay2STG+/ROyUMN84kp0UIjbyEW1fnJCN1N80FSKlrZw8eZJvZ8MJFM4OZWVlpe1eynQIeDWKMMJnnHM9CLl/LBYLlpaWVr0HIQfDMKLTksIFocvl4gsnVxMiAOMgNIwTExPo7OxEWVlZxNYpQGYEoHA7lmXR19eHoaEh1NfXo7S0NOI2Ut+8q9l/S1h4UFlZGTOXJFpByXr1AHLf81opAkmWeLmc4aOpnE4nPve5z+HBBx/Ea6+9htLSUtTU1ODXv/419uzZI9l5/eMf/wj5+fHHH+cfPBc6XD5zvApwjnh2ampqCm1tbSguLkZdXV3c60nqIhC3243Tp0/zi/RU2tXEQqFQgKZpVFRUwGg08gLFarViYmICfr8/ZKauXq+/YELGmRgFx/UgLCoqAsMwUKlU0Gq1fA/CQCAQUmGcrh6EHIFAQLJCRYfDkZHrgwjAGHBeP4/Hg66uLlgslriryVQEYKo5gNw4JY/Hg8OHD8d0JcfzAK4nQxXuRYpWUCJcmQPrNwcQWN8ewGT2r9VqcdNNN+E3v/kN3v72t+Nd73oXXnrpJVRVVaXtHAGILuRaTwjzmZMZ5xbNxgUCAXR1dWFychLbt2/nZ0+L3Z8Y/H4/uru7UVJSkpD4lALunhQKFGFPPKvVisHBQdA0HTJHPVVheqGFgJM9vkqlCsnXFPYg5Dz36ehByJGKBzAch8Mh+fklAhGAERDmwszPz6O1tZXPC4rXq44zZmKrpMROAnE6nXj11VeRnZ2NvXv3xs1F4c5NypX3WiFSQQlX2cdNKNHpdPD7/XzOhZTnv949gOkc3ye2mpszkNnZ2Xjb296WhjM7D8MwuOeee3DkyJG0HieTMAwDv98vapxbJMFmt9vR3NwMmqbR2NiYVChLiugBV+zmdDpRXl6OrVu3prS/RInVLzO8Jx6XPzg5OYnu7m6o1eqQPqjJeJMyHQLOdBFG+PHDP29h31muPy8nwFPtQcghZWcKh8ORkZxGIgDDEHrS9Ho9BgYGsHnzZmzatCnh1TG3HzECMNmVMHehLy4uor6+HmVlZQkdNx0CMNNGKRoqlSpkZe50OjE+Pg6Hw4GmpiYACDEMqbZ6SHebFmH+iNRIXQUcjliByYVIVoO77roLbW1tOHHixKocbzUR5jNzNkqMnRLOCucKLWKlxsTbXyoeQGGxm9Fo5CvOYyH1gi8e4dXwworXwcFBtLW18QUO62GOeqY9gPEiFeF9Z+P1IBQziEDKaAnxAK4BuDEvLpcLU1NTUKlUOHDgAJ/0mwjcBSHm4kjWEHq9XrS2tsLhcKCwsBDl5eVJHS+WaFtLHj0p4QpK8vLyYLFYcPjw4RUFJQqFQlRzUo50h4DTLdDWUggYAB/eWY3quI985CN4+umn8dJLL0XNn12vCEO+AEQvJDg75ff70dnZiZmZGezatUt0zmQqi0eLxYLm5mbk5uZi3759OHv2bML7ymj/tbCKV67tlXCOery2V5kOwWZaACZz/Hg9CLu6uqBWq0MEYbyWU1J6ALmWN6sNEYAINYwWiwVtbW0AgH379sFoNCa1L6EATJZkcgDn5+fR1NQEo9Eoeo5muvtvrWWEPcASKSjhQjWJTChJdwg4nYY300Ug0Ui3B5BlWXz0ox/FU089hRdffDHtOYarTbzefslA0zRcLhdOnToFhUKBI0eOpDTGUWzkY2BgAAMDA6irq0NpaSkvaFfTDkl1L3Jtr7g56k6nc0XbK+GiNNPdG9aCAEzFTsXqQTg8PIz29nY+5SSa3ZcyWrKaEQ4hG14AcitZn8+H/v5+jIyMoK6uDp2dnaJXxwBCQiTJbBtvO5ZlMTw8jN7eXmzZsgUVFRXo7e2Fz+dL+njrTbRJTaTvN1pBidVqDWn1wBmGSKEa4gGMvf9UcgDTxV133YVf//rX+POf/wyDwYCpqSkASLiQYa2SaG+/ZPZnt9sxNzeHTZs2YfPmzSlfL2IiHy0tLXA6nTh06FDIIl3KgpJEkdqGhre94mbqWq1Wvnm6XC4Hy7KYmpqC2Wxe9Qbp610AhhPukfX5fLwAFxYSCgWh1EUgJAdwFRHmwjidTrS2tsLv9/PVs729vaK9eGKreWmajinkfD4f2trasLCwgP379/OhabFCLtZ2XKPKZFhPYjLRc41VUNLR0QG/338+VDM2huyrrkIVgJYf/QjYvl3y874QPIBiQ8DpXCH/4Ac/AAAcO3ZsxbHXK5xYGx4e5oVaKteO3+9He3s7rFYrsrOzsWXLFknOMxn7JYx8NDQ0rPDKXIiLWuFMXS5KMTIygrGxMYyOjqKjoyPqxIx0kWkBmO6FsEKhCOlByIXohTOjAWB6epoff5nK+RAP4CoiDPlOTU2ho6MDRUVFqKur4xV9It64aMhkMslDwAsLC2hqaoJOp0NjY2PIii/V9jFSsB5zBsWcc6SCEpvNBuuLL2LrnXeC2+OBD30Is9ddJ/ns0NXw0KXTmyAmBOxyucCybFpzAC800cDlM7vdbgwNDaUs1hYXF9HU1ASNRoOqqiosLS1JdKaJee24yEdPTw+2bNmCysrKiPdVJkLAq33tyGQy6PV6Pkedm5hhtVrR09MDj8cDo9HIRzIMBoPkNiPTAnC1ZwELQ/RA0CadOXMGXq8X7e3tIY4ArgdhMudHBOAqwXn9vF4venp6MDU1FbFnlVgRB6TW0DncmLAsi9HRUXR3d2PTpk0Rq5GlHiEnlvX0EJXiXIWhmnKB+AMACoC2qAiv/v3vKRWUhJPule9arAJ2OBwAkNYQ8IUCF/LlqnzlcjkCgYDoBzbLshgZGUFPTw9vf0ZHRyUNs8YTUX6/H21tbbDZbHGL8i5ED2A8widmuFwuPkoxNjYGhmFCbJAUXQ42mgAMh+vhuGXLFmi12hU5myzLhvQgjNfk2eFwJFS9LjUbRgAKc2EWFxfR2toKuVyOI0eORGzImemJHkBoyGXv3r38dIRwUjF6xAMoDZE+RVYuR319PW+IwwtKxMwOvRBCwMm+Z7vdDpqm0zbR4UIh0jg37rMWI7y5lJP5+Xns27ePz4uVOs8u1v6WlpZw7tw5vg9rvAXUei0CkfLYGo0mpEGy3W7n++H19/dDLpeHNKQWW8CTaQGY6RC0MKc2fFQp95lzbX64KuRorcacTqekXQdeeuklfP3rX8cbb7yByclJPPXUU7j++utDzv/zn//8xhCAnGH0+/0YGxtDT09P3OHgMplMdAg4lZm+3HZLS0toamqCSqWKa/jWQggY2HgewJD9LS6CNRp5LyADgLZaYQZgNpuxefNmUQUlkc57PReBBAKBpEPMXAFIJlf8ax2h10/Y3kXYlSAZATg/P8/3Qj1y5EjIdya1AIxmh8bHx9HR0YHKykpUV1cn3N90te1QJuxeMq1uDAYDDAYDysvLwTAMFhYWYLVa+fYnGo0mqUWpsINCpsi0B5Dzgka6pyJ95lxTauHsei5f0+l0wm63SxrhcDgc2LVrF973vvfhHe94x4q/f+1rX8Ojjz564QtALhfG4/Ggs7MT8/PzMb1pHKnkAKYaAk7W8KUyQYR4AKXDubgI5OfDB2DwxAnUhP09vKBEONxcWFDCGeNIvb8uBA+gmBBwJvJj1gPxevtxn3Wic0tZlsXQ0BD6+vpQXV0dMdcu3R7AQCCAzs5OTE9Pxx29Gc5GDAEng3AaBrBybKZwUco1pA63B+meRpQImZ5EIvSyx4MrEsnKyuKLeLim1K2trbj11lshl8thtVpRWlqKSy+9FEVFRSmd35VXXokrr7wy4t9YlsUjjzyCz33ucxeuABTmwnAftMFgWLGajUYmcgCBYLL1wsJCUoYvHVXAYlhPhjdtOSwzMxjs6Ulo3+GzQ/mCEquVn2UpzN3RaDSrUgSyFnMAM9EiYa3D5TNztibS98YJwkQWs1xj+aWlJRw4cCBqTlI6PIDc/rjpPDKZDI2NjUmH/UkIODmiLUqtVitf3GAymfhFqV6vz7gHUBh+zRTc9SqmDYxMJuPt+qZNmzAwMIDLLrsMRqMR3/zmN/Hud78b3d3dqK6ulvq0AQCDg4OYmprCZZdddmEKQJZl4XK5+HYBXBVcRUVFSvMuE0XMtg6HA/39/QgEArjooouSystIpe2MVJNA1psHMJ0PCTGr01i9v4QTSlQqFRiGgcfjSbmgJBKrMQs42c8mU2OS1irCFlaJ9PZLZDFrtVrR3NwMk8mEI0eOxPQWpsMD6PP5MDU1hba2NpSUlKC2tlbUAz4ZASiVWFzLIeBkCV+UOhyOFblsWVlZAIJiMROeee69Z9oDmGpbJY7s7GyoVCq8//3vxzvf+U6+zVK64HqcFhQUXHgCkPP6OZ1OzM7Owm634+DBg/xFmyirmQM4OTmJtrY2mM1muN3upJNyU6nmXesewHQa13Q2a05135F6fy0sLGB4eBhOpxOvvPJKSKd6MQUlkViLIeBMjUlai0Qq9Ih3rcWyZcKJGjU1NSgvL08o5URqD6DNZovakSHZfa2nSMRahqIo6PV66PV6lJWV8blsMzMzAIDXXnsNKpWKbzdjMplWpSH1WghBS2knw0ddcsVWq8EFIwCFuTCzs7P8OLe9e/eK6h+2Gh5AhmHQ1dWFiYkJ7Ny5ExRFobe3N+njpcMDyE1ISfRhvd68M+n2AEr9eXATSux2OxQKBWpra6MWlETL3UmEtdgGxul0EgEI8ePcotkjj8eDlpYWuFyuFRM1xOxPDG63G2NjY/D7/WhoaEg5ET4ZW+jz+SCTyVK6VzMZBl3tY3PeP5VKhdHRURw9epQfmzk0NAS73b5iWkY6ogmxUh5WCynnAAOra+O4Bdb09PSFIQA5w+j3+9Hb24uxsTFs3boVHR0dom+SVItA4m3rdDrR1NQEAGhsbIRWq8Xc3JzkQi4ekbaz2+04d+4cHA5HSENRo9EY86ZbbyvvtewBjAZXBJJI7k68gpJo+19rfQbtdvuGzgFMdZxbJA/g3NwcWlpakJOTgz179iTlPZZKAM7NzaG5uRlarRZGo1GSKshEPIAsy6Kvrw/9/f1QKpX8oklsn871ZvdShbNvCoUiZHya1+vl+w92dXXB6/XyNohrSC2FXVxLIWCpSPeoSyFVVVUoLCzE888/v74FoDAXxm63o7W1FUBQUOl0OnR3d6c0zSMVARjLKMzMzKClpQXFxcWoq6vjL6TVbucSaTsuD6e0tBTbt2/H4uIirFYrWltb+Yai3A2t0Wj4G5p4AEP3nU4BGMnwRCoo4YxxtIKSSOe4FkPAG7kKWEzINxzhgpRhGPT392NoaAj19fUoKSkRtb9UBCAnwLhzCAQCsFgsovcnJJ4N9fl8aGlpgd1ux/79+xEIBGCz2TA+Po7Ozk7odLqQkGY682HXK9Hsm1Kp5KdlcHn4nA0aGRkBkJgNige3CM50CFiqayMdoy7tdjv6+vr4nwcHB9HU1ASz2Yzy8nLcc889+PKXv7x+BaDQME5MTKCzsxOlpaUhycOpevFizeWNt22k4zIMg56eHoyOjmL79u0rSr1Xu52L8HgMw6C3txcjIyPYsWMH8vPz4fV6odPpeFEhLEro7e0Nyf9gGEZ6UfXEE8H/XnKJtPtdJp0ewHSJqET2LSwoEebu2Gw2fpi80PPBJSEDa7MKeKOGgLl8ZjFePyFcEYjb7UZzczO8Xi8/81wMqdhVr9eL5ubmkLCzlJNFYtltrqm0TqdDQ0MDgOD9xFVjch0jrFYruru7V3iwIk1z2Egh4GSOTVEUtFottFot3xx5aWlpRVFbJBsUj0xXAAPSegCdTqfkoy5ff/11XHrppfzP9957LwDg9ttvx+OPP45PfvKTcDgc61MAcl4/j8eD7u5uzM7OYteuXfwoHI5UvHhSF4G43W40NTXB7/fzHspEthN7vERhWZY3ym63Gw0NDdDr9Sv2J2xuWVFRgUAgwOegDQ4OwuFwQKlUgqKohMLFMXniCWjvvBM0gAYAPgDexUVx+4rCevYAivHYhPeh4prBcsPkuYIShmEkTfAXwoUyxRSBrGZidKYJ7+2XarUhTdOYn59HZ2cn8vPzsW/fvpQKhoTNpZO5x202G5qammAymdDY2Mifg9T9SCPta2JiAu3t7aiqqsLmzZsBYIVQVCgU/Eg1oQfLarViaGgINE3zYlAYLt6oIeBkoCgqYlFbuA3ixKDJZIp6jWZ6Cgh3DlJ5ANMx6vLYsWMxr0uKovDggw+uLwEozIWZn59Ha2sr1Go1jhw5ErFyNlO9/MK3nZ2dRUtLCwoKClBfXx/1wkllgohYD6DD4UBvby+ysrLQ0NCQ8INBJpMhJyeHb6jd0dEBr9cLl8sVN1wcD/Wy+ONQAPAm+d4SYT3mAErhXeQKSjhRJfR8AMHqPi73k5tQIsVqV2zytsPhQHl5ecrHXw+E9/ZLNdTFMAxcLhdsNhu2b9+O4uLilM8xWQEobC4dqR2XlEUl4baQYRh0d3djYmIipLdqPHsZ7sFiGIZPhxGGi71eL5aWlpCTk7NhwsVS2LdoNshms6G3txdutxtGo5F/hggdCmvFAyilAJTJZKJH8qXCuhGAwnFuIyMj6Ovr44eTR7sYU/Xipeo9FOa6bN26FSUlJTG3SyWXT4wBdbvdsFqtqKmpidjxPxnkcjmUSiWqq6vjhouzs7Nj9hmjIv1/Swuwc6fo8wsn3SItnR5AqR80nOfDbDZjYmICBw8e5MM1ExMTfDNYzhjHG2weDe5+EpMDuFoJ0pmCs28LCwv82LtUryGn08mHfMvLyyURf8D57y8Rm8PNE15YWMD+/fsj9jdLlwDkQt5chXEqhUTcLFeTyRQSLubE5cjICN8wOZV7JFHWegg4WYTeVwD8ooUT3AzD8J9vqpXbUiClCOXGwGVC1K4LAcjlwrjdbnR0dGBpaSmqMRGSagg4FQ+g2+3Ga6+9Bo/Hk3C+Taoj5BKFG7XkdDpRXl6OqqqqpI8ZCWGH+Fjh4ra2tpjVxS6FAjqfL2SurpTiT3iu6SATRSBSwN0rWq0Wer0+YkHJ0NAQKIoKyd1J1Lsr1gN4oecAcuJvfn4er732Gt785jenfP1wxVzFxcXQ6XSSLhpomgZaWqC5/npQAFgAgZ/8BLjttpDXLS4uoqmpCVqtFo2NjVF7xKUjBMyFm3NycrBt27aE37/KaAT3SufllwN//GPE13GCZWRkBKWlpTAajQmFizOBwmgEt9x2ZmcDy0VhYlkN8anRaKDRaFBcXMw7FDhBaLPZwDAM2tvbeTu02t4zKXMAM1nktqYFoDAXhqtETaRTPUemcgDdbjemp6dRUFCAvXv3JhxW5YRcsjdYMgbU5XLh3Llz/ENcqvYa8SYRCMPFHo+HN5YRw8Vzc3Dk5kLj84EF0Pub36BMkrNM/JxTIZ05KuksMInUYDVWQcn09DR6enqgVCpDhslHe9hxYZNkP5sL2QMo7O0nl8sRCARSunYCgQDvleKaKnd0dEjeuPnqBx6ADEHxRwHA+9+PwLIA5OaZd3Z28jl3sd6T1I2lHQ4HXn/99YQaWwttrXJZKHGWVPvss3AmcLx44eKuri5otdrMVBcbjRDKbp3NBkeK0ZTVzsETOhTKy8sxMzOD/v5+aDQaTExMoLu7GxqNhn+GmEymhPRBKkgdAs5Um6s1KwAZhsHc3Bw8Hg/m5+cxPDyM2tpalJWVJXzxreY0D+B8V/2JiQkYDAa+uXOicK8VIwATOVeu71ZBQQG2bt2K5ubmjCQwq1SqkJYl4SPPlEolzK+8wockOeEoJevZA5hu72K8h3WiBSWcMeYWQGJXzRdiG5hIvf3kcnlKc04dDgeam5sBnO8tCqSWzhINGgLxt/xzAMHvuL29HXNzc9izZw/fIy4WUnkA/X4/Jicn4XA4cODAgaTHackR+p4SIdK5RwsXc9XFHo8n5XBxojZGHen93H47cO5cUscTc+x0olAo+BQwv9/P5w/29/fD6XSuyB+UWnBLXQSSqVGXa04ACnv7TU5OYnx8HCqVSlTbglQLOZIxml6vFy0tLXA4HKioqIDT6RRVrQkkH+aLFwJmWRaDg4Po7+9HfX09SktLAUgfehFbwBKvutjhcMDn86VeXRzh2OlgvYaAxew7kWRug8EAs9kMuVye9P65ELSULRIyTbTeftwDRYxQ5qpcw1thAcHviKsolgoG4Au12OV/HA4Hzp07B7lcjsbGxoTDclJ4ALljc9EEMbNUGZx/IEq5PBRbXSwFPgArZMr//m9K+8y0AAxfBMvl8pCm+FyEyWazrWiKL1V+JuexlwISAl5GaBinp6cxMjICpVKJhoYGUWo7FcOXTA6gzWZDc3MzsrKy0NjYiKmpKdjt9qSPKRSAyRBLyPn9frS2tmJhYSHiTOS11sIgPFx87tw5KJVKSaqLhaxXD2C6Q8CprmrDk7mFE0osFgv8fj+ampqSKii5kDyAsXr7CQVgoiEsLp93eno6Yissbr9SewCfu+kmXP7kkwCCYmns2mvR+uqrKCsrQ01NTVLXqNjFIwfXWL+kpAQ6nY6fVZss7hMnoDl6lPduOiN8luGIaYciVbg4kWMHFhfhNxr5B70TSDmfei0IwFjXV3iEKTyHmabpFQ2pxZyD1B7ATLBmBCDn9fN6vejt7cXk5CRKS0uxtLQk+oOWyWSSN3MWwrIshoeH0dvbG9LeIJV2LkDyAjBa7iA30k2tVkdMwk5lhFw4UnoThchkMhiNRpSVlUUMFysUCpjNZuTk5MStLo50zulgvYaA0zEHWDihZHp6GoODg8jJyQkxxlw4LFpByYWQAyjMZ+ZEfKSmwjRNJ7xotdvtaGpq4j1u0R5kUufYAQD9n/+JmUcegclkQnd3N8bHx7Fzxw4UFBQkvy+RdkjYZWHbtm0oLi7G2NiYeDu0cydcIvqNpmL3ooWLuQpjj8fDe69ycnL4BVMyx/QsLsIj+gxXstYFoJBoOcxWq5XPYVapVCFFbdGKlYRIaSu5KuBMkHEBKMyFWVxcRGtrK2QyGRobG7G4uIj5+XnR+5bJZHC73aK3jTdSqLW1FYuLizhw4ABMJhP/t1SqeQFxHkAg9MacmppCa2srKioqsGXLlqg37FrzAMYiVrh4aGgIbW1tfLjRbDbH7F9HPIArWY0pIEqlEmVlZVGNcXhBiVwuT7sH8KWXXsLXv/51vPHGG5icnMRTTz2F66+/XrL9MwwDv9+f0Di3RLx1wiKLiooKVFdXx/ze0uEBpGkaLpcL3d3dYFk2JOdQzL6StXlcyo3T6QxJD0qH2F1Nwj3o4SMdOe8VRVGSf6eJkmkBmIoNFOYwV1VVhTxDhoeH0d7eDr1eH9KQOpIDSuoikA0ZAhb29hsfH0d3d3eIQXM4HCld5OkqAllYWEBTUxP0en1Uz1oquYfJihOhAORGuo2OjmLnzp0xV+RSegC5468msaqL29vbEQgEQpKttVrtigrXdLBePYCrPQYumjG22WwYHR3FN7/5TfzjH/8AAJw8eRK5ubkwGo2Sn5fD4cCuXbvwvve9D+94xzsk268wn5m7JuJ9d/Fslt/vR0dHB+bm5kIaG8ciHUUgDMOgo6MDRUVFMZvbJ0KyHq3FxUWcO3cOer0eDQ0NIV7/dEUiopFuIRQeLl5aWoLFYsHU1BTcbjdOnToV0l91NaqLMy0ApbRT4c8Qr9e7omCH88BmZ2fDYDDwz3cpR8FtOAHIjSBzu93o6uqCzWbD3r17Qyo+ubYIYkm1mXN4RR7LshgdHUV3dzc2b96MqqqqiDeClFNEEt0GCOZbtbe387M+411UqzGCaTUJz/1wOBywWq2Ym5tDf38/Hy42m82SJ8UL2UhFIMkQL2wSbowrKytRUVGBz3zmM/jCF76A22+/HTfccAN++9vfSnpeV155Ja688kpJ9wkEP0+vNzjDJtGJHrFsHtdXj0vpSLTIIpWepuFwYVeXy4Xy8nJs3bo15X0mY/PGx8fR0dERdQhAonZIyvtzteyecMGkUChgsVhQUlICq9XKF1wJix0MBkNa7NBaEIDpOr5SqURBQQEKCgr4gh1OEI6MjPCzo10uV8jCLhXsdntC1fLpIGMCkKIo3pOm0+nQ2Ni4ovop1dBFqh5A4PxD0e/3o62tDTabDfv27Ys5mzQVASgmIZq7AM+cOYPs7OzzvQdbWkAfPAgKQECjAWy2FdtlWrSlC4qioNfrodfrUV5eHtKuZHh4GHa7HXK5HP39/XHDxcly7IorQANwyeXA8ng1qVjPIeBkwyZ5eXm48sor8cADD6Crqwvj4+MYHR1N2/lJDSf6knlARLJZwoVnIn31EtmnGDweD5qbm+HxeGA0GkPSXlKBs0OxHqYMw6CrqwuTk5MxPZ/J2LRMtzJJFZqmQ6pfnU5niFgRNmyXslnyWhCAqzE1Q1iwU1JSApZl+R6oVqsVfX19GBkZCckfFFPB7XA4UFlZKf0bSICMhoBnZ2dRXl4edQxZqu0LUln5CivyuObJGo0molANJxXPY7JhWS4fCABKS0tRXV3Nf5bygwf5Vg0ylwtevR4QVCdL7QFcy4S3K+nt7cXi4iI8Hk9C4eJE0RqN/Geu9/vhNBrBiEgsj0a6Q8DpDCGJ2b9wTFJ5efm6mgmcrPgDVoo1n8+H9vb2iBGSRJEiL85qtaK5uZlfYJ47d06ysLIwwhLp83K73WhqakIgEIg70u1CCwEnc2yhWBHm105OTvLNkoXVxWLbmGwUARgORVEwGo0wGo0YGxtDfX09APApK7F6oMbC6XRuzCKQ2tramEYkUhg2GVJZ+XIX+MTEBPr6+lBZWRkirmKxWiHgQCCAjo4OzM7OAggKQOH5hX9icr8f4XJ6PecApoJMJoNWq0V9fX1IuNhisawIFydaGQas/MzVQELTBBJlI3kAgfVdASzmISlc9MaLkCSzT7F2kGVZDA0Noa+vL2SyhtTze4HI15/VakVTUxNyc3MTGumWiahGJuxevGOG59dyzZKlCBen0wath+MDwWtVoVDwRYebN2+O2AM1vCF1pPPesEUg8S64VCcIpGL4OE9Lf39/wh3tOVYjBCwc6dbY2Ijjx4/HNQrhf5UyOXytewBjES9c3N7ennB1cbpJ9yzgdAvAZL0OmeySnwk4ATg0NITe3t6YucaJItYepaPTQbTzA0JFjbDFVjIToDaSBzAZwpslC5tRJxsuXgseQKmaMIslkq2M1AOVq+DmetiaTCb+c+bsWjoXuV/4whfwxS9+MeR3tbW16OrqArAG2sDEQkxj1PDtxQgcrr8WAOzatSvpBM1UQs+JhIC5kW6FhYWor6/n20qEH9MH8EPAWQCBBx8M+bvUxjJdhne1E5nDw8Verzfh6mIvwM/eZAE4b7hB0vNez1XAG80DCCR/j1EUhfHxcTAMg/3794uaaBGOGDsYr9OBlIUl4e2v/H4/2tvbYbVak/4MMpEDmKnIRyrnr9FoUFJSIipcvBYEYKbb0CSSzqJWq1FcXIzi4uKQKJPNZsPg4CBmZmbw29/+FiMjI3C5XGk7323btuG5557jfxZ+l2taACbbGDUcMYZvcnISbW1tKC8vh9frFbXSiNaYOdFtoxlWbtbwwMBAyEg34TFDXu92w/vEE8BPfgK8+OKK/W2kHMBIRDvnz33uc3j00Ufxpje9Cf/3f/8HpVKJwsJCFBYWxgwXbz90CDQAN4CF/fuh+/e/JT/n9RwCFpMDuBrhEbvdjr6+Pv7nwcFBNDU1wWw2r2rOoc1mw8zMDJRKZUTRJRZOrCVij4QFJ9EqbQFpPYDCNlbcSDeFQiEq7H0hF7YJkfI9JhsuzrQAy1QOoPD4AJKyZeFRJoZh0NPTg9OnT+P48eP48Ic/jG984xt485vfjG9/+9uSFewAQcFXWFgY+W+SHUUEiVxEUvTyS8TwBQIBdHV1YWpqih+pND09nXJD52QfeNFCwMJwTKSRblEN3223Bf+Jcqz14AFMB9HO9eabb8bf/x7sPTc5Obni79HCxYWVlby3VQYg+/XXMW2zSR4uXs9FIGJCzKvhAXz99ddx6aWX8j/fe++9AIDbb78djz/+eFqPDYTO6s7KyoJWq5VM/AGJ2yNhj8F4BSdSC0CKojA7O4vu7m6UlpYmPU5OuK9E7ZAU9mo9LnzjES9czOW/TUxMSFpdnCiZFoDChu5ioWkadXV1+PrXv46nnnoKv/nNb+ByuXD69GlJZ0EDwYLH4uJiqNVqNDQ04KGHHuIXtmvaAwikJgC5IpJ4AtDpdKKpqQkURYVUmYnNkUtFAEby5C0tLeHcuXPQarVRPQNiG0gTD+B59uzZg/7+fv7nSHNVw+HCxeE3khzgB5ELc2vEVhcD51ee6fQAikm1SBQxIeDVGJN07NixtKYvxNq3x+PhJ1ocPHgQc3NzcDgckp6DMJUm2ufPpb1wnrd4D3UpBSBno7u6urB9+3YUFRWJ3lcydtDpdIJhmJSvr/UYAk6G8HBxd3c3lpaWJK8uTpRMF4FIbYcdDgfy8/OxY8cOXHPNNZLsk+PQoUN4/PHHUVtbi8nJSXzxi1/ERRddxE/NWvMCMJVm0ELDF+3Lmp6eRmtrK4qLi1FXVxfyOrF5LmJHunHbCrfjQtLxqpDF9g+MZby4vydTHbZeEJ6r2+1GVVWV4MFLAWCTEivs8lbCn48cOSJZdbHwnEkI+MLAYrGgpaUF2dnZaGxshEKhgM1mS8vYNgBR9zsxMYH29naUl5djy5YtCV0DNE2LnrMuhBvpBiDu5KJESMQOcmHurq4usCwbImBWa5pGqmTK1tI0zXuo6uvrJa0uTpS14AGMNc4xGRiGSeskEGGD+507d+LQoUOoqKjAk08+if/8z/+8sEPAsYpIuBj82NgYtm/fHjFGLnaVK2xrkCzcMYXnx4Wk4x1Tag9gMuJvvXoAe3p6cPDgITBMAJDJgYAf+UfeiZlX/pDUStZ16BC0p08vS0dgfts2qCSuLuaup/UcAk52/5nskZUuuGkaQ0NDqKurC2nflGrv00hEa9sibK6ciI0RIoUHkBvpZjAYIJfLJQklxrNp3Ai7mZkZ7N69G1qtlr8ne3p64PV6kZWVhZycnJBKzVjH22gInwvxwsUAQsS1RqNJ+fhrIQdRyjnAAPhZ1unGZDKhpqaGz3le8x7AVAwiZ/jCBaTL5UJzczPfWDTaA0as+EylTxZN0/B6vXjttdfg8/linl/4MaX2ACbLevMAPvfcc/jUpz8NgIJm0364Bl6HTGNEUcPbkxaAePZZOBEUOcePH8fRo0dXvCRedXG8cHG6PYCr0QZGTA5gpsYkSUH4g8rtdqOlpQUejweHDx9eYfilmtoRTvh+ubQXAHGbK0ciVQEYPtLtxRdflCwnL9p+uIbSDMOgoaGBjy5xAoYb/WWxWGC1WjEwMMB77HNycpCdnR0xRSJTfQAzJYJiHVsYLmZZFouLi5I3o14rHkAp4ATgai1y7XY7+vv78e53vxvAOhGAUo6Dm52dRUtLCwoKCuIOMV/tmb5AsNhjaGgIubm52LdvX8I3CMkBTI7vfOc7+OUTT4CSq5B/xZ2Yfe7/AaCw5+M/h9cRnJYiZpXHfZ6JfB7RqoutViv6+/shl8t5Y8lV3yW6bzGsxTYwdrsdVVVVaTqj1WV2dhatra3Izc09P64xjHQJQKE9mpmZQWtrK4qKilakvYjZXzIwDIPOzk5MTU2F9FcVs4CNRDSbNj8/j3PnziEnJ4dvKB0ewhaO/iorK+M99haLBYODg2hvb4fRaOQF4Wp5bdYaiYpPiqKiVhdz86TDP89E9rsWBKCUHkCFQiF54QfH//zP/+Daa69FRUUFJiYm8PnPfx4ymQy33norgHUgAFPJAQTOF3IwDIO+vj4MDw9j69atKCkpSXhbscdNxqBxeSk2mw05OTnYtWtXUg/6dISAk2W9eACvvfZaHD/+EmidCeW3PIjpFx4H47aj8OhNkGsMcC8uAEi/ABQSqU3A/Pw8rFYrP2aI89LYbDaYTCbJjeBazAF0uVzrPgTMMAx6e3sxMjIS1/ak0wPo9/vR3d2NkZERbNu2DcXFxaL3J0YAut1unDt3DizLrvA6ilnARiKSTRsbG0NnZye2bNmCiooK/t6Md4+Ge+y5xr7cPcm9hqIoeDyetD3E1xpivY/RwsXcKDUAIRGQaOHitVAEIqUATGej+7GxMdx6662wWCzIy8vD0aNHcerUKf47uKBzALnt3W43ent7o4ZdYm27WiPd2tvbMTc3h9zcXBiNRlECQsoQsNfrxfj4OLKyshJamUl+AWdlQcuyOASg97e/BQQ9D1Ohvr4e4+PjUORWoPy2r2Cp/xxcA2+AVutQeeX7gy9ig9ebmPCEWAEYDk3TK8LFk5OTGBgYQGdnJ3w+X0gzaimMSDoFINeOSYwHcD0Xgbjdbrzxxhvw+/1oaGiI+17SJQAB8EUPiZxHPJIVgNxIt7y8PGzdunXFdRB1f2o15FhuZH/mDLBzZ8zjCG2aMMdR7Bzl0FM539iXa57c2dmJhYUFvPLKK9Dr9bw3K277p5YWaI4eBQXABYBNcl54pkPAMd/bsu1mAbhOnIj6nYWHi5eWlmCxWDA9PY2enh6o1eqQ/EHOHq8FD6BUx093l4Pf/va3Mf+ecQ9gPC9UqknRLMuivb0d+fn5UcMu0VgNDyCXi0PTNBobG9Hf3y86d1AqDyCXnC2TyTAwMACapvmkaLPZHLVyVbJwstEI4S1Re8stcCRpIMOx2+3YtGkT3G43NFX7UHbT58D4vZh77scARWHPvf/Lv5ZZ/s7FtESRSgCGo1QqYTabMTw8jMbGRjidTt4bMTAwsCJcLKaPXLrHzAHJ5y+u9yrgyclJGAwG1NXVJSR+U414RMJiscDlcsFkMiWVVhKLRO2bcJZwrJFuEW2RWg3hVUwfPAif2x3zeNy+3W43mpubeeGdbI5jPLjmyXq9HgaDAUVFRbDZbLBYLPy0oPB8XiG6ZfEHADoALqMRgRRt3GoRU3wajRDerbqjRxOy3RRFwWg0wmg08uFiLgLS398fEi72+/0XVBFIJkddZlwAxkMmk8Hr9Sa9HTc1w+VyobS0FNu2bUv6Q07VAxjPkHP5iMJcHLGhEKlCwFNTU2htbUVVVRVKS0tDVmZcKNJgMCAnJ4fP25CqJJ4j3PFPAUBLS9zVfzSamppwybFjYBkGxr1Xo+zquxBgGIz+8WEwrkXkH7oOCp2Rfz3LBBccmfQARts391nrdDrodDqUlZWBYRi+kpH7jjhvBFddnIjBSmcVsJju+cD6HwVXVVWVlKDjPIBSeHiEk4M4b4tUPdoSsW9+vx9tbW2w2WwrZglH2l+4rQ0/00Q+De4zO3XqVFzBK8U9ytlQpVKJgoICFBQUgGVZ2O12WK1WzMzMoLe3l/dm5eTkwGQyrXgvagDSdn9MH7GuzXCZLdZ2y+Vy5Obm8jmiLpeLzx/0+/38pJ544eJ0IHURSCbt25oXgHK5POk5eVxvKafTiaysrOANJ+Jm5ypyxZDoSLfwnKBUmk+nEgJmWZbPU9q1axfy8vLg9XpBURRMJhNMJhM2b94Mr9fLV8m1tLSAZVmYzeaUvKUJIVL8PfHEE7jzrrsAikbuZR9EQcP1AABb+wm4+k6BVmqw6bqPhGzDMKmFgLnJBlITrf0BTdPIzs5GdnY2/x1xxjKZcHE6q4DF9M5iWRZOp3NdJ9uLWXSKHSMpxOv1orW1FXa7HQcPHkRvb6/k48Ni2RtupBs31i5eflyiKSxqjQZqlQoXX3wxHnvssZBxmECwrysAlJaWYvPmzRnxrFAUBYPBAIPBgIqKCt6bZbFYcPbsWXzve99D+JBIFsC+fftw//334/rrr497jEyHgFf72BqNBhqNBsXFxXjhhRdQV1cHl8sVN1ycDqQuAslkhCPjAlDqELDNZkNTUxNMJhMaGhrQ2tqaUh9BqXMAuZFuS0tLOHToEIxGY8jfxVbDpeIB9Pl8aGlpgcPhwOHDh6HX66PuS6lUoqioCEVFRSHewampKbhcLpw5cyYkD6apqQldXV1J3ZDGq67CO//2N36V7Afw5JNPJvXeAODXv/41/v3CC6AUGhS//T6Yag4E9+dxYfZfPwQoCrvu/fnKDSUQgOkg0RBtuDci0XBxukPAYvadaQOZKmIEIBD0nokdB7ewsIBz587BaDTyDaalzi2MJQC55vrJjHSLFPnwP/ggFA88EGIHwLJwu93417/+herqLaBoCiXFxfjoRz+KK664AmNjYwCAysrKNdOZ4E9/+hMeeughDA0NIRBgALDw4/zDlwVwH4Iju97znvcAFA2dVoNjx47h29/+dtQ5rpkiVg6g87HHoLvzTv47CwCiF++xMBqNKCgoQGVlZcxwMdeMWupxnMQDuEokariEuSY1NTUoLy9PqR8fkFobmEjiUTjSraGhQbKRboB4Aej3+3Hq1CloNBo0NDQklfcmzNtQq9UYHx9HWVkZ39fuq1/9Kl566WUETVxy+ABwt5gXwPvf//6k9wEAlFyFsv/4Kgyl1fzvRv/8LTDOeZh3Xw6VwbxiG5ZJLQcwXQ8eMdVvyYSL0+nBFRtezrSBXG2EzeuThesk0N3djerq6hARJLWHPpJ946IIw8PD2LFjR1LCJaKt/eQn4fvkJ4G3vQ0PKhT4/55+Gobaw1jqPg2ABWgatC4bY2PjuO+++3Dfpz4FtUqFmpoaVFZWoq6uLu5xU/WKRqs6vueee3DixAk4XS5g+e8yQw60xbUw1DagfsshUB1d+Pq/vok7Dl8NSq5ERe1hzLc8D9dIC5wzg3jmmWfwzDN/40XuXXfdhbvuuivk2Jkgpo277TY4brsNeOc7gc9/XnLxx3nHhXYwPFwcqVo7keriRJHaA0gEYAwSSYrmvGqLi4srck1SKSJJZdUsdqRbKg2kk91uaWmJ77NWU1OTkkHhxDbnedq7dy/6+vogM+RCVboNmqItyy+Mv6+J538CoczRAMh5c3IC0OdcQsA5D0fbvzH5l69DfsvnoTEXw9p5Es7uV0HJVdj09v+OuC2zRgWgFB3wY4WLAeD111+XvLoYEGc0A4EAXC7XuvYAJku05vXxEObb7du3j68e50glmhGJcHvj9XrR3NwMt9stqso45gL2z3+G9hvfAJ5+Grm7L0ftTZ/E2a+/B4zbDtbnhvlN7wPr98E5eBaeqX60tLRg9+7doGgaRYWF+PCHP4xPfOITK3YrVUjc7/fjW9/6Fn70ox9hanoaLMMCYEHJVVAV10FbuRvmXW+GOud82x2v1wt2506813E9KJYB6/dCplCi5PL3gmVZBPx+LPacxlLXq3CPd2JsbByf/vSn8enPfAYqpRLbtm3Dfffdh9raWkneQzIkZOP++Me0HDuRObzCam0uSmW1WiULFzMMI1mIOdMRjjUvAOOJsIWFBTQ1NUGv16OxsXGFV221WrlE25Ybnj0+Pp7wSLd0h4BZlsXg4CAGBwehVqslMyJc8nN1dTWcTidUpdugKtsOipah8Mg7wCyv3lgWgCBXjqKpEF1IPf+TFfsubHxHwufhWrTCMTMKWpsFfd1FmP3rNzD0848j/5r/xuw/vg9QQP2dP0RUNZpiFfBa8gDGgwsX5+bmYnJyEnv27OG79w8ODob0QhNbXQyInwICrN6YpHQg5lpIduG5tLSEpqYmqFSqqPl2UnsAhbaRCzlnZWXxEzZS2V8kuCpaJuCDQmPAoQeeQv/ffoyZE7+H9d8/hbpqL8pv+hzkGgPme17DUucJuMc6MDExifvvvx/3P/AAVEolDh06hO9973uoqakR98aXaWpqwic+8QmcPXsWPr9/2ctHQW4qhLq0Hsb6o8iqOQSajv/9K/Iq4J0ZhLXtOEouvjm4CFAokLPtKMxbj4JlGXgWLbC1PA/XYBM8U304e/Ysbr75ZlAUjZwcM971rnfhC1/4Qlpz3zgymX+YiAAUIoxSSRUuDgQCou1gOBveA5hIM85IHjyWZTEyMoKenh5s3rwZVVVVEfeVqhcvlW3FjHRLJQSciHAMBAK8p6CmpobPmZGCrq4uvOnNbwbLMDDsugKl19yNiRd/xf+dpihg+TtiAbBMUBAyfgagKAT/TMEBQJgZmeyn4ZgdAygaMl02FKZCFL3nm5j545cw9fsHAZZB9vZLoDFHF+IsK65iNbjt2vYAxto3AOj1emRlZUlaXQyI8wByAnAjeQCB5FrBcCPVKioqsGXLlqjXR9pyANVqmAFcBIB2uURfn/EWsJwAZAPBZ4HP50Pxpe9BycU3ouVb74N78Cz6vvd+5L75fTDvuhzm2oMARcG3ZIOl6Vk4+t+AZ6oPL730Enbu3AmKopGfn4c77rgD991333nhtGcP1P39AAD3oUPAs88G/9/txmc/+1n88Y9/hNU2DyzbCEqlg7p8K3Sb9sK8+3Io9aak3zut1ECRXQSfdQLOuXFoc88XBQZtIg2NKQ/qi28Be9HNCAQYOIZasNjxElxjHZizjOPRRx/Fo9/9LuQyGerq6vDQQw/hkksuAQDIjUYoEMzH80rQamYtCECxx5ciXCx1G5iCggJJ9iWGjAvAeEQyXPHCHeHbi63kTcV76PP5MDMzg/z8/KRHuqWrD6DL5eL7+zU0NGBpaUmyMMhPf/pTPPy1rwGUDLmXfwAFh98W8/UUAIqmwHnhWJYFw7JgGBaHP/1XnHnoWmgRFH+3XvnhhM/DbpkEWBaKrFzeSCizCpB3zccx+9dvwDc3jMWhNvj9HigUkXNBmOU2MGvNA5juRs1A6Mpaqupibv9iBKBSqRT1PaxnEhFrgUAAnZ2dmJ6exu7du/nO/rH2KdYORuOt110H7htVA/BpNECcPn3RSNgD6PfB4/GCZVmoVErQtAoHH/gTBv/xc0y99BvM/u1RLHW8jLK3fxJKgwkKQzYKL7oJuOgmMAyDxcFmLLS+CPdYO6ZnJvHwww/j4a99DUqFAv+fXI7/djrPH/P0adxmNOIPcjn8gUDQy0fLoMgpg7psG0w7jkFXthUUUp/Prdu8D/O2SdjaT0B7yc0RX0NhOUVALoNh0y4YNu0CBQpetx3zrS/A2fc6PFO9aGtrw7XXXgtQFNwsC+7uoQHQRiPcKYrAdC5EEzk2IN08dDHhYqnbwJAQcAzCjSFXSKHRaBJqL7DaHkDOM2mxWGA2m5dXm4nfLGIFYLwVNNeJn5uBTNM07Ha7JALw5ptvxt///g/Qah2K3vkZmDbtTnofFEVBJvAO7r/vKbB8iJaFfNnoUBQVNY2QBeC2zYCSyaEyFcDrCnqQWDYA13AzNLWNUORVwNn5Epofuhnb7voBDAXlK/cTCH7+Ypspr6cQMEcgEIjbviZWdXF4uDg7Ozvk3hTrAcxkk1QpSEcImGseT1EUGhsbE0pqlzIE7HK50NTUhGNhv5dhuepTBPEiGFz0xO/1AABUKhWEH23VW9+L0ktuwLlv3AH30Dn0PfZ+5L7pfcg/cBX/GpqmYdq8B6bNewAAPvsCLM3L3sHJXnzYGdqJjwLw/wA8qTJAU7QFhi0Hkb39UsjV5z/vgER5lQqNAYrsYvis43DOjkKbV5bQdjRNQa01oPDQdWAPXguGZeGY6MdC2wtwj7RCPt0f+noJzjXTHsB02cBEw8Uejwd6vV6Sc3E6nSQEHAu5XM6PkRofH0dnZyeqqqoS7vGUiuFL1gPIjXSzWCzIz8+HRqMRNdJN6hDwyMgIuru7UVtbi/Ly8pBtUhWA27Ztw+joKOTZxSi95UvQ5RaltD+A8wlSIT9TABiGBVhOCAZDI8KPd2lqCACgNBWEbO/oew2Mxwl10RZojv4HFgo2Y/6lX6D9ux/E5ps/g7wdF4eeACteAK7nEHAyxizZZtQ+ny9pY5nuMUlrlViFa1yLleLiYr55fKL7lKIIxGKxoLm5Gbm5uQhmvZ0nFUsSL4Lh8QSFH8v4oVJFvi8VGgMO3v9H9P3tJ5g98SRm//5dLHW+jLK33welwbTy9bosFDa+E2h8JwBg9kvXoQyhn3unJgf19/5S5LtKDv3mfbDZJmHreAXaS25JentuEW0s3QJD6ZZgvvWXr16xYPZ6vSnlsGW6B+FqjYGLFi7u6+vD2NgYxsfHU64uzvSoy4wLwHhwXoOWlhZYLBbs2bOH/0IS3X41ikCcTmdIeHV4eHjVGjpz24UbUIZh+DBRpFB5KgJwbm4O9fX18Hg8UFfuRsVNDwByaRJjI0HTNGgs5w4uF5Mwy546igbAsPDaF0DJlVAazFznBfgX5+CdGQQlV0Kz+SAAIOvQO6HMLcfsX76O/t99BYtDbdh87Z38sbhRcGutD2A6jV+qq9nwcLHP5+O9g52dnfxDZ2RkJOHq4gvBAwgkf59F8gAyDMM3at++fTuKipJbaKXqARS22aqrq0NxcTGsOh3MDgcoBO9L5sEHRe8/mt1jWRb9/f2YmJgAAFBM/PdQcum7UX7pu9D0zXfDPdSEvsfej5xjd6Dg0DUxt7v6/r/g7Jeu4h+KPgBXX3ob8gIB0GmakCNErtFDYS6GzzIGx/QwdAUVovfFhYu/sfsKfKLpn/x31ARg7MQJfpqT2WyG0WhM6t6/UD2A8eDCxWNjY6iqqoJKpQoJF6tUKv4zNZlMCaWukBBwHLgpIE6nE42NjVCr1Ultn0oIONFto4108/l8SR9TqhCwx+NB79vehsXdu9Hw+c9HXJ3EezBF+/vx48dx3XVvA8uyMO67FmVXfZjP30s3nGEDRQF0MC2HZRksTgZDHcrsouXfBUWia+A1ACz0u64I2Y9m8wEU3f5tTD/5AGZP/R8c493Y+V/fCf5x+SGTsgdQ4l5Ya8kDGA+FQhESLu7s7ITb7cb8/DwfLhauniOlcmS6Qi5ThNsdbq4tV0wm5oGRykKYy7men5/n22yxLItXf/UrHDt2LGmbHIlItsbv9/PtvQ4fPgwAYAKJtfSSq9Q4+Lk/Yui5X2Dy309g7p/fx1LXCZS/45NQRuj9ybH3/r+h/ctXQ1WyFeZjt8M31IypM08jf8/lkKulnSccCf3mfbBZJzDfdTIlAcjxxLUfwxPXfgyO6SEM/b/gInf2yBF+cdba2gqWZZGdnc2Ll3jfZ6YFYKYXhIFAAHK5PCRcHAgE+PzogYEBfoIRNxQhWnVxpm1cZqS0gFhf5sTEBE6fPg0A2LFjhyhDk84cQJZl0dfXh6amJtTX12Pr1q38l5yKkEt1u4WXX4Y+Kwt7X3wRxx55BIbs7KjbJOsB/OpXv4prr7sOLC1D/pV3oeyqYIFGpm5JigLYQAB+jytYTbc805cFC894Bxi3A8q8TZBpVrYSUZhLUPLe70FZug3O0U689pUbEfC4+FnAYgVg5V13QW80Qv/ss9AfPQpV2LQXsaS7CCRdc4C53nZZWVnYuXMnLrroImzbto1vHv7KK6/g9OnT6O3thcVi4e+51Vgdf//730dlZSXUajUOHTqEM2fOpPV4iSCsArZYLHj11Vf5Ru1iPw+xdtBut+PkyZPwer1obGzke6xy+aJS9RYMt5dOpxOnTp3iRS/n8eTuzVgIHymVl70H+x/4M2TaLHiGW9D32AcwffrpBE5IBl3ZVhjqj4L1ujD92t/gnp9J+n0li1ytgyKnBGzAD/vUYMzXJmVzBR+KSqVCUVERtm3bhqNHj2L37t3Q6/WYnJzEyZMnI96LQjItADPlAeSIVAQik8mQm5uLmpoaHDp0CA0NDSguLobT6URLSwtefvlltLS0YGxsDM7lQqPVGnUZy8atSQ9gIBBAV1cXpqamsGvXLrS2tqY0kSMVD2C0uZzc+DS73R5xpFsqM33FhGW57SYmJlB2+eUhxoEGgLe9Dfjzn0O2SVYAXnvttTh+/CXQGgNKbrwfxoptSZ9nOlic6AMAqHJLgu+bAnwLc/BOD4CSyaGtOQysyFgKQqk0KLz1IVj/9X3Ym/+J1778TuRdHMy/ESsAN/X0hPxOAcCT9J4i73uthoDjEQgE+AWcMFwMBO8lm80Gi8WCrq4u+Hw+/P73v8fY2Bj8fn/azu13v/sd7r33Xvzwhz/EoUOH8Mgjj+CKK65Ad3d33H6dySAmBOz3+9Hf34+BgQHU1dWhtLQ0pYeumAUpl29YVlaGLVu2rPgOpCwsEX5GXESluLgYtbW1/OIBCC72kkWh1uDg5/6A4ed/hYnn/zfoDex8GeXvvA9KfYTFMQtQdHAxpM4tg0ylw2L7cVia/w3jlgMwFG8W/0YTIOgFHMdC92noC6sk2Scb5asXFj5UVVXx96LVauXvRZPJxHsHtVrthheAiSyWw6uL7XY7LBYLZmdn0dvbi/HxcTz77LOwWq2SzugOJ56Ny7gHMByn04nTp09jcXERjY2NyM/PX5UwbiS4Cy3SSLeTJ08CABobG1eIP27b1ZrowTE/P4+Ojo7IK8MTJ1b8KtEHk9/vx5YtW3D8+HHIc8qw6UOPrRnx53M7EfB5IdMYIFcGw9wsCzh6g+OidDsuW35l+Kdy/n1TNI2ct34U2Zd9CAAwezzYu1BsG5h0sZ5CwJH2H81oKhQK5Ofno76+Ho2NjTh48CC2bNmCgYEBnDlzBkVFRbjtttvwxhtvSHpO3/rWt/CBD3wA733ve7F161b88Ic/hFarxc9+9jNJjyOG6elpjI+P49ChQygrK0v5e0/GDrIsi+7ubrS0tGD79u28CAsnFVsVaV+BQACDg4NoampCXV0d360AAJ/CwiYYAo5ExZv/I+gN1GXBM9KKvsc+gKnTf4nwSnY5sTiIwmCGac9bQav1WOg+BVvfOdHnkAhylRYKc2nQCzjRH3+DBKCoxOwSdy/W1dWhsbERBw4cgNlshsViwWuvvYaTJ0/C4/FgcXFR9IStVFjNIpBoJNsGhqIoGAwGVFZWYs+ePbj44otRV1cHtVoNh8OBK664Ag0NDfjyl78s+bnGs3EZF4BCwzY1NYVXX30V2dnZOHToEH/TpzrOLRXvIRA6l3NiYgKnTp1CcXEx9u7dG1UkrKYA9Pl8mJychMvlQkNDA/yRcgpeeGHFrxIRgFNTUygoKMD09DQ0mw9gywe/G3F+bqZYnBwAQEGdc7556lL/62BcS1CYyyDXZkXZcmX9onHftci/6QugVToAFB599NGkz4dlWYRnfkolCdPdBibdHsBE9k9RFLRaLe655x7ceOONuPXWW/H73/8eVVVVko4y83q9eOONN3DZZZfxv6NpGpdddhm/uMsE8/PzGB8fBwA0NDREXFyKIVG74vV68frrr2NmZgYNDQ0x5/lKKQABwGazYXh4GAcPHkRJSUnI3zhbnKgAjGbWFGoNDn72Dyi57A6wHhcs//oh+h6/D57F4ChE/7Kt5zyA/PFVGmTvuQIKUxEcI+2YbTnO2850LPkM1fsAmsZCj1QpCckvILhK//LycuzevRsXXXQRamtrwbIsJicn8fLLL+ONN97A0NAQFhcX07r45ci0B5DrSJJKuoxMJsP+/fvx/e9/HyzL4sSJE/jgBz8ouaBOxMatiRCwcFza9u3bVxidVL14Yj9YoQdQeI6JNF5NVz+/cOx2O86ePQuKopCTkxNMKLVY4M3Ohtzl4luoKA4eDAoTQaPWRI7FjYnTbb0Ule9cOU8zk7iX5sEGApDpTKDlQSHuXbLCM9kbDP1uOZTgns4bR03FbhT+x9cw8bOP4LXXXsONN96IJ598MjEPTEsLNh09yq+qGAQfDi4Juu8D6c3TW40QsJg+gEajERdffDEuvvji+BskwdzcHAKBwIou/AUFBejq6pL0WIlcOyzLYnh4GL29vcjJyQEgzgMdjURsaLIj3aQSgC6XCyMjI2AYBkePHo3R25VKuAgkFiwLFB69AdkHrkLXox+AZ7QN/T/4IMwXvxtZ9UeDL4pwL1C0DFk7jmGp7w14Jrox/frfkbPrMtBpGL8mU2qgzCmDd3YYS+O9MJRsSW2HEogzmUyGnJwcKBQKbN26la+CtVqtGB4eBk3TfNFDKmMjY5HpIhDuepfCDtvtdgBATU0NX+QkJYnYuIwLQLfbjdOnT4NhmKjj0qTI4xPzgOMSnV0uF5qbm+H3+9HY2Mh3pY933HR7AGdmZtDS0oLy8nIoFArMz8+f/6PNBlat5sUIhWAumtA7lYzYdHS8iPm6gzBtuySh168GjpkRgKKhWfb+sSyw1P0qABb6HW8Wvd+Jn9/NJ804nU688sorIYYt0oP5+b/+EVf/x3tDXOoUAGeE0LtY0l0EkqkQcDQcDkfS7U7WI8LJRvv374fdbsfU1JSkx4hnQ8fGxtDZ2Ynq6mpUVlYm9JCVoregxWLhZ7nLZLK4jf0TKQKJuT3LwuPxgqIAvT4L+z/zJMZe/B3Gnv0ZLM/9CAvN/wy+kJZx431D55QDMFbvg0NjgHPgDcy+/gzMO98EmT5apEE8+s37YLOMYbH39ZQFoJS+OS4HUKPRoKSkBCUlJcEpK4uLsFgsfB9QrgqWGxsphX1ZCx5AQJpJJGth1GXGBaBSqUR+fj4qKyujPiCSmY0ZDrdPsRcOTdM4e/Ys8vLysG3btoQfYukMAbMsi4GBAQwMDPA9wbgVtJBwE77i52UBGCup9/z5sBj/09fgmR5CwZtuT+5NpQGHdQosy0JhzAG1/L3aB86BcS5CYS6BXG8G40+uDY/f78f4N68HAMizi+C3TaKurg7btm2DxWLB8PAwb9hycnLw4i9+hvLFApSzedhrKI38ebe0SNYGZr0XgYidBJIOcnNzIZPJMD09HfL76enpmGFPqRFONjpy5AiUSiVcLpekc3uB80Vi4fc6wzDo6OjA9PQ09u7dy3sfE92nWAEonOVeV1cHACu+ixVQyRSBrJQ8DMPA6/VBJqP5RRzLsig9djMKD78NTd++Hf7ZoeChKBm/G4Zlg7PKcb6YVldSA7lGj6WuV2A5+09kb7sI2hxpFysypRqK3DJ4Z4awNNYNQ2ltCnuTTgJGel7QNA2TyQSTycSPjbRarbBYLGhrawPDMLwYFNs0Gci8AOQmJkklAFUqlah+s4mQiI3LeA6gTCbD5s2bYz4cUvUAAkh6ey4kEwgEUFJSgh07diT1AEulnQtnqCPh9/vR3NyM0dFRHDp0iPeQROyjFXZhhZ9NIqt8uVwOSq6EPLsEtDYLc688iZEnv5T4G0oDLACXbQagZVBnB9+/zzEP92Q3QMtg2Jq8l9Jvn+fFn6piF/T7grOMlUolsrOzUV1dDSU8sD17GuyvWqD6YQfeLns79puPIj+nFnRXP9wINbMMANx2WypvNYT1XAQiJsfQ6XSmbXWsVCqxb98+PP/88/zvGIbB888/j4aGBkmPFe07Gx8fx6lTp1BUVIT9+/fzIbNUFrzRiGQHXS4XTp8+jaWlJTQ2NiYl/gDxNi4QCKCtrQ0DAwPYv38/ysrKEhSTFJBkGxgOvz8Aj8cLuVwW0YMvV6ux/9O/g6n+SPAXNI35lucQ8DpB0xS/T4YNTiRiWUBpLkbWzstByRSwtb6IxbHuuOeWLPrN+0HRMiz2pVgAJaELMJEqYKVSicLCQr7VzN69e2EwGDA9PY1Tp07h1KlT6OnpidpqJtaxMy0ApZwDnM5G94nYuIx7AIH4ochUikC4MG4yFxlnoKxWK++hTPZLSiUEDES+ybhpIwqFAo2NjSE5FhE/Q7sd3uxsyFyuYD5aWI8zbv+xbmiKokApVPAvTKH4Pd/EzJ+/hqXuk+j74Z2o/q/Hkn5/UmCfHgFYFsrs/KBXgAWWul4FWAaGHZfF30EY7okeTP/yXgAUNFsOQ7/3GvitYwCAztdO4dmPP4oyNg/l+lJU6d4KCJxSrqUJjHumcfTvHzs/EWH5v86XXpJ0hZVuD2C68gsBcR7AdI9Juvfee3H77bdj//79OHjwIB555BE4HA68973vTdsxgeBnwU3oiTTZKJUFbzTCOxpwodeCgoKQ/qXJIMbGud1unDsXrKJtaGjgWwMlmo4ipg2Mz+eD389AqVRCJov9Pg1ltZjvfAWUTI7AkgXzbzwDTfkO6ErrzoeDKSoYHmYBmTYLWXuuwGLbi1jsfR1+xyLMtQeSPsdoyBRKKHLL4Z0ZxOJIB4zlW0Xth5VQYyTbBoarguUqYf1+P9/2qbu7G16vFyaTiU+z0Wq1UfefaQ+glHZyNUZdxrNxa0IAxiMVg8i5axPdnhNZcrkcjY2NOHPmzKqPdANWXuicwRZOG0noeDZb1AHtQgEYDYqiQCm1gGsJjv7XUfLe72Dyt/fDM9GFrm/cgup7nkibCzsSLMvAs2QDJVdCZQw+OO1DzQg45iE3FUJhTK5/22LLs7D9/VGAlkO39RJot70p+Nku5wBul23FQfP5AgTG54JlaRSjmMOIYQq3f/VBFFZXr8gTcgF4eWEB5tbWlMMe/LHT6AFMdxWw2BzAdArAm2++GbOzs3jggQcwNTWF3bt34x//+MeKpGkpcTgcaGpqgkwmw5EjRyI2t0+nAPT7/RgbG0N/fz/q6+tRWlqa0j6TsXE2mw3nzp1DXl4etm7dGnI9JLovNlpDu4ivDVZCsiwLtVqZ0L3jOxXM2aVkChh2Xg5H3xk4B87COzcKQ/0RyFXB/O/zu6IgU6hh2nU5FrtehXO8Gz7nInJ3HgMtk0nSIN+weR+sllEsDjSJFoCr7QGMhVwuR15eHvLy8vhmyFwxycDAABQKBS8Gs7OzQzy2cW2ghCk3kVhPHkAgvo1bFwJQLpeLGqsm3D4R48IVVZSUlPC9r1ajmCN8O+D8Sl2YKxPLYIuZ6pGoAKRlMlCmQjh7TsLceAuKbvsaZv7vq3D1vIrur70Dtff+GjLV6oyzWZwYAACosoM5DD7nIjzjnQBNw7j9TUnty/L8j2F//S+gFCrodlwOXW0jgOB7NhnzYQOgkCnhtk9hwj2FUdUs5HsLcdVN70a1cEf5+cBM6JQAVq3G3r17YbFY+FmRGo0mZFZksoIo3UUgUladCuGKsJJ9v06nM+0r5I985CP4yEc+ktZjcPfZ1NQU2traQuxLJNIhALmFcHt7OxwOBw4ePMg3VxZLMjZudHQUXV1dqKmpQXl5ecQcsrj7ohIvAgkWe3hAURRUKlXEsLCQlz77lpCH4bfbT+N7V9wF4+4r4BpugWe8C/NvPAN12Xboy+pXbE/LZMjadhHsg01wj3Zg5vW/B4tDlGrQ1PlIlBhozgs4PYCFoTZkVW5Peh/9P7kL/N1nNML+2GOi01OkXIhyrWZ0Oh3KysoQCASwsLAAi8WCwcFBtLe3w2g08oIwmgDTGo0h0Rb7iRNpEYJSegBXw74BsW3cmhCAiYSA3YL2JcmS6Ei3oaEhbNu2DcXFxSHbrqYA5G4srvVMe3s7ZmdnsX//fn5yQrTtkj1eIgKQ+7u2YgcWm/8Fr3UMSnMpCt/+Gcw9/2Msvf5ndH/jFmz6wPehyC1L6vjJwvj98LkcoJQaKHTBh9dS1ytgGQaGMPHHxlnyTv3ufniGmkBrjdDvvAKaqj0AALlciZKiWkx3vwIA6GE6UfDQt1EAYE+0nb36KvxGI38zMQComRkYgIhhD67DPjcLNycnBxqNJq5RXa9FINy9l+zAeYfDkfYxSasBwzDo7OyM2uYqHC7lRcqJC3a7HQzD8J0MpGjRkYiN49771NQU9u3bB7M5cg/RRBawFKiEQsAsC/h8/qj5fpHg7l0ujeMenxXfWz6mtmIXlLllcPSegWvwHHyWsRBvIATbGqp2Q6YxwNH3Gixn/wHzzkuh0GUF56SzQeFE0dxREv9uDZv3wTo3gqXBFlECkJMs3BF1d94Jh0gBmM5JIDKZjI+YAMGUAa6YZHR0FAzDQK1WY3Jy8vwM8U98IqTbBQBojx6FU6L2W0LEpLJEI90pLomwJgRgPFLJAeS2jyYAuZFuDocDhw8fXvHAEbsaT1UAut1uNDU1gWVZNDY2xp2DLGaEXKIeQLAMyi99F9pan8di87+Qe+n7AAC5b/4A5Fn5sL3wMwz8+E4UXf8pmLdflNQ5JMPC8sg3dU5QoNuH2xCw2yA35kFhile5yfJhkLEffQCBhSnIsgph2PUWqEqCK3q1Wo+s3GK4ZV5QqqBJOXTVVQmdm3dxEd73vQ+j4+OwP/IIwn0EkcIeFosFFosF/f39UCqVvHcwOzs7Ylh9vRaBiO2dlelB6VJhsVhgtVqjtrkKR9i5QIqHzdTUFFpbWyGTyVBbWytZf7Z4Ns7j8aCpqQmBQACNjY0xUyASDgEzsW0xJ5xlssTFH0d4Gsfg166DIqcc5jd/ANrKXRG9gbrSld5AbeFmyNR6LHW+DMu5f8FU3whdXhlYNhjCZpl4y9OV0HIFFHkV8E71Y2GwBfqK+CLQ7/dj5rkfY+G1v4a8P+7Y73jHO/Doo48mlQbAPStWqxefcKQawzBoa2uDz+fj2xbp9Xrs/M1vEL5MTNfZpSMEnEnWhQBMtSoumohbXFzEuXPnoNfr0dDQENFgpOIBjNdiJRJcqODs2bPIzc1NuPVMOkPAYFno84qhMJfC1XsKWBaAAGDa/zbIjXmYe/qbmPy/r8JvGUP+JbcmdR6R+M7PP47LZ/oRALDjvqfg87gQ8HpAq/WQq7Twu+xwj7YDNB2555/wLS039PIH/Jj47q1gvS4o8jdBt+MyqPKDszazC0thyj2f+zW/fL0k9bD82c/g7e8HFSddQRj2KC8vRyAQwPz8PCwWC/r6+uB2u5GVlYWcnBy+uTf3/a7HIhCudUKyD4105wCuFnl5eWhoaEj4uxNW7KbynTAMg97eXoyOjmLnzp3o7u6WdHJHLNu4sLCAs2fPwmw2Y/v27XHfR0IeQApADAHo9fqWFzIUaFqcBODOwA8ALAPf3BCmf/dZgKJAq/TQbT0G/cF3wDN0NugNnBuFvr4RCnXodaoyFUC2+wostL0AW/vL8FftQlbFNlDLI+YCgbCOAczyc4KKLl4Mm/bBOjuMpaG2qALQMdqJqX/8EO6ZgWAeM8sCtIz/3Lhj+gA899xz2Lp1GyiaQnFRET760Y/izjvvjP35rLIAFELTwfY9BoMBVVVVfKuZgX/9C7mHD/PeWwAQHy+MjZR2kgjAZeJdTKnmxETafmJiAu3t7aiqqsLmzZtj9sET6wEEkr9gxsfHwbIsPwg90RstHSFgq9XKewCB5cakp/8E13gnNCXnV776mkbIb8nF9B++gNmXnoBnbghl7/x0Uuci5NkvXY9CeAEEQxddD78dpbd9HQD4kW+LXa+AZQLQb70E9LJRZcCCH3kpfEsUFWzz8th7AJaBqmwHtPUXQ5kTXPkWVtVBE34jLhvMeI1pwxETHuE67HNtOIRJ0UNDQ/zfvV6vpA9wIeksAuH2nczn4vf74fF4LggBmGzfMLGtq4R4vV40NTXB6/Xi8OHD0Ov16OvrWxUBOD4+jo6OjqSaSifaBiaSB5Bl2eViD0ClUorKF2+8+Rs48bv/AYWg+MvZ9zZo7LNw9b0GBHwAy4Lx2LF09q9YOvc0QNGQZxVAXbYDAecC1OUrcwPlGgOy91yJhbYXsdR/Dj7HInK3ci2GwnMgz1cWR+o7CAC0XA5lfiU8k31YHGhG1qZd8Pv9mDv+S8w3/QsB1yI/8YPWGKEqroGm+hAM247huubn8OfnfwQgKP72fPYZFPeewWLHy3CPdWJ8fAKf+tSn8KlPfxpqlQqHDx/Go48+isrKyhWfNZAZAQiERkG4VjOFhYVYuuEG6P/wBwCAB8Bzf/4z1CdPhkRVpBBuUnsAM23f1oQAjIeUApBhGHR1dWFycjKhkW6ptnNJdBXPjZqbmJiATCZDcXFxUjeZlCFg7jOamJgIzj6kWPh8PpRdcjNsbzwNe+vzIQIQANTFNSi+/duY/O1nsdjxMvqtk9j8geRn6QJAwbL4488TAHPuLGSHL4JMoYR9tAOBJQtkhhzIs4v486cFy2fhe3JP9WH6f/8bAKDZchjaLYchzwp6+8rrd0f8frgHTbJhJCnyY7RaLbRaLUpLS8EwDObn52G1WuHz+dDW1oasrCw+d9BgMEhijNOdAyimBQyACyIHMFkoikrJ5s3Pz6OpqQkmkwl79+7l0wnELmajEb4/oQ2L1N4mFol6AMMFIMMExR9NU1AqlXGLPaKycyeO7vwXhp75IaZe/RMMNIWSd3wG7ulBzP7zB/BMdIJW6aEsrgMFFp7JHvhtE7DbJgBQoORK2Mq2I++ae6EWTAWh5QqYdl2Gxe5TcE/1Y9ptR/7uyFOKuHOnKCq4fmUB7tFDLc/01G/aC+dAE6ae/jYmnPPBhSrLAhQNRU4ZVOU7YNh2KdTFdSH7btn5Zmg6j4PxOFF75w9BA8iuPYTs2uC4TM+SFdZzz8I5eBaeqT68+OKL2LlzJyiKRmFhAf7rv/4L//3f/70mBGAkO0X97Gdw/Oxn/M8XLedcW61W9PT0wOPxwGQy8YJQbPUt8QBmgFRzADlDxeXVBQIBNDQ0JDTSTQoPYDy8Xi+am5vh8XjQ0NDAj8ZLBjEh4Ejb+Xw+NDU1wePxYN++fVAoFPAEGAAUZGodlLkVcPadBsPeyXveOORZBSh973cx+ZvPwD3Vi65vvQuaHVdIc8NQFNS5JfA5l+AeaQMoGoYdl684B7Bcfk3w30sdL8P6zDcBmoa2/mJoqvZCbgg+mCq27okqergHTbL5UlInSHPzNc1mM6anp1FTUwOfzwer1YrR0VFQFMX/PScnR3R+V7pzAMXk/wGZHZOUScQKQK7aNpL3TYrRbUKEc9aFHsdEbWv4vuKdG4Xz0QgguLDwerlij+QfZcGcPMH+qeC8XwC88lIXVKHsPV/DYtcrsB7/JdwDrwXzAq/8GORaI+ztL8Iz2gqfZQyewTcw9r3bAIqGqqgGeVd+BOq8ClAUhay6Btg1BrhGWjB15mmYtl8CWhk9J5Ja/hf39VlefRILrz8NxmnjT5pS6aAqqoF28wHod7w5ficGNnoOscpgRtHFNwMX3wyGYbE4cBYLbcfhHuvA5OQkPv/5z+PzX/gCVEoltmzZgp/+9Keor1+Z/5huErVTwpxr4HxUxWKxYGBgAHK5nBeD0cZ7RkLKIhCHw4GSkhJJ9iWWdSEApcgBdDgcOLnsEk5mpFuqHsB42y4tLeHs2bMwGAw4fPhwcPKGiHBuKkUnnAB0OBw4e/YsNBoN9u3bB5qmg+/Dz/JeBGN9I+Ze+F84+9+Arno/QkMZLGilBkXv+Tpm/vQQXH2nYT/1O1AKNbqa/5HwOTUhtOKWBTA78Axmv/cPsH530DjLlVg697cYe2HBeJ2AzwNKoYZu26VQl++ETGcCABRv2RHzHNjlz1JMCDhduXQMw0ClUiEvL49Pil5aWoLFYuGTorn5mzk5OTAajQmLunR7AJPdt8PhgFqtTmtz6tVCzIIg2UUv11x6ZmYm6kg3qdvLcDZncXERZ8+eRVZWVojHMRmi2rwdO6Do7QUQzOvSTgb/3+/3w+fzQ6lUiLpG2GUXG0Wd/5llEcyXA8CyoZ+Tse4IjHVHeCE296cvQV25G9nH3oect3wYAbcdjrbn4ep/HZ7JHnjGOzH2k7sAioJMmw3jgWuQ03BTsEK45xSe//atKF/eNwOg5r6/hBzPNz+F2X98H56xToDxLXv5KMizi6Eq3Q5N9X6o8jdBnsVFsCgwMUpLWC6+TNHwer1RX8ehLd8BbXnQRvocC1hsewHOgaB3sK2tDYcOHQIoCkatFo379+CKixogl8tx+xce4vvkMwBcElfiirVT0aIqQ0NDIeM9zWYzjEbjqjSiJh7AZdKZA8hVXC4sLKC+vh5lZWVJh1bFHjueKJuenkZLSwsqKytRXV3Nn5fYcG4qHkBho2nuXLjcJZb1L58bi6qLb4DllSfh6HgB+uoDK0wOC4Ci5FCX74Sr7wwAFqzfi0Ag8bycSOnNjNse+ouAL3YlHcPN4wD0u94KVelWyDQG0HI5Kup2weOJbQTZVcwBTGbfQuND0zSysrKQlZWFTZs28UnRVqsVra2tIfM3c3JyYlaSr7UQ8Go0SV1Nkr0/k7F5LpcL586dA0VRMTsGpCME7HA4cPr0aWzatAmbNm0S3+suis1T9PbyS0wKgAPAYa8XDMNCpVJG9+DH+KjP/+38uQZPmwUlC/UAhpPTeBOyD16PmX/+EI6ulzH5i/+GbusxZB+7A8b9b4Nx/3Vg3A64Rlrh6jsNz3gn/LYJ2F78BWzHfwnQCqiKqlEuOLoMQPfD16H4sv/C/Ok/wG+38p5OSqmBsqQOmk37gl4+rQkAEHAtgfU6wbgckGvip0mwLIJz7CgKiiQf+wpdDrSHbgAO3RBcdI60YqHzONxj7Vi0TeIfx0/gHy+9AiXL4i7BdjIASqMRXglFoBSFcMKoSnV1NTweD1+pPzo6CgAhdlP4DAgEApJV0TudzoynuKwJARgPzhgm+3D1+/1ob2/H0tISCgoKUF5eHn+jCMdOZMUUbdtIAlDYd3Dnzp0rJg+I8ealIgCnpqYwODiImpoaFBUVhSStc1XAy6+GTKmGqnAzXANvgGH8oOngJSQ88sxfvg5n50vLSTssct9xPwzViY9Hkj18Teg5Aqi4/AvwV5UAYCE35kce+LmMvfV5WP75PSDgD4aOy3eAVmmh0upRvCnBgerLHoBkvRnpFIDxRJowKZplWdjtdlgsFkxNTaGnpwdarZY3allZWSGiLN1VwGJyADO9Os4kiQrAubk5NDc3o7CwEPX19TGvDylDwCzLYm5uDouLi9izZw/y85ObwBNOtK4J4XcSDeCNL1wNADDvfBNqb4lUbBb9/uM8f5FfQ4GWKYQvjHyuciUKr74bvov/A9PPPApHx3E4e07CuP86ZDXeDFqth3bzAaiKa4GADwGvB+7+M3ANnoV3qheesY6I72vuuR8CoCA3FUJVuhW6uougrtoLKsJ3KlPr4fe5g1GOBARg8D2zfBWyWGiaRlblLmRV7gIQbMRvbX8ejv438Ohw04rXywGIe3pGJh0LVZVKxbeaYVkWi4uLsFqtmJiYQFdXF3Q6He8d9Pv9cVuyJcpasHHrRgACwQdJog9kh8PBz80tLS1NyYsnpQfQ7/ejpaUFS0tLEfsORtsuHmLCxtyEhqGhIezatQsmk2lFtWaoAAxi3nkZJp5+BI6Ol8IaMFMY/+ld8M0NQ5ZVAP3Ot2Dh5V8CYMFwHkCK/1dU/ACEaywWgL+6Agj4QKl0MacB2Fufg/XZHwG0DIr8KvjmRkCrtDDmFiCnMIl+VymEgNMpAJOpChfO3/T5fHwj6s7OzhWNqNdiDuCF5AFMlngCkGVZDA4OJjXSTSoPoM/nQ3NzM+x2O7KyslIWf0BoQZrwOw+XakILZ235N062/BsAINOZsOPOx6DJjlzUF2rCol9TFMWFgMOPHME7achByc1fhHOsDZbnfoKFV38Le9vzMB25Fbrtl0GuzwbjdgKgoKu/GPqdl4MFBc9YO9invhKy9wAAY+PN0FQfhlybBdAy0EoN75lceaIApVCD9Trhdy2CjioCz2dEsywLiqbhg/h8+uC+2GA+JgBotTAfuBbmA9fi6wDe//D1Ia8VP78rMunshQoEr0MuqlJVVcXnW1utVnR0dMDr9cLhcEAul8NsNied6yrE6XRmPMd5TQjAeF8oJ/oSFYDcSLfS0lLU1NRgcHCQrypMFrG5dcBKUeZ0OnH27FmoVCo0NDREdSWL8eYlGzb2+/1obm4GwzDYtm1bRPHH7TfcAJUeeiumnv8Z7J0vQb/9TQBY+P0BTHzvP8B4HFAW16Hgxgfh6AlO0wATCIY1EmQOchQJjBQDBFsxAGA9DgQ8jojbObpOYP6lX4CSKWC+6r9hPxtsgJpfXg2dMbmxV8waCwHzlc4iRZpCoUB+fj7y8/P5KRtWqxVzc3Po6+vjRw4WFBTAZDJJOt9ZTA7gao1JWi2kDAH7/X60trZiYWEhqZFuUngAl5aWcO7cOeh0OmzevBnT09Mp7Y8j2gx03+HDUJw6BWB5IXj6NNy7duF73/sePvnJT/LvJ+CYR9PX3xXciKJQdOm7UXnZu4PbJWFKKf66D98o/J4+L6y0pduhe+8jmG9+FvOv/A6Wvz+KpXN/g+mSO6Au3QpaZgTjcYL1uQGZAtpN+9CtzEKtdyH4ngGoKAoGvxeKrPxg+knAB8a9BMa9BFA0KLkSMrUOoM/flzIN5wV0Qa4xRntH5892uVqYi9pQ9Pm+s4laLBZAwB+AXB55QTcLGXKXp88HABRmZWE0wX0nQjoXqpFQKBQoKChAQUEBWJbFG2+8AZVKhdnZWfT29kKlUvEtvJK1myQHMEG4izTe6lUYWt2+fTuKiooApGb4pNqWC9Vw/f1iXcSphIATESBCIarT6dDT0wOr1Yq8vDyYzeYVQ9rDH1w0LYOqqAbukZagGHO7MPaj/wTYALT1lyDnmo+DCjOgtCrxlU5+2AqVRrDiLZaZWmr6e1D8KVTIvfpeKPKqYF8+79nRfqhrd0K24uaM8TktC8Bk3f3pEoDc9SDFvimKgl6vh16v5xtRHz9+HBRFobe3F263W5KWCRxiQ8CZXh1nkmgC0G6384VayY50k8lkKc1UD89ZnpqakiykLByBycGyLPp+/GMMDw9j586dyM/P5+9Y4XxTq9WKPXv2nBejLIvJf/8Ck//+BQBAnV+J7f/1XchV8e9lihNYCahGhgXfqy/g90JZuAXZV94NV89JODuPY+Z3n4Om+jBMx26HwlwC1ucB47Yj4FzAFXf9FLRSjflXfwtKroK86R9YOvMUfLMjyLv+06AVKjA+N1ifB2zAB9bnht/nBkABMjlopQa0Ug1aqQbjCXoBo4tATgAywUISOc1PJQkZUUcBFEWLbqWzNNqFQrkcrJ+Bcf81sLcfR7aEC0lg9QWgEC41Ki8vD4WFhQgEAnyrGc5ucg38zWYz9Hp9VLu5VkZdrhsBGC8k4vV60dLSAqfTuSK0mkoRSSrbciGXoaEh9Pb2YuvWrQmVfYsRgNxNEU+A2Gw2nD17FoWFhaiurgYAfgpFd3c3PB4PsrOzkZubi7y8vOB+IxjDvANXY2TgdVj+/VM4W58FQCGr8VaYLvoPsAH/srFZvlFZBrQ60ZUOCwbnZ1cGfwPQKm3U/JX5V3+HhRO/AqXUIPfqj0ORVw5aoVpe4gY/k5GuZhRtqoNam9h5iA0BpytEwV0P6TB+3Plu3rwZKpVqRcsEhULBh4qzs7OT7o2YSgh4oxKp8wE30q2iogJbtmxJ+joTGwIWLqx37NjBzzIOsVMtLcDOnUnvW3hu3LGA817OxcVFHDp0KOaD0mw2Y3h4mP/5xhtvxF//+lf+Z/fMEF5/8FoAACVToPrW+5FT37BiP4DAA9jaDFwT8SUAWAQYFgG7Fd6lObC+81lutEwOw663wLD3Giy88iu4ek9j8udvQL/rLTBd9B7I9GYwriUwroWgRxBB21b0vkcx84cH4R58A5OP3438Wx+CwpADLLeKYQM+MF43WL836B10+cC4FpdtLAXG6wJiCEC0tABg+XxCTuxx8R3OecAElhea0byDLBBp4Tz96p8w9++fgZIpUHjtPag8fCXOtL0geV5xOqchJYJwMSuTyZCbm8v3u3S5XHwxCdfAn7ObkVrNrLaNq6ysDLlPgDUiABMxZLHaInAj3QwGQ8SRbqmKuFRCwENDQ3A6nThw4ABMJlPajpnIWDeuQ/+WLVv4RtM0TfMXcW1tLRwOB+bm5jA7O4uenp6gx4BlBCuvYOPVnNoDGAENZ8uzoOQKmN/6Uei3XQrW7wOXucN/r0xy4eyaT/4F/V+7jjdOLiC6+DvxKyy88ltQaj1yr/k4FDmloJUaKLRZy5V0FJQ5JfBaJzA50IWc4nIYzbGbfwc/yOU+YGvEA5hqCDgW4eIyWsuEwcFBtLe3w2g0JtWIOpUq4I2K0N4xDIOenh6MjY1FLBpLZp/J2pVYOcs0TePAm97EP0QYAMyZM6KEoNAD6HK5cPbsWcjl8pipMtH40pe+hPvuuw91dXVobm7GNddcA5fLBSAopHqfeAC9y6/NqmtA/bsf5Ldt/vN3ltuYzIB56Gpsvfoh/v0wAS88lkn43UshVcKUQgVapYNMZwIt6MWXd90n4ZsbheVfj8F+7u9wdr4M48F3wHDwelB+laCzAQtarkLhLV+B5Z/fh73p75j86Z3Iv/nLUBUud2SQKSDTBJ9rLMsEPYPL3kEuHO1dmAZoGWQqLWilFhSA1x6+FqblvzMAjgBwhn/23OdPUQAtEIMRvIORGPztg3D2noZMb8bm//gizOU1/HlKLQAz6QGMd3yNRoPS0lLebi4sLMBisWB4eDjEbur1emRlZWVkEsiDDz6ID3zgA/zPa0IAJkI0EceJmlhtCKTw4iWL2+2Gw+Hg8/2SERJSj3VjWRY9PT38TNDs7Oyoo7m4GbUVFRXw+/3Lxjc4CUTYBX7gd18CwILWGJD39s9CXbY1uDoFgjkrMhlfqZvM6HPuGNWf/CtYrhUCb3hCE7OtL/4cS6f/CFqThZzrPgFldjFopWZFWwSVwQxaroR7dhiWiRF4XA4Ycopjn8caywGUMgQcbd+RDFt4ywS32817B4WNqLlVbqSHtZjWCWshQVpKxIwH9Hq98Hg8aG5u5hsspyKKk7VlXF9QtVodUYjRNA1hK2MaAHPwIOBOfhIr522an59HZ2cnCgoK4lY1h8MJl+zsbFgsFrzyyiswGo04c+YM8vLyoNfrcemll+K1117jt1noOolTn70cACDTGCD8dGkALc98GptzvgXG5wWfF0jRoNV60BoD5LpsvndgJBS5ZSh810Nw9r2G+eOPY/7447C3PAvTxe+GtqaBO3EwXjcohRI5V9wFeU4Z5l/8Gaaf+ATMV34M+m2XhIgviqJBKTXnvYN+LxivKxh5YfwIuJYQcC0BFMWLP+79vARgf5zPkW8BBoF3kGEFzyQWDMuC8XrQ/6MPw78wDWVJPbbd/mWodALbm4bOApkWgIkuZmmaRnZ2NrKzswEAHo+HLyZ5/PHH8eMf/xherxfPPPMMDAZDQkVcUmAwGHgPPrCOBGB4SCSZkW6phoCTFWM2mw1NTU2Qy+WorKxM2oskpg9gtMbT3ArebrfjwIED0Gg0Cc9llcvlwaRWFlAo5PB6faBpCm2PfgBe2yTk2SXIufbjUJgKlz1/WBZ/3GXFeQAT/ezPt5vh3z9FCTSfQPw9/2Msvf5n0Lps5FzzP1BmF4FW6yFXCaqyBJ+hQqMHXbwFrskB2G0WeJwOFG/eGv1Mlj/HTE8CCd9vpsPLarWab5nANQHmxCDXUDW8EbWYEPBaaJGQSWQyGVwuF1599VVkZ2eLbrAcvs9Ebdns7Cyam5tRVlaGLVu2RF4ctLWldD6RaG1tRW1tLcrLy5O61lmW5VuFmc1mHDp0CF6vF3Nzc5ibm8PQ0BDkcjkee+wx5ObmIicnB7/85S9x991388+GgGtpxX5pAIzPA0quPO/lU+sQr5NBONrqA9BWH8DCmf/D0utPYe7PX4WqbDsUBZuCzenZAFivC5CrkLX/OihzSjH3l6/B+rdvwWcZQfZFt52fUhIGJVeCpmVBO0vRYP1esH7PeZsc9n6SgfcOypY9tCwLJsDCPt6LsSfuA+vzwLDnStRef/fKwhCWlbSYDEh/FXA8xM4CVqlUKCoqQlFRER544AEcPHgQ73rXu/D73/8en/rUp3DttdfiqaeeSsMZh/LVr34VX/rSl1BeXo53vetda0MAJhoC5m5UbqQbwzAJjR1aTQ8gN5GhpqYGs7Ozoo+ZkgewpQV461vh6u/nQykHDhyATCZLWPxxyGQysGDh9fpAsX40PXQrGK8bqrIdKLjh8wh4nUHPn0IN0LIQIxWpf1Uszove5a71QMTCj2BI5W+QGXKRc/X/QJFdEGzyrFCH+QhDRbRMroSupAaOqQH4PC6MdregvG5nxM+DE4AaTfRxTdHeQ7pEWjrbtCR7XQDB69RkMsFkMmHz5s18I2qLxYLW1lbeGyPGm+dwOGA2m5Pa5kKB60VmsVhQV1eHiooKSa6pROygsL3Mtm3bUFwc3VNO794NBmGiQkT4l2VZdHd3g2VZbN26FWVlZUlvzzDMiutYpVKhpKQEJSUlYBgGNpsNc3Nz/GzYnTt3oq2tDXl5efB6vdi/fz+YiYmQ99OpzILMmAdaoYZMl4VkhV84WQevh2H/1bA99xM4Ol6EZ7QdqvId0Gw+CFqpBetzgw3Ioa7cjcL3fBszTz6ApVO/h292GPnXfxqUPHL+LUXTQZvFsqBVWkClBcAigNB86uGIWycOBcDy2tOYe/4noGga+Vd9BKUHroTf74ffH4BMRoGmZctODEZSAch5eDMdAk7VqymXy7FrV7CP4okTJ2C32/kG1Onk7rvvxt69e2E2m/Hqq6/i05/+9NoQgInA5cRYrVY0NTUhLy8PW7duTdgdm24PoNAjyY1islqtoo6bSghYk5UFOYI3qjI7G/tkMlBWK28Yk11V+/1+gGURWJhG63c/CLAMdDsuR85bPxp0zjF+sMttWc6LP06GLYvSRN6LoNk0VoR+zzP3t+/A0fosZFn5yLnmf6DIyodcZwJNy3FePi4fP4IXlaJp6Iur4ZgZBuNcxFDHOZRHqBDmws9rxQOYzpWv2FVtOOGNqLkxdVarFQMDA5ienuZDxVzboWhciG1gEiEQCKCjowMWiwVGoxGVlZWSnUO8haXf70dbWxvm5+dx6NAhGI0xigqW9/fPr3wFl3/2s8Ff7NwJnDmT1Dlx7aicTicUCkXcY4bDef7iLWJomubbddTU1MDpdGJubg4zMzN8k/RnnnkGv25uxo133AEZgE6VCde895ugALB+D/wLM8GdUTLItEZQcnETIWhagZy3fBhZR27F+PffA89oGyZ+/F8wHnwHjPuv5b2BcmMuCu94FLN//CLc/Wcw8fOPouBdX4NcF+kzogCaBpgAWCawbIsp1Nz3NDoevgYyAH0A9lfuxmZRZx1k+A8PwdH1CmidCZtu/QJyq87PA+ZEuN/vDy7mWYa3A7EqYhMlnXnQiR5fKlvpdDqh0Wggk8lCQsXJ8qlPfQoPP/xwzNd0dnairq4O9957L/+7nTt3QqlUrh0BGK9PFk3TmJ2dRXd3N2pra5Ma6ZZKK5dEvHHcIHSfzxfikRRbQCJ2FBxFUSu+UGMgAAc30zcJAoEA2tragucR8KH1ux8AQMF08e3IargxaGhYgFaoEPA4wHjdkPEGkQr5T2j71sjweYLC0G8Yc09/A472FyHPLob56o9DYcyFwmDmvYTC+QGs4P8ZZlmUCaLJmtxyeOan4V+cDVYIV9VBLRQcy99bsqu9dIaA0+0BlBKKomA0GmE0GjE3N4fS0lLIZLIVjag5QRjuxc9Ei4SvfOUreOaZZ9DU1ASlUon5+flVPb7T6URTUxNomkZNTQ0mJiYk3X8sD6DT6eQb5yfaXoamaTDbt4vK+QNCZ48fPnwYJ06cSMpecoIjWQ82RVEhuc5cs9/Z2VmMjY1BB0BbfwkKr/sfqJcb4Xsc8+dznNkAAg4bt7dgS5aEpnGEIteZAFoGubkEiqxCLLzyK9hb/gXTRbdBs6UhOMecliPv5i9j/tkfwN78T0z8+IMoeNf/B1V+FcK9kRQtCy62GSYkL3HrfU/Dv2TB9K/vg1zkJJCA142+//cR+G0TUBbVYNsdX4FKH9p/kpsdL5cvi7VlW3j27Fm+IjY3N1dUJwEgvZ0QEoF7JkuR18iluKT6rPj4xz+OO+64I+ZrNm3aFPH3hw4dWjsCMBZ+vx+Li4vw+XxJVdNyiB0lB5z3HkbblhuEbjKZVuTppCIApeqvBSzn6iQRmvF4PPyDyG63AxQFSq5CztX3QlfbyBdIAAAlk4OSKcH6PZGOHPwPK3wvEcYwhYjd84UmwgjuzP99Fa7uE5DnlMN89X9DaciFXJ8dNSBDISgqKQqgaQrcLHRmeag6AKjNhfAqVPBaxzE52AVzURmycpanGiSctxj+VpaF2ic+ATz3HHDunKj9hJNOD2C6E6sZhoFSqUROTs6KRtRcQ1W1Ws23mVGr1RmpAvZ6vbjxxhvR0NCAn/70p6t6bK5PaFFREerq6jA3Nyfp3F4geiREOAe8rq4u4Wsh2vi2ROCOWVJSgtraWr4jQSILX+6Y3HsRk74gRNjs12azcQcBlp0SFEVBpc9eNhsUvC47Am4HuFQVxusMjmQDAJkccq0pZmFIOLRcifx3fg7/P3vXHd5WeXePJNvy3ns7XhnediYBEhLIjp1SyoaklBHKDnyMMgKUGUrZs0BSNomdEAgJ2UkzCMR77z1kybZsS9bW/f6w35srWZK1rYDO8+RpkSXd90pXv3ve3zhH0lYG4cn/YmDf63CLSEHA5RvhFp4IllKFwCvvgktgNIQndqDvvw8heM3D8Jp5yeSN8qQs4ARIgsWMz0nc34b2T7eAUkjgnXElEtffC66H4b728fitho+PDy699FJ6IpapJEAyssZmB6ebADKvN0thrfgWEhJicP7BEMrKyhyfABJLN4qiEBUVZTL5Ay4wdnPq9+T5uoIc0eXSN4FsLpEzpwRMSCqFyY2+HgsXQhIYCBjRZzA6OoqysjIEBATgzjvvxODgENhe/gi7ZivcwhIZ5I91QVPKlQtKKodaKQPbhTE1Sz4PjaDO/IzGyaB29o9Z+lWp1RjY8yIkTefgGjoDgavuh6tPEFy9/Kc8F+ZxyVJYLNbEZNs4L3X1CgDbxRVSfgcGezshk4gRGp1Al4BNBUVRiEtMpL8DytcX4lOnLNJIA+zTA2graJdNtIWolUolrUV5/Phx3HXXXXBzc0NCQgIWLlyIWbNm2aXx+9lnnwUAbN++3ervbUgQtqWlBS0tLRo6oZb0LeuDdiWEoii0t7ejsbHRaDs5JpiDZ6bE1Y6ODtTX1086pjFxjznsQV5jrWuDoij09/eT/wJ7ompA7IPVE8rPru5ecPMYv3mrVEooRMMX7ClVSihHBeSExqeF3YyzC/OIz4JHfBZGy3/G8NnvwPvmCXikLIL/4hvh4hMEn6xVcAmKxsAPr0Hww6uQC66F/+IbNM5fXxaQtvQ0MQPIL96P/gPvASw2QlfejbhF6/XKsTGhnrh23dzcNCZiiZLAwMAALZHC4XBoMhgYGKi3b9CWSgjGQG1mVUgXrJUBNBZnz57FuXPnsHTpUvj4+ODs2bN48MEHHYcA6ioBMy3dgMkTrsaC6SVsLgFk3sQoikJjYyM6OjqQmZmp1wvTkgygKcFfKpWipKQELBYLXe3tiIyLg/ZZug8OYqpCjUAgoIVmExISUF5eDraHNwKv2gy3sBk6yR8AsN08oJaKQMnGp9hoTKlNyOjTo1sAJ/SoQEGlVkNQOC6O6haRgqBV94HjHQhXQ4KnWqAYvYjaQyHkFFju3vCISISU1wqxcBBdkrGJczX9x+m/dasGAWcB8Fi8GJKREZPfi4mLrQTMxFS/OxcXF1qLMiUlBbNmzcL69etRW1uLvLw8hIWFoa6uzmRJHkeHQqFAZWUlRkdHJ/Xc2YoA0hOvKhWqq6sxMDBgVlUFMJ0Akj7pvr4+5OXlTep7mioDaGy/nzkgvZcj5HfK6EmeSPxNHI8CRU1Im1IU2GwXcP2C6EghE4+MizJPvMe46PP4dDHLhWvUIIlP5gp4zVmKkTPfYrR0H3p3/AafrFXwmbcBHtGzEXbjNvCLnsPIma+h4LchpOAxzWyfriwga1zUxZTPrL1oG0TVx8H29EPCdU8hJDEdKpXaqCSiekIcW1ep193dXWM4h2z+SHaQuGkEBQVpkCRSBZkuAkg4gDWOb+8eZy6Xi2+++QZbt26FTCZDQkKCYxFAJgjBam9vp5Xnm5qaMDamLWFpHEigMiegasurKBQKVFRUQCwWY8GCBQanG9lstlG7JV2vM5Y4Dg8Po6SkBEFBQaAoChUVFeg+cwYLFi2a/ORly4AjR3S+T0dHB5qamjB79mxaJ8jd3R1yVw8o+tsgcfeBe/Ts8XKw9i6SxQLLxW3csoiZKaWdQAwEdVAXtti4kP1TqdTg73wasvZycKNnI3DFPXDxCYIL14QfzaTjjmcbKTUFFpuxa2YBLq5ceEamYGxiQlguHQ/itbW1U+5MmZh56tSkx6wRrmxdAra2Xpe5789isTBnzhxwuVy89tprmD9/PsrKyn535I946np6eurU2DMkfG8uSFyRSCQoLS0Fm802WaNUe42AcRtz7T5pXdP1huKeLcmfXC5HeXk5KIpCdnb2FM9mXVCmIvtXRmuJm6cvWF6+AFhQyqVQjI3QLTCagyRscDz1ezizXdzgf9nN8MlZg6ETOzBa9hPENcfhu+AaeKUtQ/hNr0Gw50VIGs+i97N7EXrza3CZyDTqzAKakAFUqRRo+vAeKAc64RqWiNkbX4SHr2lDCqqJfsmpekmZOqPAuJsGURJobW3VcCHicrnTrgForePb2+oyJycHv0x4ajPhcASQaem2cOFC+kPSZY1kLIyxkjP0WmD8y2c2LetyHNGGrUvAzBI0kU4gTh6T5BkAuP/yC6SZmUB5Of0YcRno6+tDTk6ORiaAzWbTOnyyjkqwWCy4x6TpXrOr+7j2lEIGlps7fR4TR9H5mgtlVm3ypwD/mych66oGNzYTgSvuhqt3INhupkmyaGf8xnuHxnsCJ9Oy8QybV0QSRO1V9GQzh8NBS0uLxs40ODgYnp6ek25C7r6+4GByl+OYmRNe2mu3VfCzZmDThrmTc6RHxt3dHQsWLDD7+KZMydkSzGult7cXVVVVtKeuIfF6aw4VcTgcUBSFM2fOICwsDLNnz7boe9fl36sLxL/Yx8fHoJ6hvkFAc4c9jAFpMfL19cWcOXNoqyzjWkBYjNYSTLyOzI9R4LhywfEPGe9HpijIRMxBEjU9SEJRaqgVMrBd3aAdlzjegQhe8yB88tZDeHw7hMc+gaj8Z/hfeiOC//QUhMc+gbjyMHrfvw2hN20DN2iipK6VBWSx2Bf6GjXOQBMSQRdaP3kAlHwMXnOWYs51j03ESwLjhhNJBtBUFQUPDw+d2cGWlhbazaW9vX1SdtAesOZG2VGcjhyGALJYLAwPD6OsrAy+vr5YtGiRRqCwtCRiCRnjcDi0flRMTAxSUlKMuvBsNQVMURSam5vR2tqK9PR0BAYG0oGRTF7KxGK4eHlN+oJdm5rQw+cjMDCQzhhKpVLMnz9/0q6c9I14pF4KSf3/IG2vAMCCe8ycyWt25UItZYNSSAA3rYyCTis4ranf8RoLVAoZ+r/5B+Q9dXCfkYvA5XfBxScIHBc3hjrgBYpl8FugKEZgnuiPZE9+lVqlgKS3CfLBnnF/z74mSFqLAYz7J8bHx0MqlWpYopGhBjK4wOFwJvkXU5ggf1r+i+bgYh0CMbdvxlo2SZZMyVkbarUa9fX16O7uNtg6AoCOfda66VAUhd7eXgDjns/WkJch5ThDMY4ISsfFxekluwTa8dLawx7aGBwcRHl5OaKjo+m1mTOdOo6JeEQ6WCZKxeP/Jg+SKKQiKKXiCy9XKaBWXRDTZ7u5a2TruGGJCLv2eYw1nIXw1JcQfP8KuLHp8L/0ZrgGREN46nP0fXYvgvMfhVfyAkYWUDWeBWSxJ4bi2BNF7QuRlGCg7BB4+94CwELIlXcgccmfzfwsAPXEUKAlmXtmdjA5ORn9/f2oq6uDUCiks4PMGGxt0WltWHOj7CSAWujq6kJVVRUSExORkJAw6YduKQE09/UkCNXV1SEtLc2gMKquY1p7CpjIswwNDSEvLw9eXl56A6NyggRqo66uDnK5fDwocbnIzMzUWZIhPS9u7p5A6qWQ1P0P0vZygMUaLwdrPnm8DKyQXchasPWXgMdlAhgvZ7OhkkvB++oxKHhN8EhagMDlt8PFOwiYuAHqknmhDJBB+jmE/LEuPEshHoKktxnKYR5UY8MTu2NA1tMIactvYLPZaGxqBJfLhUqlgqenJzw8PBAeHg6VSoWRkREMDQ2hoaEBcrkc/v7+uETX8a1A/oCLdwjEHAIol8uhUCisIgNjyZScNSGTyfDbb7/RJdCpgr8lfcvaUKvVqKmpoQccIiIiLHo/JvTFOIqi0NbWhqamJqSlpRl1TCaZZIo7k79Zk/z19PTQmV8yeAMwvb9Nk+GaDK1S8cRbkkESF64XXN3HrwEWiz2RsZv4HCk11LKxC+/j4kYLQHumLIR70nyMFu/F6K9F4H31GLxmX47AKzdj6PinEOx+EYpLboD/JdeNEz+1cryfmT2RAaSjJDNmUujY+2+Mlh8G28MHcdf8A6EpU5XCDcPYErApcHV1pUWUVSoVvSFvbm6GRCKBv78/3a5ji+ygNTOAjmJ16TAEkMViITs7G8HBwTr/bmlPjDkEkJAttVptMvkDrC8DI5PJUFJSAgCYO3cuXF1dp9wVK6H5JSvuugvp6el0/xGLxcIvv/wCb29vhISEIDg4GL6+vhcCLkUhMjISvH4eMJOQwDIAmEQC2a7uUCmkoOQSsLieuBBetIMppfG/LBYbKpkYvC8fg4LfCs/UxQi44m9w8QnAZFo3Dt1kUPswmuRQ0t8GmaATqtGBCwGWxQLblQv3sBkYLt0PactvcHd3R3d3N30zYPaBkoxEYGAgAgICkJCQAIlEAqFQCAUAZv6gOycH/lYiVxfrEIg50gli8XhmxN4BsqOjA4ODg+jo6IBKpUJZWRmysrKs8t4cDod2TDEmU2FJ3zIT2q5JJ0+etOpwia5YpVarUVVVhYGBAcybNw9+fvp73bTfi5n1I1lva16bpHrS2dmJrKwsBAUFafydJiyW8j8NGBgkmQDHzZOOaSqFDBTJBoKasHWbkNlic8B2dYff3AL4ZKyA8NQXEJX/jLGGs/CcuRjStjIMn/oCCn4bgvMfHT+oWgUWi6OzB1ClVqH5o3ug4LfBNTQBs259EZ7+45+J9r6dtBEa09VMbOjM7S/VBWacYk4OJycnY2xsjO4dbGlpsUl28GLuAdQHhyGA0dHRBgmeJT2AgOkEkDRKczgceHh4mGwJBlhWdtYuARO9wYCAAKSmpoLD4Ri1K1aKxVAuWzbe9ycQgMfjobqkBImJibTfplwux8DAAPh8Pjo6OsBmsy8Q8YlemLDQMAy6uAIzL4Gk7jSk7WVggQVu9AUleJaLG8DiQK2QjtsR0fVXzc+AiIROvAoq6Sh4Xz4KxUAnvOYshf/lm8bJn5Fi2Poyf8D4cYTlh6ASD42bpQMAiw0X7wD4JmbDMygKapUcLZ8/CVlnJYKCgtDS0qIzYDCDDzAekEiGxsvLC8M8HgTLlyOivh4N77yDwehoqP73PwQEBND+o+aWRC7WErA5k3MikQgA7F4iefrpp7Fjxw76v7Ozs00WZNcHV1dXpKamGv18S/qWCYRCIUpLSxEUFIQ5c+bQVpBW1RjVej+ZTEbLdpk6YEIygLac9K2ursbIyAjmzp2r8wZ8Ic5blQFqgZEdZIBUM9iuboArFywAarUKaoXsQgxVq6Ce6E8Gi4WAJZvgk7sewuOfQVx1FGx3b4DjirH6U+j9rAuhN28Dh8VwaGJ8nrLBXjT/515QMjE8Z12GtOsfB5tzIe6RUjYAXAjZFxpxDEE9kQG0FQHUhqenJzw9PREdHU1nBwcGBtDU1ASpVEpnB4OCgnT2bxsDa2TjCcRisd5klz3hMARwKtizBEzs5sLCwjBr1iycPXvW7Alia2QAeTweKioqEB8fT/uCmnTDPnJkvCTT2orW1lakpaVp9B+5ubnRRtWk8ZbP59NETS6Xg8Nh0wruAxgngZL2UoDFAjdqooGexQLL1Q2UXApKrQYLOkrAWqVf5dgI+r96FMqhbnilXwn/yzfCzcsPajMDsEomhlI0NC7MOvEZKkcFYLFdwA2OgW/KXLhxPSYCAAtKqRgtOx6Bor8VM2bMQGVlpdHHIsr3wPiNr7q6Gqy33kJoWhqSJki8WCyGUChET08P6uvr4eXlRQciX19fo79HW2cAbTUFbE7QHBsbg6enp90n/rZv324TDUCCqdyOtGFJzCOe5MnJyRpewtaWl2HGKuYmNS0tzeTvnc1mQy6X22zSt6ysDAAwb948vaVJW07DG8J4XlCzPEthfKKXw/Wku/ZUcilANAcpCpRCCo67F4JW3gPv7DUYPvU5ZF01AAAFv40eDnH1DRnviZ4Y6BisOo7e7/8FgELQ0k1IXn6DgZWNk0GVatzv19XVVWd2kAnVRAZQ2+HHEhgbA5nZQWA8nhDdwZaWFp3928bA2iVgZw+gCbDGEIgxrycipampqYiNjaVfa09HD/I6bWP24OBgswKjWq1GbW0tBgYGkJeXZ9Bvk9l46+bmBrFECQ5n/LNTKJRwc3NDSFgU+OpFkDScgaRtggRGjmc32G4eUMkloORjF8aQmfyPsYNUioTo//pRKIU8eGethv9lN8PVREslChSUoiGoJCPjZV1tBw8WC9FLbxp/LqWGmqKgUo+rQMtHB9Dx+WNQDfdh4cKFOHz4sEnHJiA6jJ6enkhPT6dv9Gq1Gr6+vvDx8UF0dDQUCgWEQiGGhoZQUVEBALQ9Evm89eFizQCaEzTtLZLqqDCn7UWXJzkTlvii6wKJVUSRQF8PtyGQsq+Pjw+am5vR19dH9276+flZfB2IRCJ6uJBkQvWB/puVMr/GgjEKp/Nxkh3kuLnTz1GrFOOZtom1csMSEHr10xA3nMXILzuhHOqBWjKCvk/vRUjB4xPPY6Nz39sYKdkPtrsXYv/8BMJnzZ1yfSqVciL+u4Kt4fnOzA5OnAPL9iVgU0CygzExMRrZwYaGBshkMqOzg9YeArG31aUuOAwBnOpHToKhubIIUxFIQpJ4PB5yc3NpXSLA/KBpqRB0ZWUlBgcHkZubC29vb7PIn0KhQHl5OZRKJebNm2dySQYUBQ7HBRyOCwAKKpUabDYLIREx4GOCBLaO9yVyI1PB4rgCbBeoFTKwJuZiKSIDw8j+KYf7wfvmH1CN8OGTtw4Bl94MjpEyL2qVHMrRQaikIlAK6YXow2KBzfUENzASLlxPDE48duF82OBM/KeY14KOL/4B9dgwFi9ejGeeeQYNDQ0IDg6Gv7+/0T90Ig0UGBiIWbNmabxOV6k4NDQUISEhICbpQqEQHR0dqKmp0bBH8vHx0fiubV2mtdUEnTkZQEeZkJtumLrpJRaOSqVSw5Nc+z2tWQJmsVjo7u4Gn8+fcrJZF5jDHnFxcYiOjqYtAknGLjg4GCEhIQgKCjL5OiWTvjExMUhMTNQfP7/4Au533jledgXQ3XQOS006kuXQtTJDg28sjitcOK70Y+PZQRW8UhbCI2keRKU/YeS3PaBkYvQWPju+H68+CiUAr+BYpN76IrwDw6Zcl1KpgFKpBpfrpqUBeyE7qNF4QwEqhgyMSqWySi+nvk2wi68vmKM7YgOi+9q9gxKJxOjsoFMGZhphqSyCocBHAqdKpdIpUmrJNK85xFGpVGJsbAxsNtvoYQ9dEIvFKCsrg5eXF7Kzs80qyWjbuHE4HHA4HLi6usE9IQmdoCBpODtBAlngRqaMW8PJxJMs3qgJ1VTFQDf6dz4NlWgAvvOvRsDiG8B2MTAtRlFQSkVQiYVQy8cuaGkB42bqXn7gBkYAYGlp/OnexQ+3lqN753OgZBJs2fIQnn76aQwMDNBOKGq1mtb7Cw4O1puZGxkZQWlpKSIiIpCcnKz3+2GWipmDJP7+/vDz80NsbCzkcjmGhoYwNDSEjo4ODfN0ItlzsQ6BmPrev9cMoC1LwMPDwygtLYW/vz9yc3P1EiVrloBVKhWkUimkUikWLFhgckZD29aN/E6ILy9FURAKhRAIBGhubkZlZSUCAgLo7OBUfdnd3d2oq6vDrFmzphzgI+SPIAoA7/B/wPENsfl1SCkVkPbUW/19PRJywI2ejfZv/qGhCesC4KxchnuMIH8KhQJqtRpcrutkAwANMDfaoPutPT09Na438h2bE2/0xSlmSoMFwMPX1yjnJRaLNSk7ODQ0RGcHiboDIYRKpdKqQyDODKAJsFQWQV/gI4HTUN+KuUHTnAzg6Ogo6urqwGKxkJOTY/SwhzYGBwdRUVGByMhIg+TEEMYJoP71czgcxCfNRDuAsYaz49p5LBbcQhOgkokvlGPpGgEFOb8d/TufgXpMCN+F1yJg8fVgs3R8n2rVeC+fVKTRzweMD5tw/cPg6h0w8fZE4BmYvI/W/O+BqpPg/fAvUCoF3n77Lfz1r38FAI2bzsjICAQCATo7O+nMHCGDJDM3NDSEsrIyxMfHIyEhwbTPFLqzg1wuF2FhYVCr1RgdHcXQ0BAtQu3m5gZ3d3ebkCNbE0BzegAdYXc83TB28K2npwfV1dVGlV+tNQRC2h4oikJSUpLZ5M9Qvx+LxaI9ZMmkJ5/PR39/PxoaGuDl5UVnB5mlYoqi0NTUhK6uLmRnZ2tUc/RB1yc2+ttusFy4cAmMhmtgJFyDoscH3awF6sL/ob2ErfB+FEVBMdQNWVs5ZL310KVsmDbCQ/Hbd8MjNh3hc1chMDJ+0nMUCjnUagpubm6mtx1NTDH7+PjQWUCmoDdwQdfR2Oygzjg10UrDhLmRjMPh0HGeoii6d1AgEKCpqQlsNhseHh4QCAQm9Q5qg7y3NfsjzcVFQwAtlUXQReJI4ExKSkJ8fLzBDI4tBJ210d/fj/LycoSHh6O7uxtVVVV0gDOldEs0rlJTU002eGeCzWbrkHCZjDgmCWw5D7AAjncQ49zHe3ykvU0QFD0HtWQUvotvQuCivxCBBACAWiGFQjQItVQ8XtolYLHA8fCGe1AU2C6aU7SGBJ6Jth9B/7nvwT/8MUCpsff777Fs2bJJ58JiseDn5wc/Pz8kJiZCJpNBIBBAIBCgra0NHA4H3t7eEAqFSEpKQlxc3JSfjyFMlR0kItSNjY2QyWQ4f/682U3M+uCoPYB/dBjTttLQ0ICuri5kZWUZpXdojQwgmS4OCQmhqxOmgKIourfRlMqGp6cn4uLiEBcXB4VCQSsXlJaWgsViISQkBIGBgeDxeBCJRJg3b57R15Eu56R169bhyJEjGOO3QNHfPK4eEBgFj9h0BGRdBZ9o46e6maAo9UQrDRvC01+B5eoGn1jdDkvGQqWQQlh+GJKmXyHvrYdaKqL/JgGg/Sn8G4CirwmKvkaM/FoEjm8IuJGz4DtzEWJzl0CpHM/McrmT3UmMAekB9PHxoatGwIUNL4l1TJ1Hci3ou550xqmMjMmfhcmrnQwWiwUvLy94eXkhNjYWSqUSlZWVUCqVOrODppI5Zw+gFqYKAkQWwVwtQA6HA4Vi/KKkKAoNDQ20FtRUgdOSHkBjXscUTZ01axZCQ0MRGxsLPp+P3t5e1NfXw8fHhy59eHt76/y8ptK4MhWkB3Dq9asRFp2AfgDihrOQNJ+He3z2hbChVkPaWQ3B9y9CLRXDf8km+M/bAABQjgmhHBsGJRujywYZFSU4UL2Tfr0SwOzH92kflW4pZAo8a66Loglm95HtEJ75Diw2C7/++itmz5496fm6wOVyNayJmpqa0N7eDi6Xi8bGRggEAnrXaClp0ZcdZLPZkMlkiIiIQHh4OEZGRiAUCq0SiMhxHKkEbC0XEEeDqVkUQ2SN+NdKpVKjhKUJLB0C6e7uRk1NDT1dXFpaavTmmAx7kJu/JZO+rq6uCA8PR3h4OK1cwOPxUFNTA7VajYCAAAwODtJZm6kgE4vB9fICG+MxRXrNNfiGMRH+2muv4b333gOvvxujA50YLf0JbE8/uEfNhu+sSxCQdinYnKmzg2pKDbVKDTaHDbYRvryGIB3sxnDZz5C2l0PR3zY+HTwRsz09PfHZZ59h8eLFaBEIMDMzk84ESgFs6uvDvd7eeOCBB/DJJ59ANcLH2IgAY3Unwdv3JtzCE+ERn4WYBWvg5W+6XIl6ggBqX5f6Nrwk1ul6HvlffW0wIl9feI2MgIVx8ic1ovxrKlxcXGhf4tjY2EnZQXd3dzoG+/v7T7npdfYAmgFLtAA5HA6kUik9FCGRSIwOnLZw9CAgKv18Ph85OTnw8fEBm82Gt7c3vL29kZCQALlcDoFAAD6fj7a2Nri6utKZQWIDZ4zGlTnrn4oAqtUqyOUKuLq6IDZpJjo5bIhqT0PaVgoXv/EeE5V4CPzdL4CSjyFg2R3wTJoLGa8ZarmUUWJmge3mDreACOyvflyDzk2+SCl6WfrIHxPte9+AqPxnuLi4oLm52Wz9pc7OTnR1ddHTlWNjY3R2sLGxER4eHjQZDAgIsJhUsdlsSKVSVFRUIDAwEPHx8VCr1bQIdXx8PC1CTQKRh4eHRiAyu7RiJThLwOZDHwEcHR2lvXUXLlxo0mCEubGMuWlmCvYbWx3RdvawpswLm82Gm5sbBAIBQkNDER8fj4GBAfB4PFp6iWyeici9LsjEYp2PA8DDDz+Mhx9+GADw66+/4v7770dNTQ3Gmn7BWONZ8H56C25hifCakYvA3JXg+kzefI+fP0W39ZgKtVoNcXMxRmtOQNZVDdVI/8RfxkViUlNTcebMmUnVIn9/fyjFYoikUjpeDfz6K9zc3HDXXXfhySefRGBgIM6dO4f8/HyMjY1B1lUNWWcVhKe+hEtgFNyjZiMw8wpEzsw1aq1EyNrQhlTfhpcQQ5LsIVlBvZvJri7o/+asB1LN0JUdJL2DdXV1UCgUCAgIoOOwrg2I0wnEDFhSviAaU2fPnoWXlxcWLFhgtO+jpVPA+iaX5XI5SktLoVQqMXfuXLi5uekMjG5uboiMjERkZCTdqMrn81FTUwOlUomAgACIxWK4uroa1LgyFRwOxyAB1CUNEJOQgh42G8PV/4OsrwkAIKo8DKiVCLjidriFxEE5PBG4WGxwPHzgFhA+7l2J8VCmKzSqy0rG0/0TWYTxl7NAUQYCKUVBLRuDqPxneHl5oaenx6xpV5JZ7erqQm5uLu1s4OnpidjYWDoIDA4OQiAQoLq6GkqlUmOQxBwBaJFIhOLiYoSHh0/yn9YWoY6MjIRSqcTw8DCEQiFqamqgUqk0ApG+NgJb6gCa896/1wygqdBV8SByKwkJCYanWvXAnFimVCpRXl4OsViMBQsWaHw3xhBAXcMepoDj5aWRvYIWURsYGEBFRQViY2MxY8YMsFgs+Pj4ID4+HgqFgt48l5SU0CL3ZKrYnOt+3rx5OHv2LIDx3+jf//537N+/H+KeOsi6azH4vy/hEhABj7h0BGReCZ/YOVCpVaAogOMy7sVb+Or1SJIJx7NWPQ3QV49QysYwXH4IkuZfIettAEVbxI0TozvuuAOvv/66Uet2d3dHdHQ0LZY8NDQEgUBAW4MCwL59+5CWlgZPT0+sWrUKJ0+ehHKgC6KBLogqDqLLwxduESnwSsxD3IJV4zahBBUV+N+3W+gs6qeASWVO7ewg8x8ZOHJxcaGHMeytE6qPgLq4uNAbDKL9Ojg4iP7+fjoxEBgYSG/KlUql1awu9eGFF17Avn37UFZWBjc3NwiFwknP6ejocBwCaEwgs4QAkpRtQkKCyUMR5paemalr7eORm7uPjw8yMzONHvZgNqrOnDkT/f39qKkZF/6USqUoLy+nLd0sHRYgtkW6QKQBCGllIjIuCS4uLuCd/HbiyeM2RkNHPjTquAoATApLAWjZ/xSw37T1E4SGhqK1tdWs1xIfaD6fj7y8PL3ExMXFBaGhoQgNDQVFURCJRODz+eju7kZtba1Oqz1DIKK6MTEx9E2NCV3BklwbQUFBmDFjBi1C3dfXRzfN6xKhtqa+lTbMnQJ2EsDx3zq5MVMUhcbGRnR0dCAjIwNhYVNPcOp7T1MygGNjYygpKQGXy8XChQsnbZqnIoDMzJ9ZWb/gYDoWUBif+JRu3AhMlGe7urpQX1+vd9LX1dVVp8h9Y2PjpKliczTrvL29Ndxj3n//fbz++uvo7e3F6FAPRst+BtvDF9yomfCZuQhB6UvBcnFDskwIYHyz6wKg+qU1mDPR5iLlt2O4/BCk7WVQCDrGh+kmSrve3t4oKirCJZdoO4+bBuZ9JCIiAqWlpXTW/cyZM/Dy8sJbb72F4OBg+Pn54euvv8Y999wDuWQE0pZiSFvOY+DIf+AaEgf3mDSE5a1A7bdbQOg0C8BfAVSZSXK041tbWxsGBweRnp6uMztobctAXTBmM8tisejqna7s4JEjR3DixAkAgEAgMNle1ljI5XJcc801WLhwIT755JNJf1epVFizZo3jEEBjYA4RoygKLS0t6O7uhpeXF1JSUkw+riVDIMDkEhufz6e1qcjUnjmTvgMDA6ipqaF3vmRggc/no7m5GVwulw5upmjbEXA4HB1DLNSENAA1oQule83Cht8grjkOUp4wBdoXpSWFIn9/f7PJH/E0HR0dxdy5c422AyQZCB8fH8yYMYMu4QsEAtpqLygoiC7ha99USZN9QkIC4uPjpzyerr4afSLUQqEQlZWVoCiK3pXamgCamv0Ui8Um68ldDDC3B1ChUKCiokJnBs5UmLKJHhgYQFlZGSIjI5GamqrzGjEUG42Z9J0KLhIJ/f/pV+/cCeqzz9DU1ITu7m6jJ32ZIvepqakQi8Xg8/no6+tDfX09vL296eygMZs0Xdi8eTM2b94MAPjtt99w1113obGxEZLm3yBp+hX9+9+FW+iMSTGNA6Bn9yuQdddANSpgnDGF9PR0nDhxwmwbSUMgagbMWEMGbAQCAcrLywEAGRkZqKmpQXBwMCQSCRYtWoTW1lYoeC1Q8Joxev57OtIz/UwszXIRM4TOzk7k5ubC19dXZ3aQwBKZmalgTpzUzg4GBARAKBTit99+Q25uLpKSknDnnXfigQcesOpan332WQDQ62x08OBB1NTUOBYBnEony9QMIJncGR4eRnJyMvr6+sxal7klYGZvAzB+MXd0dKChoQEzZ85EWFiY2TuXzs5ONDQ0YPbs2YiIiAAwOcVPpuSIth2z9GFM+XtyDyBFZyQMTYfV7H0fI+d2A6Dw4Ycf4qabbjLp3JReXpMygN9//z0CAgIwNjYGuVyOwMBAOqNmTbV5eg1KJSoqKiCXy+nyvLlglvDVajWGh4c1tM38/f3p3Tjp+UtOTkZMTIzJxzIkM8MUoRaJRBgaGkJXVxdkMhnq6+sRFhamU4TaEjh7AM0Hh8OBTCbD2bNn4enpqTMDZypIK8xU6OzsRF1dHWbOnGnwOtQXk5k3aEv6/ZReXnAVizW2kKo770RVRQW9MTP3WiF9XPpKxSS+mFMqHhsbg0wmw2effYa0tDTI5XLcd9992Lt3L0b7GjWIEjA+6DZW9z8A4z2CDz74IH0TtxXIvSElJUVDLYI5YENRFB2v2traUF1dDT8/P/zwww8ICQmBl5cXnnjiCbz99tvjQxqM96cAul3GHJCsd29vr0b1Rd8gCRkyslV20NJWGRaLhdmzZ+P222/H119/ja6uLhw7dsyqwuzG4uzZs0hPT3csAjgVTBkCGRsbQ2lpKVxdXbFo0SIMDw9bNEBiaQaQ6TSSnZ1Nl+BMDYwURaG+vh59fX3Izc2Fv7+/3jUzS5IjIyPg8/lobW1FVVUVAgICaEKor1F3fP1ExFkNuVwBNps1cROavG61Wo2qr17EWO14iru4uBgzZ8406fwAQCUWQ+nlBc7E0Qe9vJCVlUXrM5Gde29vL+rq6kwur04FhUKB0tJSsNls5OXlWdUlg81ma2ibSSQSOjvY1NREZ+Y8PDysYj6uL1gys4O//PILQkJCIBKJJolQE/9nc2FuD6AjSCRMN8bGxjA0NGRW24o+TBXLmFZy2o5IusBms2l1BeDCpC+JtRYPe/T3Q8bYEI4BOH/ttWDL5Vbtd9ZXKiZ2YaZsOIeHh1FWVqbRu+vu7o6PPvoIH330EQCgMzYW0QMD9ORquL8/Tu7di9xc44YsLAWRCktLSzPYTsBiseDv7w9/f38kJSVBOjFIwufzaeeMW265BQ899BAkXV3wWLyY7gHcBuA+I6sm2iD3OdJ6o4/k69vwkiqINbOD1ojHwAWZKz8/P2zYsMHi9zMHfX19CAsLu7gIoLEZQFK6iIiIwMyZM+kv3ZIBEnNeS8q6MpkMlZWVkMlkmDt3LrhcrlmBkWQ0JRIJ5s2bZ7TkB1PbLikpCRKJBHw+n+6F8fT01Om96eLiMj5IoR4nfy4ubLi46CYDCpkUVdv/AVnHuDDnwMCARZk5uUikUeIJnthJMnssyIQ0yXSS8ipzQtpU8qbt62trc3gPDw/ExMTAxcWF7lFVKBSora21eqZTO1iSLKenpyeio6PBYrFoEWqhUIiWlhZIJBL4+fnRvYOm9pWaKwPze8wAGvu5MYeOPDw8zGpb0QdDsUyhUKCsrAwymUyvlZyu92NWOCwZ9tAHtVgMKcZvnKWlpQjw8sLs2bNt1rbALBWnpKTo3XCGhIRMypYLBAJUVFQgMTHRoEZoSEcHZIz/7rbJmehGe3s7mpubzZIKm2qQJPDUKTr+3mdmvKIoCjU1NRgaGkJeXp7RrTeAYZkZS0SoAev1Spsb3x577DG88sorBp9TW1trUtLFoQigMSVgQz2AzBLrrFmzNNLalnhgWvJaFouF0tJS+Pj4IC8vz2xnD4lEQk/0EHs4c+Hh4UFPrzL7PZiCqiEhIXQGUC6Xw9WV+AFPhlgoQN1nj0EhaAeLxYJIJNL5PGNBpHGEQuGUJR43Nze9Td4SiYTOZBljHWXI19eW6OrqQkNDA53lBKAz06nP+cAcqFQqVFRUQKFQ0Neltgh1XFwcpFIphEIhhoaG0NraSksQGStCba4X8B91CIRs8kZGRpCSkoLubutSA32xTCQSoaSkBN7e3liwYIHRGyem0oE1Sr76oGvS1x7QteEkGbD29na4uLjQv0ki2D579myEh4fbZX2mQJ+agblgDpKQnkqBQED3VJoTr9RqNaqrqzE6Ooq8vDyLNr1TycyYIkJNXm+NhAAhgKZew1u2bMHGjRsNPmfGjBlGvVd4eDh+/fVXxyKAU8FQBpBcOAKBAHl5eQgICDD6tVPB3AzgwMAALUo6a9Yss4c9SEkhJCSEzmhaC9qCqsPDwzSBEovFADX+2RGZF20IOhvR+uVTUI0OwtPTE3w+36L1aPfemdL4rKvJWyAQTGkdBRjv62tttLe3o6WlBdnZ2RrXrPaNh0nUy8rKAEBDZsaUDYFKpaK9r3NycjReqx0sPT094eHhQV8fIyMjGBoaMlqE2tSgSYjv7zEDOBW0J25HR0fNFr7XB11xkAylxcbGmnztk9ho6bCHIZBJX2a/83RBu5+XSHJVVVVBqVTCz88PSqUSMpnMJkMb5oKiKNTW1tL3R2tvsJjxivRUmhqv1Go1KisrMTY2hry8PKuV9wlMFaFm3mcJYZzODCBJzFgDCxcuxAsvvHBxEUAXFxdIGFNhBFKpFKWlpQDGT0zXrsESAmhOBrCjowP19fVwcXGBp6cnlEqlWQGBx+PRPp+xsbE2JSakP83f359x46ZAUWrIZLIJNxb2RBaTja7Ks+je/Qoo2RiSkhLpiTFzIZPJ6L5Na/TekSZvpnUUMyCRYMThcFBVVWX01K01QKbbOjo6kJOTM+Vu3JjGbHI++pxigHGCXVZWBoqikJOTo/cz1qfJRa6PhIQESCQSugSkT4Ta3BLw77EH0NBvl0xcMidurWHbpg3mZpaiKLS3t6OxsRFz5swxS5KCxWJhbGwMQqHQ4qy0NsgQQE9PD3JyciZt6qcbJF7yeDyw2WxkZmZCLBajp6cHdXV18PHxoTec1hysMhXmqhlYAmPjFRkkUavVKC8vpysSlg47TQVTRajJ/d+aPYC2REdHBwYHB9HR0UFv+AEgKSkJ3t7euOqqqzB79mzHIoDGaOBpB0QimREUFIQ5c+bo/YJIicscFm9KBlCtVqO+vh49PT3IysqCSCRCT08PWlpa4O/vT7P4qfpriD1ca2sr0tLS7CaLoVKp6F0YISUuHA7YbhyoVGqo1SrIZHJ0/fYzBIc+BFRKrF+/Dl9//bVFxyXZDz8/P8yZM8fq5VddAYlkOqVSKTw9PcFiseySfWJOt+Xm5ppMdvQ1ZgsEAroxm5DBwMBAjZ4/UubPyckxOphpk0Fg/Drx8vKCp6cnLVA+PDyMoaEh1NbW0gLlcrncZBLzR8oAMm0gZ8+ejaioKPpvtiCAZDPLrJjMnTtX7zCZoXVTFAV/f3+655qUBENDQ2mHInOhUqlQVVVFe/qaY3Foa5A2CqlUivnz59OJB32lYhL7reHfbSysqWZgLowZJKEoCi4uLpMqEvbCVCLUMtl4x6Y1MoH2aHF5+umnNfQps7OzAQDHjh3DkiVLwOFw8OOPPzoWAZwK2gFR25fSEIEkPzhzMhLGZgCZNnNkpxUQEIDY2FhIpVLw+XxaHdyQPRGZGB4YGEBeXh58fX1NWq+5IM4kbDZbo8+QUqsAjgtt6t106DMMn/kGoNS48847sWbNGrpEbY7rhb3LryQgEUmZmTNngqKoSZZu5uonGgIRlialGGsQHX2N2fX19ZDJZAgICEBgYCD6+vrg6uqKrKwss29A5LPQJUIdFBSEwMBAzJgxg55gFQgEqKyshLe3t04Ram1QFOUwNkm2BiE5Q0NDmDdv3qQsMIl3+pyEzAGbzYZSqcRvv/0GlUqlt2JiCMxhDw8PD1qcl5RDa2troVAoaK3LkJAQk27qMpkMZWVldByaDtIyFUis5HA4OjNW2qVi4hJEhrvIZ2OuS5CxaySfo7XVDCwBM15JpVIUFxfTbQSnT5/W6Nu2hcTXVNAmgwqFAg0NDXQG2lKZGXvIXG3fvl2vBiBBXFzcxUcAlUqlRpaN6UtpCEzXA1N3GMZkAMfGxlBcXAwPDw/MnTtXY8oIGL/oY2JiEBMTQ5cjtTWnQkND4e3tTfeTzJs3z24/ALFYjNLSUvj6+iItLQ1sNpsOGJRSCbiOB6nKb1+FuOIQAODw4cNYsGDBJNcLX19fOvBP1exKpuZmzJhht/IroHsSjmnpxtRPJME6KCjIopsRc7jF1Ok2Y8FszCZkisfjoaWlhc7aET9ka5BbfX01xNO6ra0NWVlZkEqlGBoamiRCrf2ZymQyKJVKu5WA29ra8Pzzz+Po0aPo6+tDZGQkbrrpJvzjH/+wOvFg/g4kEglKSkrg4uKChQsX6iQB5PdnTas+qVRKT3abM+WuT9yZxWLR32dqaipEIhH6+/vR0dGBmpoao6sfo6OjKCsrQ0BAgE0nfS0BqVYwY6UhEGUCMiwhEokgEAjoeOnj40N/NobaN0yBvdUMzAEhqJ6ensjIyACbzZ4kzm3NwTdzoFarUVFRAQ6Hg6ysLLBYLItlZhzJ6cihCOBUX66LiwsUCgWKi4tNkioALox9mzPNO1UGcHBwkM5gJSYmTiJ/2tAevGB6+8pkMri5uSExMdH8H62fH9wndinS6Gigvt7g04eGhlBeXo6oqCgkJSVpysAAUKuVUCkVqNz+FKStxQDGs6+kbMR0vWC6kZD0PrP0wfxxEC0qezZ3TzUJp23pRvQT29vbdfauGBuQSIOzWCw2ebjFXLBY45qN/f39CAwMxOzZszWycoTckpuTpYSH2VcjFotRWVmJ2NhY+Pn50f1Q2iLUZMNAJGaICoC9AmRdXR3UajU+/PBDJCUloaqqCrfffjvEYjFee+01mxxTl0yVLjCrFta4gfN4PNTU1ND9auZokBoz7MF0wklMTKSrH6TlQl/1g1yXcXFxtEOSo2F4eBilpaWIjIw0q1rB/GwSEhLoeEn648iUPZGxMocAT5eagSmQyWQaBJWsUXvwjXw22n3bxpoZWALSMsNmszWqJvpEqJkyM4ayg47U4+xQBHAqyGQyuj8oOzvb5JS2uT01bDab7nnR/sGTm1hycjLdv2PKD47NHrcFY7PZ6O3tRUREBDw8PNDV1YW6ujqT+gYBAJmZ8GBMDnp0dUGybRvwyCM6n97X14fq6mqkpqZqyOYAF25A0hEhGnc+CgWvGcD4BawPXC4XUVFRiIqKgkqlorNpVVVVGoRDIpGgo6PDLC0qc8GchDPGQUBbP1G7d4XL5dLBWpvcMqFSqTQanO1V0pLL5SguLtYIsmFhYQgLC6PJrUAgQGdn56RBEkua1sViMc6fP4/IyEh6Q6FLhDo2NhZyuZyWmfn3v/+NoqIiAOOm9CtXrjS5N81UrFy5EitXrqT/e8aMGaivr8f7779vdQJIhi6IE9BUTi/kelIqlRZdM8QOs6WlBSkpKWhsbDT5u7XE2cOY6geLxUJPT49DTPrqA6kKJCUlITY21irvqR0vdZXRSYwx5hogHuLmElR7gJR9fX19DfZ7M8W5mX3bxMzAz8/Par732tBH/pgwVoSaqTdIspyOco1fNASwr68PdXV1GqlYU2EJAQTGb+R0WXRCqbyrqwuZmZnw9/c3S+IFuJAJY5IwXTtnT09P2s5Ln+OFW1PTpMfct26FfOtWqBnEjdyMWlpakJGRoXO8nJxr/fZHoRINwM3NDUNDQ0afF4fD0fBBJNm0hoYGKBQK+Pj4YHR0FO7u7jbvibDGJJx2rx3p66muroZSqRwP1j09mPHnP9Nq+KKoKJR++SUAIDc31259ODKZDMXFxfD29tZZpmKS28TExEmZCFJKNlVQWywWo7i4WIP8AfqDJSGloaGheOGFFzB79mw88cQTeOGFF3DzzTdjy5YtePnll634yUyN4eFho7xlTYVarUZ/f79OmSpdGJ+6t2wQhAx1CYVCzJ8/H66urqirqzO6r9Dazh66qh8NDQ0QiURgs9no7+8HRVFWyUhbE0SKZirnDEug3b5BWmuYmXJCeHSVigcHB1FeXm5XNQNTIZFIUFxcTGcnjb2WmIMk2g5Kzc3NdKWJuBdZkjE3hvzpgrEi1P39/WY5ZNkCDkUAdV0MFEWhqakJbW1tSE5ORnNzs9kByNxgqu3pq1QqUV5eDrFYTPfpmRMYSTmys7NTZybMmJ0zuUHTa8S4sTgTLABcAJKNG4Ht2+keSnIz0jdkMjIyAgBQiQYRGRmJxsZGk85PYw0TpY/29na4uroiMzOTDnBEQoTpRmLNsgX5vpRKpdWaypnkdubMmfS5EPIHjH/u3t3dJgcSS0F22H5+fkb3UTEzEeTGTIZiJBIJAgIC6ACrLxNN+mDDw8M1yJ8u6AqWbDYbv/32G1gsFoqLi9HX14fR0VHzPgQz0dTUhLffftsm5V8Oh4N58+YZFLvX9RpzCSDpA+NwOHSfIfEBNoYAMm9g5mqYTvX+nZ2dUKvVWLRoEU2QTe0btCVI9pTINdlLioZZKiatNXw+X2PSn9laIxAIUFVVhdTUVI1JckcC2RyGhoYiNTXVomuJOCjFxMRobMYtdVAyl/xpQ9+Gt76+HqdOnXKY78ihCKA2yAj76OgoFixYAA6Hg4aGBrPfzxoZQLKDIY4c4yLJppM/lUqF6upqjIyMYO7cuVP2POnrG6yrq9OYuAseGoJvQIAOp14AO3dC9cknqKiooO3kDGXC4uLicPr0aVx22aXYv3+/SeenDTIhrVKpaBIWEBCAmJgYKJVKmtwSLUGSfQoKCrIoa0YajTkcjs0ycMxgrf25szAe+Orr6yeRdVtAKpXi/PnzdBO9OUGWtCWQhv6xsTG69N3Q0EBPSZPdNpvNxtjYGM6fP4/w8HCzxITVajWee+45nD59GpWVlXBzc7OozGaObVJ3dzdWrlyJa665BrfffrvZxzaEqdyOtGFuzCLyWMHBwRplNmYsM7Qx0CZ/1u4jk0qlKCsrg4uLC+bNm0f3c+nrGzSm+mFtEDWGwcFBo2K0LcHlcidVH/h8Pqqrq6FQKKBWqxEdHW01oWBrQyQS6awMWAPalSZdDkqEDBoaJLEW+dMFNpuN5uZmFBQU4L777rN7VUMfWJQp0cjGICPXwIWpVC6Xi8zMTLi5uUEmk+HYsWO46qqrzApIZ8+eRXx8vFn194MHDyI9PR21tbUIDQ1FcnLylMMe+iCTyWiik5WVZXF/D5m44/P5EIlE8Pf3R9bll0O7zVT4j3+g9Ior4OLigszMTLvpLRGhbvJdGvphMXs9+Hw+xsbG6OyTMXZu2sctKSmBl5cX0tLS7JKBc/Py0sjAUgC6Ozro87G2vy8T5pZXTAGZkiblF6VSCX9/fwwPDyMsLMys41IUheeffx7bt2/HsWPHMGvWLIvXyefzMTAwYPA5M2bMoH97PT09WLJkCRYsWIDt27fbrHGe3KyNxalTp5CSkmKSDmhPTw+qq6t1ymNRFIWff/4ZS5Ys0XvtGTvsYS5GR0dp7VZjhhSY1Q+BQKC3+mFNkOSDTCZDdnb2tMiRGIO2tjY0NzcjLCwMIpEIIpHIJBUGe4D0JcbGxtp9uIc5SELiga5BEluSPwBobW3FypUr8ac//Qn//ve/HWYwx6EIIEVRtICmtio+MP4lHT58GMuWLTOLvPz666+IjIycNOxgDA4ePAgASE5Opl9vzpdIDM39/f0xe/Zsq19ozJ3z3EsvBfmUxgCc2r+fnga11wVo6UTa2NgYfT5CodCgfqI1j2suxsbG4B8SQvcAyq65BpjQY2LuTgUCAYaHh+Ht7U1nOy3JbJDya0hIiMXlFWNBtBOrqqrAZrOhUCjg7e1Nk1tjzoeiKLzyyit4//33cfToUaSnp9t83dro7u7G0qVLkZubiy+++MKmGwVTCeAvv/yCuLg4ozatRGC8o6MDmZmZerNBP//8My699FKdZVVbkz8ySEH61MwZRiHVDz6fr1n9sFLfIFPjz54bZVPAVDPIzs6m1QyYg2qDg4PgcrkavXH2Jh4kE+0IfYnEypLEX7FYDD8/PwQFBaG/vx8uLi7Izs62+u+/o6MDK1euxKpVq/Duu+86DPkDHIwAqtVqNDQ06FTFBy7sXi+//HKzmvjJDdKU0hIJqi0tLXR/hbmBkcgc2MvQnOycu7u7MTg4CA6Hg/DwcLuUIoHxH39ZWRmio6ORmJho8fmS3RzJ7hB9LVIqJudDdpzasja2BilzGCtoLZfL6cyG9vmYM3gRFhaGlJQUu52vRCLB+fPnadKpvdsmpWRyPto3Uoqi8MYbb+Bf//oXDh8+jJycHLusm4nu7m4sWbIEcXFx2LFjh8ZvIjw83OrHUyqVJpV0f/vtN0REREy5aSUZK5FIhJycHIPlysOHD2P+/PkaUhTawx7W7vcDxm+EJLZb47PVV/2wpG+QVJ5s5UhkDTDVDHJzc/UO0DFLxXw+36qapsZgcHAQZWVlSE5OnnLifTogkUjQ39+PlpYWKJVKuLu7W22QhKCnpwcrVqzA0qVL8dFHHznc9eRQPYBisRgdHR06VfEBy6fiTH2tUqlEZWUlRkZG4O7uDoFAAFdXV4SEhJjcS9bZ2YmGhga7yhy4urqCoigIhULMmjULHh4euvsGbTBxZwvJBKYsgFqthlAopPvSZDIZAgMD4enpie7ubrsLSxPSGRMTYzS5d3Nzm3Q+zMELpiK+vg0PkVyxl4sKASF/RNyWxWJNcj8g/p/Nzc2orKyEv78/LdoeExNDS638/PPP00L+AODQoUNoampCU1PTJJLlCHtjIn5vCESYmMvlYsGCBVP+lrV1TXVpmFl72KO+vh59fX3IycmxmrTPVHqDpvYNWqrxZw+Yomag3Rs3Ojo6SdOUSZateb5E4H/mzJlmeUzbA0Qj1dfXF+np6XS8Yrq1kHKxOS0AfX19WLNmDS655BJ8+OGHDkf+AAfLAFIUBalUavCDOnr0qE4BX2NQWVkJDw8PJCUlTflcplJ/eno6pFIpvdMcGxtDYGAgHVwMifpSFIWGhgb09vYiMzPTblNkTC/hjIwMDbcUW+ycmeju7kZ9fT3mzJljM8kEJkhpta2tDb29vQCg0QdjLXV9fRgaGkJZWZlVyxxisZjOpg0NDcHT01NjSprFYtEZx6ioKKtkWI0FGTQJCgrCzJkzjToukW3g8/m45pprMDY2BolEgldeeQWbN2922B4ra8PUDGB5eTm8vb2RmJio8+9MEXpDotJMnDhxAunp6QgMDNQQsgXMa2sxBLKJlkgkyMrKsts0r6l9g7bYsFobTDWD7Oxsizbt+krF1rC/7O/vR2VlJebMmWOTLLo1YKjnj9wfSfxltupMNUhCwOfzsXr1amRkZODzzz93GBs+bTgUAQRAmy7rAzN4mYqamhpwOBykpqYafJ5QKERJSQlCQkKQkpIyadiD9HHx+XwMDw/D19eXJoPMdPx0BT+1Wk37zWZnZ0+pOs7cOQ8ODpo9cUdRFFpbW9He3o7MzEybaKnpA9FSTE9Ph7+/v0ap2Brq+vowMDCA8vJypKSkmNVbagzIzYwEJADw8/PD0NAQoqOjkZKSYpPj6gIhf+YOmlAUhQ8//BD/+Mc/cNVVV6G0tBQDAwM4evQo5s+fb6NVOw5UKtWUGT0mqqqq4ObmpvM77uzsRF1dHVJTU00iLadOnUJqaiqCg4Nt2u9HJn1dXV2RkZExbb10JLtONrza1Y/+/n40NDTYbcNqDkhfIhngsyahUKlUGmSZWSoODg426XsjxgLp6ekmDS7ZE6YOfJBWHRJ/WSyWQUeSgYEBrFmzBsnJyfjmm28csoeUwOEIoFwuN1h6MWcqjqC+vh4qlQqzZ8/W+5ze3l5UVVVhxowZiImJmVL/iugzEbJBMjX+/v5obGwEl8u1a/CzdHpNqVTS5MmUiTuKolBXVwc+n28U6bQmiKC1LtLJVNfn8/m0YLM1St9kp2tvK7uenh7U1dXR1ogke0sU8W0Fa5C/r776Cg899BC+//57XHHFFaAoClVVVUhMTJw2rTd7wlQCWFtbCwAak9FML3RznHTOnDmDGTNmIDg42Gbkb2RkBGVlZUZP+toLTIHl/v5+WmcyOjoacXFxDnkN2lPNgCnYz+fzIRaL6dYN7QSHNkjlR7vi5EiwdNqX2dpCBkn8/f3h5+eH0dFRxMfHY/369YiKikJhYaFDiZnrwkVHAC2RcmlsbIRMJkNaWtqkvxHB6fb2dqSlpdGZIlMCI9Gz6+7uppvgIyIiEBYWZpcJLGvvuKfaOZOLW6VSoaqqCmKxGNnZ2WYN6JgDfZNwhp5PSt8CgQCjo6Nme/v29vaipqbG7jvd4eFhlJSU0OVmZml1cHCQ1uizRimHCSIuTabXzSF/O3fuxD333INdu3Zp2K/9kWAqAdSOWQqFAmVlZZDJZMjJyTGZsFAUhXPnziE0NBRRUVHgcDgON+lrDxCNv4GBAURGRmJkZASqZ5/FJYcPgwIgOHAAvosXT/vamWoG5up6AgACAuAml0MBgDJg5akNXfGFxH9mfOns7ERjYyOysrLsWvkBAM6E9JY8MBDo7NT7PJVKRZsoWEvqhXw+Z8+exR133AEAiIiIwDvvvIMrr7zS4VtbLjoCaOxUnC60tLRgdHQUmZmZGo8Tu6Th4WFkZmbC09PT7F1xf38/qqqqkJCQAB8fH3onpVKp6BtzcHCw1XsCiLwMEQC2NtnU3jmLRCKNEXo2m43s7Gy7ZTrJJNzAwABycnLMynyZ2wfT1dWFhoYGZGZm2s3HGLggqZCYmKiz5Ec0+nSVciyZ+pPJZDh//rzZ5A8A9uzZgzvuuAPffPMN1q5da9Y6fg8wlQAyYxaZ9vby8jKrDEiGPVpbW9Ha2kq7SYSGhtJWlpaCTPo6cjlVZ5VkyxZ4fPAB/RwKwM8//WRzvUFDsJaaAdvLC8wudTUAmQkkkEBXfCGZPj6fb9UBH2PB9fICM0pLAEDHuRHyx2KxbCL1IhKJsG7dOkgkEixYsAAHDhyAWq1GR0eHw2S/dcHhCOBUOllkN2ROs317eztNGAiISDGLxUJGRgZcXFzMtnUjpci0tDSNrBAzrd7f32/SEIkxIB6Q9pKXAcY/t56eHrS1tUGlUtH6fKGhoTZX6ler1aisrIRYLEZOTo5Vdlm6+mCYEjOE2JLvOCsry24DPcD4oElpaanRkgrkmiMElxB2U7OdxFOYGLeb873++OOP2LRpE7744gts2LDB5Nf/nsAUuzcGJGbFxsairKwMMTExZkn9aA97UBSFwcFBOrsPgP79mkN2iIQXj8dDVlaWWUN69oBMJkNpaSltR0lItLaAOzCunVpfXGwzvUFDsKavr7uX1ySHIokZBJAJItjf2NgIoVBIe/Xa27rPQ2vjTwGQap2brcnf2NgYrr76agDAvn374O3tDYqi0N3dbbO+cGvhoiOAU03FGUJXVxd6e3sxd+5cABfKacTyylxnD+bQRVZWll5vXQIyRNLf34+RkRG9QyTGgAw/zJo1y67j9iKRCCUlJQgODkZSUpLGztCWSv3WnITTB319MGw2G8PDw8jJybHrDY7oaVkyaKKd7WSap+sbjLEG+fv5559x880345NPPsG1115r1tp/TzCVAHZ2dqK1tRUymUynNqoxmErcmfQ19ff3o7+/HwqFQqNaMVVWnznsZs8WEFNhSOPP1ctrkiaahMUCRCK91Q8Ss61NdkgVyVq+vrYigE1NTejp6UFubi44HA4d/8kgIbmGrO3tzsRUBNDW5E8ikeAvf/kLpFIp9u/fP+W939Fw0RFAQ1NxU6G3txft7e1YsGAB+vr66D6V2NhYs83OFQoFKioqoFAokJWVZXI2StcQiTETuMyJ24yMDLuWIonsia6Mo7F9g1PC2xtcigIFQH72LJCRYdNJOEMYGxtDTU0NhEIhAOiUZLEVyJSxNfW0mObpzMEYMtnG5XIhl8tx/vx5+Pj4IC0tzaxzPHr0KK677jp88MEHuPHGG6e9n8oRYAoBVKvVOH/+PIaGhjB//nyzymvMzJ8x8Y3ZJ9vf3w+xWExbF4aGhk6qVpAKipub27RO+k4FIkqvt5xaUQH3hQtpoqQrk0SgSzXBWtUPppqB1XqLvbzApORKAAoLCCDRdezv79cpRM30dieqBYamZi2BduZWwugDVKlUKC0tBQCbkD+ZTIbrr78eg4ODOHjwoN3L39bARUcAdU3FGQsy7h8REYGWlhbMmTMHwcHBZpudj42NobS0FJ6enkhPT7eYkJAfDhlSIEKeoaGhGkMkzAZme0/c8ng8VFdXG5WNMnvnrBWwKADCgQF6Ei49Pd1ufRVkulkgECAnJwdcLndScCPkNigoyKqklIipzpo1y2ZTxszvSCAQYGRkBN7e3pBKpfD19Z3Su1kfTp48iWuuuQZvvvkmNm3a5CR/EyB2l1OBbHakUilYLBYuu+wyk49FxJ0tmfQlVoz9/f2TJK/IDTYkJMRoDcLpAMmoGdU+QciMkQRJO2ZbUv1ob29Hc3OzbQYptmwB+4MPoE5KAiZ86M0B6b0eHBxEbm7ulNleprc7mZol3u7BwcHWyZ4mJIDd3w/1hx8CN90EwPbkTy6X4+abb0Z3dzcOHz5s98EXa8HhCOBUQqmGJnmnQn9/P8rLy+n+Dy8vL7MD49DQEMrLyxEREWET+y3ieUkyaWSIJCgoCD09PVAoFHY3KSeTXto9jsbC2J2zdmMvABx89VUELV1qlvyIuVCr1aipqaHLvtrBjpTOyDkR9w5yA7Dku5kuMVVS2gfGf4suLi4aGorGBNKzZ89iw4YNePXVV3HnnXc6yR8DxhDA0dFRlJSUwM/PD5GRkaitrcXll19u0jFs4ewhl8vpeDQwMACKohAQEIDk5GSb9/2aC0tjlilguhORUrox1Q9STu3u7jZKzWC6oFarUV1djZGREeTm5poV3yQSCR0v9QncWwpbkz+FQoFNmzahqakJR48edVjJG2Nw0RHAlpYWjIyMICsry6T3lclk+O233yAWi7F48WK4urqaTf6IBEhKSopdPA5JT1pvby+6urpAURQCAwMRFhZmlSESY45P5FaysrKskuo2tHOOjo+fRAArysrs6utLBk3GxsbozN9U0BYI9/b2ps/Jx8fH6LXzeDxUVVUhLS3NrpOUcrmcnjIlGyyioSgQCGi7PXJD03UD+O2335Cfn4/nnnsO9957r0OSgunEVASQbFITEhKQmJiIkZERFBcX44orrjD6/W3p7EFRFD3pGx0dDblcTlcrQkND6Yni6c4G2iJmmXp8klnn8/m05BTZ8JLMlzXUDOwBc+LhVNBXKiaDd+ZUU2xN/pRKJe644w5UVFTg2LFjDjvpbiwuOgLY3t5Om2Abi9HRURQXF8Pb2xsCgQCxsbFmSR9QFIWWlhZ0dHTYve9udHQUpaWlCAoKQmxsLE2eLB0imQqk3Dw4OIjs7GyDJvOWHIO5c5b/5z9Ys2sX3Y+jAiC3sGnZFKhUKpSXl9NZVnMGTYh6PAluxmbSiJJ+RkYGQkJCLD0Vk9ZbUlICDw8PnSV2YrdH+gaZ9khcLheRkZGoqKjA2rVr8Y9//ANbtmxxkj890OV2RGJLS0sL0tPT6ayvSCTC2bNnceWVV075viTzp1KpbCLuTASo+/v7NSZ91Wq1xkSxWq2miU5QUJDd5VNI5n5oaMhmMctU6Kp+BAcHY2RkBDKZzOyMmj2gUqlo2ZycnBybDd4RL3Rit0pKxYa80LXXaUvyp1Kp8Pe//x2//PILjh8/7rAex6bA4QjgVDpZ3d3d6O7uxrx584x6P7Kjjo+PR1xcnEbWicVi0bvWqYSaVSoVPQhg76AyMDCAiooKxMXFISEhQSOwkyGS/v5+i2zcdIH88KVSqd3KzWTn3NbWhqAbb0T1VVfB/9prJ+2cbQWiFA+MBxFr9PSRcj65ARCjcZJJI7vp3t5e1NbW2l1JX6FQoLi4WC/50wUmwd26dSvOnDkDmUyGP//5z3j//fcvumk4e0KbABIh9aGhIeTk5Gh8dhKJBCdOnMCKFSsM/panmvS1FEztvKysLL03ZNLzRYZIZDIZgoKCEBoaahf5FLJOuVyO7Oxsm1dHzIFSqUR/fz8aGxshl8vpifzp0hs0BJVKhbKyMqhUKrvqvJLeU+KF7uXlpTFVrH1925r8qdVq3H///Th+/DiOHTvmsH7RpuKiI4B9fX1obW3FwoULDb4PRVFoa2tDU1MTZs+ejZCQEI1hD+ZNub+/HyqVSu+uVS6Xo6ysDACQlZVlV3uX7u5u1NXVGWU3pm3jRsoyISEhJjuRkCZ0DoeDzMxMu073MSfhfH19dfYN2mICl5wz6RG1RSDWNXTh6+sLLpcLgUCAzMzMaSF/7u7uyMjIMKt0V15ejlWrVmHWrFkYGhpCa2srXnzxRWzZssUGK774wRS7Z+qQ6iIscrkcR48exZVXXqn3erTGsIchSCQSlJWVgcvlIj093ehYQLLGhAyKRCL4+/vTMcnacjH6NP4cDUw1g/T0dI1BOblcriHBM51WYsR1hsViISsra9o+T+KFTmImi8XSGLxjsVg2J3+PPPII9u/fj2PHjiEhIcGq7z+duOgIIJ/PR319PRYvXqz3OaRZldxQvb29DQZG0mNHApVUKkVwcDBCQ0Ph4eGByspKWjvKXrszZrlZl8ftVGAOkfT399PCxoTgGvoxSyQSlJSUwNvb2+bek9ow5OtrzYk7bchkMpSUlNAT3fbqYZLJZGhsbERvby9YLJaGG4mt7QMVCgVKSkpov2pzjtXQ0IBVq1Zh48aNePHFF8FisdDY2AgASE5OtvaSfxcgBJCpQ5qWlqbz81epVDh06BCuuOKKSWSAoig68wdYb9iDieHhYZSVlVll0ld7AMDb25uuwJhiw6gLxDLNVk5I1gLT11c7zhjbN2gPkNhgy82wOdA1eMfhcODq6ors7GybtEA98cQT2L17N44dO4akpCSrvv90w+EI4FQ6WYODg6ioqMCSJUt0/p3srlQqFZ25MmVXzNy19vT0QCKRwMPDA3FxcTp1sGwBa/ewMAmurmlV5jmRCcSwsDCkpqbarY+LOQmnXQbThUl9gxbsnAnh9fPzs/vNg0wpZmdnw9fXlxbUJr1UzFKxNbOwJMC7ubkhMzPTrHNubm7GqlWrcO2112Lbtm0Oe9N1NMjlcvT09KCqqgpJSUkG/XIpisLPP/+Myy67TIMAaA972IL8EfmUGTNmIC4uzurZdoFAgP7+fgwMDMDd3Z0mOqZm9qfU+HMQEJIaFBRklJqBPtUEW+uPkmEwe2+GTYVKpcL58+ehUCjA5XIxPDxMO1JZowVKrVZj69at+PLLL3H8+HGkpqZacfWOgYuOAI6MjOC3337DsmXLJv2NkBdfX1/as9TckkhnZycaGhqQmJgIFos1SQfLVjsyprC0rXpYCMHl8/kYGRmhd5murq5oaGhAfHy8XU3cLZ2Es2TnTIJycHAwZs6cadebR0dHB5qbm5GdnT1pSlGflRsJbpbsdBUKhUapzJwA39bWhlWrVmHdunV46623HPYm4WigKAo1NTVoa2tDZmamUYM+hw4dwoIFC2i9T1sPexiytbQFiA0jiUkks09s6QxdWyZp/E0jLPX1ZU7MMj8ja/cNSqVSDfcfR/1d6+r5UygUEAgE9D82m60xVWzKZ0RRFF588UX85z//wdGjRzFnzhxbncq04qIjgGKxGKdPn8ZVV12l8Tifz6f9cAl5MWdXTFEUGhoa0Nvbi8zMTA2/V+2BCy8vL5oMent7WxyIST8QKcnZo+eCnFNnZydEIhE90WmNHZQxsIWvr7E7Z5FIhOLiYkRERCA5Odmu5K+trQ2tra1G28pJJBINKzcPDw+NczI2UCuVSpSUlNBuKubcOLq7u3HVVVfhqquuwvvvv++wNwlHRW1tLR0zjMGxY8foTYKthz2IrSWfz58WT1+mkxDpzWZm9pkx0Z4af5bAmr6+gHWrH0xIJBIUFxfTZXRHzaQaM/BBPiMSM6VSqcZUsaH7DEVReO211/D222/jyJEjyMzMtNm5TDccjgBOpZMllUpx/PhxXHXVVWCz2fRutbGxEbNmzaJ1ecy5KRFPy7GxMWRnZxvMHJHdBilhuLm50WTQnPT8yMjItKnqEwX6OXPmgKIousfOxcXF7CESY2APX199O2dPT0+0trbqnKy2NYiFnzGlbl0wVz/LGuSvt7cXK1euxKWXXoqPP/7YYXqDLiZM5XakjZMnT2LOnDkICAiw6bCHQqFAZWXllJO+9gLTk7u/vx9jY2N0S4RIJEJfX9+0aPyZAiLoPnPmTKv4+mrDUPXDlEoBqYSEhITYtfXHVBDyR1EUcnJyjI4/ujRaScxkJjooisJbb72Fbdu24dChQybJzV2MuOgIoEKhwJEjR7Bs2TJwOBzU1NSgv78fmZmZ8PHxMTswSqVSlJWVwdXV1WRPS+KtSkoYpsjLABcsv8gO0Z6l18bGRvT09ExSoCfaXiT4Em0vS0Q6mZgOX1+yK+zs7ER/fz89TWaviTsy2NPZ2Ync3FyrWPgxrZYM6WcReRsy1W0Ocevv78eqVauQm5uLHTt22JT8nTx5Etu2bUNxcTF6e3uxe/duFBQU6H3+8ePHsXTp0kmP9/b22tVJxRhMpXWqjVOnTiEpKYnWHbVFv59EIkFpaSk9De6IE7SkdaW9vR0KhQI+Pj6IiIgwbCs5jeju7kZ9fb1dM5Tm9A2SSkhkZKRD91CaS/60QZI3xNGGzWaju7ubTn689tprOHDgAObPn2/lM3A8ON6vfAqQL10qlaK2thYKhQJz586Fu7u72YFxZGQEZWVldHOuqZku4tkbEhKiUcKorq6m5WUIydC+aLu6ulBfX2+UzIs1QSalh4eHMXfu3Ek7RdI/QXrjyBBJU1MTqqqqEBgYSGcHTSVOhibhbAmSMR4YGMDMmTPh7+9Pl79ramqs1mOnC8SZoLu7G3l5eVbTkWSxWPD394e/vz+Sk5M1vFsbGhrg5eWFoKAgDAwMWDTRJxAIsG7dOqSnp2P79u02z/yJxWJkZmbir3/9K/70pz8Z/br6+nqNrKojlwaNAUVR4HA4GBgYgI+PD7hcrs0mfUNDQ5GamuqwJX0ul4vBwUG4u7sjJyeH3vg0NjZavR3HUpAWD5v4+hqAu7s7YmJiEBMTo1EpKC0t1dk3SHoTY2JiMGPGjGn/3PSB6BFaSv4AwNXVFREREYiIiKDv1+fOncMbb7yB4eFhLFy4EGVlZYiOjrZJ1taR4HAZQEC3Uj4TP//8M7hcLj3swWazzc782XLSTZe8DFMUtaOjA52dncjKytLoNbQ1SOnV3EETfUMkxgzGmDoJZ02Qcowusm3LiTuSae3t7UVeXp7d7J4UCgUtOKtUKuHq6mpWU/TQ0BDWrl2LuLg4fPfdd3bXJmOxWEZnAIeGhhy6JAgYnwEk/X4k6zUyMkLr6IWGhlqlX5bH46G6uhqJiYmIjY11WAJAKjRubm6TMpTMjI5AIICrq6tG64o9z8lUNQN7gdk3yOfzIZPJ4Ovri5GREcTHxyMxMXG6l6gXhPyp1WqrifMzQVEUPv/8czz88MN47733wOPxsHfvXmRkZODdd9+16rEcDRcdARQIBDh//jwiIyPpqU1zhz3sOemmLYo6OjoKNpuNuLg4xMTEWHfat6IC3IULwQJAAZCdPQtkZACwvliqNnEiY/ihoaGT/G8tnYSzBMRlw5jv2poTd2SoiMfjITc3165en8xm6czMTIyOjmrcAKby9QXGs0Pr1q1DWFgYioqKpsVZwRQCGBcXB5lMhrS0NGzduhWXXHKJ/RZqJKbSOgV0O3uQ31p/fz+Ghobg4+ODsLAwsxQJ7B3/LIFIJEJpaalRGn+kHYd8TgA0Joptmbm+WHx9KYqixfa5XC5kMplNqx+WwB7k75tvvsH999+PPXv2YPny5Rp/s9U9aqoWF4qi8Mwzz+Djjz+GUCjEJZdcgvfff9/q2qoOSQCZSvlMdHR0oL6+Hmw2G7GxsYiOjjYrGzGdk24KhQLl5eWQy+UICwvD4OCg1eVl3L28wLxsKQBSsRhisRilpaW0qLW1Sz1EsZ0Mkbi6utJBBYBGn6M90dXVhYaGBmRmZprs36xr52ystRVFUairq6O9q+3Zp2RoUo5sRkjGZHh4GD4+PrRQOCmhjY6OIj8/H76+vti7d++0eZUaQwDr6+tx/Phx5OXlQSaT4T//+Q8+//xznDt3Djk5OfZbrBGYigAa4+whl8tpkjMwMECXQMPCwqYUVWbGP6I/6agQCoUoLS1FTEwMLcllLIi/LKlWEAtG8tu1pq6mLdQMbAXSc56amoqoqKhp0xucCrYmfwBQWFiIzZs347vvvsPq1aut/v76sH//fpw+fRq5ubn405/+NCm+vfLKK3jppZewY8cOJCQk4KmnnkJlZSVqamqsem1dFASQBKy+vj46k9HZ2UkLGoeFhdE6dlOB6OwRr0h7/lBJo7WHhwcyMjLom7JcLqeDFDOYm9vP4qFjB9fX04PS0lJERkbaRfKEaRDP4/GgVCrh5+eHuLg4nb2QtgKzF8fSMjszizvVxB3JBgwODiI3N9euE5XMwGlMvwwR5SXXX2FhIYaHh2m5kp9++mlaswLGEEBduPzyyxEbG4vPP//cNgszE/oIoLnOHkxFAoFAAHd3dzp+aEs5TWf8MxWkPJ2SkoLo6GiL3otMy5IKjFgsRkBAAF0qtuRzsIeagbVgqA0GsJ/e4FSwB/nbu3cvbrvtNnz11VfIz8+3+vsbC+34RlEUIiMjsWXLFjz88MMAxisxYWFh2L59O6677jrrHdvRCSDxI5TJZMjMzASXy6V3xWKxGDwej/aZZA4m6CpVjY2NoaysjDa9t+ekG5F5CQ0NNSg4TPx8STA3R15GVwbwpx9+QGJiIuLi4qxzQkaiu7sbtbW1SExMpE3QpVKpRUMkxoA5cWurXhypVEp/V8ydc3BwMLq7uyEUCpGXl2fXm6ylgVOlUmHv3r146KGHIBQK4ebmhquuugp33XUXrrzyShut2jDMJYCPPPIITp06hbNnz9pmYWZCl9YpEXcm8jDmDrQRUWUej6ch5URcjKYr/pmKjo4ONDU12aw8LZFIaDJIKjCkVGzKZmc61AzMRV9fH6qrq5Genm7UZ2pJ9cMS2IP8/fTTT7j11luxY8cO/PnPf7b6+5sC7fjW0tKCxMRElJaWIisri37e5ZdfjqysLLz55ptWO7ZDXq0sFovOtpSUlMDDwwN5eXmThj28vLwwY8YMzJgxA2NjY7R9W11dHfz8/Oj+GHd3d9ouKCIiAikpKXZNa/P5fFRWVho1aOLi4oLw8HCEh4dryMsQU25jFPKlSUnwaGqi/5sXFITZs2fbXQ6DKXZMJuGSk5PpLBohh35+fjQZtEaZlPTd9fX1WXXiVhvu7u6Ijo5GdHS0hk9xcXExKIpCeHg4RkdH4erqapeds0qlQnl5uUWBU6FQYMeOHZgxYwb279+PtrY27N27F0Kh0PoLtjHI793Rwez3I+5F5oLD4dCEj5mFLysrg1KphJeXF6Kjox120ld7iMJWAz3E3jMuLk6jnN7S0kKLrOvKoDIxXWoG5oDcFzMzMxEcHGzUa9hsNgIDAxEYGIiUlBQ6bttSNcEe5O/w4cPYuHEj/vOf/0w7+dOFvr4+AKA1jQnCwsLov1kLDkkAAWBgYABlZWWIjIykez8M7Yo9PT1pCzOpVErv7hoaGuDu7g6pVIqEhAS7TzsRS7k5c+aYTMD0ycvU1NTQCvlkN6ZBMMrLMUZRaGtrQ1tbGzIyMhBuYu+bJWAG8dzc3EnZNy8vLyQkJCAhIUGj/4TIOegbIjH22KQRe+7cuXbru3NxcUFISAh4PB48PDyQlJQEoVCI+vp6u+ycCflTKpXIyckxK3DKZDLcfPPNGBwcxKFDh+Dv74+srCyNXai9IBKJ0MTYxLS2tqKsrAyBgYGIjY3F448/ju7ubvz3v/8FALzxxhtISEjAnDlzIJVKaQungwcP2n3tpsCWzh5EykmlUqG3t5e2SqutraXlqUJDQ022ybIVppKmshXc3NwQFRWFqKgojY1cSUkJTai1xfCnU83AVBDHFEskaVgsFry9veHt7Y0ZM2ZoVD+ampqs0jdoD/J34sQJ3HDDDXjvvfesWkq9WOGQJeDm5mbU1tYiJSUFkZGRAMxz9iDyG52dnfDy8oJIJIKXlxedGbRVZogcm5AgbUs5a7y3PnmZkJAQuLi4oL6+HjweDzk5OVYRHDZlbeZOwumScyA3KX9//ymvAXIDGRkZQW5url1Lr6QJfGxsDLm5uTTJM6Vv0JJjE1kfc8mfQqHALbfcgvb2dhw5csTkYRlrQ5+w86233ort27dj48aNaGtrw/HjxwEAr776Kj766CN0d3fD09MTGRkZePrpp3W+x3SDlIBtbetGTWwCW1tbkZ6eTg9jkfhB2meIlRjZoExHGdMeHuimQq1WY2hoiI6zRAzf29sbra2tiI6OdmjhZAD0pLcuv3FrQduZiCmwb2zfoD3I3+nTp3H11Vfj9ddfx2233eYw39t0loAdkgDW1NTA19eX9jg1dzdRU1MDoVCI7OxseHt7Q6FQaEzOeXh40OUSc7JNho5NiEh2drbNd7LM5maRSARXV1dQFGV3myRrTsIxy1d8Pl/DiUTXEIlarUZFRQUkEglycnLsegMhBEwmkyEnJ8dghk9f36C5O2dybLlcjpycHLMmG5VKJW677TbU1tbi2LFjNFFwwjZQq9WQyWQ2tXVTq9X0RiwrK0tvDyxzOILH42kM1tnDHQeYHg90U0FIc3t7O3g8HlgslgZpdsTBj5aWFnR0dNhVj1Bf3yCJcbo+J3uQv3PnzqGgoAAvvvgi7r77bochf4D+IZCHH34YW7ZsATA+QxAaGvr7HwIZGxvDLbfcgpUrV2L16tVm3RTlcjnKysoAgB4c0QbZtZBmaUu9fAnI0Aq5mO0ZGBQKBUpKSiCTyeDu7o6RkRFaXsbW+k62nIRj2p0xM54kqHA4HI0MmDXlHaYCKb2ac2xdO2dyUzFm52wN8qdSqXDXXXehpKQEx44dczjbtN8j3n//fbS0tCA/P99sZxZDYGbTsrKyTNqIaWuVkklZMkRibRCNv8DAQLNcmOwJYhowc+ZM+Pr60vFodHSUFuhm2i9OF0j1qaenx+4VIO11ELkp8jlpVz/sQf6Ki4uxfv16PPPMM7j//vsdgvwxW1yys7Px+uuvY+nSpXSLyyuvvIKXX35ZQwamoqLi9y8DMzw8jH//+98oLCxEQ0MDrrjiCuTn52Pt2rVGqbqLRCKUlZXB19cXc+bMMTr9TPo++Hy+RiO1MaVHgrGxMZSWltJNwfbsqyG7aOLlyeFwdGqFhYSEICwszKp2SfachNMOKiMjI+BwOHBzc6P9oO0FErxUKhWys7MtIp6m7pxJxlMqlSI3N9ds8nfvvffi9OnTOH78uM1tj0z19wXGS8EPPfQQqqurERMTgyeffBIbN2606TptjUOHDuGjjz7CgQMHEBwcjPz8fBQUFNCDbpbAmkoH2pOyZFgrNDTUKiRnaGgIZWVlZmn82RuGfH21Bbq9vb3pz2kqTUZrYzqF56cCqX4QvUF3d3eo1Wq4uLggLy/PJhv38vJyrFmzBo899hgeeeQRh7nGpmpxIULQH330EYRCIRYvXoz33nsPKSkpVl2HwxFAAiKiW1hYiKKiIlRVVeGyyy5Dfn4+1q1bh5CQkElf5sDAACoqKiwKKKTvg8fjgc/ng6Io+sdsaPKW+GmGhYUhNTXVrheaMbtobXkZYpdESK65653OSTi5XI7z588DGPcJHRoaojUUQ0JCrFrW1wbTmNzaO9epds4eHh4Wkz+1Wo0HH3wQR44cwbFjx+wiDzSV+Kk2WltbkZaWhrvuugt/+9vfcOTIETzwwAPYt28fVqxYYfP12hpisRgHDhxAUVER9u3bB19fX6xfvx75+flYsGCByRtIWyodyGQymgwSkkN6qc0hGTweD1VVVUhNTbVY48/WIH2UmZmZUw5RkDYjktXnchwTO9oAAEN5SURBVLlWqSwZA2b/tb2F502FTCajq1UURdEDS9Z0bKmursaqVatw//3348knn3QY8udIcFgCyARFUWhubqbJYElJCRYtWoT8/HysX78eERER2LFjB8LDw5GRkUEPjljjuEKhkG6W1jc5R0oD06GzR4J+dHS00aSXKS/D5/ONlpfRxnROwslkMhQXF2sQT0uHSIyFUqlEaWkpWCzWJJcNW0B758xiscDhcDBnzhwEBQWZ1Tf46KOP4ocffsDx48cxY8YMG61cP4zR9nv00Uexb98+VFVV0Y9dd911EAqFOHDggB1WaT9IJBIcOnQIRUVF2Lt3L7hcLtatW4cNGzbgkksumXKD0dfXh5qaGiQnJ9PTvraCvl5qYysLROOPOZjiiLDU15dUlgghNDfOGgO1Wo2amhoMDw/bfQDOVGiXfdlstsl9g1Ohrq4Oq1atwh133IHnnnvOSf704KIggExQFIWOjg6aDJ49exYhISEQCoX49NNPkZ+fb5MvW3tyTiaT0cMIPB4PaWlpk3R7bA1CPC0J+kx5GUJy9crLMDA8PIzS0tJp8fWVSCQoLi6Gv7+/Xm9QpicoyeSS87JE9kKhUKC0tBQcDgdZWVl2LfOTnj+RSAQ/Pz+aDJraN/jUU0/hu+++w/Hjx63uLWksjCGAl112GXJycvDGG2/Qj3322Wd44IEHMDw8bPtFThPkcjmOHTuGXbt24fvvvwcArFmzBhs2bMBll12mcUOkKAqtra1oa2ubFkJlinA9UWXo6elBdna2XS04TYW1fX2ZcZbP50OhUFht8po5fJebm+sQE9T6MFXPnzF9g1OhsbERq1atwk033YSXX37ZoftKpxsXHQFkQiQS4c9//jNKS0sRFxdHj00XFBQgPz8fCQkJNiODo6OjqKurw/DwMFgsFoKCgkyypLMUxN92zpw5ViOeTHkZPp8PiUSiIS9DzmtwcBDl5eXT4utLso7BwcEGHVWYIEMkhOSau8MkQzaurq42ad43BLVajaqqKjrIu7m5mdw3SFEUnn/+eWzfvh3Hjh3DrFmz7LZ+bRhDAFNSUrBp0yY8/vjj9GM//fQT1qxZg7GxsWlvtrcHlEolTp48iZ07d+L777+HVCrFmjVrUFBQgIULF+Lxxx/HqlWrsHTp0mlr9icw1Evt6+uLmpoauykjWAJb+/qS+wf5nMRi8ZQuVvqgUqlQUVFhlALBdMOcgQ/t6gcR6danmtDa2oqVK1fSci9O8mcYFzUBfPvtt1FUVITCwkIEBASAx+Nhz549KCoqwvHjxzF79myaDFqzJ0alUqGqqgqjo6PIyckBRVEmWdJZAmJx1tHRYRV/W0MQiUQaO7GAgAB4eHigt7cXs2bNslqp3ViMjo6ipKQEkZGRZmcdde0w/f396dKMPlIhl8tRUlICLpeLzMxMuwYWXeRPG4Z2zmq1GgkJCXjllVfw/vvv4+jRo0hPT7fb+nXBSQBNh0qlwunTp7Fr1y4UFhaCx+PB09MTL7zwAq6//nqH6vli9lL39/dDqVTCxcUFqampCAsLc9gb83T4+moPtZHfbWhoqMHv1JpDaLaGNaZ99akmcLlchIWFYWhoCCtWrMCaNWvwzjvvOOw15ki4qAmgWq2GUqnUmekYHBykyeDhw4eRnJxMT9tZIjfAlJjJysqadGyJREIHPfJjZlrSWQJSlhAIBMjJybGpkLU2JBIJGhsbwePxAEAjSNljN09KzrGxsVbN7GpP8JEhEiIUzmKxIJfLUVxcDE9PT7sPuhBx69HRUeTl5Rl9Q5LJZODz+ejp6cHatWvh4uICmUyG999/HzfffPO0Oz84S8Dmo7m5GatXr0ZoaCiysrLw008/gcfjYcWKFcjPz8fKlSvtGhsMgQyJubi4wMfHBwKBAEql0qg2E3vDEXx9ye+W6ITqc0Zi9iFnZWU5pHYigS2kXpjVj/feew///e9/weFwkJeXh++++84pZ2UkLmoCaAxI+W/v3r0oKirCwYMHERMTg/Xr12PDhg3IyMgwWebF29sbaWlpUwYuQi54PB6EQiF8fHxoMmjqbl2lUtFOE7YoS0wF5iSct7e3RhO4p6enTQS1CYhcBPFSthV0DZEEBQVhYGAAvr6+did/FEXRmWZTyJ/2e2zbtg2vvvoqli5dil9++QUuLi748ccfMXfuXBus2jgYOwTy008/obKykn7shhtuwODg4O9uCMQUfPXVVzh//jy2bdsGDocDtVqNkpISui+6s7MTy5cvR35+PlavXm3Qz9aWEIlEGkNibDZbp4sRkwxOVxaLEFUS2x0he6RPuSEgIAAtLS209JWjEGhdsIZF5VTo7e2lNfS4XC6Ki4tx0003Yfv27VY/1u8Nv3sCqI3R0VHs27cPhYWF2L9/P0JDQ2kymJubq/eHb6nEglwup4Me2dkxZRQMvR8ZPCC7PXsGyakm4WwlL0MgEAhQUVGB1NRUm+vUMaFSqcDj8VBfX0+7NdjTO5WiKA1bO3NaCSiKwscff4ytW7di//79WLhwIZRKJc6cOYPs7Gy794xNJX6q7e9LZGD+/ve/469//SuOHj2K++6773cjA2MLkE3Dzp07UVRUhMbGRpO1VK0B0iccGxuLGTNm6DwmaVsgFRNmL1xoaKjd+tkuBl9f4ozU19eHvr4+AEB4eLhDeTlrwx7kj8/nY/Xq1cjIyMDnn38OFxcX9Pb2orOzE/PmzbP68fRh69atePbZZzUeS01NRV1dnd3WYA7+cASQCaLDVVhYiH379sHPzw/r169HQUEB5s+fT/+oiGxBUlISYmNjLT4uyTTxeDwMDAzA3d2dJoPaGTSJRILS0lK6/GjPH7qpk3DWkpchIFphc+bMsXtKXyqV4vz58wgICMCsWbM0shZk2MJWNlDWIn87duzAY489hh9//BGXXXaZVddoDkz19yWvefDBB1FTU4Po6Gg89dRTF70QtL1AtFR37dqF3bt301qqBQUFWLduHYKDg21Cdvr6+lBdXW2yxt/Y2Bj9GxsZGaHdNazRPqMPpLXEFBmt6QJTczUmJobeeBNFCjIc4Qi9gPYgfwMDA1izZg2Sk5PxzTffTOt5b926Fbt27cLhw4fpx1xcXBAcHDxtazIGf2gCyIS2Dpe7uzvWrVsHkUiEU6dO4ejRo4iIiLD6cbUt6VxdXWkyyGazUVZWhpCQEKMnXq0FMuhi7iQcs0eDNIEzZVimCgi9vb2oqalBenr6JOV9W4PIzBBhbW0pC2KXxefzjR4iMRYURdEe1nl5eWaTvy+//BJbtmzB3r17dZIuJ/5YIFqqhAwSLdWCggKsX78e4eHhVokv7e3taG5utliSRiqV0mRQKBTSlpbmtM/oA8lS2rq1xBogMSkgIACzZ8+mvyvi5UzirEgkou37QkJCpkUP0B7kTygUYu3atYiOjsauXbumffp569at2LNnDz0fcLHASQB1QC6X49ChQ3j00UdRU1MDX19f/OlPf0JBQcEkHS5rgmTQmMLTvr6+SEpKQkBAgN36UsgknEql0jnoYiqYsgf9/f204TwJUtrv39nZicbGRmRmZiIoKMiiY5uKsbExFBcXGy0zo8sGipBBU+32mOTPXDFXiqKwc+dO3HPPPSgsLHSWSp2YBIqi0N7ejqKiIhQVFeGXX37B/PnzkZ+fj/z8fERHR5tMBokFWW9vr9U1/ixpn9GH/v5+VFZWTouagakwJSZJJBI6HpG+cxJn7TEYZA/yNzIygvXr1yMoKAi7d+92CNHrrVu3Ytu2bfDz84O7uzsWLlyIl156ySoVQ1vCSQD14IYbbkBJSQn27t2Lzs5O7Nq1C3v27IFMJsPatWuRn5+PK664wiaim6T0GRUVBbVaTQsZEx9fa6vIM2GPSThtw3lmqaevrw+tra3Izs6Gv7+/1Y891bqKi4sRFhZmVp8nKe2T4RjSDxkSEjKlEwkptw8ODiIvL8/soLZ7927ccccd+Pbbb7F27Vqz3sOJPw4oikJ3dzdNBk+fPo3s7GyaDBozcU9kikZGRpCTk2NTORrmb0wgEMDd3V1Da9CY36whX19Hg0gkQnFxMSIiIpCcnGxSTCJe8Hw+n241MvWzMgX2IH8ikQgFBQXw9PTEDz/84DBSUPv374dIJEJqaip6e3vx7LPPoru7G1VVVdOuz2kITgKoBwcPHkRubq5GBoqpw7V7926Mjo5i1apVyM/Px/Lly60S+HTZJBlrSWcppFIpiouL4ePjY7dJOGapZ2hoCCwWC9HR0YiJibGrWKxYLMb58+fNCrS6wHQi6e/vBwC6R0f7O7MW+fvxxx+xadMmfPHFF9iwYYNF6zcW7777LrZt24a+vj5kZmbi7bff1tt8vX37dmzatEnjMS6XC6lUao+lOjEFiJ7pnj17UFhYiBMnTmDOnDm0fJau34VCoaCrBfbSzSNQqVQ0GeTz+UYNoJni6zvdGB0dRXFxMWJiYvQO0hgLpoYeEekm9xBrVJfsQf7EYjGuvvpqsFgs7Nu3z2GkjnRBKBQiLi4Or7/+Om677bbpXo5eOAmgmVCr1Th37hxNBvl8Pq666ioUFBRgxYoVJl+cpEenq6sLWVlZerNfTBkFHo9HNwCHhYVZZCk0nZNwzPJRbGwshoeHadV3W8rLEJBddlRUlE0awQmBJ2SQOUQSFBSElpYWDAwMWET+Dhw4gJtvvhmfffYZ/vKXv1h1/frw7bff4pZbbsEHH3yA+fPn44033sDOnTtRX1+vM7Oyfft23H///aivr6cfY7FYdrdQdGJqMLVUCwsLceTIEaSkpNCKCbNmzUJLSwvOnDmDtLQ0ZGRkTOskqlqt1nAhYbFYdOwgk8+W+PraG8PDwygpKUF8fDwSEhKs+t5EpJt8Vkz7T2P6s7VhD/InkUjwl7/8BVKpFAcOHHDorBrB3LlzsXz5crz00kvTvRS9cBJAK4DocO3atQtFRUXo6urC8uXLUVBQgFWrVk2Zbler1XQGyBTfSdIATDKDpLfOVEu66ZyEY04a5+bm0llUW8vLEFhzl20MmEMkpATOZrMRFxeHqKgos0oaR48exXXXXYcPPvgAN954o92+v/nz52Pu3Ll45513AIxfxzExMbj33nvx2GOPTXr+9u3b8cADD0AoFNplfU5YB9paqj///DPCwsLA5/NxxRVX4Msvv3QoIWKm7y6Px4NarYarqyuUSiVyc3MdnjwQ3dPExESb95Dpsv801J+tDXuQP5lMhuuvvx5DQ0M4ePCgQ3tIE4hEIsTGxmLr1q247777pns5euEkgFYG6YchZLCpqYnW4VqzZs0kHS7yA5LJZMjOzraooZUQCx6PR0+DETKor1dxcHCQDjb2noQjLhdE7kTfuZPdPbOcSgJUUFCQ2eWLkZERlJSUIC4uzuq77KlAURTq6+vR39+PqKgoCIVCs4ZITp48iWuuuQZvvfUWNm7caDfyJ5fL4enpiV27dmmIOd96660QCoX4/vvvJ71m+/bt+Nvf/kb3tubk5ODFF1/EnDlz7LJmJ6yDffv24S9/+QtiY2PR0dGBsLAwukxsSEt1OqBUKlFWVgaRSAQOhwOFQqEhPO1IxBUYlzYpLy9HSkqKSRI61oL25tTPz4/eeGtvTu1B/uRyOW6++WZ0d3fj8OHDDlu2f/jhh7Fu3TrExcWhp6cHzzzzDMrKylBTU2PRNLyt4SSANgRTh6uoqAjV1dW4/PLLkZ+fj3Xr1kEul+ODDz5Afn4+MjMzrapjZIwlHRk2mY5JOOJsIpFI9Prb6gIpp5IgZW5AJyWWhIQExMfHW3AmpoOUvPv7+5GXl0cHVu0Gdy6XS5NBPz+/STfWs2fPYsOGDXj11Vdx55132jVz29PTg6ioKJw5cwYLFy6kH/+///s/nDhxAufOnZv0mrNnz6KxsREZGRkYHh7Ga6+9hpMnT6K6unpabnZOmI7R0VEkJyfjxRdfxF//+tdJWqr+/v5Yv3498vPzNbRUpwPaagaurq6TKiakFcMR9PP4fD49mWwLyTFTYUjhwMPDAxUVFTYlfwqFAps2bUJTUxOOHj3q0Jp61113HU6ePImBgQGEhIRg8eLFeOGFF5CYmDjdSzMIJwG0E4ijBrFrIv6Y8fHx2LNnD2JiYmx2A9dlSefu7g6BQDAtOnvWMjE3VV6GQCgUorS01C4lFl1rJuSPWfLWhraoNjA+RKJSqTBjxgzU1tYiPz8fzz//PO655x67C9iaQwC1oVAoMGvWLFx//fV4/vnnbblcJ6yIoaEhBAQETHqcaKkWFhbihx9+gLu7Oy2sv2jRIrtm24xRMyD6eaZUTGwFshlPS0tzyJ5Y7c0pMC50PGfOHAQFBVk9/iiVStxxxx2oqKjA8ePHHX5a+2KFkwBOA0pKSrBixQqkpqZCpVLh/PnzmD9/Pr1zNkeHy1jI5XLU1tbSpMLLywuhoaEICwszW1PLFCgUCpSVldnExNyQvAzJeg4NDaG0tBTJycmIiYmx2rGNAUVRaGxsRF9fH/Ly8oyeGmcOkTz11FM4ePAg1Go1rrnmGrz99tt210oEzCsB68I111wDFxcXfP311zZaqRPTAblcjiNHjqCwsBDff/89WCwW1q5diw0bNuCyyy6zabZNIpGgpKTEJDUDiURCx47h4WGDpU9ro6enB3V1dRaLZ9sDZPMulUrh6+uLgYEB2vEpJCQEgYGBFmd9VSoV7r77bpw7dw4nTpxwiGzo7xVOAjgNWLduHS699FI88sgjAKBTh6ugoAD5+fmIj4+3GikjBISItXp4eBhtSWcNyOVylJSU2MXEXNtJwMfHB97e3ujr6zPZosoaMJf8aaO8vBwrV67E3LlzIRQKUV5eji1btuDll1+28oqnxvz58zFv3jy8/fbbAMZ7NWNjY3HPPffoHALRhkqlwpw5c7B69Wq8/vrrtl6uE9MEpVKJEydOYOfOnfj+++8hl8uxZs0aFBQUYOnSpVbNthEtz+DgYLPVDGQymYY0FRFTJsLT1kRXVxcaGhqmRfTeVOjq+dN2fCItOSEhIQgODjaZ6KvVatx33304efIkjh07ZvdN+h8NTgI4DVAqlTozX0SHa/fu3SgqKqJ1uAgZtESfbqpJY12WdCQz6OfnZzEZlMlkKC4uhpeXF9LT0+3aKC6Xy9HW1ob29nawWCx4enraRV6GgJT/e3p6kJeXZ/ZNpKamBqtWrcLf//53PPPMM2CxWOjo6MDw8DDS09OtvOqp8e233+LWW2/Fhx9+iHnz5uGNN97Ad999h7q6OoSFheGWW25BVFQULYPw3HPPYcGCBUhKSoJQKMS2bduwZ88eFBcXY/bs2XZfvxP2h0qlwqlTp1BYWKihpVpQUIDly5dblG2zhZoBEVMm4u6kYmKO04822tvb0dLSgqysLJ0ldUcCk/zpa9shLTnk8xKLxRotOVMRfbVajYcffhgHDhzA8ePH7d6b/UeEkwA6KCiKwsDAAL7//nsNHS4ybWfK7tZUX1+mJR0RDWVKsJhK3oiPpb+/P2bPnm33KUGBQICKigrMmjULISEhGnphrq6uGoKottAAbG5uRnd3t0Xkr76+HqtWrcJf//pXvPDCCw5jWv/OO+/QQtBZWVl46623MH/+fADAkiVLEB8fj+3btwMAHnzwQRQVFaGvrw8BAQHIzc3FP//5T2RnZ0/jGTgxXVCr1fjll19oMsjn87FixQrk5+ebrKVKpmdtqWagLU3l5uZGb5JNddZobW1FW1sbcnJyHF7WxBjypwtjY2N0nB0eHqb9nENCQibFQbVajccffxx79uzBsWPHkJSUZItTcUILTgJ4EYD0gP3www8oLCzEwYMHERcXR5NBQxk1S319iWgoIYOmWtKRkkxoaChSU1PtTlz4fD4qKiowZ84chIeHa/xNrVbTgxZMtw4iiGopUbUW+WtubsbKlStx3XXXYdu2bQ4ls+GEE9aAWq1GcXExPSTX1dWFK6+8Evn5+Vi9erXBTD2Px0N1dTVmzpxpNzUDlUqlsZFkbpINbSSZgv8XgyahueRPGzKZTMOWjlRhRkdHkZ6ejueeew5fffUVjh07htTUVCufhRP64CSAFyFGRkawb98+FBYW4sCBAwgLC6MV+nNycmiCIJVKUV5ebjVfX1Mt6UZHR1FSUoLIyEgkJSXZnfyZMllnLXkZJpiB3lzbora2NqxatQrr16/Hm2++6SR/TvzuoVarUVlZSctnNTc3Y9myZVi/fj3Wrl2rIQTf2dmJxsbGafX1ZW4kySaZkEHmJpkoAPB4POTm5trV6tIcqFQqVFRUQKFQWET+tEEyqZ2dnVi3bh1UKhUoisI777yDW265xeG0GX/PcBLAixxisRj79+9HYWEhfvrpJ1qHKy8vD88//zyeffZZ5OfnW504TGVJR6zlbGFlZAz6+vpQXV1tlsyNufIyTDQ3N6OzsxN5eXlmk7+uri6sWLECK1aswHvvveckf0784UCcgojlJtFSLSgoQFVVFRoaGrBjxw6HEQjWt0kOCQmBQCDA4OCgQfknR4GtyB8TFEXhpZdewptvvomVK1fi1KlTkMvl+P7777F48WKrH8+JyXASwN8RJBIJDh48iE8//ZTW4brxxhtx9dVX21SHi1jSETI4NjYGiqIQHh6OmTNn2l1gtbe3F7W1tVaTVSDyMnw+HyMjI7S8TEhIiM6m9ZaWFnR0dFhE/np7e7Fy5Upceuml+Pjjj+0mqPvuu+/SPX2ZmZl4++23MW/ePL3P37lzJ5566im0tbUhOTkZr7zyClavXm2XtTrxxwIZptq5cyfefvttuu/01ltvxfr16xEWFuYwvbHAhU0yj8dDV1cXVCoVgoKCEBERgZCQEIfNdKnVapSXl9uc/L311lvYtm0bDh06hNzcXKjVapw7dw6zZ8+elr5IU2Pf7wEOlVJ44YUXsGjRInh6esLf39+o1xD7K+a/lStX2nahDgoPDw9ERUXh9OnTeOyxx7Bz505QFIWbb74ZSUlJuPfee3HkyBEoFAqrHpfFYsHHxweJiYlISUmhdaHEYjFOnDiB4uJidHV1QSaTWfW4utDT04Pa2lpkZmZaTVPLy8sLCQkJmDdvHhYvXkz7oJ4+fRrnzp1Da2srRCIRgPHm7o6ODovKvjweD2vWrMH8+fPtSv6+/fZbPPTQQ3jmmWdQUlKCzMxMrFixgu6P1MaZM2dw/fXX47bbbkNpaSkKCgrozIwTTlgbLBYLM2bMQHNzM7hcLo4ePYqbbroJO3fuREpKClasWIF3330XXV1dcIS8BomLUqkUXC4Xubm58PPzQ1tbG44fP47S0lJ0d3dDLpdP91Jp2Iv8vf/++3jllVewf/9+5ObmAgDYbDYWLlw4LeTP1Nj3e4FDZQCfeeYZ+Pv7o6urC5988olRpvEbN24Ej8fDZ599Rj/G5XIdfqzeVqiqqsKJEyfw97//nX5MoVDg5MmT2LlzJ/bs2QOFQoG1a9ciPz/fqjpcpOeOOXBBBFZ5PJ5eSzprgWhqZWVl2aUkJJfL6anAgYEBcDgcqFQqzJ49G+Hh4WZlIwQCAVavXo05c+bgyy+/tGuWYP78+Zg7dy7eeecdAOM3g5iYGNx77706df2uvfZaiMVi/Pjjj/RjCxYsQFZWFj744AO7rduJPw4oisILL7yATZs2ISoqin6MaKkWFhbizJkzyMnJQX5+vtW1VE0BKaPKZDLk5ORotI5oi9YHBATQVQVrx0VjQcifXC5HTk6OzcjfJ598gqeeego//fQTLrnkEqsfwxyYGvt+L3AoAkiwfft2PPDAA0YTQKFQiD179th8Xb8HEB2uXbt2Yc+ePVbT4TJGzV6XJR0hg5b2xJBm8Ozs7Gkh/y0tLWhra4O/vz+Gh4fh4uJCD8gYK50zODiItWvXIiEhAd99951dS+fmOHvExsbioYcewgMPPEA/9swzz2DPnj0oLy+3w6p/X3jhhRewb98+lJWVwc3NTWf86+jowObNm3Hs2DF4e3vj1ltvxUsvveSw5UR7g6Io9PX1Yc+ePSgsLMSJEyeQnp5OKybYaxjNFLtLIlrP4/E05FLCwsJs7kJCYC/y9/nnn+P//u//sHfvXixZssTqxzAH1nI1uhjxu4gaxCswICAAV1xxBf75z386vKr6dIHD4eDyyy/H5ZdfjjfffBO//PILdu3ahccffxx/+9vfsGLFChQUFGDFihVGT6kR8jWVmr27uztiYmIQExNDC6zyeDw0NTVZZEnX0dGB5uZm5OTkGN06YE0Qkem8vDz4+vpqTAVWVlbS0jlkKlBXSXd4eBgFBQWIiorCN998Y/e+SYFAAJVKNWlaOiwsDHV1dTpf09fXp/P5fX19Nlvn7xlyuRzXXHMNFi5ciE8++WTS31UqFdasWYPw8HCcOXMGvb29uOWWW+Dq6ooXX3xxGlbseGCxWIiIiMDmzZtx11130Vqqu3btwosvvojU1FTan9hcp5CpoFQqUVpaCgC0Y4YhuLu7IzY2FrGxsbRcSn9/P5qamuDt7a0hPG0L2Iv8ffPNN3j44YexZ88ehyF/gHmx7/eCi54Arly5En/605+QkJCA5uZmPPHEE1i1ahXOnj1rt96pixVsNhuLFi3CokWL8Nprr6G4uBi7du3Cc889hzvvvBPLly9HQUEBVq1aBV9fX53v0dbWhtbWVpPJl5ubG6KiohAVFaVhNN7W1maSJR3z+NPRO9Le3o7W1lbk5ubSnxGbzUZwcDCCg4M15GXq6up0ysuMjo5iw4YNCAwMRGFhod2N6J1wDDz77LMAQAtna+PgwYOoqanB4cOHERYWhqysLDz//PN49NFHsXXrVpM1Pn/vYLFYCA4Oxm233Ya//vWvEAqF2Lt3L4qKivCvf/2L1lLdsGGD0Z7BU0GhUKC0tJSW3jL1HsTlchEdHY3o6GgoFAqaDLa2tsLDw8PqDkb2IH8AUFhYiPvvvx/fffcdli9fbpNjOGE6bE4AH3vsMbzyyisGn1NbW4uZM2ea9f7XXXcd/f/T09ORkZGBxMREHD9+HMuWLTPrPf+IYLPZmDt3LubOnYuXXnoJFRUVKCwsxGuvvYbNmzdj2bJlyM/Px5o1a+Dv7w+KonDq1Cmo1WoN8mMOXF1dERERgYiICKhUKtqf+Pz58wYt6VpbW9He3m7x8c1FR0cHWlpaDB6fxWIhICAAAQEBSElJgUgkAo/HQ2trKx599FF0dHRAIBAgIiICu3fvnrb+n+DgYHA4HPB4PI3HeTzeJAFtgvDwcJOe74RlOHv2LNLT0zUyFStWrMDmzZtRXV3tdFQxAPI7vPXWW3HrrbdiZGQEP/74I4qKirB8+XKEhYXRZWKmlqopIF7n7u7uyMjIsJhQurq6IjIyEpGRkRpWnVPFRWNhL/K3d+9ebN68GV9//bVDKgSYE/t+L7A5AdyyZQs2btxo8DkzZsyw2vFmzJiB4OBgNDU1OQmgmWCz2cjKykJWVhaee+45Wofrvffewz333IPLL78co6Oj6Orqwm+//WZV8sXhcBAWFoawsDDakq6/vx+lpaVgs9n0DnhoaGha1fSZZWdjz59MBfr4+CApKQlubm646aabMDg4iPb2dqxevRq33XYbbrnlFhuvfjLc3NyQm5uLI0eO0H0warUaR44cwT333KPzNQsXLsSRI0c0egAPHTqEhQsX2mHFfzzoK7mTvzlhPHx9fXHDDTfghhtu0NBSXbt2LQICAugy8bx584zK4hGvc29vb6tlE5lwcXHRGRfLysrAYrE0XEiMOba9yN9PP/2E2267Df/973+xfv16mxzDUpgT+34vsLkMTEhICGbOnGnwnzVLF11dXRgYGEBERITG4+ZIzFAUhaeffhoRERHw8PDA8uXL0djYaLW1XgxgsViYPXs2nn76aZSWlqKiogJCoRClpaXo6+vDDTfcgI8++gh9fX1Wl17gcDgICQnBnDlzcPnllyMtLQ0URaGsrAytra0ICAiATCaDWq226nGnQmdnJ03+zC07S6VSPPfcc4iMjER3dzfa29tx7bXX0nIy04GHHnoIH3/8MXbs2IHa2lps3rwZYrEYmzZtAgDccsstePzxx+nn33///Thw4AD+9a9/oa6uDlu3bsX58+d/90HTFDz22GOTZKq0//3e+4wcHV5eXvjzn/+Mr7/+GjweD2+99RaGh4dxzTXXYObMmdiyZQtOnjwJpVKp8/USiYTeCBuy5bQWmHHxsssuQ1paGoBxBYiTJ0+iuroafD5fb1y0F/k7dOgQNm7ciP/85z+4+uqrbXIMa2Gq2Pd7hUP1AHZ0dGBwcBAdHR30FBUAJCUl0Q2wM2fOxEsvvYQNGzZAJBLh2WefxdVXX43w8HA0Nzfj//7v/5CUlIQVK1ZovPdUDda68Oqrr+Ktt97Cjh07kJCQgKeeegorVqxATU3NtJXqphMsFgtvvvkmRkdH0dTUBKVSicLCQnz33Xd45JFHsGDBAqxfvx75+fmIioqyaoM1m81GYGAgLbcye/ZsjIyMoLa2Fkql0qAlnTXR2dmJpqYmZGdnm03+ZDIZbrrpJgiFQhw8eBC+vr7w9fXF3XffbeXVmoZrr70WfD4fTz/9NC2yS6wGgfHfJ/PmtmjRInz11Vd48skn8cQTTyA5ORl79uyhb0hOWLcCEh4ejl9//VXjMVK2+r2XquwFDw8PWj5GLpfj8OHDKCwsxE033QQOh4O1a9diw4YNuPTSS+Hq6or6+np0dHQgOjoaM2fOtLvcDJvNRlBQEIKCgjBz5kwMDw+Dx+Np9BuHhYUhKCgILi4udiN/x48fx4033oj33ntPo03LUTFV7Pu9wqFkYDZu3IgdO3ZMevzYsWP01BCLxcJnn32GjRs3QiKRoKCgAKWlpRAKhYiMjMRVV12F559/Xu8XZ6zEDEVRiIyMxJYtW/Dwww8DGJ/UDAsLw/bt2y+Ki9oWKCkpQXR0tIa9GkVR6OrqQlFREYqKimgdroKCAuTn5yMuLs7iwKjPR3MqSzprymN0dXXRUjPmThsrFArccsstaG9vx5EjR5zT6k5Mgr4YtX//fqxduxa9vb307++jjz7CI488gv7+fufwkA2hUChw4sQJWj5LoVBg0aJFOHHiBO6991488cQTDudCQuwseTwepFIpAgMDIZVKwWKxkJubazPyd+rUKVx99dX497//jdtuu82hPhcnNOFQBNAeMJYAtrS0IDExEaWlpcjKyqIfv/zyy5GVlYU333zTtgu9SEF0uHbv3o2ioiJah4uQQXN0uCiKQl1dHQQCgUEfTW1LOuLhGxYWhpCQEIsCHhGZtkRqRqlU4q9//Svq6upw7NgxqzmVOPH7AKmA7N27F9u2bcP//vc/ABcqICqVCllZWYiMjMSrr76Kvr4+3Hzzzfjb3/7mlIGxI1QqFT777DPcd9994HA4YLPZWLNmDQoKCrBs2TK7afeZgpGREVRWVkIqlYKiKNrbPDQ01KotWOfOnUNBQQFefPFF3H333U7y5+BwEkA9OHPmDC655BL09PRo9BP+5S9/AYvFwrfffmvjlV78oChKQ4fr6NGjSE1NpUssxuhwETN4YqJuSnAlavs8Hg8ikQgBAQE0GTQlW9Ld3Y36+nqLRKZVKhXuvPNOlJWV4ejRo86SnROTYEwFpL29HZs3b8bx48fh5eWFW2+9FS+//LJTCNqO6OrqQmZmJrZs2YJHH30Uv/zyCwoLC7F7924IBAKsXLkS+fn5Jmmp2hLaZV+FQkG7kFjTnam4uBjr16/H1q1bcd999znJ30WAi5oAmiMx4ySA0wOih7d3714UFhbi0KFDiI+Pp6UXdE3OURSFmpoaDA0NIS8vz6LgZK4lnbXI37333ovTp0/j+PHjtIWVvTE4OIh7770XP/zwA9hsNq6++mq8+eabBgVmlyxZghMnTmg8dueddzqt3v4AiI+PR3t7u8ZjL7300u/aGssYUBSFkydP4vLLL9d4XK1W01qqu3fvRnd3N6688krk5+cb1FK1Jabq+SPuTP39/RgaGoKPjw8tL2OKO1N5eTnWrFmDxx57DI888oiT/F0kuKgJIJ/Px8DAgMHnzJgxQyPF7SwBOwaIDldhYSEOHDiAiIgIrF+/Hhs2bEB2djZUKhW++uorJCUlITc316pDN7qCni5LOmJvZ4m3sFqtxoMPPogjR47g2LFjiIuLs9ZpmIxVq1aht7cXH374IRQKBTZt2oS5c+fiq6++0vuaJUuWICUlBc899xz9mKen57TczJywL+Lj43Hbbbfh9ttvpx/z8fFxiKyWo0OtVqOiogK7du1CUVERWlpasHz5cqxfv57WUrU1STJ14IO4MxFvc+LORFxI9K23uroaq1atwgMPPIB//OMfTvJ3EeGiJoDmwNQhkIcffhhbtmwBME5aQkND/9BDILaASCSidbh++uknBAQEgMViQS6X4/z58za1d2Na0g0ODtJBj8ViobW1FdnZ2RaRv0cffRQ//PADjh8/blW9S1NRW1uL2bNn47fffkNeXh4A4MCBA1i9ejW6uroQGRmp83VLlixBVlYW3njjDTuu1glHQHx8PB544AENnUcnTAepZJDMYE1NDZYsWYKCggKsXbsWQUFBVidNlk77Mt2ZBAIB3N3daTLo6+tLr7eurg6rVq3CHXfcgeeee85J/i4y2FwH0FHQ0dGBsrIyDYmZsrIyDd21mTNnYvfu3QDGp40feOAB/POf/8TevXtRWVmJW265BZGRkRqG0cB4ae3GG2+Er68v/P39cdttt02p57ZkyZJJemB33XWX1c/7YoC3tzeuueYafPPNN+jq6kJUVBSEQiFEIhHmzp2LLVu24H//+59eHS5LQCzpcnJycPnllyM+Ph4CgQDNzc1wdXXFwMAARkZGTNY4VKvVePLJJ7Fnzx4cOXJkWskfMO4i4e/vT5M/AFi+fDnYbDbOnTtn8LVffvklgoODkZaWhscffxxjY2O2Xq4TDoKXX34ZQUFByM7OxrZt22zyG/y9g8ViYc6cOXjmmWdQWlqKqqoqLFmyBJ999hkSExOxdu1afPzxx1bTUrWG1AtxZ8rMzMSSJUuQnJwMqVSKkpISHD58GLfffjs++eQTrFmzBhs3bsSzzz7rJH8XIf4wncNPP/20RoM1sU1iNljX19djeHiYfs7//d//QSwW44477oBQKMTixYtx4MCBSeXIG2+8Eb29vTh06BBdWrvjjjsMltYA4Pbbb59UWvuj45lnnoFUKkVzczO8vLxw5MgRFBUV4cYbbwSHw8G6detQUFBA63BZE+T9xGIxMjMzQVEU+vv7TbZeoigKzz//PL755hscP34cycnJVl2nOejr69OQ7gHG3QUCAwMNukjccMMNiIuLQ2RkJCoqKvDoo4+ivr4eRUVFtl6yE9OM++67Dzk5OQgMDMSZM2fw+OOPo7e3F6+//vp0L+2iBYvFQkpKCp544gk8/vjjaGtrQ2FhIb799lts2bIFCxcuRH5+PtavX2+WlqotdP44HA6d/VOr1airqwOfz8f9998Pd3d3DA0N4fDhw1i6dKnNpGWcsA3+cCVga8NZWrMuent74e7uPmngQpcO17p165Cfn48lS5ZYRQOtr68PNTU1yMzM1NDnY1ov9ff305Z0YWFh8Pf31xheoSgKL7/8Mj744AMcO3bM5qLIxg5CFRUVYceOHaivr9f4W2hoKJ599lls3rzZqOMdPXoUy5YtQ1NTExITE81etxPTA0u82T/99FPceeedEIlETs1BK0OXlmpubi6tmGCMlqq9RJ47OjqwYsUKrFq1Cn/5y19oya8jR47ovG6mA84BJuPgJIAW4tNPP8WWLVswNDREP6ZUKuHu7o6dO3diw4YNOl+3ZMkSVFdXg6IohIeHY926dXjqqaecWUAjoFQqcerUKZoMikQirFmzBvn5+WbrcBHyl5GRgeDgYL3PU6vVGBoaoskgRVEICQkBn8/H/Pnz8f777+Pf//43jhw5ojE8ZCsYOwj1xRdfmHWdakMsFsPb2xsHDhyY5LbjhOPDnME5gurqaqSlpaGurg6pqam2WuIfHkwt1cLCQpw8eRIZGRk0GdSlpUqGTqRSqU1Fnnt6enDVVVdh2bJl+PDDD+nNr1qttrkFnilwDjAZhz9MCdhWcJbW7A8XFxcsWbIES5YswZtvvolffvkFu3btwqOPPoqBgQGsWLECBQUFuOqqq4z6wfN4PFRXVyMzM9Mg+QMmWy8JhULweDxs3rwZvb29AIB//vOfdrtBhoSEGCUovXDhQgiFQhQXFyM3NxfAeDZPrVZj/vz5Rh+P2DNqe207cXHA2OtFF8rKyujstxO2A4vFQkREBO6++25s3rwZAoGA1lJ94YUXaC3VgoICzJw5EzKZDLt27aIVE2xF/vr6+rB69Wpceuml+OCDDzQInyORPwIfHx+n3uoUcGYA9cBZWrv4oFarcf78eXrarqenB1deeSUKCgqwcuVKndIlhPylp6ebfWOkKAoffPABnnnmGWzYsAG//PILenp68MknnzjUtPiqVavA4/HwwQcf0L2qeXl5dK9qd3c3li1bhv/+97+YN28empub8dVXX2H16tUICgpCRUUFHnzwQURHR0/SBnTi94WzZ8/i3LlzWLp0KXx8fHD27Fk8+OCDWLVqlU6xaidsD4qiMDQ0hL1796KoqAiHDh1CXFwcJBIJXF1dce7cOZu5kPT392P16tXIysrCf//7X4cXHo+Pj4dUKoVCoUBsbCxuuOEGPPjggw6/bnvDSQD1wFlau7hB+mEKCws1dLjy8/OxZs0a+Pn5Ye/eveBwOJg/f75F5G/79u14/PHH8eOPP+Kyyy4DRVGoqqpCQEAAoqOjrXxm5mNwcBD33HOPhhD0W2+9RQtBt7W1ISEhgR6M6uzsxE033YSqqiqIxWLExMRgw4YNePLJJ506gL9zlJSU4O6770ZdXR1kMhkSEhJw880346GHHnL2/zkI+Hw+Vq5ciebmZsjlckRGRtKZwezsbKtl5QYGBrBmzRqkpKTg66+/vigGPV5//fVJA0ybNm1yDjBpwUkALQQZAjl//jxdWjt48CBWrlxpcAhEG6dPn8bixYtRXl6OjIwMWy75DwemDldRURHd5F5bW4v33nsPN9xwg1kSBhRF4csvv8SWLVuwd+9eLF261Aard8IJJ5yYjM2bN+PXX3/F4cOH4erqqqGlGhgYiPXr16OgoABz584Fh8Mx6xhDQ0NYt24dYmJisHPnTqv6BpsK5wCTDUA5YTFWrlxJZWdnU+fOnaNOnTpFJScnU9dffz39966uLio1NZU6d+4cRVEU1dTURD333HPU+fPnqdbWVur777+nZsyYQV122WXUO++8Q8XFxVFcLpeaN28e/Rp9+O6776jU1FSKy+VSaWlp1L59+2x6rhc71Go19d5771Gurq5UfHw85eLiQi1dupR64403qJaWFkokElFisXjKfyKRiPrss88oLy8v6sCBA9N9Wk44cdHD1Nj3R0dzczM1ODg46XGxWEzt3r2buummmyh/f38qKiqK2rx5M3XgwAFqeHjYqPgmFoup3t5eau7cudTKlSspqVQ6DWeoif7+fqq2ttbgP5lMpvO1VVVVFACqrq7Ozqt2bDgJoBUwMDBAXX/99ZS3tzfl6+tLbdq0iRodHaX/3traSgGgjh07RlEURXV0dFCXXXYZFRgYSHG5XCopKYl65JFHqE8//ZRyc3OjPv30U6q6upq6/fbbKX9/f4rH4+k87unTpykOh0O9+uqrVE1NDfXkk09Srq6uVGVlpT1O+6JEfX095enpSRUWFlJqtZpqbm6mXn31VWrBggWUi4sLdemll1Lbtm2jGhoaDJLBL774gvLy8qJ++OGH6T4lJ5y46PHNN9+YFPucMA4SiYT68ccfqU2bNlFBQUFUWFgYddttt1E//vgjJRQK9cY3Ho9HLVy4kFq2bBk1NjY23adhMb744guKzWbrJMx/ZDhLwA6E+fPnY+7cuXjnnXcAjPexxcTE4N5779WpX3TttddCLBbjxx9/pB9bsGABsrKy8MEHH9ht3RcbampqMHv2bI3HKIpCZ2cnioqKsHv3bg0droKCAsTGxtJl4h9//BGbNm3CF198YXSPpxNOOKEfpsY+J0yHQqHA8ePHsWvXLnz//fdQKpVYu3YtCgoKsGTJErq8KxaLcfXVV4PFYuGnn3666KRTnANMJmCaCagTE5DJZBSHw6F2796t8fgtt9xCrV+/XudrYmJiqH//+98ajz399NNURkaGjVb5x4Baraa6u7upd955h7riiisoFxcXKicnh3ruueeod999l/Ly8qK+/fbb6V4m9c9//pNauHAh5eHhQfn5+Rn1GrVaTT311FNUeHg45e7uTi1btoxqaGiw7UKdcMIAzIl9TlgGhUJBHTt2jPr73/9ORUVFUX5+ftQNN9xAff7559SSJUuoSy65hBoZGZnuZZqF4uJiav78+ZSfnx/l7u5OzZo1i3rxxRcdooztaHDORDsIBAIBVCoVwsLCNB4PCwtDXV2dztf09fXpfL4h/UEnpgaLxUJkZCT+/ve/4+6774ZAIMCePXvw7bff4siRI3j99ddxzTXXTPcyIZfLcc0112DhwoX45JNPjHrNq6++irfeegs7duxAQkICnnrqKaxYsQI1NTWTLA6dcMIeMCf2OWEZtLVUz549i8LCQtx7773gcDhobm6Gj4/PdC/TLOTk5OCXX36Z7mVcFHASQCecMAAWi4WQkBDcfvvt+Nvf/oa2tjbEx8c7hPH5s88+CwDYvn27Uc+nKApvvPEGnnzySeTn5wMA/vvf/yIsLAx79uxxKM1CJ5xwwj7gcDhYvHgxFi9ejJdffhl8Ph9+fn7TvSwn7ADHk+/+gyI4OBgcDgc8Hk/jcR6Pp1fNPDw83KTnO2EZWCwWEhISHIL8mYPW1lb09fVh+fLl9GN+fn6YP38+zp49O40rc+KPDHNinxO2AZfLdSjtUidsCycBdBC4ubkhNzcXR44coR9Tq9U4cuQIFi5cqPM1Cxcu1Hg+ABw6dEjv8534Y4O0BjjbBpxwJJgT+5xwwgnL4SSADoSHHnoIH3/8MXbs2IHa2lps3rwZYrEYmzZtAgDccsstePzxx+nn33///Thw4AD+9a9/oa6uDlu3bsX58+dxzz336D3Gu+++i/j4eLi7u2P+/Pn49ddf9T53+/btYLFYGv+cfWK2xWOPPTbpM9f+5+yLcuL3hqlinxNOOGF9OHsAHQjXXnst+Hw+nn76afT19SErKwsHDhygMzYdHR0a9j6LFi3CV199hSeffBJPPPEEkpOTsWfPHqSlpel8/2+//RYPPfQQPvjgA8yfPx9vvPEGVqxYgfr6er0G776+vho+xxdr+fNiwZYtW7Bx40aDz5kxY4ZZ703KaTweDxEREfTjPB4PWVlZZr2nE05YA1PFPieccML6cOoA/oFgqtbW9u3b8cADD0AoFNp5pU6YAmO/J4qiEBkZiYcffhhbtmwBAIyMjCA0NBTbt293DoE44YQTTvyB4CwB/0Egl8tRXFysMQDAZrOxfPlygwMAIpEIcXFxiImJQX5+Pqqrq+2xXCeMQEdHB8rKytDR0QGVSoWysjKUlZVBJBLRz5k58//bu9uQKu8/juMfsRAlutlSVKg45bQbPHkSkiNGdjc9SKsFPYiVRXcU2wNdJTmaldmDojIabQ3aZm2DEFxjVDhv6NCdBVJSVIumNrE6BJXakYUs/D8QD7ksj/ufujzn937BeXB1XV18z3ni5/r9ftf3N1knT56U1DN6m5eXp5KSEv3222+6ceOGcnNzFR8fr8WLF1v0LQDr7dix45WlFv3tKQuEEqaADfFfem0lJSXp+++/l91uV3t7u/bt26f09HTdvHmTN8WGgKKioj6d7R0OhyTp7NmzyszMlCTduXNH7e3tvmsKCgrU2dmp9evXq62tTRkZGaqsrGRtJ4w3bdo01dTU+I6HDePPI0IbI4B4LafTqdzcXKWkpGj27Nn65ZdfFB0drW+//dbq0qCeqd/unv28+3x6w5/UM+378prCsLAwFRcXy+Px6Pnz56qpqVFiYuK7Lx4YYoYNG6bY2FjfZ+zYsVaXFNJ2796t9PR0RUVFafTo0f1e09LSopycHEVFRSkmJkZbtmzRP//8824LDWEEQEMEotfW8OHD5XA49Oeff76NEgHAMnfv3lV8fLwmTpyoTz75RC0tLVaXFNJ6dzLauHFjv+dfvHihnJwcdXV16dKlSzp27JjKyspUVFT0jisNXQRAQwSi19aLFy9048aNPm+QAkCwS0tLU1lZmSorK/XNN9+oublZs2bN0rNnz6wuLWTt3LlT+fn5Sk5O7vd8VVWVbt26pZ9++kkpKSlyuVzatWuXDh8+rK6urndcbWgiABpksH0Gi4uLVVVVpaamJl29elXLly/XX3/9pbVr1/Z7/3PnzmnhwoWKj49XWFiYfv311wFrcrvdmjFjhiIiIpSQkOD3tmahxp/pkH9btWrVKwvXs7Oz326hQAhyuVxaunSp7Ha7srKydObMGbW1tam8vNzq0oxVV1en5OTkPuvWs7Ky1NHRwcuIAcIqV4MMts/g06dPtW7dOnk8Ho0ZM0apqam6dOmSpk6d2u/9Ozs7NX36dK1evVpLliwZsJ7m5mbl5ORow4YN+vnnn1VbW6u1a9cqLi5OWVlZgfnSQaJ3OsTpdOq7777z+/9lZ2frhx9+8B1HRES8jfIAo4wePVqJiYksd7GQx+Pp96XF3nP4/xEADfPZZ5+9dqcQt9vd57i0tFSlpaV+39vlcsnlcvl9/ZEjR2Sz2bR//35J0pQpU3ThwgWVlpYaFwB37twpSYMeAY2IiGC/VCDAvF6vGhsbtWLFCqtLCSpbt27Vnj173njN7du3abEzRBAAYZm6uro+fQmlniH+vLw8awoKQm63WzExMRozZozmzp2rkpISvf/++1aXBQSVzZs3a+HChZowYYIePHig7du3Kzw8XMuWLbO6tKASyJ2MYmNjX9mqtPclRh56A4MACMu8boi/o6NDf//9tyIjIy2qLDhkZ2dryZIlstlsamxs1BdffCGXy6W6ujqFh4dbXR4QNFpbW7Vs2TI9fvxY0dHRysjI0OXLlxUdHW11aUElOjo6YL+Z0+nU7t279ejRI99WpdXV1Ro5cuRrlyFhcAiAwFvytqdDXt66LTk5WXa7XZMmTZLb7da8efP+0z0BE504ccLqEozT0tKiJ0+e9NnJSJISEhI0YsQIffjhh5o6dapWrFihvXv3yuPxaNu2bfr0009Z6xwgvAUMy8TGxvbbl3DkyJEhMfq3adMm3b59+40ff6dD/DFx4kSNHTuWhetAkBioc0J3d7eKiooUFxenyMhIzZ8/X3fv3rWm2AArKiqSw+HQ9u3b5fV65XA45HA4VF9fL0kKDw/XqVOnFB4eLqfTqeXLlys3N1fFxcUWVx46GAGEZZxOp86cOdPn36qrq/3uSzjUBXI6xB+tra16/PgxfRqBIDFQ54S9e/fq0KFDOnbsmGw2m7788ktlZWXp1q1bQb99Y1lZ2YAvvU2YMOGVvxEIHEYAETBer1cNDQ2+ofzm5mY1NDT4OuoXFhYqNzfXd/2GDRvU1NSkgoIC/fHHH/r6669VXl6u/Pz8fu8/2D6Dbrf7lT55YWFhQ7KFQEtLi++36p0OaWhokNfr9V0zefJknTx5UlLPb71lyxZdvnxZ9+7dU21trRYtWqSEhATj3qAGgpXL5VJJSYk+/vjjV851d3fr4MGD2rZtmxYtWiS73a7jx4/rwYMHfvVYBQZCAETA1NfX+4bxpZ7G0w6Hw7d1z8OHD/tsr2Sz2XT69GlVV1dr+vTp2r9/v44ePfraANP7tHz48OFB1XXnzh09fPjQ9+ldUDyUDDQdIvV8j/b2dkk90yPXr1/XRx99pMTERK1Zs0apqak6f/4862OAENDc3CyPx9OnU8KoUaOUlpamuro6CytDqGAKGAGTmZmp7u7u157vb7g/MzNT165d8+v+g+0z2CsmJsbv3TWs4s90yMu/bWRkpH7//fe3XBUAq/TOVPTXKWEozmIg+DACiJCXkpKiuLg4LViwQBcvXrS6HAAALEcARMiKi4vTkSNHVFFRoYqKCo0bN06ZmZm6evWq1aUBwBv1Njvur1MCjZARCEwBI2QlJSUpKSnJd5yenq7GxkaVlpbqxx9/tLAyAHgzm82m2NhY1dbWKiUlRZLU0dGhK1euaOPGjdYWh5BAAIRRZs6cqQsXLlhdBgDI6/X26dvZ2znhvffe0/jx45WXl6eSkhJ98MEHvjYw8fHxWrx4sXVFI2QQAGGUhoYG+uQBGBLq6+s1Z84c3/Hnn38uSVq5cqXKyspUUFCgzs5OrV+/Xm1tbcrIyFBlZWXQ9wDE0BDW/abXNoEh5OWnZYfDoQMHDmjOnDm+p+XCwkLdv39fx48flyQdPHhQNptN06ZN0/Pnz3X06FF99dVXqqqqYqs0AIDRGAFE0BjoafnffQa7urq0adMm3b9/X1FRUbLb7aqpqelzDwAATMQIIAAAgGFoAwMAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACG+R8L1NzroCmJbAAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1921a3685ea1496ab3293f7188e4b276", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd8JHX9/5+zfTebTb3LpV+uN6635OicdBCRqjQVEZUmKoJKs/FVRKmCPxQRURFFRESkdzjg4NLrJbnk0nvZXmZ+f+zNspu6STblyOf5ePDgspnMzM7OvPf1eVdJURQFgUAgEAgEAsG8QTPbJyAQCAQCgUAgmFmEABQIBAKBQCCYZwgBKBAIBAKBQDDPEAJQIBAIBAKBYJ4hBKBAIBAIBALBPEMIQIFAIBAIBIJ5hhCAAoFAIBAIBPMMIQAFAoFAIBAI5hlCAAoEAoFAIBDMM4QAFAgEghjw+uuvI0kSr7/++myfikAgEIyLEIACgSDmlJWVce6557JkyRIsFgupqakcffTRPPvss8O2PfbYY5EkCUmS0Gg02Gw2Vq5cycUXX8xLL70U9TEvu+wyrFZrTM6/vLyc2267jQMHDgz73W9+8xseffTRmBxHIBAIZgvdbJ+AQCD49NHQ0MDg4CCXXnopGRkZOJ1OnnrqKc4880x++9vfcsUVV0Rsn5WVxR133AGAw+Fg//79/POf/+Txxx/nvPPO4/HHH0ev18/Y+ZeXl3P77bdz7LHHsnjx4ojf/eY3vyE1NZXLLrss4vWjjz4al8uFwWCYsfMUCASCySIEoEAgiDmnnnoqp556asRrV111FVu2bOFXv/rVMAGYkJDARRddFPHa//3f/3HNNdfwm9/8hsWLF/Pzn/982s97Kmg0Gkwm02yfhkAgEESFCAELBIIZQavVkp2dTV9fX9Tb33vvvaxZs4b777+f/v7+KZ9DQ0MD3/jGN1i5ciVms5mUlBTOPffciFDvo48+yrnnngvAcccdFwpPv/766yxevJiysjLeeOON0OvHHnssMHoO4Pvvv8+pp55KUlIScXFxrF+/nnvuuSdim8rKSs455xySk5MxmUxs3bqVf//731N+vwKBQDAawgMoEAimDYfDgcvlor+/n3//+988//zznH/++VH/vVar5cILL+Tmm2/m7bff5rTTTpvS+Xz44Ye8++67XHDBBWRlZXHgwAEefPBBjj32WMrLy7FYLBx99NFcc8013HvvvXz/+99n9erVAKxevZq7776bq6++GqvVyg9+8AMA0tLSRj3eSy+9xOmnn056ejrXXnstixYtoqKigv/85z9ce+21QDBfcteuXWRmZnLjjTcSFxfHk08+yVlnncVTTz3F5z73uSm9Z4FAIBgRRSAQCKaJr33tawqgAIpGo1HOOeccpaenJ2KbY445Rlm7du2o+3j66acVQLnnnnvGPNall16qxMXFjbmN0+kc9tp7772nAMpjjz0Weu3vf/+7AiivvfbasO3Xrl2rHHPMMcNef+211yL+xu/3K3l5eUpubq7S29sbsa0sy6F/n3DCCcoRRxyhuN3uiN8XFBQoy5cvH/P9CAQCwWQRIWCBQDBtXHfddbz00kv88Y9/5JRTTiEQCOD1eie0D7Wyd3BwcMrnYzabQ//2+Xx0d3ezbNkyEhMT+fjjj6e8/3D27dtHfX091113HYmJiRG/kyQJgJ6eHl599VXOO+88BgcH6erqoquri+7ubk466SRqampobm6O6XkJBAIBiBCwQCCYRlatWsWqVasAuOSSSzjxxBM544wzeP/990MiaDzsdjsA8fHxUz4fl8vFHXfcwR/+8Aeam5tRFCX0u1jkGIZTW1sLwLp160bdZv/+/SiKws0338zNN9884jYdHR1kZmbG9NwEAoFACECBQDBjnHPOOXzta1+jurqalStXRvU3paWlACxbtmzKx7/66qv5wx/+wHXXXUd+fj4JCQlIksQFF1yALMtT3v9EUY/5ne98h5NOOmnEbWLxvgUCgWAoQgAKBIIZw+VyAdF72wKBAH/5y1+wWCwceeSRUz7+P/7xDy699FLuuuuu0Gtut3tYZfJY3sloPZdLly4FggJ29+7dI26zZMkSAPR6/ajbCAQCwXQgcgAFAkHM6ejoGPaaz+fjsccew2w2s2bNmnH3EQgEuOaaa6ioqOCaa67BZrNN+by0Wm1E2BfgvvvuIxAIRLwWFxcHMGLLmri4uKha2WzevJm8vDzuvvvuYdur57Bw4UKOPfZYfvvb39La2jpsH52dneMeRyAQCCaD8AAKBIKY87WvfY2BgQGOPvpoMjMzaWtr489//jOVlZXcddddw0a29ff38/jjjwPgdDpDk0Bqa2u54IIL+PGPfxzVcX0+Hz/5yU+GvZ6cnMw3vvENTj/9dP70pz+RkJDAmjVreO+993j55ZdJSUmJ2H7jxo1otVp+/vOf09/fj9Fo5Pjjj2fhwoVs2bKFBx98kJ/85CcsW7aMhQsXcvzxxw87pkaj4cEHH+SMM85g48aNfOlLXyI9PZ3KykrKysp44YUXAHjggQc48sgjOeKII/jqV7/KkiVLaG9v57333qOpqYmioqKo3rtAIBBMiNktQhYIBJ9G/vrXvyq7d+9W0tLSFJ1OpyQlJSm7d+9WnnnmmWHbHnPMMaFWMYBitVqV5cuXKxdddJHy4osvRn3MSy+9NGI/4f8tXbpUURRF6e3tVb70pS8pqampitVqVU466SSlsrJSyc3NVS699NKI/T388MPKkiVLFK1WG9Hepa2tTTnttNOU+Ph4BQi1hBnaBkbl7bffVj7zmc8o8fHxSlxcnLJ+/Xrlvvvui9imtrZWueSSS5RFixYper1eyczMVE4//XTlH//4R9TvXyAQCCaCpChD4iECgUAgEAgEgk81IgdQIBAIBAKBYJ4hBKBAIBAIBALBPEMIQIFAIBAIBIJ5hhCAAoFAIBAIBPMMIQAFAoFAIBAI5hlCAAoEAoFAIBDMM4QAFAgEAoFAIJhnCAEoEAgEAoFAMM8QAlAgEAgEAoFgniEEoEAgEAgEAsE8QwhAgUAgEAgEgnmGEIACgUAgEAgE8wwhAAUCgUAgEAjmGUIACgQCgUAgEMwzhAAUCAQCgUAgmGcIASgQCAQCgUAwzxACUCAQCAQCgWCeIQSgQCAQCAQCwTxDCECBQCAQCASCeYYQgAKBQCAQCATzDCEABQKBQCAQCOYZQgAKBAKBQCAQzDOEABQIBAKBQCCYZwgBKBAIBAKBQDDPEAJQIBAIBAKBYJ4hBKBAIBAIBALBPEMIQIFAIBAIBIJ5hhCAAoFAIBAIBPMMIQAFAoFAIBAI5hlCAAoEAoFAIBDMM4QAFAgEAoFAIJhnCAEoEAgEAoFAMM8QAlAgEAgEAoFgniEEoEAgEAgEAsE8QwhAgUAgEAgEgnmGEIACgUAgEAgE8wwhAAUCgUAgEAjmGUIACgQCgUAgEMwzhAAUCAQCgUAgmGcIASgQCAQCgUAwzxACUCAQCAQCgWCeIQSgQCAQCAQCwTxDCECBQCAQCASCeYYQgAKBQCAQCATzDCEABQKBQCAQCOYZQgAKBAKBQCAQzDOEABQIBAKBQCCYZwgBKBAIBAKBQDDPEAJQIBAIBAKBYJ4hBKBAIBAIBALBPEMIQIFAIBAIBIJ5hhCAAoFAIBAIBPMMIQAFAoFAIBAI5hlCAAoEAoFAIBDMM4QAFAgEAoFAIJhnCAEoEAgEAoFAMM8QAlAgEAgEAoFgniEEoEAgEAgEAsE8QwhAgUAgEAgEgnmGEIACgUAgEAgE8wwhAAUCgUAgEAjmGUIACgQCgUAgEMwzhAAUCAQCgUAgmGcIASgQCAQCgUAwzxACUCAQCAQCgWCeIQSgQCAQCAQCwTxDCECBQCAQCASCeYYQgAKBQCAQCATzDCEABQKBQCAQCOYZQgAKBAKBQCAQzDOEABQIBAKBQCCYZwgBKBAIBAKBQDDPEAJQIBAIBAKBYJ4hBKBAIBAIBALBPEMIQIFAIBAIBIJ5hhCAAoFAIBAIBPMMIQAFAoFAIBAI5hlCAAoEAoFAIBDMM4QAFAgEAoFAIJhnCAEoEAgEAoFAMM8QAlAgEAgEAoFgniEEoEAgEAgEAsE8QwhAgUAgEAgEgnmGEIACgUAgEAgE8wwhAAUCgUAgEAjmGUIACgQCgUAgEMwzhAAUCAQCgUAgmGcIASgQCAQCgUAwzxACUCAQCAQCgWCeIQSgQCAQCAQCwTxDCECBQCAQCASCeYYQgAKBQCAQCATzDCEABQKBQCAQCOYZQgAKBAKBQCAQzDOEABQIBAKBQCCYZwgBKBAIBAKBQDDPEAJQIBAIBAKBYJ4hBKBAIBAIBALBPEMIQIFAIBAIBIJ5hhCAAoFAIBAIBPMMIQAFAoFAIBAI5hlCAAoEAoFAIBDMM4QAFAgEAoFAIJhnCAEoEAgEAoFAMM8QAlAgEAgEAoFgnqGb7RMQzC0URSEQCODxeJAkCb1ej1arRZIkJEma7dMTCASCKaEoCl6vF5/PF7Jvqo0TCOYTkqIoymyfhGBuoCgKfX19DAwMIEkSfr+fzs5OVq5ciVarjTCWGo1wHgsEgsMHRVGQZRmfz4fP58Pr9YbsmEajQafTodPphCAUzBuEB1AAgCzLeL1e2traqK2tRZZlACRJwmQykZCQgNVqDRnGocZSCEKBQDBXURQFv9+P3+8HCNkwSZJQFAVFUfB4PHi9XiAoCNUFr06nQ6PRCEEo+NQhBOA8Rw35+nw+2tvbqa2tRavVUlBQQHt7OwcOHMDpdNLc3EwgECAhIYHExMSQIJQkacTVsxCEAoFgLqB6/dRFrUajiVjgqsJOq9WGxKCiKLjd7tA2qiBUbZwQhIJPA0IAzmMURQmFQqqrq2ltbSUrK4u+vj50Oh1msxmdTse6detQFAWHw0Fvby99fX0cPHgQRVEiBGFcXFzIMApBKBAIZpPwkK8syxGibTTxJgShYD4hBOA8RfX6DQwMUFJSEvL6DQwM0NvbG9pOTRGVJAmr1YrVaiU7OxtFUbDb7SFB2NjYCBASg6ogVA1quCBUQy8CgUAwHaiL20AgADBpgTaWIBwYGKCiooINGzaE7JsQhILDCSEA5xlqLozP56O5uZmqqipycnJYvnw5Go2GwcHBCNE3Wo2QJEnEx8cTHx9PTk4OiqIwODgYEoQHDhxAo9FECEKz2YxGo0Gj0YSEoGowhbEUCASxQPX6BQKBmAuxoYJwYGAgFFJWPYSqjROCUDDXEQJwHqEaRo/HQ0VFBT09PWzatInU1NTQNuGibyIGS5IkbDYbNpuN3NxcZFkOCcLu7m7q6urQarUkJSWFBKHJZIoQhKIlg0AgmCzh+cyKoowpulQv3lRQ960eJ9xDGAgECAQCuN1uIQgFcxYhAOcB4bkwvb29lJSUYLFY2LVrF0ajMWLboUZpskZSo9GEhN7ixYuRZTkUXu7s7KS2thadThchCI1G44jGUghCgUAwFoqihKIP6enpMyqwFEWJyC1UcwTV34ULQrW/6tAqY9FnVTAbCAH4KUfNhfH7/Rw4cIC6ujqWLVvG4sWLRzQ4Qz2AsWoTqYaDExMTycvLIxAIhARhe3s7NTU1GAyGYYJwtCpjYSwFAgF8ks/c399PY2MjmZmZs31KIcYShH6/P/T7kVJihI0TTDdCAH6KUb1+TqeTsrIynE4n27ZtIzExcdS/mS4BOBQ1HJyUlAQEjXh/fz+9vb20trZSXV2N0WiMEIQGg0EIQoFAAAzv7afRaKbNXo3EVIpKhgpCNS87XBCKxvuC6UYIwE8h4SvMzs5OSktLSUlJYdOmTeh043/kk8kBnCparZbk5GSSk5MB8Pv9IUHY3NxMZWUlZrM55EXs7u4mLi6O7OxsIQgFgnnG0N5+qqiajcFWUzmmEISC2UQIwE8ZasjX5/Oxf/9+Dh48yOrVq8nMzIxKFA31+s3WpECdTkdKSgopKSlAUBD29fXR29vLwYMHsdvt6PV6PB4PiYmJ2Gw29Hq96NElEHyKGa+33+E+2XQ8QQgjj60TglAwGYQA/BSh5sLY7XZKS0uRZZn8/HysVmvU+wgXSnPJoOp0OlJTU0MVy6WlpUDQGDY0NOBwOIiLiwt5COPj44UgFAg+RYzX22+m7dVM2JDRBKHD4eDjjz9mx44dQhAKJo0QgJ8CwnNhWltbqaioICMjg5UrV6LVaie0r8m2gZlpNBoNZrOZvLw8ALxeb8hDWF9fj9PpxGq1RghCtdpuaMK1EIQCwdwmmt5+0QpAt9tNcXExDocjlIeclJSEyWSa1LnNtOhUbZjX6w21nlGjPuo2ovG+IBqEADzMUQ2j1+ulqqqKjo4OjjjiCNLS0ia1P9WIqoZmrngAx8NgMLBw4UIWLlwIgMfjCQnC2tpa3G73MEGoij/Ro0sgmJuE5zMPDfkOJRp71dnZSXFxMampqWRmZjIwMBDKMTaZTBGC0GAwjLmv2bQR4Yv0cG9feIjc6/UOm8QkGu8LwhEC8DAl/EEfGBiguLgYg8FAQUEBZrN50vudKzmAU8VoNJKWlhYSwm63OyQIa2pq8Hg8xMfHhyaV2Gy2kBgUglAgmH0mOs5tLAEoyzI1NTU0NjayZs0aFi1ahNfrZcGCBUBkjnFDQwNlZWXExcWFxGBiYiJ6vT72b3KKDL0eqndQZSRBKBrvC1SEADwMCe/td/DgQWpqasjLy2Pp0qVTfpAPlxDwRDGZTCxatIhFixYB4HK5Qga/uroar9eLzWYbJghF01aBYOZR85nH8/qFM5oAdLlcFBYWEggEQjnRavWwytAc4/CUktraWpxOJ/Hx8RGCUGUuVx5HKwhFF4X5iRCAhxmyLNPV1YVGo6Gmpob+/n62bNkSap8SC2aiD+BUCe++PxnMZjNms5n09HQURYkQhK2trfj9/ghBaLVaQ4ZRNG0VCKaH8Hzm8ca5DWUke9Xe3k5JSQnp6emsWrUq6pzokVJKent76e3tpbKyEq/XS3x8PAB9fX2kpKQcFoUX4YJQvVayLOP1eiOmlAhBOD8QAvAwITwX5qOPPkJRFJKSkti1a9e4uSoTYaQHfapia64jSRIWiwWLxUJGRgaKouB0OkOCsLm5mUAgQEJCQoQgDJ8BKnp0CQRTQ5Zl/H5/1CHfoYT3AZRlmaqqKpqbm1m7di3p6enDtp/Ivo1GYyiCoCgKbreb7u5uBgYGqKysDNkH1UMYHx8/7XYgFtEeQAjCeYwQgIcB4SHfuro6vF4v2dnZrFmzJuYPoiRJEc1V1ePPpwdekiTi4uKIi4sjMzMz1HYhvA+hoigRgjAuLk4IQoFgEoSHJcML0CaKarscDgdFRUUAFBQUYLFYYnq+kiSFogfV1dVs374dv98f8hA2NjaiKAqJiYkhQWi1WmNqQ6cjMjOSIFT/83g8eL1eYOQ+hPPp++HThBCAcxx1NeZ0OiktLcXr9WI2m1mwYMG0PHRD+2oJgtfBarVitVrJyspCURTsdnto+HxjYyNAhCAsKytj/fr1WCwW0aNLIBiFoePcppJOoQrA9957j8zMTFauXDmtz1p4A2p1wTjUPqhtqdRZ6KogtFgsc96+hn8WarsZ9b/6+npcLhfLli0TfVYPY4QAnKOEG8b29nbKy8tZuHAhW7Zs4YMPPpi23LyR8mjmah7gbCFJEvHx8cTHx5OTk4OiKAwODoY8hAcOHCAQCFBbW0tycjIJCQmYzeaQYRSCUCAILm57enpobm5m5cqVUxINgUCAmpoaFEWZUhusyTDUPg61D7IsMzg4SE9PDx0dHezfvx+dThfRcmYynRtmWmSFC0JZlkMFOmpIXN1GCMLDByEA5yBqLozX66WmpoaWlhbWrFlDRkYGEBmmjTUjhX2FABwbSZKw2WzYbDZycnIIBAK88cYbxMfH09PTQ11dHVqtNtSDUBWEQ3t0iaatgvlAeD6zy+Wis7OTVatWTXp/drudwsLC0EJqJsVfNGg0GhISEkhISCAvL49AIMDAwECo4Kyqqgqj0RghCI1G45j7nG2brBboqNd8qIcwXBCKxvtzFyEA5xDhuTB2u53i4mI0Gs2wPJbpHHp+OIm+uWpE1PPKzs7GYDAgy3LI4Hd1dVFbW4tOp4sQhEajcZiHUDRtFXzaGNrbT6vVTmkx29zcTHl5OTk5OWRnZ/Pmm2/OWM7yZI+h1WpDQg+CPQj7+/tD+cXl5eVzvgfhSNd4tJCxLMtCEM5RhACcI4QP/G5paaGyspKcnByWL18+LEQ4Ux7A8HOba8zFc1IZ2kdRzf9Re4eFewDa29upqanBYDAME4Siaavg04Sazxze22+yi1m/3095eTmdnZ1s3LiRBQsW4PF4gJkvWpuqLdLpdKSkpJCSkgKAz+cLpZPU1dXhcDgiehAmJCQAsz+JZLzjjyUIPR4PbrdbNN6fZYQAnAOoXj+Px0NFRQU9PT0hozYS0+kBDOdw8gbOJcZrpD3UAxAIBEIegNbWVqqrqzEajRGC0GAwiJYMgsMSNeSrVvmGf8FrNJoJL2YHBwcpLCzEYDCwa9eu0AzfT4u90uv1LFiwIGT/w3sQVlVV4fF4iIuLQ5Zlent7sdlsE575PlUmI7KHFviogjAQCBAIBCLazojG+zODEICzSHguTG9vLyUlJVgsFnbt2jVmDojIAZzbTHSSilarJTk5OdTMOzwkpM4pNZvNEYJQr9cLQSiY84w3zm0izeYVRaGpqYnKykoWL17MsmXLRuxaMFP2aqaOF96DEIKTTdra2nA4HJSVleH3+2e8B6Eq5KeCKuzU/YQLQr/fH/q9aLw/fQgBOEuE9/ZraGigtraWpUuXkpeXN+7NPVM5gKI6dXJMdZTe0JBQ+JzSgwcPUlFRgcViCQlCm80mBKFgThFtb79oPYB+v5/S0lJ6e3vZvHlz6NkIZ74sWNU2YAcPHmTXrl04nc6Qh/DgwYPIsjytPQhhesLsowlCNTVqNEEovqcmjxCAs4CaC+N2uykrK8PhcLBt27aI+ZJjMZFV80Q5XHIAYe4WgcR6lvLQOaXhOUINDQ04HA7i4uJCgjA+Pj40HUYIQsFMM5HeftFEM/r7+ykqKsJsNlNQUDBqdCRcOMwUs/UshduY8XoQSpIUUWEcix6EsixP+3sfSxD29fXR3NwcGu8nGu9PDiEAZ5DwXJiuri5KS0tJTk6moKBgQlVeMxECDv/3XBWAc5Whk1RizdAcofDB9fX19TidTqxWayhcbLPZQrk0Q/NrRMK1IJaoXj/1GRjvy1iNZozkUVIUhYaGBmpqaqKKjoT3qJtJZss+jnQtRutB2NvbS2dnZ8x6EM7GdKhwQah2VpAkKeQhhJEXvEIQjo4QgDOEGvL1+XzU1tbS2NjI6tWryczMnPCDNBMh4J6enlBy9VwUgHPxnFRm2jiONLg+vIrQ5XIRHx8fEoTx8fG4XC4GBgbIyckRTVsFUyY85Bte5TseI+UcQ3BRU1paysDAAFu3bg0VTEV7LoIg4T0IFy9ejCzLEQVnk+lBCLM/HjS8D+FQD6HP5xtzbJ0QhJ8gBOAMoHr9HA4HJSUlBAIB8vPzsVqtk9rfdHoA1bBNdXV16LWqqipSU1NJTk4+LEYYzTaznT9pNBpJS0sLNcQNryLcv38/Ho8Ho9GIoijExcURHx8fCg2LHl2CiTJeocdYjBS27e3tpaioiPj4eAoKCkLpDOOheojmUwh4omg0mnF7EFoslghBOFJ0arZt3Egh6JFCxuqiRPUQisb7kQgBOI2E58K0tbVRXl5ORkYGK1eunFLZ/nR5AO12O/v27QNg48aNxMXF8eabb2K1WiMaGCclJZGcnExSUlLISyj4hNleHQ9lpCrC+vp6ent7qa6uxuv1YrPZIjyE6pe4EISCsVC/YAOBwKTuDfXLWvUa1tfXU1tby/Lly8nNzZ1Uq5GZ9gDOpRDwRBmrB2F9fT2lpaVYrdaIptQ6nW7WbZx6v4yFar9UwgWh1+sNCcb53HhfCMBpInzlUVlZSUdHx/gzKk0m1LWuDPgPdU8fynR4ANWO+rm5udTV1UVUlaanp2O1WkMNjNX5nWp7kvFWi/ON2TaO42E2m4mPjycQCLBu3TpcLlfI6Le2tuL3+4cJQvVeEE1bBTB2b7+JoP6Nx+OhqKgIh8PB9u3bQ82OJ7M/EQKePCPlF6vRg5qaGtxuN/Hx8fh8PoxGI4FAYMZ7EEJ0AnAo0QjC+dZ4XwjAGBN+U/X391NSUoLBYKCgoGDcZNvwQIcG0JhMyCOIQI1GEwq3TJVAIEBFRQXt7e2h5tMHDhwI/T785h9phFF4tVlpaWmoY31ycjIJCQnTahzm6oM51wUgEJGnZbFYsFgsZGRkoCgKTqczJAibm5sJBAIkJCSEBKHVao2Y5CCats4vphLyHYr6Jf7BBx+QlJQ04YK4oYgQcGwxGAwR6SRutzuUW9zW1kZzc3NED0KbzTYjoeHJCMChRCsIP81dFIQAjCGKotDf34/9jDNY9PbbpALbAIPTOf7NumzZsJc0BD2BQ4mVB9DhcFBYWIhWq40QqEON6GjGRqfTjdixvqenh4qKCnw+HzabLRQunokGpXOBw0kADiW8rURmZiaKouBwOCL6ECqKEiEI4+LiRg0ZC0H46SIQCNDS0kJ8fDwmk2lKn62iKNTW1gKQk5PD0qVLp3yviBDw9GIymUhPT6e9vZ0FCxaQlJQUcgI0NTUhy/KwptTTcZ7TkYMYLgjVz1Rt2RY+peTTJAiFAIwR6sqhra2NFW+/jXpL2ACvxQKjhHND7N8PQ/Lp/KNsGgsj19bWRmlpKVlZWaxYsSLiYZpsp/7wXDNFUXC5XPT09NDb20tjYyNAqEHpVAtK5nKY53AWgEORJAmr1YrVao3oM6YKwsbGRhRFiZhSYrFYxswhFBx+hOczl5eXs379+km1D1Fxu90UFxfjdruRJIn09PSYPDPR2iu1FVdiYmLURSaCT1AFmBo9CF8sqoLwwIEDSJIU0ZQ6Li4uJp9zLDyAY6Ge41iC0O1243a7SUtLO2wFoRCA0RD+gQ4xLuGja7q7u9GtXs3Qj18LRBOw9QJ6QFK3H0U0TqUIRJZlKisraWlpGTUnMdzDONmbOTy0qAoHtR9VeEGJ6h38NBWUfJoE4FDC+4xlZ2eHPldVEIYbfVUQms3mCEEomrYeXgzt7afVaqcUgejq6qK4uJjU1FQ2b97Ma6+9FrOc5mgEYH9/P/v27UNRFDweT6jIITk5mcTExAmlrXzaQ8BjHX+kKlx1sZidnY0sy6Gm1N3d3SGbHy4IzWbzpK7hTDSiDmckQWi322lpaSExMXHMtjNz+btACMDxGPrhSVJIBIaPc6uvr6e+vp5Fn/0sPPNMxJ9EbdrcbnxRbDaZAeoATqeToqIiFEWhoKAAi8Uy6raxngQiSRI2mw2bzUZubu6YBSWqIT5cC0oOFwGo00398Q//XIc2nu3p6aGurg6tVhshCNXQoejRNbcZrbffZO2PLMvs37+fhoaGiB6osexqMJYAVBSFgwcPUlVVxZIlS8jIyCAQCIQ8VlVVVXg8nlAIMzk5Oaq0lfkUAlaJxsZpNJoIm682b+7t7aW9vZ3q6moMBkNIDCYnJ0fVgxCm3wM4HqqTRKfTodfrQz0I1UVFeMh4LjfeFwJwkqgVcE6nk9LSUjweDzt27MCzcSO+Z55BlS4yoDz2WEyPPZkQcEdHByUlJSxatCg0Piea/U9XTs3QgpLw9gO1tbU4nU7i4+NDHsLpLiiJJYeLAJwOAxreeFY9jmr0wz2/4YLQaDQKQTjHGKvQYzIC0OVyUVRUhN/vH9YDdbKCciRG21f4LOEtW7aQmJiIz+dDq9VGFDmEp62o+a7hAmWu9EGdix7A8dBoNKHnPi8vj0AgEOpB2NzcHJpxHt5yZrTw/GwLwKHnEJ7rrNVqIwSh+1AkL1wQzpUuCkIAThAF8B/y+nV2dlJaWsqCBQvYsmULOp2O7u5u3njxRY4++uhpO4eJFIHIskxNTQ2NjY2sXbuWjIyMqPYf/u+ZMDZD2w+MVFASvjKfbQM4FvNZAA4l3OgDIc9vb28vHR0d1NTUYDAYhnkIIdJg+v1+jEajyNeaAcbr7TdRwaYuPtPS0li9evWwhVwsbcxI+xocHKSwsBCj0RiaJSzL8ogzu81mM5mZmaGcNrvdTk9Pz4hpK8nJyXP+OZ8uYmHjtFotycnJJCcnA4Rm/KqpJHa7fcQehOrxZ1sAjtUCJ1pBqHoGtVptKB1hJt+XEIATQAZ8BgN+r5fq6mqam5uHiapYrmZHI9qQidvtpqioCJ/PN6HJI0M9gLPB0IISp9MZCtU0NjYSCARCCeSxGnAeK4QAHJ2hnt9wL0BbWxvV1dUYjcaQIGxtbWXBggXcfffdxMfH86tf/WpKx3/zzTe58847+eijj2htbeXpp5/mrLPOisE7O/wJz2cea5xbtDZOlmWqqqpoamoac/EZS5s5VAC2tLRQVlZGbm4uy5Ytm9A9H57vOlLaSkVFBQANDQ2kpaWRlJQUk7SKiZzfbDEdNk6n05GamkpqaioQOeN8//79oZGWSUlJOJ3OMVOYZgJ1gRQNwwShzYb6bawAddXVrFixgoGBAeLj46fnhEdACMDxUBSUE09EfuklfC4Xdrud4vffR5IkCgoKiIuLi9h8JgRgNB7Arq4uioqKWLhwIWvWrJlwYnOscwCnQnhrErWg5OOPP0av10cMOA9fmUebSzIdzHSC8mSYCyEUGNkLoArClpYWurq6uOyyy5BlmS1bttDa2kp6evqkj+dwONiwYQNf/vKXOfvss2P1Ng57JtLbLxobNzTfeKidDCeWje1V2zVSf9OpMlLaynvvvRdqZ6MKlPC0lel6xmbbJs+EjRs641ztQaj+193dzeDg4Iz3IFSRZXnSaUlWCBWLSsDiFStChZMziRCA46AoCr7//CfY/+rQqi87O3tY6xSV2fYAKorC/v37OXDgAKtXryYrK2vC+5+JHMCpIElSSPBlZWWNmUsyGwUlh4MHcCKr15lk6Giqd955h29/+9v88pe/5MMPPwy1LfrLX/7Cpk2bJrz/U045hVNOOSXWp31Yo+Yzj+X1C2c8G6e2mMrIyGDVqlXj3mexLgJxu928H7ZIn0q7mrHQ6/VoNBpyc3Ox2WwhgdLT00NLSwt+vz9iSpLVap3zdiFaZsPGqT0I09PTkWUZo9GIxWIJ9SAMBAIRFcbT1YNQJRAITPp7ZehZaWBW7g8hAMdAzYXxeDxUVlbS3d097mpyNj2A6jglj8fDzp07J+1Kno0cwKkw1Is02wUlh4MAnAs5NNGg1Wo588wzeeaZZ/jc5z7HF77wBd58803y8vJm+9QOe8J7+01knNtoNi4QCFBZWUlrayvr1q0LzZ6e7P4mg9/vp6qqiszMzKjEZyxQ7WO4QAnvidfT00N9fT0ajSZijvpUhemnLQQ80eMbjcaIfM3wHoQNDQ0AEYIwVj0IVabiAVSIFIEBiPn5RYMQgCMQngvT19dHSUkJZrOZgoKCcXvVqcZsOh+QkVbMPT09FBUVkZSUxObNm6eUizIXcgCnwkgFJWpl30gFJbFeKc62cYyGuRICHg810drhcBAXF0dSUhKf/exnZ/u0DntkWcbv909qnNtIgs1ut1NUVIRGoxm3xdRQYrHIVIvdnE4nOTk5rFmzZkr7i5bRrtlIPfHU/MHW1laqqqowmUwRfVAn4k2a7UX5bC8ghx5/6PUO7zvb3d1NXV1dSIBPtQehylTmIDs0GuIOPUMy8Py//oXl+usnfS6TRQjAIYT39mtoaGD//v0sXbqUJUuWRL06VvczXSIg3AOoKAp1dXXU1dWxcuVKsrOzY37c2TY2U8VoNEaszIcWlAARhmGqBSWzbRyj4XAUgNEWMQlGJ7y3n2qjJtPOI3wWuVpoMVZqzHj7m4oHMLzYzWazhSrOxyLWC77xGFoNH17xOhtz1KfKbC9yx7NfQ/vOjteDcDKDCKZkQ/v6cIT96Hj2WeEBnG3UMS9ut5uysjLsdjvbtm0LJf1Gg3pDTOcXrLpi9nq9lJSUYLfb2b59e6j3Wqz2P/Tfc43JPCwjFZQMDg7S09MTKijR6/WTak6qMtvGMRrmag5gOKonXqPR4HA4ZrQ67tNIeMgXmJT4g08Em9/vp6Kigo6ODjZs2BBK1p8oU7Ex3d3dFBUVkZqaypYtW/j444+j3tes9l8bUvE6XturkaIUsx2CnW0BOJHjj9eDsLKyEpPJFCEIx2s5NRUP4FDUljczjRCARBrG7u5uSktLSUpKYteuXRNO8gwXgNOFRqPB7/fz7rvvYrPZKCgoiGmRw9AcwE8z4SvFxYsXj1pQooZqoikomW3jGA2Hg5dS7ZslPIBTZ7zefhNBo9HgcrnYs2cPer2eXbt2TWmM42Q8gOGRj1WrVpGVlRUStDO5YI3Vcz5e2ysgYlE63Xnm4zHbNm6qDpaxehA2NDRQVlYWSjkZze7HchE9W/Zt3gtAdSXr8/mora2lsbExwqBMFPWGCA+RxBJFUWhvb8fj8bBq1Spyc3Nj/iDOtTYwIzFd5zRaQUlPT09EqwfVMIwUqplt4xgNh0MIWH2GwnMAp4rdbmf//v2hn+vr6yksLCQ5OZmcnBxuuukmmpubeSzG03tmi2h7+01kf3a7na6uLpYsWcLSpUunfB9NVAB6vV6Ki4txOp3s2LEDm8026X3FgljboqFRCnWmbk9PT6h5uk6nQ1EU2traSE5OnvEG6bGwcRabDfXO8QLegYGo/zbW9muoR9bn84UEeHghYbggnEoRyFAcDses9DWctwIwPBfG6XRSUlKC3++fUvUsfBJWmQ4j5PP5QuOM9Ho9ixcvjvkx4JMcQ/Uhn4sCcKYYq6CkvLwcv98/LFQjBGBsUAWgJEkxWyHv3buX4447LvTz9YcSry+99FIeffRRWltbQx6Xwx1VrDU0NISE2lTuS7/fT1lZGT09PSQlJbF8+fKYnOdEbExfXx+FhYXYbDby8/OHeWU+jfYqfKauGqVobGykqamJgwcPUl5ePurEjOliqjbOECb+AAyA9/LL4Xe/i/r402m/9Hp9RA9CNUQfPjMaoL29PTT+cirnIzyAM0h4yLetrY3y8nLS09PHnZEbLVqtNuYCsL+/n8LCQuLi4li/fj1FRUUx3X84h1sbmJlktIKSnp6ekHAwGAzodLrQqm4uisHDRQBqtVrcbjeKosQkB/DYY48d835+9NFHp3yMuUB4PvOBAwemLNYGBgYoLCzEbDaTl5fH4OBgjM40Oq+doig0NDRQXV3N8uXLWbx48YjP1WyEgGfaPmq1WqxWK0ajkW3btoUmZvT09FBdXY3H48Fms4UiGfHx8TF/1qcqAEcUHk8+GbUAnGn7FR6ih+DM6A8++ACv10tZWVmEI0DtQTiR8xMCcIZQvX7eQ+Pc2traJtSzKhpiGYZQFIWDBw9SVVXFkiVLWLJkCXa7fdqNjhB94zNaQUltbS0Oh4MPP/xwygUl04Hq3T1cBKDDEayXi0UI+NOOGvJVq3x1Oh2BQGDSX9iKotDY2Eh1dXXI/hw8eDCmC9zxRJTf7w9FPsYrypuPC9ahEzNcLlcoStHU1IQsyxE2KBZdDqYqAN3AsIDnv/4V9d/P9gJW7eG4fPlyLBbLsJxNRVEiehCO1+TZ4XBEVb0ea+aNAAzPhRkYGKCkpASdTseuXbti3ik+VgIwPOSyefPm0HSE6Qoxq3yaq4CnE7WgJCEhAbPZzPLly0MFJU1NTcMKSmZ6dqiK+nkeDgJQo9Fgt9vRaDTTNtHh08JI49zU+2sy+UpqyklfXx9btmwJ5cXGOs9urP0NDg6yb9++UB/W8RZQh2sRSCyPbTabIxok2+32UD+82tpadDpdREPqyRbwTOW9ywMDeG021AC+A+D446P/+1ket6mmkKlpFUMdAeo1V9v8qFXIo7Uaczqdk5raNRrjzTxXFIVbb711fghAtWWKmjtSW1s7qeHg0RILAzk4OEhhYSFGo3GY4Yvl6KSROBwE4Fw8JxV1dRxeULJ06dJJFZRMB+q9eTgIQDWUHhcXN+fPdzYJ9/qFt3cJ70owkXurr6+PoqIirFYru3btiigyiLUAHM3GNDc3U15ezuLFi1m2bFlUX/izYa9mwxZNpNVNfHw88fHx5OTkIMsy/f399PT0hNqfmM3mCS1KYzUkwDswgHeSfzvbHsDwDgVDGemaq02pw2fXq/maTqcTu90e0wjHeDPPf/GLX3Dvvfd++gWgmgvj8Xhoa2sb5k2bDqZqIMczfKqRm65ig8N9EshsM9rqdGhBSfhw8/CCEtUYT9csy8NJAKo9AEULmJEZr7ef+gUV7dxSRVE4cOAA+/fvZ9myZSPm2k23BzAQCFBRUUF7e/u4ozeHMlcXrHOF8GkYMHxsZviiVG1IPdROqJ/VbHvgZtN+hXvZx0MtEklISAgV8ahNqUtKSrjwwgvR6XT09PSQlZXFcccdR3p6+pTOb6yZ54qicPfdd/PDH/7w0ysAw3Nh1AstSRIbN24MhTKmi8kayEAgQHl5OR0dHWMavumeNjJ0n8KgToxoP5ehs0PDC0rUWZbhuTtTHV2kEggEJt0EeCZRcwD7+/tnpUXCXEfNZx5L0KufczRtqdTG8oODg2zbtm3UnKTp8ACq+3M4HBQWFqLVaikoKJhw2F+EgCfGaIvSnp6eUHFDYmJiaFFqtVpn3TkQHn6dLdT7dTIRG61WG7LrS5Ysoa6ujt27d2Oz2bjrrru4+OKLqaqqYtmyZbE+bSDY+qqtrY3du3d/OgVg+Di3+vp66uvrWb58eWge4HQzGQPpcDjYt29fKC9xrLwM9cELN3RFRUWUlJRw0UUXTe6kh+x/tkPAao8ohUP5IRPoETXbTGZ1Olbvr6ETSlRjPNmCktlePUfL0DnAc12wzhThLayi6e0XTVcCdZZ4YmLiuA3wp8MD6PP5aGtro7S0lMzMTFauXDmpe3Qi9ipWtm1S+7DZUH3aMuCcoH2bLps8dFHqcDiG5bKpE6fcbveseObnQg5zLBqqq6i2/PLLL+fzn/98qM3SdNHW1gZAWlrap08Aql4/p9NJWVkZbrc7NCatsbFx2ho0hzNRA9na2kppaWnUszRHyus5+uij8Xg8XH755Vx55ZXcfffdkz7/KbeBsdlCFV5OmLB4M4X1iJIAK2Cf2BnMKrHwzI7U+0stKFF7f4V3qp9IQclsr56jRRWAszUmaS4yUqHHePeaVqsd1e6FT9RYsWIFOTk54+5vOjyAvb29MenIcLiEgMPvZg1gttlwzbFFriRJWK1WrFYr2dnZoVy2jo4OAD788EOMRmMozzkxMXFGGlLPhRB0LG2oKrTVNlfTHaEMZ+5/C0SJahi9Xi8dHR3s2bMHk8lEQUFBaMUydIj5dBGtgZRlmfLycsrKyli/fj2rVq3CYrFgMplYtWpVKK9nKCN5AK+++urQvx966CFMJhPf+c53Jv0eElavxpKUxOZdu4L9maLluuuII3hjaYA4gLBO/dEw4k05wjnMVY/QdITm1YKSpUuXsm3bNo466iiWLFmCoijU1tby1ltvsXfvXmpra+nt7R3z/jucBKBOp8PpdAoByCf5zH6/H0mSovZAjGaPPB4Pe/fupbm5mR07dkQ9VSiWAtDtdtPU1ITH4yE/P3/K7bgm0iFBLZqZ6vFiwUSfxtloNq96/7KzswE48sgjWbFiBVqtlgMHDvD222/z4Ycfsn//frq7u6ftu3Yu5DDHcg4wMKM2Tn3G2tvbPx0eQDUc4vf7qampoampiTVr1pCZmRmx3XQ0aB6JaISm0+mksLAQgIKCglCOkyRpUBSZAwcOhJp9vvXWW6xfvz70t+qDH/5efvKTn/DAAw/g9gUwL9uJq/YD7r//fu6//36uueYafvGLX0R9/rn5+aSF/bzyRz+i9fLLsdls4z500iOPEG6WJMAIeKI+OgQYwSCed17Ej3N5lT8Txjma3J3RCkpiOcNyOglvAzOfcwCnOs5tJA9gV1cXxcXFpKSksGnTpgm1I4qVAOzq6qKoqAiLxYLNZotJFWQ0HkBFUdi/fz+1tbUYDIZQWsVk+3TGwhbN7mTfiaHaN71eHzE+zev1hvoPVlZW4vV6QzZIbUgdC7s4l0LAsSJWoy6jIS8vj0WLFvHKK68c3gIwPBfGbrdTUlICBAXVSBdzrFBILBmvTUtHRwfFxcVkZGSwatWqiBvpnnvu5pprrkFjSUB29uPxeNi+fTsAt956KzfddNOIHkCAO++8k6uuugqTNYHFVz1Mw0uP4qx+j3vvvZd7772Xb37zm9x1111jnntbWxtD6480QMnNNyOfc06EsRypKEHR68Hni3gt8qfx8QwMoAkLAzsm+PezzWyszkcqKFGN8dCCksOhAASCRtZoNM7rKuDJhHyHEr4glWWZ2tpaDhw4wOrVq8nMzJzU/qYiAFUBpp5DIBCgu7t70vsLZzwPoM/no7i4GLvdztatWwkEAvT29tLc3ExFRQVxcXERIc3pastkJxgdkQiKv7kW/h2L0eybwWAITctQFCWiIbU6JSkWRW1ql4WR/tZos6F+Ys4NG+Cttya8/2jPIVb3hhoCjqWNG2/m+XXXXcdPfvKTw1cAhhvGlpYWKioqyMrKGjN5eCYF4EjHkWWZ6upqDh48yLp160Ys9b7iiiu48cYbcfl9bLn5X9Q9/zt69/4HgNtvv53bb7+dnTt3cs011wwzdJdffjnfu/FGeoteIu/kL7H+CzfS29bEwdf+grPmPR544AEeeOABvvrVr3LfffcNO7eamhoaGxsZKQhz5L33RhQl1NTUROR/JCUlBRPHu7vx2WyhG0sm2PRzohxOBnEos11kEV5QEp6709vbS0dHB/39/QCUl5dPuaBkOlHDLPM1BKzmM0/G6xeOGvlwu90UFRXh9XqnNPN8Kqk0Xq+XoqIiXC4XO3bswGazxXSyiFpQMhJqU+m4uDjy8/OB4LOqVmOqHSN6enqoqqoa5sEaaZrDpBdSAwNTWtjO5rzxaI4tSRIWiwWLxRIxJSkWRW2jpbAYwr53ACxFRcEc9DEoKSlhzZo1ExZzsfQAOp3OmI26VBlv5vkNN9yAw+E4PAWg6vXzeDxUVVXR2dnJhg0bQqNwRmM2cwDdbjeFhYX4/f5RPZQqP/3pT/nWt75F/Yt/ZNXZ1yKfdQ0H9/yHlv/cC8CePXvYs2cPycnJPPHEExx99NGhv733nnv4yle+Qu1zv2X1ud8haVEWSRfeQHdzA81vPYmrZg8PP/wwDz/8MBdccAG/+93vkGWZoqIi3G43+fn5lHz3u2y8886QB85NZHPL3NxcAoFAqKlxfX09ZWVlxMfHB41lYyOv//y3HGc9iYDHzqtP/IlzLrg41pd5zjKbxnkkhvahamlpobGxEYPBMOWCkukkvAhkJhOjZ5uhvf2mWm2o0Wjo6+ujoqKChQsXsmXLlil9vuFFaBP5Euzt7aWwsJDExEQKCgpC5xDLwo3R9tXS0kJZWRl5eXksXboUYJhQ1Ov1oZFq4R6snp4eDhw4gEajCYnB8HDxXE5HmQ4mY9/UKUlDi9p6enoibJAqBhMTE0e9R0frszp067HO8K233uK0004D4Morr5xQipR6DrHyAE7HqMvxZp5LksSPfvSjw0sAhufC9PX1UVJSgslkGrdtispM5gCGH6ezs5Pi4mLS0tJYvXr1uDfO17/+db7//e/Tu+8F/Cd/CZ3RTG7BGeQWnEF7+QfU//2nKJ5giO/EE09Ep9PxzW9+k5///Od88Ytf5FvXX09/yWu4T74cU3wiACmZuaRc8F3aG/fT/u6/cNW+zxNPPMETTzzBZz/7WW688Uby8/PR6XRI559PxcUXk/PrX1N15ZUYjUaWDDlHrVZLSkpKqKG2x+MJGcuSkhJqTd0c43ejNVqhpAnl/LkliqaTuSYAR8JoNIb6TKmej6HNYFVjPFIz2JkgvA1MTk7OjB9/Nhja22+q4XpZlnG5XPT29rJu3ToyMjKmfI4TFYDhzaWXL18+rNgklkUlQwWgLMtUVVXR0tIS0Vt1PNE21IMlyzIDAwOhCRpquNjr9TI4OEhKSsqMTPGZC8TCvoVPSYJIG1RTU4Pb7cZms4U8hOH556PddwHGn20bCARYunQpPT09odduueWWCZ9/LItAHA4HWq120iP5psLczwQ/RHiV74EDB9i7dy+ZmZls27Yt6gs3UyFgVWgqikJNTQ2FhYWsWrWKdevWRX3T/OhHP0LxOql78dGI19PWbGfnrc+Qd9kvMKQFZZnf7+eee+7BZDKxc+dOfnXXXSh+L7X/eTDib10uNz6NicSC80g980bMy4NhkGeeeYb8/HwefDC4fciI/vrXUa/OjUYj6enprF27liOPPJIrrr+Z3oEmALKcC3jvvfeorKyko6Nj1BDNp4W5LgCHGlDV87Fy5Up27txJfn4+mZmZuFwuysrKePPNNyksLKShoYHBwcEZ83gM7QP4aUYdV6lWT06kync0nE4n77//Pl6vl5ycnJiIP/ik+W00os3n84Xuna1bt077ZJFwe+V2u/nwww/p6ekhPz9/QhNFhqLOcl2yZAlbt27lqKOOIi8vDwh6F99880327ds3Y8/IXA8BT5RwG5Sfn8/OnTtJT0/H6XRSUlLCW2+9RVFREQcPHsThcIx4fM/AQKiYRgEcQ1rS/PKXvyQpKSkk/i666CIGBgYmlV4Sy04K6hi42VhkHxYeQDUXxu12U15ezuDgIFu3bp1ws8SZDAGrxsfj8Uwq3+bqq6/m5ptvoefj/+E/6cvoDJH5EYk5a1h49YN0Vu+j6eU/4m2pAKCwsJDLL78cgIHyN3H1XY5kstHV1YUsBwAJSW/CnL0Gc/Zaul96CPu+5wD47ne/y/e+9z1++tOfhsbITOZBV8PFhXIXKSwjU7cAy8qVoXBxaWkpNpsttAKMprp4KHNZZM3lc4PxjddYBSUHDhxAkqSI3J1YTSgZynzJAVQXt319fXz44YeccMIJU76ealPljIwM4uLiYuqdCvfEjMXAwACFhYVYLBYKCgpG7RE3HSFgNdyckpLC2rVrY+6dUwVLY2MjWVlZ2Gy2qMLFnwZmwr6ZzWbMZjMZGRkoioLdbg/lZ6ptrsrKykJ2SHUCjZQ7fvDgQdavXx/67tfpdDQ2Nk7JpsQyB3A2i9zmtAAMz4VRQ4vRdKofDa1WOyPeJ7fbTXt7O2lpaWzevHnS+TY/+tHt3HDDDdS98CgrzvjaiNukrdqCIWEBrR+/grejHlftByAfErkBP1X/uo/k4y9HFX46czxIwRtXAhac9HW05nj6330CSW9E9nm46aabuOWWW3j66adJS0ubtHE+GN/GeiDelsmfH/g537wlmGcxNFwsy/K41cWHE6PlqMwVJrJ6HaugpL29nerqagwGQ8Qw+Vh92c0HD6Aa8lV7Hqrev8kSCARCIU+1qXJ5eXnMGzePVW2rKEooTKrm3I31nmLdWNrhcLB3796oGlvHQsyMFy6urKzEYrHMSHXxTDDT9i08/zwnJ4eOjg5qa2sxm820tLRQVVWF2WwOfYckJiaG9MHnPvc5XnnlldC+fvSjH3HddddN+ZxiHQKerTZXc1YAhvf2q6uro6GhgZUrV5KdnT2laji32x3jM/0Etat+S0sL8fHxrF+/fkoPyjXXXMMtt9xC78fP4z/psmFeQFWXJaXnIG84hvYSLea8TWiUAF2v/QH8Xlz7PyCw8zx0SeloNFoUKSj8wk8r6cgvovi9DHzwT4w56/G27cfndXL66adjsVj4wx/+MKm5hJmbd+L7sBu9JYW8vk9qi9VwsephGjryTBUUEdXFhxGHuwdwLEYabD5SMne4MZ7sAihcAH7aPIAj9fbT6XRTmnPqcDgoKioCInuLTkfkYzTRFggEKCsro6uri02bNoV6xI1FrDyAfr+f1tZWHA4H27Ztm9ZxWiojnbsaLlZDxkOriz0eT2i+7mjVxePxaQsBTxS9Xs+SJUtYsmQJfr8/IofZ6XTy8ccf86Mf/Si0fVJSEpWVlROeLT0asS4Cma1Rl3NOAIb39lPj/36/f0ptC1SmMwfQ6/VSXFyMw+EgNzcXp9MZkw/0tttu48Ybb6T+xT+y/PQrRt0uJWsJ7u4Wmv/7GwKDXaDRYMxeh+dgGf3vPkHqad9CkQMobidIGjR6I5pDN7CkkUg+9ksofi+DH/+H5BOuwNvVgKPsdZxOJ+effz5paWm89dZbE+rUf8xZJ1P2xuNkWVLI8o/8RTBedXEswsUzzVwwkGMRy/yVaJK5J1tQooZZnE5nTFskzDaj9fZTv1AmE15Sq1xHaoWl1WpHnSo0WUYSgOHzzAsKCqLOzY6FB1A9thpNmAnxFy2TrS6eNCtXYmlt/aTH4L/+BccfH4N3EmS27dtQD6ROpws1xe/s7GTXrl2hebcA1157LWeffTYdHR2TFtxDUT32sUCEgA8Rbhjb29spKytj0aJFUVXORsN05QD29vZSVFREQkICBQUFtLW1YbfHZnrtddddx6233kbPR88TOOkytPrwPJrgytPZ1UL1Ez/D1VINkoQxczXmlQWkbDuTAw98CVfth/gGOtHbFgb/RpGRvS5kJCSdDq3OiKSRSNn9NRS/h55XHyb1tOtJPeYSOl76fzir36W9vZ0VK1awfPly3njjjahv2CZdF1lAunl4z8ORGK+6WDXwHo8Hj8cz68ZoJObiOYUznaPgwr/sIHJCSUtLC36/n8TExJCHcDRjrBZRfdo8gGP19gsXgNF6vQOBABUVFbS3t4/aCms6Fr5DRVtbWxslJSVRzzMPZyLj20ZCbayfmZlJXFxcaFbtTDCZdiixChePduy4Q+IPQAuYzzpr1L6qPp8Pn883oRDkbNu30ezXNddcw6OPPhr6eenSpezZsyeUQqbmMGs0mmENqSdzDrH2AM4Gc0YAql4/r9dLTU0Nra2tUx4MPpRYt4FRFIWGhgZqamoi2hvEOqfl5pt/yA9/+EPqXnqM5acGCzwkCVzdbdT+4+c4mysBCfOybWSceAVel52Bmg/pK32NtHN+SMuj19P3xqOknXt70Avo84AiAwqK34ff7wONFq3BROrJVyP7vXQ992ukz95A+me/i7e/g66X/x+u2g+pqdlPRkYG+fn5/Pe//x33IaiztLJDDmCIW8Djt9zKRT+6fULvfbRwcV9fH3V1dTQ1NZGcnExKSsqcCRfPtoEcD1VYzQRDC0ocDkfIQ6gaYzUcFl5QogqWT0sOYHg+s9oofKSmwhqNJmpvnd1up7CwMORxG+2LLNb2KHyfapuV5uZm1q9fT1pa2vh/PMK+JhMCDp8osnbtWjIyMmhqaprxvnxTOd5o4eLe3t5QuFhtRp2SkhJaMEV7TIXR++FdffXV/PGPfwQgITGRyy69lNtuu21c2zDb9m2oAHz11Vc599zz8Pm8odceeeQRzjnnHCD4HTI0h7mnpyeUw2w0GiOK2kYrVgonlkUgahXwbDDrAjA8F2ZgYICSkhK0Wm1EDkusiOVK2OfzUVJSwsDAANu2bSMxMTH0u1gb3O985zv8+Mc/pmfvcwQ+cwk+ex+VT/wUV1MFIGHO20LGSVdgWhAc0m0C5IAfe90+JEmLLmEh7vp9eDvqMSzMQzJaQFGQ/R4IHPqykQME3A6QJFJPvppOv4/OZ3+JpDMQv2w7mef8EE/XQTpf+n+4Gwp57709JCUlcfbZZ0esuoby9dt/TvMNz2JNyCbLPvEvh3DCw8WdnZ1kZmZiMBhCoZTS0tJPmlEnJ89a/7rZNpDjEQgEojJysUaSJKxWK1ardVRjrOZ/Wq3W0HWMpQfwgQce4M4776StrY0NGzZw3333hUYtDuXRRx/lsssum/IxZVnG7/dHNc4tGhsVXmSRm5vLsmXLxrzPp8sD6HK5qKqqQlGUKdnrydhLNeXG6XRGpAdNh9idSYZ60IeOdFS9V+GLpLGQCPbHC+eNN97g/PMvwOkMNiDWL1jMQH8799xzD/fcex9ZmRl8//vf56KLLhpxn7Nt39QFlN1u58QTT6S0tDT0u02bNvHqq6+OKmLDc5jz8vIiUo4aGhooKyvDarVGNKQeaV+xLgKZlyFg1SOgKAptbW1UVVVFZdAmS6wMYX9/P4WFhVit1hHbG0yHEbrpppu47bbb+PhXX8I/0AUomBdvIv2kr2JeuDhiWzkQwJq5CkUO4KgvwrrpdPpe/z2tf/wWljXHkHzCV9CabGj0JtCDEvCh+L3BqhJFQQn4STnxG3T910vH03cgff5m4pduxpiaTdaFP8bVUk3XK7/D01TOP59+mn/+859cddVV/OxnPxvx3Jt9Hawkmyxp/ITwiaDRaEYNF5eVlREIBCKSrS0Wy4wYrtk2kOMxnSHgiTCaMVZns/7vf/8LVey99957pKamYrPZJn28v/3tb1x//fU89NBD7Nixg7vvvpuTTjqJqqqqcacITYbwfGb1nhjvvhjPRvn9fsrLy+nq6opobDwW05H6Issy5eXlpKenTzlFZ6JFIAMDA+zbtw+r1Up+fn6E1z+WLWWiYbqf86Hh4sHBQbq7u2lra8PtdocmQqmCRavVUm7JZrXzYCgH0P2vfwHgcrn4zGc+Q3FxCWr6kCl9GRuv+g1yIEDrRy/S+fFLNDVX8o1vfIOrrr6adWvX8stf/pKdO3eGzmm27Zssyzz00EP86fHHQ5WQGo2GP/3pT5xxxhkT2tfQlCOv1zusYEf1wCYlJREfHx/6fo/lKLh5JwDVxqd79+4FgrlCmzdvDn0Q08FUDaGiKBw8eJCqqiqWLl1KXl7eiA/CdAjAG2+8kdtuvx1/fzC/xZi5GtuaozAmhoXIFYVAQEYBtDoNSUvWo8gBnA2lSOYEFFc/ztJXcJa9isaSSNza40k4+ototQYkrT6YG+jzgBxA0upIPeVaOp+9k45//hTOvYX4xRsAMGesIPviX+A4UEzXq4/ga9/P/fc/wP33388vfvELrrzyyohzbzJ3shJIic/ikbv/jy9fd2NMr43K0HCxw+Ggp6eHrq4uamtr0ev1EcnW0xUunm0DOR5zRQAOJdwYL1y4kJ6eHnJzc/n+97/PbbfdxqWXXso555zDE088Man9/+pXv+KrX/0qX/rSlwB46KGHeO6553jkkUe48cbY35OyLOP1BsNS0U70UFvBjITaV89kMk2oyCKWqS9q2NXlcpGTk8OaNWumvM+J2Mvm5mbKy8tDFaAjhdGjEYCxfD5nSnCGL5j0ej3d3d1kZmbS09MTKrjqeuVdTrz6z7QoMv/x/puLfnQbAD/+8Y/55V13ocgyuoQ0/P3taIxWjvh6cCa8Rqslc/spZG4/BZ/TzsF3/kVf2ZsUF5dw4oknojcYOOboo7n//vun3KB8Kuzdu5czzzwzIsd+586dPP/88zHxyBkMBtLS0kLtz9QpOj09PTQ2NoZmR7tcroiF3VSw2+1RVctPB7MmACVJor+/n8HBwVCj0OluljkVQ+j3+yktLaW3t5ctW7aMOZt0usIQf3rsMS6+ODhT19NSSXtzBe3P348+JQtL7nri1xyNNXs1Oo02lPiRvGwTyqEwr730FQL97UhafbDi94OnGPzwaXS2BVg3n451y5loDWbU3ECA1NO/Tde/f07HUz9BPuM7WBZvQG8IfvHELV5P3JfvZqDqPXrf/BO+rkZuuOF73HDDDTz++OOceeaZAPQtBLnPiUZvIXGG8rPDw405OTkR7UpUV/90hYuFAJw6qvf2lFNO4ZZbbqGyspLm5mYOHjw4qf15vV4++ugjbrrpptBrGo2G3bt3895778XqtCNQRd9E7oWRPIDhC89o+upFs8/J4PF4KCoqwuPxYLPZItJepoIq2sZ6bmRZprKyktbW1jE9nxPxAM7lZzQaNBpNqPoVgp6kg8+2gxk6eqrJ/dwJPPXUU1xz7bUMDgygjUti4VHn0/ban0CjZd03fzOiaNJbrCz5zEXwmYtwdrXS9NY/6K/ew8svv8yqVauJi7Nw/PHH84c//GHGUkm8Xi9nnHFGxLOq1+v585//zMknnzwtxwwv2MnMzERRlFAP1J6eHvbv309jY2NE/uBkNIzD4WDx4sWxfwNRMKsh4M7OTiwWCxkZGTPSKX2yhnBwcJB9+/ZhNpujEqrTVW187rnnEh8fz1mfOxt0RlI3nsBg3T483U30dzbQv/dZNCYrxkXLsS7bSvL649FZE0lZuY2uQ+czWPwi8mAXlpW7sCzZir30FTwHS+l77ff0vfEo+uQsbDvPw7r2GCSdAclgJvXM79H59E/o+s+vWHDmd/GnZKMxmDFYbEgS2FbmY1uZT1/Ry/S9+wT+vjYuuuhitFoNL730El++7kb2f/tJFiSvIMs1+XFMU2FouxKPxxN6kGMdLlZzVOYqh4sA1Gq1EWOScnJyJj0TuKuri0AgMKxIIS0tjcrKyhH/ZuXKlZM6lspk5vgOtVE+n4+ysjJ6e3snHSGJxYK0p6eHoqIikpKS2Lx5M/v27YuZjVPvxdEEoNvtprCwkEAgQH5+/pi5hp+2EPBEjv3P//s5pycFF937DDX87ke/5/0PPgBJS+LmU8n5zJcpf/g6FI+TxZ+/AUvK+AWWltR0VnzuauBqeuvLaHn3aRy1H/Pss8+SumABaQsX8q1vfYtvfOMb0/EWAbj33nu55dZbkcPut82bN/PKK6/MaENtSZKw2WzYbDaamppYvXo1EOwCMpUeqE6nc34WgaxcuRKXyzVjSbuTEYBNTU1UVFSwePFili1bFtUDP52JyCeffDKP/+kxLrr4YnpK32TlV+7ClJyOv6+N5lf+SH/dPlwNRbgO7KPz5d+hS0rHnL0G25ojMSxcTPz6Exks/C/OstfQ6IyknfcjZJ8He/FLOCrexNtaRfd/7qT7+bsxpC0l8ZhLMeccQdq5P6Ltie/T9exdpH72BvRJGbi9LtDoMFgT0Gp1JG7Yje2IE+jb+2/63/8nAXs3xx9/AkajgXvPvJpTk1eQqY9drtVUjK/RaGTRokUsWrQoIlzc3d09LFwcbWWYivAATh21zcJsVgDn5+dP6e8ncw+E9+xTc43j4uKmFCGZigdQURQOHDjA/v37IyZrxHp+L4x8X/b09FBYWEhqampUI91CAtBkQk3w8AFM8wCAmWakY64fXIqUquU3b/6WX3zwNwIBP8b0FSw/97tY03Ip/sMP8fc0kXDECSSuORKv14tGo0Gj0aLRjH+vJuWtJSlvLT6fj/aiN+jZ9yLtB8u48cYbuen7P2DF8mXccccd7N69OybvsaamhpNPPpnOzs7QawajkV/ddRcFBQWzOk1FlmX0en0oirR06dIRe6DabLaQIByth+28LQJRm5/OxHxe+KTdQDRfgIFAgPLycjo6OqLuaB9+nOkUteeccw7l5eX87I47qPrDd1l35X1YF+Wy8ou3AMFz7973Eq3v/gtXZyODxa8wWPwykt6IPiUH3aKV+JrKsBf9D0lnIHn3Fdi2nI5ty+kEXIMM7vsvzqp38LZU0fHXm5D0RoxZa0na/XV6X3yArv/cxYLPfg+dbSHIfrwD3YCEzmxFb7KQvP2zJG49k553nmDgo//gcfXztb//kgTjb3n98sd48Nbv8fXbfz5t12eixDpcLATg1PH7/RECcKrXMzU1Fa1WS3t7e8Tr7e3tMW01NVVUAXjgwAFqamrGzDWOlsnao5nqdBDuAVQJb7E1kQlQkiSxbfduwpdrBsB7++1w660xOd+hx5sL/O7277NV2cbm+8+i09GDxhxP1u4vk7XzNABqX/wjzv0fYEjJYvUF3wt9DwYCcrANGKDVSocE4dg5fhqNhoXrjyFr6278HjfNe56lu/g1qqprOPvss9Hp9ezcsYN77rmH5cuXT/i9BAIBLrjgAl548cVPxl0Bxx9/PE899RQ1NTWzbr9GagMzUg9UtYJb7WEb3gNVtWvTuci97bbbuP32yNZrK1euDEU9Zr0NzHR0qR/rWDD+F6DaX0uv17Nr166ok63DjzOdArCrq4udO3dyzdVXc+9991H2/67jiG/cjzkhNXT8hVtPZuHWYG6Ed7CPgy//gd6K9/C214JSc2hPEoMf/RtJpyfp2MsACa05nsSC80ksOB//QCcDHz2Lq2YP7vqPcdd/jGSwgCLT8a9fkPHFnyMZzCgBL6Dgdw3idw2i0RkxWBNIPepCkvPPoeuNxxgsepF+zyCbHvgcqdYELrvxtimN5ZnOVffQcLHX651QdbEQgFMn1h5Ag8HAli1beOWVVzjrrLNCx3jllVe46qqrprz/0ZhoSFKSJJqbm5Flma1bt8ZkosVkFtnjdTqIpY1T70V1f36/n7KyMnp6eiZ8DSRJYkSrcscdwwRgrJ7R2fAAwifnHwgEeOrvb3D9wQcAifi1x7Ly7G+hMwWvRGflh3S+/Tckg4kNVz0U+lutVhv2naggy4FDjcr9IS+vVqsZZivC367OaCL3mHPJPeZcXP2dNL31T/or3uHtt99my5YtWCwWzjjjDH79619H5eV6/PHHuebaa/H7fKHXTCYTTz31FEcdddShc53dWeuqeB7PA2kymcjIyCAjIyMiytTb20t9fT0dHR088cQTNDY24nK5pu18165dy8svvxz6OTwsPesCUKfT4fF4ZuRY4Z32R4vNt7a2UlpaSk5ODsuXL5/UF6XqaYy1EFBnDdfV1WGz2fjqV7/KwoUL+eEPb6b0wWtZ/80HMMYnDvs7Q3wiSz/3LfjctwDoKt/D/r/++JBwg4H3nwJJg23rmcG8P50RSatDZ1tA8nFfhuO+jLfzAIMfPYurdi8Bezf4PDQ/fAWmpVtJPeO7wZYD7mBlluz34O7rAEmDwZrIwhO+QurRF9Hx0sM4yl+ny95PWloaGzdu5LXXXouJK9/r9fLf//6X1atXTzx367rrkB55BADld7+D886L+LXBYIgqXLx+xw50wG6gt7V1Su/HbLOhIdiswZmQAJMsfhiJw0EAhnsAYxUeuf7667n00kvZunUr27dv5+6778bhcISqgi+55BIyMzO54447gODg+FtuuSUmx46G3t5eOjo6MBgMI4quyaKKtWjsUXjByWiVthBbD6C6f/XZ2rdvH3q9flJhb0mS8DLCF9txx8XkXOcKquh88skn+drXvhacHpOaQ/bJ32Th6k2h7dwDPdQ/9QuQFdZ+4160o9xTGo2ERvPJVQsE5EMtjNTG5RK33n8NJ3XXAfBCyhLuuP6hiH2YExaw/PSvwelfY6BpP03vPIW95kP+9re/8bcnnyQlOZkrrriCG264YZjNb2lpYffu3TQ1NX3yoiRx8kkn8eSTT0ZsO9v2S73vJ/K9NTTKJMsy1dXVvP/++7zxxht8/etf55e//CUnnHACv/71ryfsdBoLnU43apRjToSAZ8oDqCZlj7QaDgQCVFZWhhrETqUvWPiKNlZ5CuHhmO3bt4c63n/nO9/Bbrfzf//3c4ofupaN33wAvWXsL8zUNTtJuuUZ9v3qMnz97SBpGdjzDySdAeu64wE7aLRIWj2S3ohGZ8CwYDEpJ18NgKuxBPu+/+I+sA937V6a7rkASW8ibt0JJBx9GXjtIAdAkfEO9gCgNcWx8KRv4D/6YrpeeRhn1TsUFhZ+srqXNKAorFq1kvfee2/YdQsEAnz88ce8/PLLfPzxx5SXl9Pf3x8sxw8EIPRlJLF06RKeeuoplixZMv6FffJJzI88EuqWr1x+Oa4hAjCc0cLF6YsXhx4mDZCSnk5rQ8OkqotNNhvqu5eAuP5+HBPaw9jMtgGNhunIATz//PPp7Ozklltuoa2tjY0bN/K///0vVBjS2NgYcV16e3tjctzxUBSF+vp6amtrSUhIwGKxxLS6Mlp7FN5jcLyCk1gLQEmS6OzspKqqiqysrAmPkwvf19v/+x/Hn3xy6BnyATz//LBtY+G5my1PVE9PDxdeeCEtLS1IBguLjrqArK2fxaP/5LtNlmXK/nATsnOA7NO+gXXR4qj3r9UGvX8QvE7Hvvgop3bXhezkad11vPvCH3j9xMtGvAa2rGWsOf97yLJCZ8UeOt7/Dz0Nxdxxxx3c8X8/J29xLrfeeitnn302X/nKV/j7P546NJ0qiNls4dln/z1ik/bZtl/hDd0ni0ajYdWqVdx55508/fTT/PWvf8XlcvH+++/HvCC2pqaGjIwMTCYT+fn53HHHHaFiujnhAZypHMDRkpedTieFhYVIkjRulVk0xFoAqlXIarscg8EQChNBMM7vcDi47777KXroGjZ84370prHfg1avY9P1v+ejX15KYLAbNFr63/kLWpOVuHXHo/i8KH4Pis8dnBms1QW9g3oj5px1mHOOIOBxYS9+EVfdh3ibK7B//B/s+55DY4onfuuZWI/YHRSCQMDtCE4a0WhJ3v01bPnn0//mY7hqPwiKN0UGSUtlZWVoJJjFYmFwcBCfP4AiB0fXfXKRdWjMVnRJ2cTFp2BIWoh3sBdH1bvU1taycdMmli1dyj/+8Y+xheDll0eMSpIAbDYYZXbmsOt4KFw89FPWAGVlZfj9/lDOR7TVxUP3FeuvmNk2oNEwtAo4Vlx11VWjhnxff/31iJ9//etfT/l444WAPR5PaKLF9u3b6erqwuGIpdyPjHyMZo/C016i6TEYSwGoRksqKytZt24d6enRzQ0f7bwURUF2uxnv7JxOJ7IsT/n+mukQ8De/+U3+9PifQVGwLN/J8pOvxmhJwBvwEhfmLS//68/wddRjW1VAZsFnJ308SZL43pt/HWaHvv/mX3nhmC8MCxcH/AEOfPACAY8TSQrGMUx5mzDkrMfXfRBPazX1Bxq47LLLhk/akSTOOP10/vznP496PrPdZUG972N1Dg6Hg4ULF3LEEUdw+umnx2SfKjt27ODRRx9l5cqVtLa2cvvtt3PUUUeFpmbNugCcSQ+gerxwwdne3k5JSQkZGRmsWrUqJh/q0JyWqaCGpIdWIQ+dn3nnnXcyODjIo48+SvFvv8WGr9+LzjD2SkKrN7Ll+j/y0Z0XEXD2gUZLzysPg95I/PoTAVD8XmSfG8XvQ/E4wOMASRP0Dmp1WNceizF9GYoC3pZKXDXv42mtpv+tx+l/+y9orEnYdpxD3LLtwfP1eZE9LiQlQNIxlxC/8WQG9j6D+0BhxArQ5fbgUXRo4tMwx6egT1yIKTkDy6JcbBkrkMw29Hp9aJWqXu+PfnkpgYEOjJmr2b+/go2bNrF0yRKefPLJSSUkT4Vdu3ZNqrpYJlIExvrr5XARgAaDYVYr5Kab7u5uiouLSUpKoqCgAL1eT29v77SMbQNG3W9LSwtlZWUTSnvRaDT4wvK0Jos60g2Y9CzhcCRJGtfuqmHuyspKFEXBbDYPm6YxF3n55Zf54he/iMvlQpe4iOzTr8a2aDVGrQEU8GkDqLK9/o2/Yy9/E33CQtZcfNuUj92BBRvOiNccgMlkjAgX97Q20F/1PkrAj6Q3giQhIQWH10sS+gW56BcsZvCjf+PvayfcusXFWfnvf59j06ZNjMVs2y+1ACQW3l9Zlqd1Esgpp5wS+vf69evZsWMHubm5PPnkk3zlK1+Z/RDwTHoA4RMBqMbgm5qaWLduXUwrAcPbGkyW8PMbKSQ9kqF76KGHcDqdPPnkkxT/9no2fv1uNLqxp11ojUY2fftRPr7zYmT3IEhael54AEnSYlmRjyKHhVclTVCkKXLQO+gP5m5q45IJ2LsxZq0hbu1xyB4njrLXcNV+iK/zAH0v/5a+Vx5Ga1tI/NYzMS7MO3RwHRqzjaTjvkLA0Uv/e3/H01gMkoQuJQvz0u3oLAnokjKwpKaTlrUEzSHB5/F4h70XjUZD+vGX0PT0nSheJ2u+/gD1z/8/auuK2LJlK3l5i3nyyScjcwQHBpAP5dvBobmZUXr/wnECFoLeOgXoBYyTrC52/e53WMI8k7H1B82+AY0G1Vs1mz2ypgt1msaBAwdYtWoVWVlZIZsxHQvi0SIf4c2VJ5r2EgsPoDrSLT4+Hp1OF5O8p/E8ruoIu46ODjZu3IjFYgk9k9XV1Xi9XhISEkhJSYmo1BzreNON3W5n9+7dlJdXIOn0LDjqQrKPvwi/14fBH3yOfbKP+KQEAHrqS+l49Y9IOiMbrnk4Judw2U//xas/ODFUXe0Dzv7pi0AwXOzzumkufR9vVyNIEua8TZgyV0fsQwIGK9+m69k7QQ6gS8kGRcHf28zZn/vcmDPlw5ntIpBYpnap3n51lvV0k5iYyIoVK9i/fz8wB0LAM9kGRj2ey+Wiuro61Fg01l8wU+2T5fF4KCwsxOfzjXp+o63AH3vsMRwOB8899xxF/+87bLjiV2h0Y9+senMcm7/9KB/94gsoPg8o0P2/+4Kr49z1oNEEXflaA5JGeyg/UAeyjOx1QcCH1pJIwNGLv6cZAPPijZiXbEH2eXDtfx/3gX34e5rpe+X/gUaLPm0ZSZ+5EkNSMNyji09h4dk/wNt5gN7X/4C3uYLB7ib0C/MwLdlCwN6Dq68Lky2FtJzRQ7pZWz9Dx55/422txu8eZMNXf8FAcy0H/vtb6g8UsW3b9mFC0D0wACkpYLFMvthiYAAnQeHyxhtvcOSRRw7bZLzq4lC4OD+f5NbWaZldHOvwxXShCkCHwzFrY5JiwdDPz+12U1xcjMfjYefOncMM/3TZw6H7VdNegEmlvUxVAA4d6fb666/HLCdvtP2oDaVlWSY/Pz/kfFCnaaijv7q7u+np6aGuri7ksU9JSSEpKWnE8ZHTGQK+5ZZbuOfee1FkGfPijaw477uYExYEFwn+AJJGF/T+afwYAa9zkP1//QlKwM+qy+8KVQLHguMPCT6/34+igJ7ge2+pr8HeWIbs7EdjMBO35mj01k/yRxVAUQK0/OkGvK3VoNViXlGAPjUX2d6FvadpQtM8ZnsBO1ILmMmiCsCZWuTa7XZqa2tDE8VmXQDqdLoZDQGr/f1iMcR8LCZrIPv6+ti3bx9JSUls2bJl1GrlsQzdU089xSmnnMJrr71GySM3csTlPx/3htXH2Vhz5b2U3X9lsM5fDtDz4gOknHItpqzVKJL6ZaZF0miDhkejIAX8KAEfkk6PxpKA7OxHMpjRmKzB7SUNxrQlSMdchr+/LVhJXP8xvtYqOh67HrRaTDnrSdp9JTqLDUNqDmnn3Iq7uYK+t/6Er70WX+cBDOkrMOZsJJCSQYO9H63eQObSNaAd/r6WnHUtlb+9hv1/+xnbf/B3bJlLWf/VXzDQXMeB539L/YFCtm3bjsViprm5OXgPdHdP+LMaCfUziUa4jVZd3NPTQ21tLTqdLmJ2cSwKAw43AWi328nLy5vt04kJnZ2dlJSUkJqayubNm0d8tqdLAIbbo46ODkpKSkhPT5902stk7Zssy1RUVNDW1hbRXzWa0G00jGYXVbuakpISaig9dAEdPvorOzs75LHv7u6mvr6esrIybDZbSBBOp9dm7969fPass4Ij3OJTyDntG6QdcVTENgYleP/4ZT/WQ96/skduQnb0kH7CZSQuXjst56Ze3r7uDnqaD+Btq0Hx+9AlLsK65uiIamIAe+1eup7+CQT86BLTMS/fidZiw5a7lvgFmZSVvMxdd93F+eefH5XdnAsCMJYeQL1eP22T0L7zne9wxhlnkJubS0tLC7feeitarZYLL7wQmAMCcKY8gLIsh4aYZ2dns3bt9DwcKhM1kOHtF5YvX05ubu64oYex9v/8889z7LHHsmfPHkr/eDPrLv3xuA+NLX0Jyfnn0PPeU6R/7kZan/4/ev53L6mnfxfDoqUo/gCK3xvMAww/F50BjTEOrVaHx21H8brQLchF9jhR/F4UnxvF50ZjMJNw5BdIPOYyvB312Iv+h/tAIe76j2n93deQdEbMK3aScNyXMGWuZtEFP8NZ9zH97/wFb3MF3rYajJlrMeRuwJSazcGqIpLTs0lIiQxdJWYtI275DhxV79Dw6l/IPf4LAMSn57Hw2IvprVqFq24vzrYaVq9eTUVFRcwe6IkIwIhrOEKbgL6+Pnp6ekJjhqxWa0gMJiYmTsoIHm4C0OVyHfYhYFmWqampobGxkTVr1pCZmTnqttPpAfT7/VRVVdHY2MjatWvJyMiY9P4mIwDdbjf79u1DUZRhXsehOc2TZSQBqE5zGmpXxy3GGuKxVxv7qs+kuo0kSXg8nph8iXu9Xk4//XT2vP8+SFqSt5/JstO+NiyVx2t3YtKaDnn/fBiAir//Ek9rNXF5G0M2bzrweT10HqzFN9iNr6sRAFPOEVhyjojYTg74aHvyVjwHS0DSYF62A/3CJRgSF5Kz+Tj0JnNwokZyFjX79/PWW29FFMyN1id2LhSBxFIAxqLR/Wg0NTVx4YUX0t3dzYIFCzjyyCPZs2dPaH70rOcAqj2qplPVh4ddEhMTsdls03KccCZiIAOBAGVlZXR1dbFly5aQwRlv/+MZzNdff50dO3ZQVPQB5X/+MesuHr8T/pLdF9G37wX6S18n95Jf0PDYDXQ9dxdp5/8YY8ZKAq7BYJgYBbT6YDGIJAWFod+L1ppMYKATX3cT+uRMJEvwWsteN4rXhRLwowSc6BPTSDr2SyiSFk9TGY6yV/EcLMVZ9jrO8jeQDHFY15+IdcfnSV+yGXvFWwzs+TuexiI8zRX4cjdgWrKFbr+Pga42Mpevi7h/Vp77bfb9sojWN/5C+pHn0FVbymBzNbLXjdaahGX5TjRmG231H7FhwwZKS0vHvTbRMFkBOBSNRjNquLiiogKfzxfRjDpaI3K4CUC73X5YF4G43W4++ugj/H4/+fn5476X6VwQq0UP0ZzHeExUAKoj3RYsWMCaNWuGfYHGqqo4XACG5zhOdo5yOOGNfSWbDRPB8OYrxx3HO9deG1qgpaSkTKr9U3Dm7W3IAT+mzNUs+/x3saZljbit/pD3LyD7iUtK4OCe5+gvegltXBJHXP6LKb3P0VAUaDtYh3ugF19PMwF7D5LeiHXVkegTPineUZBxNFbQ+febg98JtoVYluejtSaRtGwDaUs+cb5otVril2yi58ODaLVarFYr7e3tVFdXYzKZIopzVI/5XPAAxur4se5yMJQnnnhizN/PugdQzamI5UUNp7u7m6KiolDYpbi4eEY8jtEaNDUXR6PRRNV+QSXakMn777/P+vXrqa54m7K//h9rL7xxzO31JgtJ286g+82/IO86j6zzf0TT326m/clbWfDZG9GnZCHpTWhMccF8QAA5EBR2cgCNyYrs6EN22/Hbe4Ki5FDIWNIZ0JisIGmQvS4UvwdJ9mHKWIEpYwUy4K7di7PqbTzNlQx++E8G9/4LjSUB285zWHTpPThKXmLgw6dx132I52AJprwtmJdu44DXQ2rmYmzJwZWNwWwlafOp9Lz7JKW//x7m3A3o4lOwrdiOKSGVtnf+SdKGE3BYE2gseZUtW7bw0UcfRXXtxyJWAnAoQ8PFTqczJAjr6uqiDherCdRzeVIJfGIPDvcq4NbWVuLj41m1alVUXoPpKIrr7u7G5XKRmJg4ZlrJRIjWvoXPEh5rpNtEJ6aMhrpvt9tNUVFRSHhPtbVXBDYbFoLiTwPsfu01+v/+d3p7e+nu7g5NCxra/mk0wmfeasw2sk/8KpnbTxp1e0d/P2ZN0Dvmlfw4m2tp+d9vQaNjw7X/L3bvM4yBvh66mxtQAj687bUoPg9aWyrxa45Bo/vE8xnwuen895249n8AkoRpyRYMi1ZgTEoLef2GsmjbyfR8+G/uvPNO/vWvf5GXl4ff7w9FQGpra3G5XKHwu9/v/1QVgUynB3A8Zl0AhveoGinBdrKET80Ir7Sb7jFtKhqNZlxD3tnZSXFx8aRycSYSMikuLmbFipU0lrxChd7I6nO+Neq2gUCAjILP0fvRf+l45RH0tgWAFsXnouvZX5B24R0YEoZUC2oO5QWqPyem4etuQnYPoo1LAllGkQ9VDXscgBQsLNHoQG8KeRA1AT+WpVuxLN2K7PfhrHoH1/49eNvr6HvlYfpe/T26hDSSdl+Bv6uRwY/+g6v6HdwH9mFetgPZnU9/VwppuSvobKpHm70BXeKbeJsrSDvxq9gyVwDQ31AWPM2s5eRu202Zz0tN5dsUFBTw7rvvRv0ZjMR0CcBwJEkiLi6OuLg4srOzkWU5VMk4Urg4ISEh6jGIcwV1Ws90zsmcCfLy8iYk6FQPYCymCIXbQLPZTGZmZkzEH0Rn3/x+P6WlpfT29g6bJTzS/mLlAQTYs2fPuIJ3stdXXaKrf60huEBLS0sjLS0NRVGw2+3ceeedPPjggyQkJGA2m9Hr9ej1egwGA1qtFo1GQ3FxMV6vFyQNCRs+w/LPXo3OOLYTQC/rQQtyIIDBoqf8t7ei+D0sv+QnGOISJvWeRsPv89FaX43f60b22PF2NoAiY8xchSVvU7DFCyDLfjxtB2h/4iYUnwutNQXzinx08akkL9/MwrxVox7DlrkMrTWZPXv2hF7T6XSkpqaGckRdLhe9vb309PTg9/spLCyMWPBOZazoRIl1Echs2rdZF4DTMQ1E7S3ldDrZsWNHRMh3pnIOxzJo4YZ5vJyg0Zho0nRFRTlLli6l/eP/UqU3sPKz3xy2jc/nw++X8fW1ojFa8DQW49UZiN98CsaUbLpeepD2J37Aoot+iT559PwhbVwS/oFOFK8b3cJEUJOCAz5krwvZ7w2JQvyeQ52gDonCQz2tNBot1rXHYV17LAGXHUfFG7jr9uLrOkj3Mz8HSYt+QQ7GvM24az/AWf4arrq9WFYdic9pR9IZ0JmtJB99MR3/vpP2/96P7av3AuDpbQdJwrYo2A199Rdvpuyxmykt/YDjjz+eV199NerrOhT1i3smV3QajYakpCSSkpJYunQpXq83ZCyHhouNRuOc9/7BJ0bW6XTOWIuE6WCi11qr1cZkjKTX66WkpAS73c727dupqamJabXqeIJNHemmjrUbLz8uVkUg7e3tAGRlZbF06dJpudcDfNKnc6Qr2tvby3HHHUd9fT0AHV09wS1D1z/830G08alozDZcvZ3EL8oe9dj2/n4sYd6/6kdvIzDQwYKCz5OyYtuU3tdQOpobcPR2AeAf6MTf34ak1WNZcSSG5KxDLa8UAh4XXS88gKvyLUDBlLsRQ+YqjMkZ5Gw+Fv04ghbAkrOWwfK36e/vJyFhuIg1m82YzWYyMjJ47bXXWLVqFS6Xa9xw8ZQ54wzMb7wBgOuYY+DZZ2NeBDKbEY45IwBjJcp6e3spLCwkMTGR/Pz8YV7F2RaA6ki3wcHBYeJ0ovufiEHXarXU1daSnZNDz/v/okZvZPmplwNBW+T1ehk4WEHzy4/iOliOpNNjXLwRy7J8kraehkYCSauj8/n7aPvL91h0yV3obUP7himo62J9YjrezgN4O+oxLDrUgFmrR2PWB3vuKUqwOajfS8DrQgn4DonCoZ+NhNYSj23rZ7FtPh3/QCeO8tdw1e/D11GPr6MeNDokoxXF7cBR+Dyu6j3EHbGbhE0nkbThOPo/fg5PUwWDjaXE56zD7+hDozOENdWWWHvJjyl95Eb27t3LaaedxnPPPTfhzyT4tmI7/3kyDPVGhIeLe3t7Q73QYlldHEvCh63PtoGcKpMRgBD0nk32c+nv72ffvn3YbLZQg+lY272xBKDaXH8iI92mWgQS3jcVYPHixdP2HPoGBtCG9Q7tJ9gSBeDaa6/lD4/+8VBT+2Dj49TdX8XT2RjMn5YDeJrL8TSVI+mMaIxmAvZeDAty6f3w3/TueQrDwiXY1uwic9vJmBMXRBxbL+tAC4os0/Dqo7gbSzBnrGTpaV+L2ftzDPTT2VQftMVaPd7WKmS3A21cEta1x6AxBMPZAb8Hb08b7X+5AcXjQGNJxLKyAF1CGikrtrAgd0XUx0xdfzyD5W9x2223RTWBx2azkZaWxuLFi8cMFycnJxMfHz85j91PfoL1kPgDsL7xBvZXX0VevFh4AGNJLFrBhOearFixgpycnFGHmM+EABwp1Bw+0i0/P39KX7yTyZnRarUcqK8nKyubrrf/hlZvZPEJF9FZ/RHNr/wRT0s1kt5IwpYzSDnyPDy9Hdj3f4i3rw1T0iISNp6I7HXS/crvaX/8u6Rf/Gu08eEFK59cb405HslgQfY6g7l+uhE8AAqgM6DV6oNiUCXgQ/Y4kQO+QzOFQdJqQW9En5JN4pFfJCH/ArydB3CUv467oQjZ0Rs6vuzsZfD9v+Msf43BrZ9lwUlX0vTo9TT94w6WX/0IsseJOSVy3JRGI7HuSz+j+Hff5a233uKcc87hH//4x4SuL8wNARjO0HBxV1cXlZWVGI3GccPFs4X6fMZ6FvDhQHhKzEQJ7ySwbNmyCBEUa7s3kn1TFIWamhoaGho44ogjJtRcfyohYK/XS1FREW63m+3bt/Puu+9Gva/Jik73oWbx5eXlmM1mGt94g/PPPx+n04kuYSELd55Fywv/j7i8DSQv2wTLNtH+zlP0vPckstuBZdWR6BIW4e9vw1nxJqkFn8d45rfpLXsDe8VbdL3xZ7re+DPGzFUkrj2azC2fwROQiTvk/WupfIP+j4NjN9ddefek3sNQAoEArfXV+NzO4LQnvRFX/T6QAxjSlhK3fDsSErLsR/Z56HntDziKXwAFjNlHYMxaiyk1k5zNx447hWooC9YWcEBv4plnnhlTAKre8XABNjRcPFK1djTVxUMx/mJ4MY3xrLMIfPRRzHMAZ4s5IQCnujpVvWoDAwPj5ppotdpgzsU0M9SgjTbSLVb7jxaDwUBDwwGysrJof+0xuve9iL+/HclgIXHH2aQddT5aYxwBWcZkTcTZVIGroRhTUtCYJ20/C9nrpvetP9P65++Sfsmv0VpG9mLqk9PxttXi7TiAMWMFEVNtJelQGGSE66AN9hQMTedw9KEEfGj0JpDk4OJaljGkZmM4+mLgYtwtlTjL38R9sDQ4sk6SCAx20f/a7xn4aCHGnA146j+i7bU/gc6ELWN4M2mNVsv6r/ycot9ez4svvsjFF1/Mn/70pwld37kmAEdCr9ezdOnSccPFE6kujiWqLVAb8x7OHsCJojaRn6g9DM+3G6mTQKxzn4fan3ARNpkq48kWgQwODvLxxx8THx9Pfn5+SBhEs69YhMRdLheXXnopVVXVSDo9KbvOY+lJX6Lyz7cDkLzlNBztdbQ882u87bUYFi1nwQVX4aj9CEX2Y914Cs6KN+l8+++knnI1tnXHsXDbaXgGeugreRV75du0v/AQHS//HlP2OpLWHItt4RJaXnwQJA1HXP1gTMRIV1szg11tAGjNNvyDXbgbi5E0wYlQxoV5KCj4vS58Djsdj18XbPxsjseyYhe6pHRSV20jNXvZpI6v0UiYMlbS1VgyZog1mi4G4dXaiqIwODhIT0/PhMPFIz0tgUPnEKsQ82xHOOaEAJyKB7C/v5/CwkKsVisFBQXjetVmOgQsyzJVVVU0NzdPeNzSWEylas5kMvHaa6+xffsOAvZe4jedhm3jSSSk5yEdykFSjxGXu47Bqj24u5sxpQRzFVOOvADF56Fvz99puu8LhyaD6EPFIGh0QY+dpEXShr8WnB8safWg1SHpDrWR0eoP/duApDv0n96ApDMd+r8hWGFstAa3kzRIejMaczwavRFQMGWswpSxClmWcR8oxFn1Dt7miuDIusFOPAMdgET/B88Qv/NckjKXjnhtNDo966+4i6IHr+WZZ57hyiuv5KGHHor62s51ATi0CGSscHF9fX1EL7SZCher+X8ulwuYuTFJ08Fk7oWJ2qjBwUEKCwsxGo2j5tvF2gMYLgDVkHNCQkJowsZU9hctbW1tlJSUkJeXF8r3U23XdE7nUPnxj3/ML++6KzilI3c9yz//HSwpwYWyvaEEjTWFznf/wWDpq2j0JlJO/DqJm08l4B5ECfjRJSwkLucINHHJeNuqUWQZr3MQr3MQSasjaevpLDryXJxdTfQWvYyj6l1a/vtrWg6N5EzeeTbG+KlNyXE5HLQ37g/O7tUZ0Cel46h8m4CjD405nvi1x6I1xSP7vch+L73vPYn9w38dKgRZgzHnCEwLsoNeP/3UbEPS6gJcDUX8/ve/54orrhhxm4m2sZIkCZvNhs1mm3C42DcwgMFmC7koFMA/MECgvDxmdnDeewAnmwOoKAqNjY1UV1ezdOlS8vLyojK2MxUC1mg0LFq1CgOwDsix2Yjr6Ijp/iezog8EApSWlnLPPfcAConbPotxyRb8Ljvd9aXoLDbiUtKDIg2IT1+K82A5zobikAAE0CcGhawhYxUaQ9ClLumNSHpTsC2M7Efx+yDgQwn4DvX/8yF7nRDwH2ob4wv++1AbGQKTHC4vacLE5yf/15jjUQLmoAj0ugkmXwcYfO8JAid+AZ1h5ORkrd7A+q/9mqLfXM1f/vIXzGZzVHkpcPgJwHCmUl0cS8JbwADzygMIE2sFo45Uy83NZfny5aPee9OVAyiZTCQDRwOSyzXpe38iC1o11NzY2Mj69etJS/ukB516/OkUgMXFxZx62mkM9PejjUsi4+Svkbn5+NDvfY5+ZLcDySAzWPQScWuPZcFnrkBnDi5k+opeBsB8qHGycdFSXHV7MVgTkGUlmBPt9+G29+O296PRmknZeS6ZR19Ky3tP4qrbi6/7ID17/sne4leIW7aNhZtPJHXZhqivvyzLtB6oweu0B2evJyxEo9MzWPg/lIAffWoO1pUFQa+fx4HP66TjsW8j23uQjHFYVhSgT81m4ertJGeOPppzIqRvPYmWF37Lgw8+OK4AnOx9NtFwMQMDoObpHwr7x7oNTPj9O9PMugCEiQ9AHy/cMd6xZqINTO6OHah+Cw2QODCA78kn4bzzxv7DrVvRl5aGVh1eALd72GajGkyTKfSh+h97LOJ4LpeLffv2odVqeeqpp9CY4llxymVodHoGervpaWvC7+in39GPxmjBkpKO0RyHJecIBivfwdXZiHlBsHK269U/IOlNpJ33Y2SPHU9TOb7elkPGJA1TzgZ0h/IDA85+FJ8brSXhUC6gcqgILvL8FVmGgB/Z70HxuZF9HvB5gtNE/J5gM2nZB34fst8baj4d7CkY/FkVmwR8h4SlD9njwG/vQR7oDB1r70/OZcHur5Cz7TPozcNXYDqjifVX3kPxb77J73//CBaLhZ/+9Kdjf3Yc3gJwKBOpLo5luDh8DrDBYIhpe6jDgWjEWiAQoKKigvb2djZu3Bjq7D/WPmOd+nLKmWeG0jSMgM9sHtFWRUO0C1qfz0dxcTEOh4OdO3eOuDiIVU/BoQQCAU4//XTeefddkDQkbTmN3FOuQBd2f9qb91P28PUAaK0pLDj1auKyP2l8LB+ajKS1JoWaJ1uW7cBV+yED+54naftZoapZn9tJwOtGDvjwuHwMHixHCfiJW30MC7adymB9EQOlr+Oofp/a4pc5YFuIdcUO0racRHLO6AUYvZ1t9HW0gKKgMVkxpGThaanG3liMJGmwLN2KMX1F0K7KAfo/+g8D7/wFFBlD+gpMuRsxpS0md/MxaHWxezb1ZguGBYupP9Aw6jaxbmQfVbj4ww+D4WK/P7Q4i2URiAgBT2DFqxZSmM3mqNoLDGW6Q8CqZzKPyOw2CeCSS8YVgLow8Qdg4JAIHMKIbRNMJsId04ZLLsF76HhqJ/60tDTeeustPB4PKfmnh0YM2ZJSsCWl4HY66Wiqx+9xYm+pxaE3YohPRhuXhKuhBNOCHBw1H6B4nViP+AwaoxmN0YxuzTHI7kHcB8vxdTVgL/4fWmsKxqw16BMzCPg8BJzBuZajodFqQatFYzQBiYcuqByaIiL7D4nBgP+Q59A/rJ1C8OJoUBQZf08zAUcf3u6DwSHkwV8CCgQ8dL32BzwD3Rjjk8jacgJGa2T7Ab3ZwhFX3kPxb67ivvvux2q1ctNNN416/vBJo+W5ylT6AE4kXJyUlDTp0VjhAnA2m6TGgukIAavN4yVJoqCgIKqk9lhGPlwuF4WFhRw75HUdMNlSvmjawNjtdj7++ONQEd1oC4PpEIC/+c1v+MEPfkgg4MeYvoLl534Xa1puaJ6w7PNR8edbGdz/EWh0mFcUkP65G4c9a32FwaIJU9YnotC69li6X3qIwdLXSNp+Vuh1vcmC3mQh4Pfj7mrE21aDpNVhzNuCvacTXepisk6/FklS6K3aw0DpGwwUvUj/3mfRp2RjXVlA+taTsC7IRKOR8LjctDVUI/t9SFod+uRMNOZ47MUv4x/oRGOMC87yNcURcDvw+bx0/vk7BPo7kAwmLMvzMSzMI3nlFpIz8qbF+x+/bAvdHXW888477Nq1a9jvp7OPabThYo/Hg9Vqjcm5OJ1OEQKOVpSpMx3Dcz4mynQKQHWkW3d3N9lEXlwFYN26cfcR7TsaqW3CiOZw0SIaP/iAqqoqVq5cSU5ODscccyyS3sSSEy8ZtrnJYiFr2WpcThf9nS247QN4elrRxqfibavB1VpLx3P3gFZHwtEXR7RtkQwWzEu3Yspdj6elCm9HHc6Kt9CY49EvWIzOtiA4E9ho+eSdKgqK6sXzuSO8eIrsh5G+FCQpWKWmMwRbKeiNwV6DEgTsvXhaKpHdg6CAp7kSd8M+JK0exe9FMphRvM7gob0uBvY+Q/zmU6l782n05jgyNx2HOfGTvBpDnC0kAu+44/8wm81cd911o34unyYP4FhMZ7g4fAzcfKoAVhkrIqK2WMnIyJhQ8/hYRT7CJysNLeGaiuQarw1MR0cHxcXF5OTkjBnqhtgKwLq6Ok486SQ62tvRmOLJOvXLZO08LWKbtg+eo/mFh1H8XkzZR2DIWoMxLW/YZyPLCgHnIBpzPMbUnNDrGr0JfXIG3u6DI56D4vXgqv8YgISNJ6JI2uCC2udhsLcDJA3GrHXkripA9nnoLX+LgbI36d3zFL3vPYkhbRmWvM3oM1aiMVrQxaegT0pHdtvp3/MUit+LPjmDuJUFyH4fss/LYOlr9L36MCgy+oVLMOdtwZy+hNzNx+APTF8ELWP7KXS/+3d+/OMf87///W/4tZjBOcCjhYv3799PU1MTzc3Nk6ouDme2R13OugCE4IVWV1Ij4ff7KS8vp6uri02bNoU+kMkwXTmATqczFF7Nz8+npqiINRs2hEIkPoC9e8fdjw8ivHijmbGRjNxINbVlxx5L+/79oVD5M888g90+SOKmk9EZRxtPJKHR6khfvIxAQKar9SCugR40RgsD5W8iuwYwr8hHaxnesFOSJCS9CfPijZhz1+Np24+npRpPYwlegwl9Sja6+NRDOYH+YJuXoe9SkkCSguPjDHo0ehMaowWtyYqk0SGjIHuDk0WC+/Dj7W7E11EfnFMsSWjjkrGXvoK3uRJNXCKGtKW46/ZiXr4T1/49KB5n8Gr5PAx+9B8SCs7H53Zy4N3/oDOaydh4NHGHWsUY45NYd+XdlP7mam659VYsFsuoOSrzRQAOZWi42OfzDZtdnJCQQEpKyrjh4k+TBxAmLkhGWqTKshzKe1u3bh3p6emj/PXITNXuhbfZWrVqFRkZGfQR9NMf8qkT+MIXJr3/0ULAiqJQW1tLfX191O872us91n0VCAS4+OKL+c9zzwEStnXHseJz16ELG2Xm6mqm/A834utrRxOXyKIzvoVx0TJ6i1/DkDx8hu9ASTD3z5S+ctjvjJlr8HU14u1twZD0SZN9vz/AQPnrKD4vccu2oY9LBEBR4pFlP363E9nnwe9xMeBxBUO4y3eSuvEz+ByDdBe9hL3qXfreexI0Wkx5m7CuOQa/vQd3Y0nwfBZvwJi2FNnnxefz0/W3m/B3N3ECCi8CUkcddNThBHZvOwECXqJ3VUyMuAVZ6GwLRh3LOZuTjNRwcVNTE3l5eRiNxohwsdFoDNm3xMTEqFJXRAiYoMFzj5I7YrfbKSwsRK/XT2hW7ljHinUO4Egj3TQaDUV797IuCq9fBG433kN5fAoQeOyxETcbyWD6TzgBwyuvhH6Wgf5rriF/06bQ6uTr3/gGaPUsOfkr45zIJ5XAiQvSSUpdSF1jKc7Sl0GSSDrmsk9mAY+GpMGYvgLjouX4eppw1X2Er73uUDsXTXB8nMEU9OIZzGhNcUgG86imRZb9BFwDhyaJBJADAXzt+/H1toIcQNLq0CUuQmtNpvt/9xPob0OfmkPCUZfQ8+IDSDojhoV5yK4B3AeC/a0kUzyK207/W39mwUlfB6MVb3czje+/gFZvJH39LuLTcjAnLGDtFXdT+tA1fOe738VqtfKFEb7w5qsAHIperx8xXNzb2xsKF4evnsPDxUMF4HxjqABU59r6fL5JtVhR9zlZu6fmXPf19YXabCmKwtv/+hfHHnvslG0yjCza/H5/qL3XRJrmT9UD+OSTT/L1b3wDn9eLPjWXpZ//Nok5n4wyk2WZmif/j97SN0GSiN90CpknfQ2t3kBn6dtIGi2mBcOnefj6O5EMZowZy4f9Ln7d8diL/kfvu38n7bRrQ6/bq94l4OzHkJqDZcjfaTQ6jHHBaxLw+4Ji0O/F53LQ7woWUJlXFGBeeSSKz41z/wc4K96i69lfglaPfkEu8ZtOQ5+SixLw46j5gJ7/3QNyAH1qLi90NUTYYtVdMN0F1nGL19Nf/CptbW3DeknOhRQbdUxleLg4EAiE8qPr6upCE4ySk5NJSUkZtRn1bNu4WReAY42Ca2lpoaysLOT2j8UXVyxDwOGr07Vr15KR8cnKbUqzLd3ucXNpRsyZee45vIDdZOJAQgL+F15gxxFHhEJv77zzDj3dPcSvOQpjfGLUp6Mo0FbxEX7nALJzANPijWOOghvhZIPhX78HXWIalkPVb5/sXwkZ7aGPthzwEfA4gxXFSvBzk/1ePAfLCDh6g4nMRgu6hDQkUxyyz0/n0z9D8Tox5W4kfud5eA4WIzt6MWavQ2uOx5S9Dndd0BuryH40cYnIjj46//cAifnnsPDI8+nfvw9vVyNNH72KRqcnbc0OErOWsebyX1H+8HVc+fWvYzKZOPvss0d8L3OV2VhBjxUubm5upqKigri4uJAY9Pl8MZ8C8sADD3DnnXfS1tbGhg0buO+++9i+ffuo2//973/n5ptvprKyMibHnwjhOdHhIdetW7dOOu9qsnbPbrezb9++UIsZtf2FOu4wVotpjUYTEQVyOp18/PHHGAyGCTfNn+xUkc7OTo4//ngaGhqQDGYW7f4KOcech0bzyfPcUfQa9U//GsXnxrBoORlnXId5YW5Y65BOtPGpwxbHA5XvAcGKX2mEJa4paw2SyYqzfl/oNXtjGb7ug2hMVqwrC8Y8d61Oj/ZQDrPbHiy6A7UzgxnJkkD8xlMwZq7B39+Gp6kcd0MRPc/fAwEfg0Uv4muvBa0Oy8p8jJmrkF793YSvYSxYsHE3/cWvcPPNN/Pwww9H/G4uzDIfqQhEq9WOWl3c3NyMLMsRC16LxRJaGE93m6uxbN+sC0AYXgQSCASorKwMnXCseudB7ELAajWa3W4fcXU63e1mRjNyLS0tlD377IitcS655BLQaFhy6sjhy9GQ/T5cHQ24qt8BFJKOvnTC5+tuKg/2y1q8cdRtJCQUgjmBaiuEYNdnkLQG/IO9eJrKkD3BHD6tNRl9ag6SRoPiD84Z7nr6pyAHiDviM8RvOgXF78NVswckDYasdegS09EvWAxvSoAEXheWNcfhrHob2TVI33v/wNvdRO7nb0SWt9FX+zGejgO0Fr9Ne9keFqzYxKqv/ILKh7/NZV/6MlarlRNPPDH0HoQAHJ/wcDEEn6Xe3l66u7uprKzE4/Hw17/+lY6ODvx+/5TP+W9/+xvXX389Dz30EDt27ODuu+/mpJNOoqqqakTb8u6773LhhRdyxx13TPqY4UwmBOz3+6mtraWuro5Vq1aRlZU1pftqMgtSNd8wOzt7xAV4LG1c+DVSIyoZGRmsXLlywp99tMI0/HpeddVVPPanx0FRsK7IZ8U538YQ94lN9wx0U/7IjXg6G9CYrCzYfRULtp5KILwZtmMA2e3AlD7cw+fprEfS6TGHVQQPxbAwD8/BMmRZxj/QhauxBEmjJWnjyWi041+DQMCPz2lH8XsACY0xDkmnR6sz4Hf24e1qAhRMmauxrj0WRZZpfex6el58EFDQJWdiXrodc+YqUpZvRn71d4TL2PA7eDpNXPLyzWiMcbzwwgvDfjcX7Fc0bWCGVhfb7Xa6u7vp7OykpqaG5uZmXnrpJXp6eqa1ZdF4tm92r+Qhwj2ATqeT999/n4GBAQoKCmIq/tRjybI8pYs+ODjIe+8FV3QFBQUjhiam5AGMgqFfKoqiUFVVRXl5ORs3bmTJkiURBq6yspLm5hbilmzBkjx236GhD3dXXQl+1yABezeGjFUY0ifY7T3gx9tehy4+FZ0lcdivFRRkrxufsw/fQBd+Rx+KzxtsGm204utuxl7yEq7aD1F8HnRJGcStORZj5qpDOYTgG+ii858/ASDx6EuwbT8bxech4HXi62xAl5SBRqNBl7QIrSUBfUoOGlMcIGEvfom0c28O/eys3kPtI99BdttJXZ3Pol3nYs5ciYJEe8WHtBS9w6ITL0fSmzjn3PN46623Ij4HIQAnhl6vZ+HChaxevZqCggIWLVpEdnY2dXV1fPDBB6Snp3PRRReNmhc0Hr/61a/46le/ype+9CXWrFnDQw89hMVi4ZFHHhlx+3vuuYeTTz6Z7373u1N5W1Oivb2d5uZmduzYQXZ29pTvqYl4AFVbUlxczLp160YVYbG0caqYrK+vp7CwkFWrVrF69epJ3asTuVavvPIKaWlpPPbYY+gSFrLssjtYd+ntEeKv9pn72HfnRXi6GrGuPZblVz/Kgq2nDtuXvWU/AMaFiyNedzSUgAKGBYuRpNGFg3nxZlBk7GWvMVD5NigKCUecANqx/TSKAl6XE6+9Pyj+JAltXCKSPphW4ek+iLfrIGg0GBcuxpC4CA0SjtJX0ZqC3ifT0h1YN5xM6uYTSV25FUmjYdP3/oGaoa0Azybn4fF4URSm9btNo5EwZ62mr79/2D07k0UgozHRNjCSJBEfH8/ixYvZtGkTRx99NKtWrcJkMuFwODjppJPIz8/nJz/5SczPdTzbN+seQEmSQh7AtrY2SktLyczMnNTKLxpU5T7ZZo5qWHq8SuTpFoCqB1BRFPx+P0VFRbhcLvLz80fMKTj33HMBWHzK5RM6jiIHcLbX49r/PigKiUdeOOFzdbdUovi9mHPXR7we8LmCLV4C/tDwdElnQKM3Bt3j+9/H39cGioKkN2FYsBhjxkoUnxv/QBegoLMtwF7+Gv1v/QVJbyT55KsxZa/F39uKxpJA/6vBeb6WVUcGBaWkRUHGmLUGe8lLgAKyj749T5N27q20PXkriseFt30/dY98i6xzfoA1ayUpK7chL99MX10xrpYaHD2dxB2xG0fxC5x+xhm89OKLbN++fU4YqLGYiwIwHHUU2he/+EUgKIQuv/xyXnrppUk9T16vl48++iiifY9Go2H37t2hRdxQ3nvvPa6//vrJvYEp0tfXR3NzMzqdbsxWJxMlWns0kZFusbZxvb299Pb2sn37dhIShheYRUs0HsDBwUEKCgqoqdmPpNOTetQFLDnxSxHh3p6qvex/8mfIbjv6lGzSz7iO+OzVw/alLsM9va1oLQnDiuucjaVIGu0w+zeU+A2foe+tx+h9/59YVuzCsngjOmvKmO42n9cTrNz1uoMpMpIWnTURNDqUgA9vex1KwBfMPVy4GI1Gh2+wk8GSV4Mzfhctw91QiHFhLunbTkaSNAQtpIzVlshRP30x4nh6Wcbr9REIyPj9HjQa6VDOuzbi2k2VpDW7cNTu5a677uKGG24IvT7b9kt1Hk2lBY5Wq2Xr1q1s3LiRv/71r7z99ttUVFTQ0DB6/8PJEI3tm3UBCMEH1uVyUVpayrp16yY0RHyihA9bn8iHGD7SLZrGqzPhAYRPxkDFxcWxc+fOEb8wmpubqdm/H3POOmzpeRM6TnttKX63k0BfK/rUXMx5WyZ2ooqMt60GrTUJXcJCAl7nJ6IPJdTORaMzIumN+PvbGax6G9k1AApBb93CPPQLFiMpAXy9rSg+DxpjHIbULDr/fRfO6nfRxCWy8OwfoEvMwNfTFGwRY7DgaSpFY01Co9WjMcaFjKkpdyP2wufRJWXi723BVf0eC076Omln/5D2f/wIxe8h4HbQ+Ofvk3bK1aSsPxaNRkvysk0oSzbQd6AUZ0s1cet24yh5id2f+QxvvfkmCxcuFB7AKRIIBEKrY5vNxtFHH83RRx89qX11dXURCASGddtPS0sbNb+vra0tpt35o7kfFEWhoaGBmpoaUlKCvTJj2QA7Gg/gREe6xcrGuVwuGhsbkWWZI488ctL9I1XGC7n/4Ac/4Fe//nUoJSXvrOswxKfg8/mC78nrpOqPP8TZXIWkN5J6/JdZUPB5NGNVDfv9BBz9w8K/7vZ6UBR0qVlodGO/L50lEa0tDX9vG/qkdOKy1iAr8ojCSpb9+D0eQDmUEqOARofOmgSSBtk1iLerARQFrTUZQ3ImEjBQ9hr+vlZACvYBtC3EXvoygYFOdBIokkJc/OjFNhqNBkmS0Ot1IaEdFIPBymCt9hNBOBUzuGjLbpqee4A//vGPwwTgbNpX9X6PRQ9Eu90OwIoVK9i5c+eU9zeUaGzfrAtAt9tNZWUlgUCAo446atorYtQvv4nkrqhVeH6/n4KCAiyW0dqnfMJ0TxxRH4L3339/3DFQ5557LigKOSd+aULHUBSFwaZqPLUfgiKTkD/OFJMR8LTtR/a4MGeuxtffSUj06Y1o9CYkvRFFkfE0VeBprjwUwtCgs6VhSF+OzrYQjVaLr7eVgLMftDoMqdloLYk0P/LNYHg3JZv0C38KWiO+/jZQZHTJOfS9+RiKz4Mt//xDszfTggJQUTBmrUFjsqIx26C3GYC2f/yYnMt+hXLWTXQ8/TMUnxspYRFt//4lnq6DLDruomDyu0ZD0pL1JOatZ6CxHEmjZbDweY466miKi4uEAJwi4VXAE213cjgSPtlo69at2O122traYnqM8QSg2mN12bJlLF68OKp7OBY2rru7OzTLXavVTln8wegC8MMPP+TU005jcGAArTWFnNO+Qdr6o0K/DwRkGl9+lPa3/wGyH8vyHWSedi36+MRxm57YW2uD83EX5ES8PljzAUgSlsUbxj1vn70bw4JcXP1txOVtDr6HET4Hr9uJIsvB0KwnWO0r6Yxo4xIACV9PMwF7T9COJmeiNcURcPYxUPQCBAJojBb0KdnoExZiTk7HkbsRV2MpcbaJeF2lUAFneFRNlv8/e+8dH8dd5/8/p2zXqndbluQi9xJ3O9VphBRIAmkEktAPDtI4CEeAL+UCJJQLJcDBhZJASEgnhYT0Zsd2LMlVtiTL6r3savtO+/0xO6tVl2y5cD9eeThOpNmZ2dnZ97w+7/J66aiqhmGoid+LSVWM6UC2OXAUzKW17fCwn5/s+DWTTiSngtXlSX8S2O12cnJykpOCxxtWiWmqBHBgYIBt27bhcrnYuHHjlMgfHN8MoJUtAFi8eDEVFRXjBuxgMEhlVTWOogqy5y4fc5vx0N14ECUcQOltRMooxLPk7KmeoDnIEQsTa69FdKYhpeUi2J1Inizk9DxTQ1CA8MG38W/7K9Gm3YCOLa+MtBUX4Fl0BvbcEvRYkGhHHVpkECktG9esReBw0fTT61B6mnDMWcGsj/8UZCdaxI8RCyOn5yOIEpH6HSDbcSRW5faCuYkJPAPJ6cZevAjV34kttxQQiHfUEmo9hHf+GvIv+xJIMvpgJ47SFQy88xeaH/sBSiyGppmr3kBnA+GuRkRnGp6lWwCDm2666V8E8BgxkzIwubm5SJJEV1fXsJ93dXWNW2koLCwctf3xQiAQYOvWrSiKwumnn05WVtZxEatPbRlJha7r7Nu3j0OHDrF69eope6pb+zzaGGfFsMrKSioqKoYpKBwrRhLAeDzOli1bOPOsswgEw2SuvYy1X3mQwpVDWeXB5oNU3n0tXW8+jOTNYfZH/oveuu3su/cjnP2PP6JqOtoEvePRnhYEmxNbxlBlSBnsMSVVMguRHBM/5HUlgjLQgWO2KRvm3/EEBsaw7J+ixImFg6ZlJsIQ+bO7kDyZYBjEOmrRgv0INgeOogVI7nTC9dsZrHoedB05qwh78SLcxRW4cwpxOOykzV+LFujB13p4jDObOkRRRJZlHA47DocDWZYwDIN4XCUajSVKx9qU++8zKtZh6NowQeiTHb80TUtyiGNFKBRKXKfjk4ebSuw76U8CSZIoLy/HMIwT4tFrHXOyY1kB6r333mPu3LksT5FTmQpmUiIhFVa/X1ubmbWarBRtZv90Zp370Wkfy994gFjLXjB00td+YOKNDd30642F0WMhDDWO6utAjwziKKpATs9FcqUjyHa0YD+B6hfwb3+CeG8zot2No2QpaSsvwj13DXJaNoahEeusN3v5ZDvOovk4smeh+Ltp+ck1GNEAnuUXUHjtf5mrYSWKFuw3yaY3h+D+19ACvbgXbEQL9JuN0WnZyRW1INlxlCxFDw3gqtiE1cnT/bd7APAu2kzexbeAIBFr3I139WWEDr1D04N3MFD3Hl3b/8ZgzVYMJYq3bDmLrrgZR/FCKquqOHz42ALp8cTJDqBTgUUAw+HwMa+O7XY7a9as4ZVUfUxd55VXXmHTpk1jvmbTpk3Dtj9WjEeo2traePfddykqKmLt2rVJqZPpWGNOFamtLxYikQjbt29P9sNZpeep4mhjnKZp7Nu3j4aGBtauXUtJScmMLphTCeBFF11Eeno627Ztw5ZbyqJ/+xmLr7w5aYGpKTH2/e4ODvzmFvRYmKzNV1Pxhf+l6aGv48R0V7pv+yP84Fc3m9vrBqqqoWk6ukVkDFCDfdgy84dlCv373gDANUn2zzB0Yt1muTZt2bkINgeh2m0Ygrl/XdeJRULoShwEEQQBPWaWD0VnGpIrHSMWJtpag6HEkDyZOArnYygxBrc/gdJrklN74XycRQvwFs/Fk56B3W5mWzMq1oMo0bPvrXHPcfj5Tr6NIJj3nM1mw+m0Y7fbEUUBTdOIxeLEYqbo9ESfedG6iwFh2DT+ye6xnmkf4OMpdD+V2HfSS8Aw1Osykxd3Iky2wrYCVH9/P2vXrk3KVUz3GDNNAC23EZvNxqZNm3jttdcmXE3F43Fef+MNbLklFCwd+2E3NgT8Xc1okQBKxyFETxbe1ZeO3szQMVTFtINLyLUkLdokmXhnPaLdhaPYVL6Pdx0m2rQHPR5JEjJH4XzkzELzNaIMho4y0IYWHABRwpY9C1taNgChhvfofuw7AGSc+TGyN1+DrsXRVQXV321un1OCocYJ7v6Hadh+4ecJ73kJQU7oiCW/bAau8tX433gAPRZG8uahBXrQ/F34dr9M5srzyVh2DoYap/fF+whUPkvGmR9l8N1H6Xnuv82JuWVnkFOyAMMwSx9zLvkCdfffys0338yWLVvIyMg45cjWPxMBnCmbpNtvv50bb7yRtWvXsn79eu69915CoRAf/7jZEnHDDTcwa9as5IPmlltu4eyzz+bHP/4xX/rSl475+COhaRo1NTV0dXWN6Wx0vDKAMFTCskqvBQUFLFmy5KjuiaOJcdFolKoqU+tu06ZNSRHpmbRvEwSBw4cPs3btWnp6epI/V3oaOfjLzyetJEFIOhE5S1cy+4O348jI45XvXjyq5HvZQANfT1wjAzB0w/xjGET72zFUZZj7hxoNY2hxpPQ8ZE/2hOcb6z6CoSnI6XnI7nRsuaXEuxqQRIl4NJKw2zQH5KxFNghI7nQEmxPV32XGP8Hs65PSsgjVbUfpbgAD5IwC5Oxi3LmzcI+h/2pzpeEoqiDYUAncNMVrPKXNkjCHRYboxhN3XkgW0IiL677x18TvJSRJTBIiV1YeclYh+/btT77uZMevox0eHQsnwupysth3ShBA64Kqqjqjjc/jYaISsEWyZFlm8+bNR92TMtMlYCtgp7qNwMTj+DfddBOGrlN01rXTPp6/6QCx9kOga3hXvR/B+tLpmunVq+tDpE+UECST9JmBFVRfJ1qgD0fJUiKH3yPecwRDU00T8pzZOIoXmj14siMpc6AF+1F8XaCrSJ5Ms3E5sb+Bdx/F9+YDCLKd3PffjGfx2eiGhq7E0QJ9GJqCLa8UQRSJdzajdDdgyytFkmzoSgTZa2VKzeBiGDpyQkcw1rIPz4oLGHznIfNav3o/mSvPB8C7bAtqJIDvjT/if+tPZJ7/bwTe/SuBnU+RnpOHVLYQK5GeXbqQ9KXnMLj3Fe666y4uu+yypPDn0XpFzjROdgCdClJLwDNBAK+55hp6enr45je/SWdnJ6tWreKFF15INkc3NzcPuyabN2/moYce4utf//qME8BQKER1dTWSJHH66aeP6aJxPAmgqqq0trZy+PBhFi9ezOzZoy3LprPP6cS4gYEBqqqqyMvLY8mSJcMepDMVLzVN42tf+xrb3n0XEEC2IwgS6RuuBMNAjwbRYyH0WBgt4ifeegBn2Srmfex7yX1M9lAUAEE0dUQ1XSfS3YQgSthzZ6PrpgyUf/c/wABXycROULH+NvRY2OzLyyhAEAScJcuJd9Tir3sP56xFIEpIdqcpj6WaWUDJk4kgysQ66zHiEQTZbrayCCT9fQWbw7TezCxEkB04U6RtRsI9dzUD7zxCPBLC7pqMlBwbUX/tzguxnqoLifDOdy/j7G//PdE/qCZKrCYhTCtfha/y7zQ0NDB37tyTPgTyz5QBhMlj3ynxJLCaSY+ncHIqxlu5dnd3s3XrVrKzs1m3bt0xNSTPVEBL7ZVZuHDhsNX6RIr3mqbx1NNPI2cUMGvthWNuMx78Pe1owQGizXsQHB7S11+BrkTNwBmPmBO8QkKyxeFBtLvMDJswdDtFWvaBIBBrPUCssw5BsuEoriBt5ftwzV2L7M01p3IlGUOJEu86jNLfhiBJOArmYc+enSR/XX+7G98bDyC60im87nukLT7bFCqIRcxzigaQvDlIrnR0JY7/3b+CoZN94edRBtrNVXBWkSmHYH3ZDMOURpi9GKWvhbSV70d0mmTDiAboeul/CXU1Em49iKN4IRmnfwQE8L38a+Zc+x1suSW0PvdLap/6efI9CwLMvezfEZ1e7v/d71i5ciVer5euri7effdd3n33Xerq6ujr6zth9/pI/DMRwHA4PGMr5C984Qs0NTURi8XYvn07GzZsSP7u9ddf5w9/+MOw7a+66ioOHTo0I8e27rnOzk62bdtGdnY269evH9dC7XjEQqtvaf/+/TQ3N7N+/fpjIn8wvRjX0tLCe++9x7x581i2bNmoLMpMxMs//elPZGZmsW3bNux5Zcz/5E/I2XwNhhJBkGzknHENmadfR+aZHyP7vE+Rd+mXQBBRA73Djn32N54fRXHeco/dLyow5P4hSTKiKKDrKno8jOTJxJZVNC5dUkMD5rCGKOEomAuY8d69bAsAgarnEO1OZLsLJdBnkj9RQvZmg64RbTuAEY8gutJxFC0g2rqfwR1PYKhx5PQ8HLOXkFa2AkdWIYIAkXBw3GuXsXAT6Crd+7ZO9XJPikgkgn/Qj2/Qz8CgjwF/Pz5/HyM9XZyALEvY7TacTgc2mwwIqKpK9grzWtx2220MDg6esCrheJjJDOBMxreJMFHsOyUygCeDAKYeyzAM6uvraWxsHGXpdrSYiYCm6zr79++np6dnzFL0RGWT22+/HV3TKNx85Zi/nwjdh3YR62kETSFtxYWJMokAooggy2apdpxVizrYS7SxGm2wG8DM5BXMxZY9G0Qx6QMMmOVeXxdasM8sX2QWIntzh72v1t9/EaX7CHL2LIquvQvZa5bL9GgEQ9NQB3sR7C5smUVg6GixCNHmvYiuDJyzFhOuexcwVfZJbYI3DESbA+eclQSrXyByeDvuRWcRrH4eRBuBqudxzl+L3ZtLWm4x8rwViKLAwJt/4sj9X2T+rX+i/fn76N/5DHt6W1l203cRZTuyw0nBOdfT8cKv+dSnPsVjjz1GWVkZqqoOc7tQFCVpDZSTk4PL5TohK9t/FgIoiiKhUOi42ySdCOi6Tk1NDW1tbVOSubKE8WdSVDwYDCYzLKmWbseCqcQ46713dnayZs0asrPHLoceSwm4s7OTs846i+bmZgSHm4LzP0bRpsuRZQl3Rg59bz5IrKOWeF8bzvxSYMg7V3B4UH2dDHS2INkdyHYn7rR0VnzjeSq/ezEi8Gz2XL7+778Y89jxcMB0/ygckn/xV5vZP8esIc1AI/nvRAVCjRHvbwcEnMUV5nvXzQEJe1YxYlo28fZDCKJM3N8NGAiSDSktCzXQhzrQYVpsZhYiutLx73jKVC2Q7dhySnDkzcGZPTRBryCgxqKQNnYW0F1YjuTNxVe7ndnrLpjytR8c9CeEos1/MAyExB/RAPEoPlJraljXdfRIAEG289Zbb1FdXY2u6zidTjo6OkZ5iJ8ITFc+biLMVIvLseCUIIBgNj6P5Qd8PJBKAC1Lt1AoxMaNG2fsgXOsBDAajVJdXY1hGGzevHnMbMFEx7j/d79H8mRRcvrlUzqermn01FXha65FU2NED+9EkB2kb7ra9JOcgPQZhkG8u4F4+yG0kA9BlJDT87DPWozsyQRRQrQ5hmUItbAfdaADQ1MQXenYc2YhinLyIaBpcVp/eRNGJICjZBmFV33LJI+AGg9jYKAOdoEA9pwSszE6HiOw43GMeJj0s027uuT5ODxompJ60oCArWgBgsNDtH4H2Rd9kdC+l80Mp64TfO9vzL3uW8mXFJ99HYam4HvnYerv/SgVdzxKz1slDLzzCFU/+xzLPnkPkieD4o2X0bfrBf7x0ks0NTVRWlqKLMvk5eWRl5eX9IDs6+ujr6+Pw4cPJ6fhs7OzycrKOm6TYac6AbSGwWZqCvhUQF9fH/39/eOKtI/EsYrVj0RnZyd79+5FkiQWLlw4I+QPJo9xsViM6upqNE1j8+bNE7ZAHG28/OQnP8mfH/oLGAbeRacz7/JbweZMDiDYcgqR0vNQ/V2Em/clCaDlneuZt5bg/teI1L1L2tJzUGMRBmNmj/LCWx/CnZYxIQkPdyTcPwrKANB1Ay3kQ3R6cOaP1FwVTLJk6MS6G8HQseeVgiAmdFExKyuijKNgPpGGnUR7W5FsNgSbE8mVTrz7CHo0ZLbS5JYS6zpMbO9LpmaqNxdbTgnuorlItuHESJBMYejxIAgCrrJVRBoqhy084tE40XgE3aR3YOgIGMSiBoIOgsGofskRbxlDAF0QMAQBBIE4kHp2sZT/jocDtL79JP7Du4j3NCcnnUW7nTPOOIN9+/ahKEpStigtLS25iD4RPdfHowR8MnHKEMATmQG0egAHBwepqqoiLS1tRlX3rWNYsgvTXcX7fD6qqqrIyclh6dKl4z4Exls1f+9730NV4uSffs2EN6umKHQd3EmgoxFNjSUk+iS0cAA0Bfey85C9OaSuXFNhqHGirftRuhvR4xFEhxvH7CVmj4o7Azk91yR+Ka811DhKfxt6NIgg23HklyM5h1ZBhgCqr4vW//030BQ8S88l95JbERPkUVOioOvooQEMJYYte5ZpeWTooKuE67aBZCNzo+l8okcDCHbzwSNJNtTEPWYYurlKlWQcsxYR66xDcnpwzVtP+NDbiN58IoffI+bvxZEx1KQ/69wb0NU4g9ufoPaeq6m440nsuSV0P/czdt/3eeZd+3XSSxZRfsVtHPrtbbzvfe8bJThsSR55PB7mzJmDpmn4fD76+vqor68nGo2SkZFBTk4OOTk5M9oncqoTQCsGzGQP4MlGXl4emzZtmvJ1P1qx+pHQdZ26ujpaWlpYsWIFhw4dmtG+5IlIm9/vp7Kykuzs7DFLviMx3Qzgc889x/XXf5RoNIKcVUz55beRXro00SPGMPkUV8lSwoffQwv5iHY3JUkgQO55nyC4/3VirfvIO/0qVFVBi4bR1ThKNII/GkEQRGSnE7cnfdT3MNbfOcz9I7D/dQAchaP9gMGMhLGeJgw1jpSWjWBzJsmfIErJKV/X/HVEDu8gXPM6GesuR5BtRNtqQNfMyd/sWQSqnseIhREkm5n1KyjDmTV2dlmyOVA1hXg8lpz+Tb6HeAwDcJefRnDvy7TXVuIpKEtm8QQDJvr0DMH6M0TyBEQEQBYlPCO+w1vu+gdP3XkhmUA/sOVT/03Hw3cTaTuE4uswK04JvVYQuPLKK5ItGjabDa/XS3l5OfF4nP7+fvr7+9m/fz+apo2qqsw0ZrIE/C8CmIBlB3ciM4ADAwPU1tZOaul2tEgd0pjODdPW1saBAwdYsGABpaWlE57XeAH4nnt+iOhIo2zL6OEPJRal+8B2At0t6Jpikj5Jxp5VjCO3hHg0zOBT3wdRJvOsj415XC3sJ9q8J5HBU5G8ubhLVyJnz0Ib7EYL+7FlFyFIqZkGA9XfjTrYAwjIGflm0/OIfUeadtP9yDcByDj9I2Sf8ZHk73RNwdBUdCWGFvIhuTNMaRdAV+KE63eg+btwzTd7HPTIIIaqYMsaKumLsowOGKqCGg2a4q2zlxJt2EWs+wjpZ1xPuHYrRiwIhkHTI9+m4jNDfX4AJRd+ihY1zuCuZ6m950oqvvIEjuwi2v76XeofuJPiiz5LycZL8C7aTHvN2zz00EN85CMfYTxIkpQke2D2hliBrbGxMfl7a5jkWBYqpzoBtO5nwzCIxWL/JwjgdHXDxpJsmS7i8TjV1dXE43E2btxIWloa9fX1J4QAWjFsOqLSU80A+v1+zjnnHGpqDiLIdvLPup6yC25AVRV0XcfhsKMowzNd6fNOI7j/dfRYiHDz/mEEUPZkgSCg9rWa/y/bkNNMQWRVMbVMdTWOEgnjj4QRBBGb04UrLR1dVdEifhyFQ97o8YEOBJsD5+zRlnEAcV+nufi1OZHTE4NpgmiSPwBBMG0z560H8X+I1G0n/bRLiHc3AgZyRj5qcIDw9sfMrF9ikM1dPB9JHjuza+gg2OwQhUgwgOYxErlIk9yRyOJ5ylaBZCNw6D3Sc0uH70McnsUb+scgPT1z0s8tFboSZ/XFn2egZhuxriPo/3ub+QvJjmhzosdCpnHBnDm8/PLLw1omUodA7HY7hYWFFBYWYhgGwWCQ/v5+uru7qaurw+l0DquqzARxm+kM4MmOb6cEAYQTlwHUdZ1AIEAkEuG0006bVEfvaJHqODKVG8+ymmtvbx9TGmIsjLVqvv/++4lGI+RsuALJZgaEeDhI54HthHvb0a3VpmzHnlOCu3AunnzTbN7XfgRloB09EsC1YGNK9s+E0tdCtLVmqGcvexb2ogoziAJgoIUHEZ1p7PjRlaQDbcC5t/wFpb8dQ40jOtOw58xGlEaTGN+OJxl47XcIso2ci75I2pJzkr8zDB1diZnex/4us9fFkl1IZP8CVc+DIJB70S3J8wXMMkvymg31H1orTFfZafjffJDwgTfJOudGnHOWE23eg332MuKt+/A37iGjbLiPZ8nFn6cpITdTe8+VLLrjcco/+TOaHv4mbc/+nGhPCwuuuJWqw5V88eabJySAI+F2u3G73cyePRtd1/H5fEkyeODAAdLT05OrXK/XO+XFi1VePZUJoDUFGA6HAf5P9ABOF8faE+3z+aiuriYzM5PVq1cn2wmmI4A/FYzc39HEMAtTyQB+9atf5ac/+xmGruOeu5qKq76Mw5tDPB5HFAXsdvuYXSoFSzbR/sy9aJEAYmiAaHczzvwhxw7Jm4M62EM8NIA9GctAttmREzFUUWJo0QiGGiceCRGPhFB9XaDrOBLxJVC/E0gVnB8ONTJoLoBFEVvuHEBAkCRANBmYYWAopk2maHdiyy5G6W9D6W81hz+yZxOuecPsi5Nk5OzZOAvn4cwqQNM1VD3lszWS/zKnlhFAlMx962NcZwFEhxNH8SLCTXtQz7k6SfFEBNLTh3oHo9EYDodjWlIwwZ422t55glDTfpT+1sQ0s4DoSMO7cBNZS06n461HUXqbsNns3HffL7j22tEJjPHilyAIeL1evF4vpaWlyZ7r/v5+amtricViZGZmJgnh0VZV/pUBPE6wGp+PJ6y+ung8TnFx8XEjfzBad2siWAbssViMTZs2TdltZCwh1ju++lUEm5PizZfT9O4LhAe6EzpSINidOHJm4ymejyu7cNgXQFdV1PAgg+/8BQSBrLNvAAQMXSPWVkO8qyG5cnUUL8ReOD/Zk4coIYimXRuGTsPvvpCc9JoL7PvpdSz86I+w55Uiu8ZuQu565seED7yO6PKSf8XXcZUsAQN0Q0cQRLRYBBDQBrvA0LHllIF1jdU4ir+beGcdctYsxITcgTrYCwLYsmelXjTzL0lGdHkx4hHAwJZbQrRlLwDpm68j2rTbPJYk0/HUj8m49Y+jzrn0A7dSP9BJrHkPB793OZ75a5lz9bdpf/E++t59gmhvM7mnf5ie1x7gE5/4BL/73e+m9LmmQhTFZOZv/vz5xGKxZE9ZS0sLgiAkf5+TkzNhf5f1gD2VCWBq/x+cXJukk4mjJYAtLS0cPHhwzOzbTGuTiqKYjNmpGcfpxLDUfY13btu3b+eSSy8lGAggeXMpvewLFCw7PSkqLMtSYnJ0bDjTs0x90GgAhKJEL+Cc5No2bcnZ+N99DP/OZ8g754Yx92GzObAl+uqUeBQtFkEd7DZLuLKLWCRMtKMeQZJxzxntuKRrceKJLKMttwxRkkGUzEVogvzp8UgiXWdqqdoLK1B6m1GjQWzeXIJVz5nevp5MbLmlOAvnIsg2NE1NZvEmgiDJGHoMTTAQRDFJUs1SrQ1JFnHPW83Am3/CI0nYx5CNsTj6ZNxJ13W69r5JX/VrRDrr0QYTeoyijC0jn6xlZzPnHJPg1T55L81P/QQwuPTSS3nwwQfHJVlTXcCm9lzDUFWlr6+PhoYGZFk+qqrKTA6BhEIhZs2aNfmGxxGnDAE8Hur3qejv72f37t3k5OQMW80cL0yVAAYCASorK/F6vWzcuHFazf8jZWAefPBBgoEAzrLTaN7xormNw40jqwjPrAW4MscnvIHedrRAP1qgD2fpCqS0bMJ176L0mas1yZOJa+4abLllCQ0sQJRT9AF1tNAAosM9aszfAzhnLRxzVQzQ9sdbiXfWI2cVU3jNf2HLyKf27kuTGkV+YOUtD6NFg+ixMHJmAWKi5wZDB03Dv+2voGtkn/+Z5H61iB9Bsg07rvXfBpiG5c40dDWOY9YSgvteQVeiOGctxFY4H6XrMO7lFxLe8yJdO56lYP1wMWzdMMzSkShhz5lNqH4nh++7yVTbX3E+gT0vE/f3ImUW8NjjT/C9731v0gnQyeBwOCguLqa4uDiZze7r60s2RXu93iQZTE9PHxYsZ9LH8nghVQPQ6XTOWLA9mTiaTMN0F8SWuHR3dzerV68e09VjpqssFmkbHByksrKSjIyMYRnH6WCsxWw8Huf8889nx46dIMlkb7icBZd8FjHRLqQoKna7bUr3iGv2EoKHtuJasBEt0Ee0pxlnbgkAWWdeh3/740Rba6Z0rja7E9nuJBgaQM4sQpAkUzPVMLDlzkloAepDfcuaYpZwdQ05qwjJ6WbX3Zdh5Rp1YO6tj5jsShQBES3Yj2vBBkL7Xibw3t9wzVluDrPlzMZZNA9bQg1hmMaMkPq/wjBGKACyw42ixDBUFfc408AZizYz8Pof6dz7NnM2Xjyl62EhHvLT8taTDDZUEe9pwoibWXzB7sJdupziM64id8nG5PYt256l4+Xfo0cDFBQU8OKLLzJ37twJj3G0FYzJqiperzdJCNPTR/d6Huvxx8K/MoAJWCWP45EBtHT06urqWLhwISUlJdTX1xOLxSZ/8TFisr6Wrq4u9uzZQ1lZGfPnz5/2g2Jk2eQrX/kKAHL2bESnh8zFm3FnT044dE1DCfnwvfMQYOAoXcnge88ABnJmEY6iBUP9KlbZQhj+JVADvaBrSO7Msc91rJKIptL2yxvRw34cs5dQePV3EG1ODt596bCm4wzA0DW0QG/C6m2IyOpqHE3XiDVVIzrScJWvNn9h6KbDx1svsueNP9KAzOV3PIWuq5iRcui6iTYHztKVBHe/QOjQVrzLziVj3ZX0PnMPam8TotNL3+t/HEUA+ypfRAv1k7fmfcy78kv0HXqP5pcfINp+iGh7LYLdhdLTiOjOAEPnfe97H7t3757085gqRFEkIyODjIwM5s6dO6wpeu/evei6Piw7mKofeapipA/wqeyrPB1Md8hhOmQtEolQVVWFIAjjKgbA8SkBh0Ihtm/fzty5c5k7d+5Rf14jF7P33HMP3/r2t9E1DefsJSz48H+Qll+CYZjEUNcNHA77uPfyyEuduWANg9Uv4M4rIRDsJ9y0D2euWQaWZScIkllqnSLilvtHzmwku4tYWw2IIo6SZYCBoamoALqO6u80LdrcGUkZqyyG+JkEHL73Gubd9hiGGsdQzClkR1EFojMNpbcRz6LTseeV4SychyDbTKI34loLCIiCOXwx5scgSpPKwXjySpAzCvHX7oApEMCBhj107HiecNshU5omkcGU0rLIWH42c879KM4RiYdARyP1j/+QWEcdkiRzzz338G//9m+THgtmxgpusqoKMCxupkrNaJo2Y1P04XD4pLe4nBIEEMwM4Mjm3WOFqqrs379/lKXbieo3HK/kkqo7uGLFiqQq93QxkmA+++yznH76GSg9R5DcXvp3v0Igq4i02Qvx5I6fag72dZqBqr8V0ZOFoSk4CheYAcjKtCXkCczIMiK6GobZFyhKKAPtxBg+5j+W/Kga6Kflfz5pTvouPpvcy76UXDGPXM8LgPo/P4Wrr8KWU5IIbqbmFJpG8L2n0aNB0jdelTw3xddJ3Vt/wupCWo7KobsvZf6XnrBOeug62l3YCuebcjCHd+Jddi7uRacjv1VEvKOW9DM/xuCbf6Tl+V9ScvHnk68b2P4kCCJlH7wVgJyFa0mfu5JgRwOtL/2eUKNJ9vSwHwSRI0eO8Nxzz3HJJZeM+1kcC8Zqiu7r66Ozs5Pa2tokMfD5fGRmZp6S2bVUG7iTvTo+mZhqjOrt7WX37t0UFhayePHiCR+OM1kCNgyD3t5eBgcHOe2008jPzz+m/VkEsKamhvMvuIC+3l5EdwZzLvpMUsjeMAzi8TgADod9ArI5+uf5i9fTLMqEmvYip+WgBnqJ9jYnSaAtqwilr4VYTxOOvDLrXY57vtHuRgRRwpYzm3hfi5n9y56dVDQwdA2UGFrYn9Sys+UO9R2OPEMRTH9fXQNRRgsNYMQjyLlziLcdxFG2Gld2AVJiWGS8UqzV+md9zILZAJg83mRyMGB6F4fq3h1TwUJXonS8+wyDdTuIdTeasQ1AtuMsKCdv3SUUrrsYSRp9H2pKnLqn78O3+x9g6Jx11lk8/fTT04pDx6OHObWqYhgGg4OD9Pf3097ezsGDB/F4PMnsoKqq4y6wpotTIcadMgRQkiSi0eiM7S8UCiV9c0daus30Sng8jJUBVFWVPXv2EAgEjll3cGTZZM2aNRQVFdLRVkPZJZ/D391GtK+Ngb42/C4vroJy0ucsTg6HAGiqRjzQb7pyIKCHBhh89zFc89YhyHacJUvH0ABM+W/DnO61pAwkTxZL7vgbb939AbKA90jnpjvMzKL1ukjzXroevhMwyNh8LdlnfnT4NQKGzw+D8aErTMmXlGChq3HAIHzobRBl0s+4fmgfA+2MLIIlb3ZBGB7bBRFRlHAUm3Iw5kF10la9H9/rv0PtbULOLGKw+kW0Cz6BZHPiP1yJ0teCt3zlqADmLZ7H8k/+gMhAF0ee/y2B2u0Yqplxvv766/H5fBxvpDZFl5WVoSgKXV1d1NbWjilEPd2ereOF/6sZwOliMgJoGAZHjhyZlqXbTMU9RVHYvXs3wWCQjIyMYyZ/YD7Yv/3tb1NVXQ2CSMaqC6m4/GbkhGSJruvE4wqiKGCzjT3sMRFkhxt7fhmR5r2UXv0NOrc+MSwLmL72A/S9eB++yucpeJ+1yEs9yHAyqA72IHlzEESZ0KGtpnRL2cqhDTQVPR5JDMyJOIqGy8KMFNbSICF/IqIOtJvbCGLSH73vye/hXX4umWsuSUhrjQ0h8a8Uw6PEH8McurA5zJL0GHIwFtIq1hPY/SJ9DfvInbecYHczbe88RbB5P0pfK2iKuS+nl/TFp1Oy5aN4Z80b95wA2itfofWF/0EP+cjKyuLZZ59l+fLRvZKT4XhbwQmCkKyqlJeXoyhKsqpy4MAB4vE4oVAIWZbJzs4+prgZDodPeo/zKUEAZ7oE3N3dzZ49e5g9ezYVFRWjVgwnKgM4kqCFw2EqKytxOBxs2rTpmFPJY1nBPfjgg5x//gW0v/kIyz76DbMZt+EAg611hBr3EG7ejy17Fmkli3Ck5xL2meRN1wJImQVovk4csxYTaztApHYrttxS0pafT9qqixDtw3WVDE1BiwRQQ/0AOArnI9qdgMCZdzw7tOpM/NsA/Lv+xsArvwXJRs6Fnyd9+fmj3teiO/5G7d0fSGYC+zAn9SSnNyUOm9m/SNNe1P42HGWrhhExLTgwydUbsboXJRwlS4ke2UW8pwl7XinetR9kcMfjhA++Re4HvkLvU9+n6ZG7mPvR79Lzpjkss+C6r4+xb/Mdu7IKWHL911HCQRr+/lt8+95Aj4f5y1/+wnXXXTfJ+c0sbDZbMuu3efNmQqEQ/f399Pb2Ul9fj9PpTJLBzMzM4yZEPRmOhw3cqYCZLAGrqsrevXvx+/2sX7+ejIyMKe/zWDOAgUCAqqoqPB4P8+bNo6ur65j2B6ZywS233IqqKtgL5jL/w18mY9aQtIqmacTjCjabPI37cuhaW5fdXbIUf/WLiDb7qCxg1uqL6fvHL4klhJ1HY4h0qJFB9GgIR+EC1OCA2duXcOQAQNfQlRiqvwsMAzln9rCWGUON0QNYhVEdmPtvv0OLBjBiZt9cvPsI/ncfQw/1gyCi9DXT/9rv6H/zQRyFC0hbchbpqy4cV/oledZW9k8w46/scKFFg0RDQSTZhiAI5p+U16TPXU2HZKPxqf/miBJFC/SavxBlbJkFZCw9i/Jzr0OyT54JC/d2UPvYPURb9iOKEnfeeSd33HHHpK8bDydaxcBms1FQUEBBQQGGYbBr1y4cDgc9PT3U1dXhcDiSEl7TjZv/6gFMwUwMgaSWVpctW0ZRUdGY2830NNx4SD2OVaopLi5m4cKFM3ITj/VQOeOMM8jJyabv0DaigwM407Momr+MovnLCA700l23m1h/O/29zUjuDASHBy3Yj6FEcS05i+C2R9GjAWZ//g+Eat4iWP0CA6/dj2/rX3BXbCJ97eXY88rQokGMeBhDVUBTkb25SAmCaJ2RMWKd2/v8Twnufdmc9L3yazhnLxtVZBEALRph3i2PIIgisa4GBJsDR2bR0K6MoexfYNffAIGc9988bFmtRQKjFOd1MCfvRvQAAog2O67S0/DzIKGaN7Dn3YCAgWfJFgLvPYXS14q9eBGRxip8h6uItR7AmTcbu2fyh6/NncbCD93Ge417UAeiXH311ZO+5njACp6CIJCWlkZaWlpSiNqSTKirqyMajc6IZMLRILUEfLJXxycT4xHAYDBIZWUlLpdr2pZukiQdU5vNyJ7lzs7OY4qjbW1tnH322bS2tiI6PBRs+Tjl53x42L2mKCqqqk152AOGFyuMpByKQNbCdfh2Pk2gcR+5K842s4DNQ1lAJBvqQNuk+48kSKI9bw6D1eawnTM5+WugxaMm+dM1pIx8c+I3cQ56PAK6xtpbHsFQoqCbln9awu5Ni0cI7HiCWMs+EETSVryPvPd/EU3XCFb/ncFdzxBrP0is7QD9r/0eR3EF3mXn4l1+3qTPFAHMoT1RQtcUBEznEgwdTYkRajtEfKALLexDTs9H7W9FsLtxl61k1plXkbNofUKfM440TvbQgq5p1D/3G/rfexY0ldWrV/P3v//9mMWZT6aMlaXnmZeXR2Fh4Zhx0xLwz87OJi0tbdy4aRjGKWF1eUoRwGPJAMbjcfbs2UM4HJ60tHqiMoBWyaWxsZG6ujqWLFkyo2Pf4w2Z/OY3v+FDH/oQDX//LUuu+Ury52lZubjXbiESieBrriXQUY820A6CgGfOEjLmnUZjywEiLfuIHqkibekW0pZuId7TSGDXs4QOvklo7yvYixfiWbIFd8Vm9JgPELBlDZFtYcR/GUD7A7cT76hFziw0J30zhw+nWHRMjYUAA0G2E+9pBAHsuSUjStBm9k8N+Ym115ii0tZgiIGpF6hEmX3plzjy7I9xY5ZYFnzpiYTafuoRE9fS7kbypCPnlBBt3pvYl07GpqsJ7n4B/7ZHKPzIPXQ+eDvtj38fgAXXfWPUtU9UWkahp2YHan8bW7ZsOWm9d+MFT0mSyM3NTeq2jZRMsNlsyexgVlbWjDrmjMTIEvD/XzHWgtiydCstLWXBggXTJuVHWwJOXVgvX748Ocl+LHaXN9xwA3999FEAvEvOZOGVt6EKQ/eVYYCipA57TH8Bkkr+APIWrKbR5iDYUEnG3FXIadmogT6ivS04c0tw5M8l1n6QUEMlnrmrx92v4jPdPwRBwlBjSN6c5JCcHjczZoYSRXR5sXnz0ONhDE01F8uGbra0JOKcFg1ixMLouk6kdiuhvS9hqApyZiFFN/0U2WF+ByRRImP1pWSsvhRN1wjsfJJA9QtEW/YTbd5L78u/wTFrMRkrLsCz6IwJr5co2dCVKNGBLkIdh1ECfejRYDJ4iXYXztLlBH0drLj1d7gyhvybzWs68WfRtf8dmp+5Dy3QS5rXyxOPP87GjRsnfM1UMRNDIMeCVBmYkXEzEokkh0ksAX8rbo4lNXOiY1xZWRlNTU3DfnZKEMBjFT61LN28Xu+ULN1OVA+gIAg0NjYSDodZt24dmZmZM77/scpKl1xyCenp6QzufxMl/HlsbjOToqoaiqKYTa+LVqFXrKBl77uE22pRIiEEQaD0I9/h4D0fZuDNB3HNWweAPa+MnAv+jfQNHyJct43QvtcYePnX+Lc+jHvh6XhPu3jckKBqGu2/ugktNIC9eBGF134H0eYelR0UAC0eAcM0PVcHuxNWb7MR5OGrTSv7N/juI6CpZJ7ziYSWVuKY/QkB6OxZLP/K30yB1UR/TfJoIy9bIjPonG3JwcQQbQ5EhwtXxWbC+19F9XfiWrCRSO1WsDvxJPw/R38uo3/W9vpDIAg88MAD41yp44+prp7Hk0w4cuQI+/fvP2oh6qngXwTQRGpLjK7r1NbW0traekxDY0dT+ZioZ/loCODTTz/NDTfcSCwWxZY9i7lX3E72PFNkXY2YPeBWlkkQJhv2GB+6PtqGU5Rtpsdu8z4Acleck8gC7sWZW0LWmdfT+cg3GNz36rgEUFfjaGHT/WNwj+nB65y91DxvVUkMfQwiSDbs1jCJIGAoZg+woWum2LOum/2BhkG8r5nB7U+g+btAtJF3xVdJqzh93PcmiRIZGz5MxoYPo6tR/O8+RnDPy0Qbq4geqUR84Rc4SpaSseoi0hasT77O0DUi7XXE+trQwj6CiXNClJDTsvDMqsBTNA8BCPe1E6x+gY7dbzB74yWIotknPREi/h7qHv0x4SOVCKLIv//7v/P9739/wtdMFydbyH6i47tcLmbPnp2Mm36/n76+PpqamobFzbS0NDIyMk6KE8h3vvMdPv3pTyf//5QggHD0QtCW7dB0ZAhORAYwGo0SCoWS/X4zNTmUirG0syz85Cc/4VOf+hSHX7ifRVfegqIoqKqO3W5LEmBFUZm9bAPtgkiw9SC9B2TylmzGNWsRkdYDRBrewzV3DVokgBGPIkgy3pUX4V1xIdHWAwT3vUKw6jkMJYr94lsRR1x7NeSj5VefAC2Oe9GZ5H3gy8lJ39TsIJiB1dA1U61ejaEFB5DcmUhpWSl7NMwXaCqarhNp2IVgd+FZdHrKLg0UfzcAtvwy81WJaySIYlJ41Rhrwk8UcZSuILj7BcK120hbeg4A2WfdQLjmTfpe/AX5H/4WkYb3ID7ewNLo/QY7Gom21rBo0cIp92sdDxxN8BwpmRCNRpPZwVQhamuVe6x9rZqmIcvyKdEgPZOYLomRJIl4PE4sFmP37t1JgeVjIcXTXfiGQiEqKytxOp1j9ixPhwD6/X7OPPNMamvrEGwOCs65gUOvP0D0/i9xxfdeSm6n6zqKoiKKInb70WWazfepEovFEEUBUZSQJBFBEPGULqfv3cfRlCiywz0sC5g2dzUIoll5GAOGYRDpOgK6jpw9m1hHLaI7HVvObLOMGg2a/XKCgN0a+jCMZNgylBjoajLrp8XCBKueI3qkEgQB98LTKbj8P6f1XiXZSfYZHyX7jI+iqVF8b/6Z0IE3iBzeSaR+B6IrHXvhfOwF8007OF03h0RkO3JWMVkL1uBIGx2TPLmzkLNnETy8C+n0D6BpOqpqtQ8YCUs0CUEwyfaRl/5I79bHMdQ4ixYt4qWXXjouse5kE8CpCkGLokhWVlZSeSQWiyWHSf7whz/w29/+lng8znPPPYfX653SENdMwOv1DtOiPWUEwabbA6jrOgcOHODgwYOsWrVqWn6+x7sHcGBggG3btiHLMmVlZceF/MHYQyAWPvrRj+LxePDteYVwcBBN03E4bEn1fkUx9YwkSaZkxSbcxfOJdR6m9+B2Sq/9NggCA28+iDrYixGPINjsCLIDPRZCj4Ww55WR+75/J/OsGwjte4W+l3417PiR1gO03HcD6ArpG6+i4IN3pJC/IQiYK1NdjZsK+JJMvK/VDFDZI8vlwtDk796X0MN+0padO3qbsN90J5Gs9Y1Vl7XGUYSh8TisPyTU9xcgODxEDu9IvNRASs/FWbYKIxoi3t+KZ9GZABz683em8jHR+NLvAZKG5icLMxE8nU4nxcXFLF++nDPOOIPly5fjdDppaWnh7bffZufOnRw+fBifz3dU3zHLa/NUkEg4mZAkiUgkwtatW7Hb7WzcuPGYr8d04l5PTw/btm0jPz+fNWvWjEnsp0oAb731VgqLiqitrcUzbw2rTruR9tcfIB3IB9762gXJbeNxBVmWjor8WV9pUZRwOBw4nQ4kScIwdGIxk0xnLFgDmoK/oQows4AIAuFE24dgc6IOtI96FhmGuWSM97Ui2JxEm3aDAY7ihQBosTCavxMMA3teudlqomvosTCGoSf6peOogz1okSDh+h30PfNDM2PnyaLk3/84bfI3EpLsJPvcT1L8iZ9RcN0PcC08AwyD6JEqBt/9K4FdzxLvOoynbCVpS8/FOXvxmOTPgqtsFdHWAwgI2O02nE47NptJflRVIxaL0XVwJ5U/vomeNx/CaRN57LFH2bFjx3Fb6B7vKeDJcLRewA6Hg6KiIpYuXco3v/lNfvvb3wLw6KOPUlZWxhVXXDHTpzomfvCDH5CTk8Npp53GD3/4w1MjAzjdErBl6abr+lHZDh3PDKDlyFBRUUFPT89xOYaFiTKAAN/4xjf46le/SsurD1Fx2WcBM8AahoHDYRvyxQVKV51Jo6YSaa+lLxpAsDlRug4TbTuIq2QphmISL3P8Py0hGwMZm67GUOP4tz6MKDvIOfeT+Cufp//lX4Eok3PB50hfeeG452iQsEBCQLQ7iXcfwbJ6E0Z+0QwDNBUEgdC+V0GUyDz3k8k9WQRPjwaRHG5ERDTdXLUme/8MEjIw+tDLEv8h2l0Y8QiO4oXEOupSjquTdeZH6WjYhf/NByi87vtEDu9g4MA7qKo64eRXLOgnWL+TvLxclixZMu52JwIzvXoWRZHMzEwyMzOZN29eUoi6r6+PvXv3YhgGWVlZyezgVBZCVgYwFAqRnZ096fb/F2FpkfX19bFo0SJKS0tn5KE3lbiXKi+zdOlSiouLx912KgTwE5/4BA899BAgINicODNz2b7jf4a1jIjAk1+7gIu+8Qw2mw1Znn6P7Mh+PxMCkiQjSWCzga5rZM5ZhODwEDpcRcb89Yh25/BewJKlRA7vJLj/dTJWnAcYQ5p7gBbsQ84sQultNl2WCuZjKFFUXyeGpiJn5CM6PWbPnxJNlnz1WBg9GkQZaGdwx5OoCX/f7Iu+SMbK9037/aZC11XUwV4zs6jEaHnojqSCQgyY/6lfM7j9UUJ124nUm3+ktBwcJUsRNnyQjJLFY+7Xu2A9gcrn6KuvJm+hWRJPTg2rUeoe+zHB2ndBEDjvvPO4/fbbycnJoaura1r2alOFYRgnvQdwJryAZVlm5UpTMujtt98mGAwmBaiPJ26++WZWr15NdnY2W7du5T//8z9PDQII5kXRdX3Sh1R/fz/V1dXk5eWxZMmSo/owrFLIWEKXRwtd1zl48CAdHR1JK6b+/v7jWmqeKAPo8/lYsWIFdrsdX/U/0C76OKpOsq9mrEbeOSvPYN9DbzK43VSkB4HB7Y/hLK4w1d1d6Qi20Q/xzDM/iq7EGNz5JJHmvShdhxGdHvKv+BquOSsmfA9a1JQ9EO0O1MGehNVb4ZAAdQqs7F+sswGltxn7rMWIkpWZMN+PFuzH0FSk9DyzzGtNZVhk1xLKGssPXZQBAWfJcqJHKon3NWPPmYOha9gL52EvXki84xCS003aqksY3PYwe376SVZ/6Y/jvr/Gl/4Amsq999474XU4ETje5ZORQtSWTV1HRweHDh3C7XYnyWBmZuaY52KtsP8vysBMBZqmceDAAfr6+khPT6esrGzGzmEywqaqKvv27cPn87Fhw4ZJLTOnUlK+7LLLeOihhxDdGeixEH27XhizX9iMKsKMDHuMf74SdoeEs3ghkdb9CKKAoRtkLjmD3h1/I9y8l5xzP0Hr4Z0E67aRseJc9ITHriBArL8DQ1XQI4MA2Avng66h+nsw4hFEhwc5o8B081Dj6GrM7AsM9KErEYLVLxCp325mDktXUnztXdN+rxb0aAA1OIAejyRitYn6v/znMCF9B/DJ1x/mTx/6D/IAxd/FwOt/IHxkF+GaNwnXvElHRj6e8tXkbroSV+5QKTJj7io6bE76DmxNEkBd12l9+3F6334EIx6mrKyMV155hZycnGTPm2Wvlp6enpRImWgidqo42V7mhmEcdQZwJMLhMC6XC0mShpWKp4uvfvWr3H333RNuU1NTw6JFi7j99tuTP7O4wSlFAGH8FOtYlm5He0NZpHGmCKBlhK4oyrCM5LFMyU0F42UA29vb2b9/P/PmzePLX/4yd911F0deeYjS8z467qqsc/frtPz9f4Y0nwAwULoOo/S24Jq3dsJzydryCdM7uKseKaOAwmu+iz1r/OwBgBoLY0386opZHhGdaUm7pGGwsn8IDL5rTg/mvv+WUZtZdk6O/HL0xMNJGNm8bE0BC0KyJzBJCAUBZ9kqePMBQvvfwH7Wx8Aw0EJ+PEu3EG8/SNej36boYz8mXPMG8f5OYoEBHN6skQdAVxV8e1/H7XZz2WWXTXgtTgROZP+MIAikp6eTnp6eFFQdGBigr6+PmpqapBC1RQit70zqEMjxkEjo7+/ni1/8Is888wyiKPKhD32In/70p6dEv2E4HKa6uhpRFKmoqKC9vX1G9z9RBjAcDg8Tzp9KL+dU4tsVV1wBgoizcC7LbvwuHXve5NXH7+aClG0MIMvmxP3gnZS+/zNklFRM+T1NlfylIq1sBT2vP4AWDWFzeZE83mQW0GyQE1F6WxKevkLyGRHtPoIgSmghH4JsxzFrMWqgDy3sA1HGXjAXPR7F0BQz6xcNoUcDRBqrCVQ+ixELITjTKPzYT3BmTxwbR71PdNTBPrRIAF2JmqLRkJzalb05SJ4sxoruN9W/zZ/4DwBsGQXkf9DU4Yu01+J75yFiLfsZrH6BweoXkLOKSJu3ltxNV+LILMA5ZxmhxmoABppqaHjixyi9zdjsdn71v/87TNLKIjJWr7A1EdvU1JSciM3NzT1qJYGT7WVuEdCZUHGwWlyOlX986Utf4qabbppwm/H8lTds2HDqEEDroqqqOurmsFamAwMDMzJNax1rJti8ZYSemZk5ygj9eBPAkRlAS66hqamJ5cuXk52dzcc//nF+cPfd9O96nrkXfGzUPqID3Rx69AdEmvYO/VAQsOWU4F51Mf5X/gff23+ekADqmkbnA7ei+TqwFy0k44yPJJ1BxoOmRM0yrCSbfX9dDQlrpZGSL4n3lsj+GapCrHU/kjcHW87IHkHDDOKCgJxRkMgYpmT/EtsMY3zWsVKkYaREY7cpB2Nuqw72YM8tRc4pId7VgG4YZGy+hr7n76X6xzew4VvPmHtPySw2vfFXjFiI2+68c8JrcaJwMhuobTYb+fn55OfnJzWw+vv7k4KqTqeTnJwcotFocoDqeGQAr7/+ejo6OnjppZdQFIWPf/zjfOYzn0mUKU8eLJ3QoqIiFi1aRG9v74xXD8bL2PX19VFdXZ089lTvESv+TLaQTkvzEO5sQLLZmb3mfL615nyc37uBzcEODCAdECSZUONuDvzq30EQkT0ZZC09k7ILPoHsHvs+GPquTe8hmrt4Iz2v/QF//XvkLt8CCImJ4McJN+9FdHlRfZ1oShQppeKhDvZgJHr77Pnl6NEg6mAPpm/vArPfT1OSUjCqv4vBHU+i9BwBQST99I+QtflqRHFqj11diZoSLbGQGf+sNyxKSO4MbJkFiCMUEg7jYhGRoWsEnH/HU+b+NMXs4Y5HTRKJQcamqxFOl1B9nQSqnyfeUY/vvWfwvfcscvYsRKcHpbeZvX/8FqG6dwGDM844g2eeeWZCIuR0Opk1axazZs0aNhGbqiQw3ezgySaA1ndnJo4/U/EtLy+PvLy8yTccA9XV1acOARyvD9CydLPb7aMs3Y4W1geoadox9SlYulzjTSCfiAygRQA1TWPPnj0MDg6yZs0aPB4PR44coaWlhRtvuIHf/e53tLz9BKVnmys2Xdc5/Nz/0LfzGdPaB0zh0bmrWHjVHchpWTQf3E0os5h4Zx3RxmozMzYCenSQtt9+Hj3sw734bHIuvR21uxEt7CfW14Ijp2T0azTFJIiihGhzEu9pxNAUbHllKYMbKTCMBKEU8L3zEIYaJzPF9i3liqCHTQkGQ1cTb2nklzXhkzRGCdhQ1WRvoKNkKcF9r6JrcUj084guL97VlzLw0q/oefoHFFzxNQLVfyfeXouvYQ+Zc1ckPhdzMq5353NIsnxMyvcziZM9QWdhpBC1qqr4fL5k+egDH/gAdrud8vJyNm3axOLFi2ckU19TU8MLL7zAzp07WbvWXND8/Oc/5+KLL+ZHP/rRhP1ux4qJBGEbGhpoaGgYphN6PPqURw6BpFZVpmonlwrrXpqsL+q0Vat46623CPd14M4pQlVVbrntN8l+v9MS23UerKR//1uEWw6g9DbTs/1v9Gx/BkQJZ+4sis64isK17xup4T5tpBeXI3qyCB+phuVbABITwTmogT6cJcsIH3qHQNXfyd54JQaghk33DzDJqr14IWpfq9mvnFeKocbQlRh6JIAa7Ce05yXCte+Yvy9cQMH1P0RQY4m4N/Zj1wC00ABq2I8RjwwtogXBHIrzZCKn5wLiuJT30jse5a27LyU/sb9vF68l0llvEsiUrKEg2xHsTkTJBrqGLbeEzDNvQI+FiHc3ED7wJoqvA/rNZ0OodiuFhYU8/PDDU56EtZA6EZuaHbQkUiRJSpLB7OzscXuqrXv3ZA2BWMc/lTKAU8W2bdvYvn07W7Zswev1sm3bNm677bZTjwCmSsFMZul2tLDcEI42wBqGQV1dHc3NzaxcuXJcL8wTQQA1TSMajVJZWYkoiqxbtw5BENi/fz9+v59169axZcsW/vjHB+je9iRzzvowvTXbaXjs7oQYKSDJZC09i/mX34bkGFrxlixcjhr+JD1PfpeBNx+gaAQBVHqa6Hjgdgw1Tsbma8lMePraC8qJdR1GC/mIiyL2rKFMnW6YNklm6cKJFuxDjwSQvLlIrrFLflbvn2hzEKnfgWBzkLbigjE21NDjYWRvTlL6hWT5d6hMJCAkZGCGl470WCiZLXSWrTZ7dg5txV5g+lzas2dhy57N4La/Eq3fCUDWOTfR9Zc7OXj/f7Dxrn8k99VZ/SpaoJcrr7xynE/vxONUIYAjIctyUlC1u7ub559/nuuuu46amhrWrl1LQUEBBw8ePObF37Zt28jMzEySP4Dzzz8fURTZvn37CZvEs6AoCnv37iUQCIzquTteBNDap6Zp7N+/n76+vqOuqkyVAH7uc5/jrbfeomvPG8w+40MJRQL7qHsxs2wpeQtWIUkiajxGR/UbDBzcRrS9lmh3E0ee+BFHnvwJos2BZ85Syt7/GTyF5dM+b0EQTamrlv0pPzXIWnomPdufwla0EA5tJXykmuyNH0IAop2Hk1vKOSVo/m4MTUFKywFBRIuG0AK9RJv3Edj1NHrYj2B3UXDtXTiKKhLXSRmKSwnoupIY4AiZMjHWcJooIjrTsGXkITnSEmeYOP/kGYOhRNFiYXQliqHEMJQYa64b0t4TJBuCKCF6shBku9mbGAuiRwLovi5TpDoeMV+rD91vzvLVcKQSpa8ZgIsuuoi//vWvdHd309zcPO1rnoqR2UFr8WdlBy03jZycnGEkyZoAPlkE0KoYzsTxT3SPs8Ph4OGHH+Zb3/oWsViM8vLyU4sAwpAUjEWwrFJmqm7NTOFopWAURWHPnj2EQiE2btw4Ye+QJblyvCCKIrFYjG3btpGTk8PChQuT5ycIAhs2bEj28lx77TX8+c9/Zsd/fQgjGgRAsDnIX38ZpRd9akyRT1GUKF+1mYHXi4l31BJp3J00PA/VbqX36btBEMm55FbSlp039EJBxFEwj1hnPWrA9LK0ZxaZE78xa+LXhaHGUQY6EeyuUc4gSaT0/gX2vIQW7MOTeqwUKAPtYBjIGYWJ00h9Tylf2lSn9MR/G7qKocYQHWkYagx74XwEu5tw/XbkzEIEm8MUqZYlPMvPZ3DbI/S//nuyz/k4rrnriBzeTt0LvyNv85VEo9D59qMgiPzmN7+Z+EM8gThVCWAqdF1n6dKlOBwOfvSjH7Fhwwaqq6tnJPPf2dk5arFmmbp3dnYe8/6nA8tT1+12j6mxN5Pe6BasBWkkEqGqqgpRFI9Jo9QifZPF0SuvvBIEkcHD1WibrhhX3FlIacOQ7Q5K1l9IyXpTQSDU30XHzhcJHKkm1nWYQP177P35e4lycRbZy8+m9IIbkBxTe6imla8kVLuN2GAvjvQcNE0flgVEEJL9xGC6f5gnKSJnFqJHg2YGzZWGFuxH6Wli8L2niLcfMisp6y8nZ8unhr8/UTKlYKIBtDEGOATJhuTOQs4oGBWPdV0dVr41lHiiLKwnz0uwORDsLlAlDCWCHo+YZel4ZOhYqenT1E4YUcLmdGPzpBOo30Xw4Ntg6Jx99tk89dRTM943byFVZxRMNw1LSeDIkSPDXIgcDsdJ1wCcqeOfaKvL1atX8+677476+SlFACVJIhaLsWvXLsLhMJs2bTpuF+loVtiWMKrL5Zqy48jxzACGQiF6enqYP38+JSUlBINBdu/eTVZW1qgJ6V/96lf8+c9/xogGEewuZp37MWafedWkxxAliaWf/BG7f/QRfG8+gKv0h/i2/hX/O39GdHjIu/IbOEuWjn6hIOIonEesox51sBdBEBGc5mcp2hwgCMR7mhjb6m0IRkr2L1D9Aggi2Rd+bsxtlYEOAOS8Uuvkx35TFukzjORDR4+GAQHR4ULHQNAUHMWLiCfkYKT0PHRNQZLtZJ1+DYHKZwnsepbscz5O1nmfJtpUTd9bD1O47gME2uuIdzVQUJzPz+65k//4+g8nvc4nAqc6AUydsrN6ZJxO56Q2UlOdhDuZSH1odnR0sG/fvqSn7lgPVCs+zeQD19TEM9i6dSsFBQUsWbLkmO6H1MzMRAgGg7icDmJdDTgcjvG+6hPCnVXAvAs/BtwAQF99Nd27XzPLxX0tdG97gu5tTyJIEo7cEorPupb8VSM1QoeQv2QTXS/+Gn/dTrJXXYgggCSK5Kw4m66tTyC6vGiBXuKBPmR3OlpwAAA5I99cQIsSoieHWHcT4f2vEDrwOmgack4JBTf9N7KcQqp1DTXYb2bdxhrgSM9FdmcCQ7JYSixsDpSoMbMCktpTLQgYqoKhxsw/SjxBCqOm3VwqrEE3AFHE5k7DnV1I1pzFONOzh30W7btepvWF36CHfWRnZ/PMM8+wfPnyYbubaQI4Ei6Xa8zsYENDA5GI2dvY1NQ0Kjt4IjATEjAWThWno1OGAFofZE1NDdnZ2WzevHlCfbVjxXQJYE9PD7t376akpISKioop3XjHiwAahsHhw4fp7u4mIyODkpIS+vr62LdvH+Xl5ZSVlY06P0mSuPXWW7n33nsR7S5TAHWKcGXm4iqYS6TjEJ0Pf4NY826kjAIKrv0vbJlF479QkHAUzifWWY/i70bSNLOHRZJR+ltNq7ec0VZvKe800csnEOttRuk5gi1/HuIYUjRg9s8gikh214jBj5HnlZIBTPxtKFFz9ZzojyEWwlm6nGhjJWrYl5R8ANOqzrPoDIK7XyS492W8Ky7As/QcgrtfpPHJH5qfuSDwmTXLcLU08/Vv3ITgKSBXE7nlzpm1RpoOdF0/rj6+x4rUHpvp2CRNdRKusLCQ7u7uYT9XVZX+/v7jUmUYCV3XOXToEG1tbRO2jsCQKsJMPXQMw6Cjw1wgzZs3b0bkZaxy3EQxzoqbixYtoqqqioivG3fW+O97LIw17JEzfxU581cBoMYjdFS9hu/gu0Q76oh2HaHh0e9T/ej3cWEmub684lK2XzOkGuDJLUbOKCB8pJrc0y5MZtxsDg+yJxtb/jxijZX433sGz8JNycNLnizA1EINH3yTwM4n0QJ9INnJu/qbuMtNuRQjHkEN9JklVktDFUzi6ErHnlUIgmDqA8YjREM+swyrKhiGDrqalJNJ/lFi5t/6iOdWUs1AQLQ5kF1p2DLyUSUHgq4hCCI5s0rxZuakXtXktQ31tFH/+A+Jth5AFCXuvPPOcfuWjzcBTEVqdnDBggV0d3dz8OBBfD5fMjtolYqzsrKOK1+Amc0A/osAjkBrayuBQID8/HxWrVp13G+yqZKz6QijjsTxcBzRNC05ET1v3jzq6+t56623UFWV8vLyCUVj77rrLnJzc/n617/Bvl/fwop//yX2tMwpHXfxjd+j8u5riDXvxl5UQcHV30F0TuEBLUrY8spQuo+gBfsQ7Q4EyTZk9eYZX//IKlkINge+t/4EhkHORV8cd3s9GkxOxY05TJKAMKyLBvSEHI3kcJu/lW0gCMnev3hrDe65pi+yrsSRbA6yzr6B4L5X6X/lt3gPDtB/5EVEwDhSxSvAVekepGwHtojInI4Y0ExM1rnz/30c2VXALHcWn7n5xA6HnOoZwNT+NEVRpiwDM9VJuE2bNuHz+di1axdr1qwB4NVXX0XXdTZs2HD0Jz4FxGIxdu7cmZSKmiz4pyoVHCsBtFyTLPJbVDTBom2aGC/GGYZBY2Mj9fX1LFu2jFtuuYWbbrqJ7j1vUHb2+JWH1ArlVIc9ZLuLkg0XU7LhYgBCve28/d83knqFf7znWeS9z2PzZpOz8lyKz7keZ6IPcGS5NWflOcQGe4g1VRFtO4CUZV4vyZOFIMlosRC+t/9MrGUvCAKeZeeRe8mtaMEB4t2NGMroAQ7R6UGwOcySrBoj2lGfLMsO/xMbo1Q7lMUTRAnJ4UZOy8JdWI4zbw5SyvkbhsZgZwtKyIega7jSsyicM5fRk9ICuqZS/+z/0L/rOdBU1qxZwzPPPIPdbicejyf73QRBGNbvebJ68MyhIVNEWdO0pEf54cOHiUQiZGZmJgdJjkd2cCYzgKeK1eUpQwAFQSAzM5OsrKwTcoNNJQOYSrbWr18/bXubmc4AxmIxKisrAVi3bh2SJCUdA3JycmhpaaG5uZnc3Fzy8vLIyckZlfG57bbbCIVCfP/7P2DPr25m1RfuQx5n+CIV9vRsnLklRHtbEB0eDFE2+08myrQBGGbAsOWVEu9pROlvN/tVZPsYMi7DXpic/DV0jVjzXkR3Jo7CeWNvHQtjKDGkrOLJz8n6fcI7So9HTIHrZCAVQJAQJJvp+dl6AEs30NBVDBzIrgxc89YSqX2XQ0ceJOWVnAfc+98/wxkTqWrdRTTeQ37XIO6YSGlbFGgiaj/Cnd/6JDZnPuV5+dz4ydsmPucZwD8LAbRKPTMdIBcvXsxFF13Epz/9aX7961+jKApf+MIXuPbaa5MLu7a2Ns477zweeOAB1q9fP2PHliQp6ZgylUxFqlLBsWCka9Kbb745o8MlY8U4XdfZt28ffX19ybh51VVXcdPHP8FgQzWMSwCH4v7R6PtZ8OQWM1JGXgBsObNR+tvofOuviR5dAXQdX91OMhesS25rc3hwpOcRFESU/na0QVMbVUzLJXTwbUJ7X8JQFSRvHrlX3mkOibTsHyJtifgG5mCZFvJh9KcQPCU2WiYrJYsniBKi3YUjI4+0OYuxp03NESfk7yXS1wG6hmSzU1S2ENs4vbNde9+m+bn70AK9eL3pPPnkE2zatAld19E0DV3XMQxj2OSt9VmfzClc63uROjm8YMECwuFwsnewoaHhuGQH/5l7AMfDKUMAZ8+eTU9Pz3F1zkjFZATQapSWJIlNmzYdVRP6TBJAS28wKyuLhQsXomka1dXVaJqWbOQ2DAO/309vby9Hjhxh3759ZGZmkpeXR25ubjLr8PWvf51gMMjPf/4Ldv/qFlb++y+Qx3DeGIlVt/2Ovb/6AqHGKvqe+SE5l30ZKdHPNyaS8i0g2p3JwRB0DTk9bxx9vsT/qUpi6MLOwBt/xFCiZCSmjMdCvM+00rHlzEaYbJWWUgLW4xEw9ET2bwh6JACAY9ZiwjVvoCtRRJvLLM0YZok366wbiNRtRxyRqhAws1KyLHN2yfvIyspi6yvP0hELEot2UdgdxBkXKW0NA40MtDTwn62fxmXPZ9HcCj766S8iganmNTg48XuZBv4ZCKBV/gWOS4nkz3/+M1/4whc477zzkkLQP/vZz5K/VxSFQ4cOEQ6HZ/S4NpuNhQsXTnn76dpjjgWfz0dVVRU5OTksXboUSZJmfFE6cn+xWIyqqioMwxg2YCJJEh63i2jH4fF2lYBxTOTPgs5oo/s1t/0v4eAgXdWvEajfRbT9IHrIR+fff4n/4BrkjFwcWYVkzF9Dzspz8G19GC3Qa6oWGDoDL/8azd8Fokz6WR/DOWsRRmQQfbqlWswKhc2TgSO7GPeshYiy3ZT0SmwjSuKY3uljQYlHCXQ2mbFMEMgqmkNmzthl9qi/h9pHf0j4SBWCKHLzzTfz/e8PtaWIojgs22f15VrEMBaLYRgGqqoO2/ZEYKL45Xa7cbvdzJ49O5kd7Ovro76+nmg0mswO5uTk4Ha7j4rEzkQ23kIoFCI3dwzDgxOMU4YAwvGZfBsPE9kYWXZzBQUFLF68+Khv8pkKtl1dXezZs4eysjJKS0sJh8Ps3r0br9fLsmXLkjellUXNzMxk/vz5RCIRent7k2K7LpcrmR383ve+RzAY5Pe//z17fn0rKz//c5PMTYLln/sFu3/2aSL12+l/4afkXnwbgmQbkwQaCX1BsxwrYKhxJE8WWtiH4uswp+jsbkYHeyPxWrN8Eq7dBpKdjHWXJ3+PYZhELPGwUP1dAMiZhWav3gRiq9aX3zAM9HgYQbKDNDxTqseCCJIN94L1hPa+RKR+B54l55ivU+OINieOnBIcs5eitexlJJX90Ic+RHt7O6FQCJ/Px9ozLyQQCODxeNj+ynO0EUeNdlLYFcYdEylvCQJBbvr+z5P7SgOC6ekzRgL/WQhgOBzG7XYfl3PNzs6eUPS5rKxsXHvFY0WqbudUcCwE0PIkX7BgwbC2kJmWl0mNcamL1NS4ZGHZsmVs376diL8XV8boh98QPzo28gdw9l0v8dadFyS/SxFMxybZ7qT8jA8SX7WFumd+SWDfq2j+ToLVzyX1Qbsk2bSiTNhMRmq3ovo6QQBb4QLSlp2HocaIpWb9SDllw9QfFe0upLRMnPnl2HNLk/dzsPUggiiRPWf4gkDTNbOoIgjomoGOhiAmsm+CMOqaGIbOYHcrSnAADANnWgaFpWMPFRmGTsOLf6B32+MYqsKSJUt47bXXJlWxgKEyf0dHB62trSxevDhJAmEoO5haKj4emKoPcGp2EMxyq6U72NDQgN1uH5YdnCqpm+kS8L96AEdAlmUURZl8wxnAeL0rzc3NHDp0iIULFzJnzpxjOsaxEsCR/Ye5ubkMDAywd+9eSkpKmDdv3oQrGZfLRUlJCSUlJclm956eHvbu3Yuu63zmM5+hr6+Pv/3tb+z5n9tZ+bl7TWHQSbDy5t9S9eMbCde8RZ9kJ+d9/272zQ3L4CXkDUQJBNH00IyFEe1OpLS5KN0NxLsbsefPRbQPH+pIZv8kG8F9r6INduOq2DxMMmEktMgggiQjAHo8apZhJHnUeQHJzKOhmeKoont4CVwd7DaP7/BgzyxEsLuIHH4Pz+KzzPeiaVieS5mnX4fz4b3EAAkz83APoCgqf/7zn7n00kuZNWsWs2fPRlEUfD4fWy67iv7+fgB2vvEc3TIYkS6KuiKjHntuYKZyUf8sBPBEi6SeqjiaBfFYnuSpmIp/73RgxThLFH/evHmUl5eP+dl98pOfZPv27XTveZPSM0frYwqCKZtl3gcioigd0/165l0vASb5iccVREFAlmWa3n6Krtf/ZFYVNl6F6PQQba9FDw+iR/xoYT962G+dFaqvAwQR18IzseUUJ72ABVFGdLqQ0/NwFVdg8+aMcybDITo9aCF/ykCFgabpGIAki8keZSOxyNV1A90Y0sATRIFowEe4tw1DUxFlG4WlC3C4xq7i9NZV0vjUf6P6OnG5XPz5rw/zvve9b1rXsrW1lfr6elatWkVOTg66rg/7k3pPWZnBmY41Rxu/rOxgSUnJsOxgbW0tsVhsytnBmR4COR5Wl9PFKUMArZJHNBo9IccbuRLWdZ2amhq6urpYs2ZNUpfoWHAsBNDqo+nv72fNmjWkpaXR1taWVO2frmuBLMvDrLgGBwfp6enhlltuoaOjg507d7LnN//B8k//CEmenASe9qU/Unn3dYT2vYJgc5B97qeSZMtIcRYRRAkMAy3sN6fU3BkIgogtr5x4dwPx7gbs+eXJnhkg5fUCgcpnTemXC/4NszcvkcETRFNaBlM6wYiGhoZSRMn8qRo3yaQoIcq2oR4/KwOoxkGUExp/OlrYb2p69bcjujPMxm1DN+VgOmtBN63r0BR0Q0cURNylK7DllePobaTgpvtwZucT72qAh/6TW2+9NanNmJWVRXZ2NllZWeTl5WEYBoFAgOLiYvr7+wkGg1S+/eyo6zwTuSh3ejoicCYQghktK88kUkvAp8Lq+GRjutm6WCxGdXU1qqoO8yQfuc+ZLAELgkBbWxs9PT2TTjZff/31fOazn2XwcBWkEEAriSbLMrIsJQlFPK4kzllIlq+nmxnUdZP8ybJIsL2Bhr/9jHhHLa65ayh63+dx5Q7FUU2N0/HGXwhUPZ+yhyGlgMjBN4janNhyS/FUbCRzwxVIU1gwj4TNZcrKREN+XGkZaJr5ecjS8PdnEj7JHC7DtNxT4zGC3S3m4JogkJ5XTE5B0ZjXJR70Ufv4jwnWbgdB4KabbuK+++6b1rlaihOtra2sWbMm2Qc/VqnYIoPHKzs4Xv+hnJ6OlULQgfAE8W1k72AkEplydvBfMjDHGSeyBJwaXK3AafXTuVyuGTnG0a62rT4aXdeTwx61tbVJcnqsXsiCIJCRkUFGRgbz58/nhRde4JJLLuHdd99l3+//k4qPfhebTU58yce/4Vf+x5+ouvsaglXPI8gOss76mJlds5qZpRTyZ2iIltaVoSPY7Njzyoj3NBLvacSeV44g28yeQcNAkGTUwS7infXYckombITWBnsxdA1bZkGysVtymqVlXYljaBp6XDWDVDSIHhlEDfaZCvjxKLpi6mmllnOkaAAxIazqLF1FtLGK+EA7jvwyDA10JWaKWQMZG66g99mfMPCP+5hzw93YSpbimreeSN02XnrpJb7yla8kS/H19fW43e6kvMGcOXOYM2cO8XicBQsWoPzof7FylgbQtGAB2ap61E3MrgT5I7HPNCB4VHs6/vi/ngE8niVgv99PVVUVmZmZrFmzZtz7ZSZLwJYLUTQaZePGjZNmNCRJwu1yEemoT/5s9OUQEpk/CZuNBKnQUBQ1UQK0yKA06f2haSqKoiJoCnXP/S/+6heRPNkUXvFVcpadPWzblud/SWDvKxjxRL5dEBAdXvToIN61HwRRJtayj3jPEeIdtcQ7DuHb+gi2vDI8FZvIXP/BKZNB2e0FQSAW8GFzeZMahJOR22BvO/HBPjAM7C4PebPnYgDRaAxRFJNZUzBofP0Rut/8C0Y8Qnl5Oa+99tq0PWMNw+DgwYP09PSwdu3accvFqaViIEngLVI4U9nB8TKAqfUjETPmRaawyBUEYVR2cGBgIJkdjMfjw7KDVt/jTCAYDP4rAzgSlhPIiYBFzqzAOV7fyrEeY7qr7UAgwK5du8jMzGTRokXous6ePXuIxWJs2LBhxshpKpxOJ6+88grnnHMOO3fupP7h/6LiI980yxKGiiSZQVkasUKVJInT7niEyu9/mMDOJxFkO5mbrzG3EUQMXU+Ik8YQ7O5EhtCEgIBgd2G3poN7GnEUzkvq/kk2J71vPAiGTs6F/zbh+ccTiv3OwnkgisQHOol3B03l/GgoocUVG15CToiwCnY3sjsD0ZmG5PIiujJQ+luJtR5AiwQQ1Ti2HNMjNXzgdey5CZKr68nsnGfRGQy89Wfi7TXJ65N7/qdpbaziJz/5Cd/97nfxer2Ul5ejKAp9fX309vZy4MABDMNIZgezs7MJ9vaiP/wwgTvuYOCNN+jv72f/W2+Na480GU7dgu9opPYAngqr45ONqcbD9vZ29u/fP2H51cJM9SVb9pOGYTB//vwpP8wWL17Mrl27iA4O4PBmMVm/n0UWZDnRs6trCZkgNVE1GrtUrKoKqqrTs+d1Ol/5PVp4kIw1l1F07g2mTiigxCO0PP4DIo3VkBIbRFc6Sz79Ew7+/qsYhoeFl3yanob9BLMKUcN+VH8Psdb9qP1txDsOEW8/iO+dv2DLL8ezYAOZ6y+fkAwKgtkfqMXCiAITLrIBoiE/oZ5WDFVBkCQK5szH5Rm63oaho2km0eo7so+WZ36O0tuMzWbnN7//PVdfffWE+x8LVgUqEAiwbt26aT13Jhoksf5Y242UmZnsnEZt9+qro48/5TMdDkmSkpaUhmEkewd7e3upr69HFEVcLhe9vb3T6h0cCWvfY2XoTzROOQJ4IjOAPp+PHTt2MH/+/DHFk48VoihOa8Xf3d3N7t27KS0tpaysjEgkwu7du3G5XKxfv/64C12+/vrrbNiwgX37dlD/2D0svf4bieCioaoqimKuwC0yKAgikiSx+iuPsOv7H2Zw2yMINgcZ6xPlHV03DdQlG5IrjbECvejwYM8tJd7TRKzrMHJmMZLdiaYrRJp2Izq9uEqG1OgNzN49PRZJ+l+qgz0gCPh3vzRMXkEQJQS7C9HhRvTmIjrTEF1eRJcXQbInG7VHysZIaVkoPU2ovg7ci85ED/uQs2eZGYCuBqS0bCRnGoauIooyajRE2rLz8L/zEF1//zkF7/8ijswCPEvPJVj9PBdccAEvvWT2I9lsNgoLCyksLEyW4nt7e+no6ODQoUOkp6eTdfrpZO3fT6nHQ1lZGdFoNKl5deTIkWk1MWsM/5Ifn/GGmcHIDOD/3zFZtk7XdWpra2ltbWXVqlWjMzzFxdgSvaYASloa0t//fsyLbGu6OC8vD5vNNq2syMc//nF27dpF9543KDn9cqZT0jUJn4wkyVh9c7o+vFQsiuY1C3Q30/LcL4k278Uxeykl1/1X0jc4MtBF6+PfJ95VP+TKASDKFJ13I6XnXAuAGhrAUTgf2e6gaNFqWLQaNR6j58h+gkULUAK9xLsbibfVoEf8xNsPEm+rwffOw9jyyvEsWD9OmdhAdHjMuDXBF1JTVQa7GtEiZs7em1tIbuHsMa6LCEqEuif/m8CBtwCDLVu2cNtttyGKInv37k0Sm6kIwWuaxu7du4nH46xbt26UTeF0MF52cDyZmYnI4JgE8NzRbi8zkUISBAGPx4PH42HOnDmoqsrevXtRVXXM7OB0ydy/egBHYCZkD6YKwzAYGBjA5/OxevXqaafGp4qploBTRVMXL15Mfn4+fr+fPXv2UFRUxIIFC05Y8/727dtZuXIl9QfepOavd7P46juQ5ZErcB1VVZNfVkmWWHPHI+z6/lX433wQUXaQvu4DqCGfqZ7vnlg/UXSmYcudg9Jrki6pcB6+N/+EEQuRtu4Koj1NZl+gppjSCqmkWhTRY2EEyYY9dw6iy4vk8iI40hAcHrP3byzoqumrGY8mSGBK740o4ZyzjHDddtSBdhxFC3CWriS092UMTUEb7EEL9CI63NizZ2GocdJOe79pD7fnZQreb4pV557/ScJ129i6dRvqGGXc1FL8vHnziMVi9PX10dPTQ1tbW1IJ3+obLCwsRNM0BgcH8fl8UwpE0cHBYWXgDiB9KjfCSUBqD+CpoJE105juAnOieBiPx9m9ezfRaHRcYWk5Qf6sdgI5GDzmIZC2tjYOHDiQnC62WlWmAsMwuPHGG/nCF7+I/3BVggAeLcznhSQNlYo1TSMaDtLy2p/xv/csgsND/iW3knvaBQiCiP/IHjqf+5k51GGknLMg4CxZxvJP3ZMgl9B7YBvoGmklS4YdVbY7KFq4GhauRlVi9DQcINjVTKyniVhnHUpXPYYSJd5xkHh7Db6tFhncQOaGKxAlGUM3kN3pqIM9hAf7SBvhjGJgEOrrJOrrAUPH5nRTXF6BOI64fcvWp+l45Q/o0SBFxcW8/NJLyWl2SxasqamJ/fv3k5GRkSSDaWlpo+5JRVGSPtFr166d8aTDZDIzY21n/T3eFHAQ8GDe5xpmzJtpyLKc9CWeM2fOqOyg0+lMxuDMzMxJs4P/6gEcAyeiB1BRFHbv3k0oFCI7O/u4kT+YWrnFUunv6elh9erVeL1eOjs7OXjwIAsXLmT27NErvuMNy7qpZffLHLI5WHjFrUDqChzA6u/Qzf4cBFZ86QGqf/RRBl67H0QR9/z1iK50hCn0t4gON3JGAaqvk2hrDeFD74Ao4yhfgx4LIch2BLsbUbYhyg4EmyM5PRxt2oOjcB6eeUPCvZqmJIWex9QpFGVEmxNdiaLHI6NIoC1/LlJHHbG2g9jzy3HN30Cw6nm04ADOkqVooQH0aIhoey2CzYmnaD5pS89h8L2/0b/9CbI3XIlsc5K+9oP43vgD8+fPp7GxccJr4HA4KC4upri4OOmD2dvbS3NzMwcPHiQjI4Ps7GwyMzMpKytLZomt7err63G5XMMCkSiKyX6YN998k9NOO22yj/+k4V8l4OEYjwAGAgEqKyvxer1s2rRp3Id0qnCI9ffRDoEYhkFtbS0tLS2cdtppSQ2z6TgqWds5nU6iCY/tmYIgQNe+t+l46X60wR68Ky+kYMtNSE4PXTuew/fOw6ZVpACi04seDYKhI7ozWXjDf5FRMlySpWPbUwAUbbx03GPKNgdFC0+DhaclyWCgo4Foy35iHXVo/k4MJTZUJk6QQfeCDWRtuBxECSU8CCkEMBYJEuxqxlDjCKJIXskCPOljL6AH2w5T/8SPiHfWI8ky9957L5/+9KdTrslwWbBoNEpvby+9vb3JgQeLDGZnZ6MoCpWVlbjdbpYvXz6j7VBjYbLs4MhBknGncAcHzeG24wxrCGSs7KDVO3jw4MHk0J8Vh8cqn//LCWQMHO8ewGAwSGVlJR6Ph/Ly8qQUx/GCFRzH80+Mx+NUVVWhqirr1q3DZrNx+PBh2traOO2002ZkEvlosX//fubPn0/3e89RZ3Oy4NKRfXhDzdqQ6EORJZbdej/7fvJxBl79XwTZjnflJHIDho4WDWEoUTMgu9KJNFaj+jpwlq/GU7ZiQmcPZaAdDAM5Y7iXqyjZTIFWXTV1CseCJCPgwFBio0igIAi4ylYR3Pcq0ZZ9OEtXmnIw9e/iXrABQbKhx8OmtVM8QszfTc5ZHyOw+0UG3vwT2RvMMnjOpg8T2v8qPT0tNDU1UVpaOvH1sM4/xQezoqIiqenY29tLY2Mjdrs9mR0sLCykuLgYVVXx+/34fD4OHDiApmnDAtE/iwzM/9UM4HQx1oLYklspLy+fVAbKKv9bXXY6RzeYpqpqctG8cePGYZ/NVAigleWx2mEWLVxIdfVu4iE/ds/03JXGQqCnnYZnfk7k8HvYC+Yz68qv4p29iJYXfk1gz8sYsRBIMvaCeejxMOpAO4gyead/mHnv//SY+4y01yF6sknLn5oUmEUGixaehqpcSk/DAXwNu4k27yXWUQuJdpV4u0kG/e88jC2vDEfJMtILShBEmcHOJtSwuVjzZOWRP2vsWKEpMWqf+jn+PS+DoXPuuefy1FNPTUrYnE4ns2fPToolDwwM0Nvby8GDB4nHzR5Ir9dLRUXFcSd/Y2FkdnCkzEw0Gk22iZ1oEWoYXwZGluWkHaVhGIRCIfr7++nu7k7q72ZnZycX5WY71dStLo8Gd911F8899xzV1dXY7XZ8Pt+obZqbm08dAmiVgI9XBrC7u5s9e/YwZ84cFixYQHt7+3EvN6emrkcG6mAwyK5du/B6vaxcuRLDMNi3bx+hUIj169ef9AyIJEnU19czp7SUvm2PI9oczHvfx8fdXhBEZFnEZnOCzQnxMP3/+BWi04tn4eZR2xu6ih4NYSgxrEYYQXbgyMin/8VfgCCQ8/5bJyR/ANpgNwgC9uzhsjgCJCaS9Qkt6yxymCSBDpf1auTMQuSsYpTuIzhmLcYxazGxtkOmDpgoIdrdiK4M9LAfxW+eh3vBRkIH3iB4eDtp8zaYq/DTr6Xn6XtYsWIFfr9/zPOYDKmajqnB+/Dhw8kysEUIc3JymDt3blKEurOzk9raWgzDoLW1lYKCAtLT0085MqhpGna7/ZSxSTrZkCQp+WA2DIO6ujqam5tZsWIFBQUFk75ej0ZRnE4kQAWMaBRp//5pZQDD4TCVlZU4HA42bdo0qodsMgKYKg9i9Xhdf/31VFdX07X3TUo2Xjblcxm1b02l/qU/0f/u4wiiRM4FnyV79ftpffJumhsqITF85ixfDYJItGk3aCqOogUsvOG/EO1u4vF4cpDEitGaEkePBXGVrjyq80olg5oao+PgbnwH3iTWegAl4VhkqLHkNPGhymdNMjh7KZ6FG5k9fymybey+u/b3/kHri79BD/vJycnhhRdeYMmSJWNuOxFSBx6KioqoqqpKPnO2bt2Kx+NJ/j4jI+OEx4qRZLCxsZH+/n6WL19+UkSorfOYjBgLgkBaWhppaWljZgdfeeUV3njjDQB6e3unLec2VcTjca666io2bdrE/fffP+r3mqZxySWXnDoEEEwmbQWMmfowDcOgoaGBhoYGli9fTmGhmSk6Ef2GqTdw6vvp6elh9+7dlJSUUF5eTiwWY/fu3dhsNtavXz+lRt0TAUmSONLQQMmcOfS8+RCizUH5uR+Z8DU1D/4/BF0h831fZOAfv6D3mR8iyl/DNc/02jTUGHo0bIowg6nnJzsQRAnZmYYy2EOsow4powD0yRcDanAA0e5GGMP5Q5JkNNWUgRHk8e8nQbKZziJqfCgTmCCBrrJVBKpfIHqkEmfpSqJHKlFDfuz5paYuoK5hzy4ibugovi68az9I6ODbdD9zL2m3/gWAjCVnMVj5d2It+3j22We59NLxy0pTQWrwXrhwIaFQKJkdPHz4cLIMnJWVlRShjsVi7Ny5k1gsxt69ezEMI7kqzcnJOaZG75lCagZwIj25f1YcbQ+goijs2bNnzAzcZDCiUVK/RdOJe319fVRXV1NcXMzChQvHjMkTEcDU/i7rIQ3w2c9+li9/5SsM1lXCURLA7oM7aX7ul6j9rXiWnEPOpg/T+fdf0PfK/aCriJ5MHHPXIrkziBzeYfbsOr3M/+idZFesSZzf0PRs6lRx29anwTDImL/6qM4t5Qqg6ZBfsZLZy9ahqQotla/j2/sa8faDZhmaBBnsNMlgsOo5+vPLyKjYQNk5VyHZzDaXUE8LdY/9iGjrAURJ4lvf+hZf/vKXj/H8YGBggOrqasrLyykrKwMYplSwe/duAHJycqY1SDJTsMwQWlpaWLNmDenp6SdFhBqOTgh6ZHYwKysLn8/Hzp07WbNmDfPnz+ezn/0st95664ye67e//W0A/vCHP4z5+3/84x8cOHDg1COAMHOK29bkjt/vZ8OGDaSnD7W/z7Qi/lhI7W0A82Zubm6mtraWRYsWUVBQwODgIHv27CEvL49FixadclkZu91O45EjlMyZQ9crf0CyO5lzxmgVf4D6F+4n2lZDzpaPk7XibGRvNj2Pf4eep75P7hV3Ys8rGyJ1opQcDjGUWHJYY+CNB0BX8a6+DHWwGzkjj4n6B/WQD8mTOe7vBdGUozHt4cZfvVlC1CYJjCJIslneVePYc+cQ723CNW8tAJG6bdhzSxAkGUPX0NU49pzZxBNi0s45K4g2VhPrbcGRWwIIZG+5iY4/3cE111yT9LqdCaSuOMvKylBVNRm8Dx48mCwDq6qK3W6noqICQRAIBoMMDAwkLcPS09OTZNDr9Z4UDT5rhf2vHkATkiQRi8XYtm0bbrd7zAzcdCGKYjKrOBFaWlo4ePAgixYtoqSkZMJzHCuOpj6gU8mf9RqHw0HkKPoAo4N91D39C0IH38GWM5uc8z+Lv/I5mn93Mxg6cmYRjtlLkLw5xFpriNS+A6JE9pqLqbjytmH7sqoWVqHcmiru2/MqCCL5ay5C161n0fS+D4ZhEI/HEUUBWyKbJ8l2ytZfiHba2Rx64l4G97yS+gLzr0RmsKf9EL1vP4Itdw6yN4dww3ugaaxfv54XX3wxuWCzeTzJh7gCqNOILZYrVEVFxbBe85FKBdYgSWNj47BBkry8vOOq12llvTs6OobpEI43SGI6pxy/7OCxCkELgsCSJUv49Kc/zV/+8hdaW1t57bXXZlSYfarYtm0by5cvP7UIoHVxVVU95kAXDoepqqrCZrOxefPmURmOmVbEHwsj+xksp5HTTjuN9PR0uru7qampYd68ecyZM+eUFb51uVwcrq+nvLyc9hf+B1G2M3tEc3R/w156tz6Oa+4aCs8wdadsmQW4KjYTqX2H3qe+T85lX8ZZVIHkyUiWZPWYKbwqyHY0XSNyZBeCw03aws0ovk5UXydyZtGY56XHwujxCPbCeeOeuyjKaLppzC5MorclyDZTFDoaAkMDQUR0uHHMXowy0IbSfQQ5ezbRpj1kbPgwgk3GEOIYmoogO7DnziHW04Rn6TlEG6voePRblH3OTL97Zi3CXbGR8MG3+cpXvsI999wztYs/TciyTEFBAQUFBUmZmZqaGoLBIIZhsHfvXrKyssjKyqKkpCQpQu3z+RgYGKC5uRlJksjOziY3N5esrKwTtr3g6KwAAIzASURBVOJXVTWZATwVJBJONsLhMAMDA5SXl7NgwYIZiQ+Txb1UK7mpOCKJojjMvtN6CFukcCT5s1CxYAF79+1DjQSQXZN/1oahc+SNx+h58yHQNVwLNxNrq6Hv5d8AYMsvwzFrMaI7Ey3YR+C9v2EoMey5pSz77E+wuyebfR+aKlb6WpEzC7C701IEqMVRpeKJzjUeV5AkEXmECkFqCTc7J4cXEyXcYDDI448/zvPPP091dTWtra0mGeyqJ95ZR5o3nb89/RQbNmwY2lkK+QPTnVL1eGAKJLC9vZ2amhqWLVs2YTvBeIMkPT09Yw6SzFTvoGEYHDp0KClCPd6C8ESJUMNQheJYYclcZWRkcMUVVxzz/o4GnZ2dFBQUnFoEcKakYKzSRVFR0bhZtRNRArZELq2yWywWS+oqNTY20tTUxPLly4/rJPJMISMjg0OHDrFgQQWtz/4c0e6kePX5AMQjIQ7/9ftILi8ll3+ZmK+Lztf+SOjQ1kSPn4Chxuh79scUfuQHSGlZQMLyzdARZBsCAoPbn0CPDJK+9nKk9FzUQC9qoA85s5CxVuCqrwMAW9bEfRSCKJnyMeNlAQ09SSZNeYjEIIgkm/Zyho49fy6x9kM4iioIH3oHXVMQNBUECXQVAwMBAUfeHMDAXriAeFc9WngQKfHwyT3vU7Q0VHLfffcdNwI47G0ZBi0tLWiaxhlnnIEoislS8f79+xEEIdk3mJ2dTX5+PrquEwgE8Pl8NDQ0EIlEjlqEerqwVtinikTCTGOq1y3VfsvlclFRUTFj5zBR5UNRFKqrq4nFYuNayY21v9QKR+qwx0QP2muvvZa9d95J1963mLX+4gmP0X9kH41/+znx7gak7FnowQEih94BScYxZzmOwgUINofpHb73JdSBdgS7m/KrvkbBqnMmfQ+piA/2YihRnAVzkWVbQv5q7FKxORE6/D1auoQ2m6VXaMIs4f6QaGvNmCXctLQ0brzxRm688cZh+2tpaeHtt9/muuuuG3WuYzVt2DAzgROhqamJw4cPJ319p4PJBkmshWNeXh5Op3PyHY4BwzA4cOAAAwMDrF279pQQoYaZq0webXz76le/yt133z3hNjU1NSxatGjK+zzlCOCxiEGnllgXL148oYTKidIcFASBqqoqvF4va9eaJcQDBw7g9/tZt27dP1WmIy8vj71797B02TKan/wRkmwnd+npHHz4e2jBPnK33ETLEz8g0rQHDB3J6cG96mLcCzYiKwHaHruLroe/RuH192DLnWP69AKS7AAguP9VECUyt3wcEQE5PQ9loAOlvx1b9qxR56MG+hAkGXkSE3ZRlNB0bXQWUFPQYuHkIIog2RAdXkSb0zSEV6JoiRKznFOC0teC6PJiqDGiRypxV2wy7eviKroSQ7I5EySwFM/K9xF/sY7Wh++k9BM/B8Cenkfa8vMJ7PobW7Zs4bXXXpuZD2YMWEr+oVCItWvX4nCY1zhVZsYq7bS2tiZFqC1COGfOHEpLS5Mi1AMDAxw5cgSbzUZubu6URKini39NAQ+1rQwODlJRUUFbW9uM7n+8DKClkJCWlsbGjRunrP+WqnQwXsl3LHz+85/nzq9/HV/drnEJYDwcoP6ZXzK452VzsEyyo/W3IdjduBedgT1/LoamIqVlE2l4j0jddhBE0peezZKPfH1K5z8STa8/DEDO0jOSPxuvVByLxYe0UCVT9F9RzOpVMiOlKdQ/+2v6dz0/Zgl3MpSUlIxJ/gDiwEhqNBH5G8/X92gxXi9yZ2cnhw4dSg6S5OXlkZGRMaUFkK7r7N+/n0AgwNq1a4+aRMLMilBbr5+JeGcRwOkupL/0pS9x0003TbjN3Llzp7SvwsJCduzYcWoRQDh6YmbdOL29vaxdu5asrKwJtz8RPYB9fX3ouk5WVhaLFy8mHo+zZ88eBEFgw4YNp0Tj/XRRUlLCrvfeY/WaNRx57Af0111IuH4HiBK9r/4OEHBk5jPvqq+SXraMgK+P3tYjiFklzPrgf9D29I/ofOg/Kbj+B8ierOQUbrhpN2pfC46SZUgJkmbzmllALTiALasoUTYeso7SQgOITg/CFPpzBEnG0FTTKURXzf4+TQEEBJsDyelJDpIIgOzOQAkZGGoMLexHlO3YCxegRYMINieRwztwz9+AIMoYgoChaeby29wjGasuJLDjSZTuRkK9rXhyzcVIzpabCNe+w44dO4lGo8cU4MaDZR8YjUZZs2bNmPeZKIrJUvCCBQuGaYQ1NTUlRU+tzGBhYSG6rjM4OMjAwMCMqOGPhLXC/r+aAZwMIyduA4HAjKsijBVfraE0SyFhOg8mK46ONewxEex2Ow67nUh77ajfGYZO87vP0fHS7yAWNL/3ShQpLRvXwtOxZc1CjwwieTJRA/0MvP47jFgYObOQZZ/5Cc6Mo6+oDNbuQJAdFKzaMs4WIwWoTWH8eFwFTKekhF8RXXvfpvm5+9ACfXjT03n6qREl3GNFKIQ6ogdwvPKvYRjU1NQkn48zvcAa2YucOkhSXV0NTD5Ious6e/fuJRwOs3bt2hl/Pk5XhDqVDM7kcOrRxjdrmGQmsGnTJu66667/GwQwGo1SVVUFmG9sKg9VSZJmfOI4Fc3NzRw6dAhZlnG73UlttszMTJYsWXJSdJZmCvPmzeNPDz7IRz5yPf7K58wfGgZpc5ZQcd3/w54+1Dfkzcyhv6OFeNBH9tKz0eMROp6/j66/fI2Ca+7CmWfqbPm3/hUQyL1keKO2LaOAeF8rSl8btsRAhXk8HT3sx5Y9K+mmNPKxY2BO9hqaiqFryb8tWRjR4TGJH8KY+7B5MlFCA6ZGoWRD8uYip+UgZxURaztkHkFTzbKypmIYerIkJCCSvuYy+l/+Nb1/uwfbh76BPSMP2ebAu/ZyfK/dT0VFBc3Nzcf4aQyHZeOkKApr1qyZcv9eamlH1/VkaaehoYFoNDpMZqa8vJzy8nIikUhyu/FEqKd77v+XewAnIkbWxGXqxO3xqFKkLnwNw6CpqYm6ujqWLl16VJIUgiAQDofx+XxTzvJYmDdvHgdqDqJGQsgu84Hob62n9uH/QhtoS2py2rJn4Vl2HqIrAy3QgyCK2Avm4nv7zyjdRxBsTkou/SKzNn1g2uc/EspgD/acOZP681owred0BMEcntB1g1BfF0ee/m8ijbsRRJHPfe5z/PCHPzwurRNKKDRpyfdYfH2PFtMdJNF1PRm31q5de9z7jqcrQm1lC2eyB/B4orm5mf7+fpqbm9E0LUnC58+fT1paGhdeeCFLliw5tQjg0ZSALV/KnJwcli5dOuUPKPWDn0kCqOs6hw4dor29nVWrVhEMBmlububw4cM4nU68Xi+xWGzSbEnqdJcOxGZwcvRYoKoqe/bsIT8/n0ceeZhrrrnG/IWhE4+Eadv5AiVnXI7sGHp/2UUl9LYeIdDTRvaaSwj3tuLf8TTdj36T4pvuBUEg2nYAKT0Xe8bwhmTZk4Xi70YL+7AZs5LDI1qw3yz/pOeZGn6WTZyuYRi6KdEyntGmIGLz5iTJmpHIKo4Vnm2eLJRgP4amIAjgKFlK5MguIt1HUHxd2HJmmaLTmoqmxJDtQ8HVu/pifNseQeluZHD/a2QsPw+bN4ecDZcT2vcKfT1N1NbWzliPl/VF1zSNNWvWHLWNkyiKSSI3UmamoaEhaXuUlZVFUVERxcXFaJqG3+9nYGCAmpoaVFUdJkI92aLMWo3/X+4BHAupNpBLlixh1qyhVofjQQCtEnBqxWTdunVkZmZO+7wNwyAzMzPZc22VBPPz88nOzp40rl599dV861vfomv/2xQsP4s9v7mdeGc9loeJY9Zi0k67GMEwBd8NNYpr7loCVc8R2m+2T6TNX8fiG74zrN/uaOFvrgFNxTVrqt9Hg3hcwTCMRLbKoPGl39P37pMYqsLChQv5xS9+QTQa5a233kpmcGa6dWIiWPF6Jnx9jxZTGSQxDANZllm9evVJkUGbTIQ6FosBM5MJPBEtLt/85jf54x//mPx/ywHqtdde45xzzkGSJJ599tlTiwDC9OzgRvpSTmeFZX0BNU2bMb9Dy2YuEomwbt06nE4nfr+feDyebMzs7u6mvr4ej8eTDAjp6enDzz0ra9gHIwKix4N+kklgLBZLTlZbq7RQKMR7773HzTffzN69++h69fd0vfEn3CVLyV9/CQUrzkpmAZWgDz1vFmJ6PvaSZcRb9tH+wH/gnLUINIWss28c87i2jHzifa3Ee5qQs4rAMFAGzAEQwe5CDfuGbS8IAkIig2Kz23G7XLhcTkBgcDCA3z+AEujH5s0GQZi0hGxLy0YJ9pmE0+XFWbaKSN27hA68Tubp15r9SYKYIJ1DEAWRtBUXMLjtr0TbDgECGSvOx5aWRebp19Hz1A9Yt27dUYtDp0JVVaqqqhAEgdWrV8+oh6dle1RaWoqqqvT399Pb20ttbW2S6FkWddnZ2cydOzc5wWqJUHs8niQZHEuE2iIUoiieMjZJxxuaprFv3z4GBgZYv379qJ4siwCO5yR0NBBFEVVV2blzJ5qmTblikorUYQ+Xy5UU5x0YGKCnp4eamhoURSEnJycZ48Z6qH/hC1/gW9/6Ni3P/4qWJ3+UOEEZ17y1pK+9HC3sQ+ltRnS4cc9fR7yrge7HvmWWf705LL7pB6QVls3AVTHR9tajABSumcS9yLwKSTkdh8NO76H3aHz6Z6j+TlxuN3957K9ccMEFgEkorO9MTU0N8Xg8eW1yc3OT/bkzjXg8TnV19XHz9T1apFYbotEou3btSrYRvPPOOzMySHIsGEkGFUWhtrY22VZ2rDIzJ0Lm6g9/+MO4GoAWSktLTz0COBU7uNQsW6ov5XSQVH2foRV2OBxm165duFwu1q0zRY9ramro7+8f1nBbUlKS7I/o6emhsrISURTJy8sjPz/fXB2OodMlYWYCTxaCwSBVVVVkZWWxZMmSYTf82rVr2bp1KwC//e1v+cEPfkBn024aG6tpfubnpM1fR/bq9xHRdPrrq9EjQfLXX4pWuoiOtx8j5O9EsDlxL9iAGg2Y5VpLuy9h2i7IDvRo0PTIFCS00ACCzYkrLQOHw4Hb5UzqbVkwV3Bmj040GkMURTweF4ahMzjoRwkmSOAUeghtaTnE/V1okQCSOwPB7ia07xUyN19jZh5FCTQloRs2tLrP2nwNgV3PEmuswlW+Cv/eV8lYeT4Zi09nsGolsabdPProo1x11VVH/dlYBu6SJLFq1arjml2QZZn8/Hzy8/MxDINgMEhvb2/S9sjj8SQJoRXkVVVNDpKMJ0JtfQ9VVUVV1RkvAU/FGmkkZpJ4wfAScCQSobKyElmW2bRp05gkwHpgz1TzOZjtMtZk99H4vY4n7iwIwrCscTAYpLu7m+bm5mTri0UGrerH66+/DhgQMxe2UkYh2ed/BkPXiLbsRZDtuMpPQ7S76H3hF8TbD4Jkp+i8myg99/oZuR6pCDXtQ3R5ySpfNuk1sDT+9FiYvQ99l1DdDhAEbrrpJu67775h24uiOGxYwvrOtLW1UVNTg9frTV6btLS0GbnnotHoCfX1PRpYBNXtdrNixYpk/29PT88xDZLMJKx+aiu2CoJwzDIzp5LTkWBYM/unADRNo6qqCpfLxfz588fcJh6Ps3v3bmKxGKtXrz6mxvOXXnqJTZs2HfOH0d/fT1VVFUVFRcybNy85yadpGqtWrZpwFWP1W/X09NDT02OunF95hQ333juMlkRgSvpOAHg8ODELoLHpvG4cWGrxJSUlk/qPWohEItx+++089vjjhBPHl7OKseXPxVBjiIA62EO8t8XU3ANseWW4KzbjXnwmouxAFE2/YdlmA10l2N2K7Eojc9Z82rc9hWR3Mv/0qblqWFIOuq6h6wbBUJBIOAyijM2bPSwLqEYGiXUcIt7diNLfiurvRhvsRQv7MOKRYfvNOP0jpG/4EKJsMzUNRRHZPvye7Pn7zwju+Qc5l9yKHg2DrpGx8gLiA520/+nLoClHLQ6tKAq7du3C4XCwYsWKkxroFUWht7c32fxtET0rO2g5/Vgi1AMDAwQCAdLT08nIyEhKU1RUVDA4ODijJPD//b//R2ZmJq2trdx///1TIoB33303d9xxx4ydA5hZ9KnIVIEZD1966SXOPffcGSnddXV1JZ0dLrjggmk/TMcjf5MhGo0m41t/fz+GYXD77bfT0HAEJBnJk4WhRE2LRczFnpxdjHP2EgxNI7j3ZTA0XCVLWPapHyFJMm/feUHS3/jMu16a1vsYC7quseObF+OYtYjTPvfTCa6BTiymIIrQ9tbjdL/9MEY8wty5c3n11Ven3aQfi8WS7RV9fX3JKfu8vLwpldHHQigUorKykuzsbBYvXnzU5Uqbx4MVTaLmjo9qP2MhFosNI6hjnaMVT6xrAySJdE5OznEvFVtVFVEUx1xYjxShTp2unyg7ePvtt+P1evnJT35yXM9/KjjlCOCePXsQRXFMLZtAIEBlZSXp6emmivUxprRfffXVYx6Ht5wUFixYwKxZswiFQuzevRuv18uyZcum9UC2Ho7d3d24VqygPPHzIKD09EyN7Ho8o6QBIp/6FPx0/KA2ETo7O9m/fz8LFy6cUFZnItTV1fG5z32O7dt3oOuJFZMgYrPJeNPS8Hq9+P1+/P5Bc5BCtuMqXU7hxg+Sv2RTcj/NtfvR4hEySiro2voEabMXUrJ80zhHHRuKoqDrOmrIR099NeGuJlRfF1qgFzXYhx72JWRhLAjmwIgkI9jsaJEAcs4c5PzS/6+98w6L6tra+DsMvffeLAiCdBExRjFqEFDA9GKNibkmGjWmaK5GTaKmGjVqTMfE3BgV7C029LMmdARBpUofOgMD0873B56TGaTMwDRg/56HJ/HMmZk9bZ9377XWu9CWewOgRDCfPB9m45/pEICUGNr60gsKYWsDHuxeAC0dAzj/50c0Z54HAJgFTEf16d1ovZOEV199Fdvl/Iz4fD5SUlJ6nETVhWTid01NDbhcLkxMTJhCEkNDQ7BYLMaEmsPh4KeffsKRI0fQ1NSEP/74AzNmzJA7N6034uPjsWLFil4FIEVRcHR0REVFhcKem+5sQHcC6qnDBn3+2bNnMWnSpH4tdCXbYXp4eODevXtMeFJWeursIQ/vvvsuvt2zB5RYDIPhQXCetgCVVw+hOfdax44/A11NC2jpGcFjzkewGO4HALj23+nQYm7tEIET+ykCq9IuoPDQp7Ce+BxGRr7W5Tm0xx+3LA/FR7dDUPsAurq6+OGHH/DMM8/06/kBML56HA4HNTU1TBidFoSyLAKampqQmpoKR0fHfpmHs42MpHwGKQBtChKAdNjX1NQUPj4+Ms1b9HxCvzctLS0wMzNjwuiK9iftTfx1RWcTalpaSfoNamlp4fXXX8fIkSPx0UcfKWy8fUUjQ8CSzvI0lZWVyMrKwrBhw2TeheqN/ljB0E7lpaWl8Pf3h7m5Oerq6pCVlSXXTpkkLBYLJiYmHTsfLS1olFw5X78OQ0ND2Nradp03+JCupgj2jz9CJKe4oCsECwoK4Ofn16/ycw8PD5w/3yF6rl69ioCAgG53Xbdt24Zt27aBU5CKgvwUFBtZwMRzPFwmPQsrBxdUF99FY1F2R9Wx9aPegP+OX4y2uio0luahpbIQbTWl4DdWQ9hUCxGvERBKhNlZHUnnLG0daBuYQs/RAcbOnrDwngBjl9FSP/6bayOgY24LQ1d/aJvYg5uciIYre8HSM4SJ77SOVnIiAbTY/65OtQ3NYTA8BLx7NyFoqICJ7xNozjyPxozzsJz0MngF/+DHH3+USwC2t7cjJSUFxsbGGDNmjEaJP6DrxG96Z/DBgwdMtxE6FMxms/HUU09hzJgx+OCDD7Bp0ybMnTsXq1atwqeffqry8RcWFqKyslKhjykWi1FdXS2TTRWgGGN8kUiErKwsNDQ0IDQ0FDo6OsjNzZU5vC1rZ4/euHHjBuLiZoPLbQbbxBpOT76Kxvw03P9pFSiRAGZmZlizZg0mTZoEXV1dfPPNNzh8+DCampogbm/B3V8/gL7TaFj6TmKkIf1fRXzzq/45CYAFp/FdVxKLRELwmptQdGInuLnXAFCYPXs29u3bp4Bn70DSV4/eDOBwOFLtGmnB01WouK6uDhkZGVJ9fftKZ2HAAoCLF4EnnujX4/J4PKSkpDC7k7J+lyTnEw8PD/B4PKn+57q6usx7098im76IP0B2E+rq6mq5zJqViUYJQHrC4/H+DbNRFIX79++jqKgIfn5+PbatkZe+Tq5CoRAZGRloaWnBuHHjoK+vj7KyMty7dw+jR4/uk51CV+jr68PFxaXHvEE6VMAUtQDo/HWV9xXS4raqqgpjx46V6qHcXyZOnNjj7StWrMCKFSvQ2NiIt956CydOnEBD6mk0pJ6Brq079IcHQ9vCEWCxYGrjgJaqEjSW5qG1qgjtteXgN0mIPJFEMdHDFZihgQGsnR0xcuRIjBs3DlFRUfjss89w/Phx6NkNh+9rXwEP8zzE4g47AIoSQ0uL3fED19EFv6oQ7i9sQNU/p2AcHAtu8hHUn9sDlrYujDzCIBZKC0AAsJw0F2X3b6L68Ba4/ucnmPhORVPmebQUpHSYQycfxWOPPYZr1671+h7SK2gzMzP4+PhobAtBSfT19eHk5AQnJyeIxWI0NDQwnoOtra1ITk5GXV0d7t69CxaLhZSUFFRWVqK5uVkt41W0+AM65ptx48ZBnqBLfwQgnQfGZrOZPEO6cEEWASh5AaN3MeT9rvH5fEybNg0pKakAWxuWITEASwsPjm0DJWiDsbEx3n13LZYsWcIIZA6Hg6eeegqvvPIKzMzM8P333+PAgQOoKc5EWVF6n96L3uBVFoBtYg0Di0evL0KhAA+uHwMnaR/E7Vw4ODri0sWLve7g9gfJzYDhw4ejvb2d2f2iK2clq4prampw+/ZteHp6SlWS9xURuhDW/RR/LS0tSElJga2tLTw9Pfs1bxkYGDDXRpFI9EiRjaWlJSMI5Skk6av460x3NjN5eXm4evWqQj4jRaBRAhCQLgKhS9ibm5sxfvx4hSeG96UfML2C0dXVRUhICFgsFu7evYuqqioEBwcrPGRFI+mrJJk3mJubK1VxZ11fDx0LCyajTQzIlbshEonQamqKQIn7q8OCxszMjCljT05OxrJly5B1Oxv86kKArQMtPUP8c32/dNiI1eHIb2RoCNth7vDw8MC4ceMwYsQIuLu7w9/fv8u0gf379yMmJgYXLlzA7Z/XwO+1zx/aSvzr+s/nd+xK69u4obUsD8LWJtgFz0BV8ikYB88CN+UE6s58A2ixYTQi5JHn0LV2hZ6zD9pLsyHkNkDb2BwmvlPQnHkBbHMHsE1tkJ6e0WuCcF9X0JqElpYWs/tnb2+P5ORkmJqa4scff0RFRQWcnZ2xatUqvPTSSwgL6z7Er4zWSMqGxWKpRADS9ljW1tZSYTb6v721teos/vqyw/zZZ5/hk082QSwWQd/ZG/q27mjIvAhxOxeGhoZY9vb7iIqKgr+/P5PPZWJighEjRkjlDUZERGD27NmwsrLCH3/8gbYvvmBynAGgCUDhhd/hNH4mdI3kT+cRtfFAtbdCz3n0I7fVFeeh6OjX4Fflg62tje3bt+PVV1+V+zn6i56enlQLtrq6OnA4HGRnZzNpLc7OzgozCha2tEDLyIgRgW39fDwul4uUlBQ4OnYsvhU5b7HZbEYMUxTFFJJUVFQgNzeXcdywtrbusZBEUeKvK7S0tJCfn4+4uDi89dZbaolqdIVG5QCKxWIUFhaioqIC3t7eSEtLg56eHvz9/ZXiX3Tr1i24uLjIvGNXX1+PtLQ02NrawsPDgzHYbGtrQ2BgoEoMNjsjmTfI4XDA5XK7rLiTBboqa/IUaRd8EQC+hvgQ7tixA+vXrwdFURg+fDg8PT0xceJExMTEPLIip3dAjIyMZMrHnDZtGm7cuAHDEcHwXbi5iz6fYlT+fQIlx7+BTcQSWAVHgxIJUHXzKITcenDTTgAsFqyjV8HIIxRa2tLf2dbidFTtXwtdew84zf8aACDg1oJ7+yKEzXXgph6HhYUFSktLuxwfXWluY2PT7xW0JtDc3IyUlBS4u7vj119/RXx8PE6dOoWKigqcOnUKPj4+eOONN7q9P4fDYZLDu2P48OFSc4esOYAFBQUYMWKEXGJNFuiLtaxcvXoVo0aNgq2trcz3KS8vR3Z2dpf2WHReYXh4eLc7I30t9qDJyspCVFQU6urqoGVoDkNnL7SW5kLc2gBdPT2sWb0a48ePh5WVlUxFCpLRj5qaGmYBcebMGfz88894UFrWUYnP0oKujTvMPEPhFDZL5o4gRed/Q+WlX+EY+QZcJ84GAAj5bbh7ZAeasi4ClBhTn3gChw8f1rhq2qKiIuTn58POzg5cLhdcLpcJFdMmy+qeJ+i8RFdXVwwbNkyl45G1kESZ4g/oSCmZMWMGnnrqKXz99dcak7KjUQJQspevQCCQcsVXBv/88w/s7e1l2sqnPQdHjhwJZ2dntLa2IjMzE/r6+vDz89MYj6XOFXey5A0C/7ahMjU1RWhYGLODSH85eBoiAGWlr5Vwjz32GNLT02HsOQFj5m185HaRSIR/1kfCaFQYXJ/9LygxhXZuHerS/gJL1xANF38ES4sNq9jVMPF4tO1T6U9LIagtgeuqQ2CzO4SJoJkD7u1LaLlzGQJOCW7duokxY6StKOjwib29fb+SuzUFLpeL5ORkuLq64sCBA/j2229x8eJF+Pr6KvV51VkEAsgvAG/evAk3Nzc4ODj0ei5dZFJSUgJ/f/9ud4POnj2Lxx9/vMvFYX/En0gkQmxsLC4lJXUUeVm5QMxrhohbC7a2NlauWIGlS5cyudzu7u5yf4+7dE2wssLVq1fx/fffo6CwEGKRCAALOlbOMB0VAsfxMTDqIV84ddtr4NeWYuzaw9DW00dZ8hmUnf0R4tZGWFpZ4eyZM/D29pZrnMpGsq9vYGAgU8goabJcV1cHPT09qdw4VQsPeidaEXmJ/YVuZdm5kMTKygrV1dXQ1tZGYGCgwsVfSUkJZsyYgcjISOzatUtjxB+gYSFgiqJQU1OD1tZW+Pr6Kj1OLkt4pfOkam5ujoaGBmRmZsLBwQEeHh4a9YH2JW+wsbERaWlpTOUY8G+SNQvy5xCqG3rF6eTkJHe44dq1awgODkZu7nXk/LEZ3i9+IHU7m80Gi62D9sp8aLG0ADZgaGaNFhs3tFcXwe7ZDag6uAG1xz6H9nMbYeAiLeRMx81G7amvwTn6GeyfWgcA0DGxgbH3ZIh4TRDUlDB9YGno8ImTk5PCCqDUCS1mnZ2dcfToUezcuRPnz59XqvjrrTUSAHh5eWHLli2YPXs2WCwWVqxYofBxyPvZyRoCptNluFwuxo8f32MaQVeP2d9ijx9++AGr3nkHIqEQLL2OvtoCThG0tNhYuHAhdu7ciZKSEmRlZcHb2xv29vYyP7YknbvU0NGP4OBgfPXVVzA3N0dWVhZ2796NvLt3UXsjEbU3EqFt7gCTkcFwGD8Lpg7DpR6TX18OHQsHtDdycPvQF2gruwOWFhvr16/He++916dxKhPJvr4hISFSpsKSJsuSoeLbt29DLBYzqUK0/6YyqaurQ3p6Ojw8PJSaLykrWlpajxSSVFdXo6CgAEKhEPr6+rh3755CCkloysvLER0djWnTpmmc+AM0bAewubkZV69eBQA80c+EU1mg7VqGDx/e5e20n19TUxMCAgJgYGCAyspK5Obm9ssWRR10t3LW09NDWVkZPDw84Ora0ZeX9dBHEHhY/v/LL8Bzz6lt7PKgqEo4Hx8fFBUVwSwgAqOffUfqtowdi8GrLobnuwegrdcx+YqFfFRcTwTb2BIsFgs1J78GS0cfdi98An0HTwAPqxYpCg/2vAJRcx2GvXdU6nH59eXgnNwGflkOdu/ejfnz50uFT7r7ng4k6IIPBwcHnD17Flu2bMHZs2cxbtw4pT7vggULpFoj0dCtkYAOcfbLL79gwYIFABRvBA10zCny5PTRu9g9fZfp3XtZ02UuXbqEoKAgZteItq2gdyblKfYoKirC1GnTUEnvlGqxAbEILC0tzJo5E/v27YOWlhby8vJQWVmJgIAApeVJdxX9ePDgAXbu3ImsrCzGXULb1AZGwwPhEDoTuoZmyPx6PrTN7CDk1gIiEfz8fJGUlKS0Dh39QbKvb1BQkMxpRxRFobm5mXl/uFwuY6NCpwop8rteU1ODzMxMeHl5KawoUtFIhn19fX2lbKvobi10uLgvHUkqKysRGRmJ0NBQ/PLLLxqXPgBomACkKArV1dVISUnB1KlTlf58t2/fhp6eHrPrJYmkUz/tpF5QUICysjL4+fnByspK6eNTFnTe4P3791FTUwMAsLCw6FPeoCZRXV2tsEo4kUgELy8vlJeXwzIkBqPiljG3lSXtx4NzP8E+ZhWs/Kcxx+vz09BSfBsmY8JRd+MQWrPOgaVrCIeXtkDXdjjofdWGGwfQcOVXmI6bDaspi0ABELW3QMzngV9dBM7hTYBIgPLycqSmpmpE+EQR8Hg8JCcnw9bWFklJSdiwYQNOnz6NCRMmqHtoKkNeAZiRkQFjY2OMGDGiy9slTeh7MpWW5PLly/D19YWlpaWUkS0AuXYoXn75ZRw5ehSQvISwtDB50uNISEiAgYEBs4jm8XgICAhQ2dzSVd5gXV0ddu3ahZTUVPAf9naFth4g7Ph/Q0ND/PTTT4iJ6bCC0ZUsghgxAsjMVMnYu4N2nxAKhQgMDOzXDl53oWIbGxuYm5v3a6equroaWVlZ8PHx6fNOr7LpKedPssNRTU0NGhsbYWxszIhBWTqScDgcREVFwc/PD7/99pvGpIh1RqMEINAxoV29ehUREbL0Y+wfOTk5XZpONzQ0IDU1FTY2Nhg1ahTEYjFycnLQ0tKCgICAAd+onrbWKSsrYzqV9CVvUJMoLy/HnTt34OvrK1fCfE+IRCIMHz4cNTU1sHrsOXhEdRjEivg8/LMxFsY+4XB76t8QEUWJUXH9MFhsbWgZmKEl7xp4d69BS88YDnM/h66ly8PH5aN05zyIBe1wfiP+ofF0hzjU19dHxdnv0HrnMiZPnow9e/YwO7MDGVr82djY4MaNG1izZg1OnDiBSZMmqXtoKkUkEsnc6xzoWKTq6upi1KhRj9z24MEDJhohz3fk6tWr8PT0hLW1dZ/y/Q4dOoTXXlsMPl/CMJ3FQlBgII4ePQpLS0sAHSIjPT0dOjo68PPzU3rnhu6gbYfoQjmBQAAej4fdu3fj6tVrEAqFiIuLxdatWxmbMV2JLhiAYo2Q+wKfz0daWhq0tbW7dTPoKyKRSEosS4aKra2t5frc6MYBipyHFY28BR98Pp/xMK2pqQGLxeqxI0ltbS2io6Ph4eGB/fv3q+17LwsaJ0t1dHSYkISy4+Vd5cJUVFTg9u3bGD58OFxcXNDe3o6MjAzo6Ohg3LhxGv1hygIdQmhqapLKH6HzBoVCIbMy7ClvUJOgDasDAwOZi48ioHd9nV1cUHvtANg6ehg+fR7YugZgsdlor7wndT6LpQWTYX5ozL0JbXMH6Fq7QtvQBM3pZ1Dx+2o4zvsKOmb2gFgMw9GTwE07heaM8zDxmQRDIyMYGxmBzWZDN2IR8gpTcPnyZY0Nn8gD7VtoZWWFlJQUrF69GkePHh1y4q8vdDVHSfZCDwoKkjsaQRvgyyv+OBwOnnjiCRQUFEgcZcHTcxSOHj0qlefV1NSE9PR0mSt9lYmk7RCdN8jhcLBu3Tom19bZ2VnKZqzzaNW5BJbXzUBe2Gy2VH9vulCiqKgI2dnZMDc3Z7qR9LT5UVZWhry8PPj7+8Pa2lqhY1QUfan21dXVhYODAxwcHCAWi5lQcWFhIW7fvg1zc3OYmZmhubkZ7u7uiI2NhZubG/744w+N1wsaJwDpD0QoFCo9SZXNZksZo96/fx/FxcVMeKS5uRkZGRmwsbGRObyiyQgEAmRkZEAkEmHcuHFdvr/a2tpSfoP0yvkRv0Fra6V/Pr0hWQknmdOkSNhsNoqLiuDs7ILqpN/A0tbBsCkvQtfcDu31FRAL+VJ2LyaOHuA+yAW/phhaugZgabHhHvMWio7uQMW+92D91DpoG5rCJCAKLVnn0XzrT4yOeOnhoqfjoqxnYgEjvwg0/50Af39/ZGVlDdjvHt2xxMLCAllZWVi5ciUOHTqkkhzfwYC2tjba2//daRMIBEhPT0d7ezvCwsLkDqlSFAUtLS20trZCJBJ1FDXJIP6WLl2KX+L3AhRdwcyCi4szEhMTH6mQ5XA4/ar0VSa0wbKRkRF4PB74fD4cHR3R1NSE6w+7LdnY2GAM1Cv6aCTdDLy9vZX+XrJYLJiZmcHMzAwjR45kOm5wOBzcv38fBgYGzPwvGSp+8OAB7t27h4CAAIUuwhWJSCTqt9WLlpYWLCwsYGFhIdWR5MaNG1i8eDEAwMHBARs3bpTbY1gdaFwIuL29HWfOnMHkyZOV7qtXWFiIxsZG+Pr6IisrC42NjfD394ehoSGqq6tx584djBgxAq6urho1ifUFHo+HtLQ0GBgYwM/PT+4vv2RrourqaiaJmA4VqzpvkK6Eq62tRVBQkNLD8lwuF27u7mjjtcExcgmoZg4qrh6E0zNrYT76MalzW+sqUJdxHiwdfQgbqiCse4C24iwAANvEGq5zNsHO2R23930C7p0r8FzwGSw8ghjDaR0dbQj4fGTteA2iJg727/8Dbm5ufQrJqBM+n8+YPN+7dw+vv/469u/fj5kzZ6p7aGpD3hBwQUEBmpub4e/vz1RPGxkZ9SkMSEdWCgsLUVhYyHSTsLW1hbm5eZdz3IULF/DCCy+gtbWVOWZjY4M//vijS5PukpIS3L9/Hz4+Pgrt2qRI6Irp9vZ2BAYGMgn+ktGPmgMHELl1K9NurgUAW8Uh4P64GSgDoVDIVBXToWJ6p4/D4SAoKEhpBT79RSQSITU1FSwWSylWL1wuF7NmzQKPx8P48eNx5swZiMVilJSUaPTiXeMEoEAgwNmzZxEWFtajlYEiKC4uRlVVFUQiEVgsFiOMiouLmZ1ARTmrq5OmpibGwNrLy0shE0lXFXf0xUTZeYNisRhZWVloaWlBUFBQnyq0+kJjYyPc3YeBLxDAMeI1lJ/5DqYBM+Aya7n0+IR8PDj1LXhFaRA1VgFgwdHRARMmTMChQwnQNreD3xu7IGjlImv7QmgbWSDo/d/B5wugq6sDLa2Oyen+5cOo+Ws39PT08Pfff4PD4Ug1QVdG9Z6i4PP5TK/i4uJiLFy4EPv27cPs2bPVPTS1IhaLu+x13h3FxcWora2Fq6sr0tPT4eLiglGjRsn9mXcu9qAoCnV1dUxeHADm92tpaQkej4epU6fi9u1s0G6gpmZm+PmnnxAZGdnl66I7IgUEBChlN14RtLe3Iy0tDTo6Oj2K6K7yBlUZ/VBkX19lQFEUGhsbce/ePTQ0NDC9ejWxkFDZ4q+1tRVPP/00AODkyZMwNjYGRVEoKyvTeKcQjQsBAx1hD3lWyX2Fz+ejvr4eDg4O8PT0BEVRyMnJQWNjI0JCQhTeek4d0OX4ig7HSPoNqjJvULISbuzYsSoNQ5uZmeHOnRx4eo1G+V8/Aiwt8MrzmNt5tWWovvI7Wu7eBMXnARJ22vfudeQLOjs7Y9u27cj6bjn8l+yEgbs/eEXpaK4uhYmtMyP+AGDEpFg0Zp5De+V9cDgchIWFMcKbboKuyOo9RSEQCJCamgpDQ0OUlZXhlVdewc8//zzkxV9f0NLSApfLRVpaGry9vftU3d6duTP9vaHzmuhUjx9//BEJiYmgHoawDA0NsW3bNrz88stdPr5kpe+4cePU0hFJFlpaWpCWlsb00O7pt9Jd3mBJSQlycnKUGv1QpJuBMuFwOGhtbUVYWBjYbDYzL927dw+GhoZM3qCZmZna5iVliz8ej4fnn38eQqEQp0+fZjatWCyWxos/QEN3AJOSkuDj46NUq5XKykpkZmZCV1cXEyZMAJ/PR2ZmJlgsFvz9/TXSA0peysrKkJubC29vb5k6CSgCZa6clVkJJw8PHjyAj88YiERCgK0D+1krUf/3UbRX3AUoCjpmtnAKn4OGsntoSD4OANi4cSPeeafDT3DlypX4/vvvoWvjDueoJSjY+z70bN0QuPzHR56rNPtvlP6xDqDEaOkUgqKr92jxTVfv0RVq6sjRpMWfnp4eampq8NJLL2HPnj14+eWXNXKnUtXIswMoFouRnJyM+vp6hIaG9im8Jrnz15u/X3JyMmbFxKCpsREAoK2jgzkvv4xFixYxu4Od58W2tjakpaVBV1dXrZW+vdHQ0ID09HSFhFOVGf1QhpuBoqEoCnl5eYwBd+f0G6FQKFVVDHTdfk3Z0Dl/AJQi/trb2/Hiiy+irq4Of/31l8aGv3tCIwXg//3f/2HkyJFKySGhKAoFBQUoKCjAsGHDkJ+fD2NjY/B4PFhYWDCefwMZ+jXS3UvUlZTbr7xBIyPooCP4JPzlF7TFxDCVcL6+vmrf6aITnhm02DB298PwWctgaNtRDcnncZH+1XyIeU0wNTWVaiu2ePFi/P7779C1HwmKoiCoLkDIuiNg6z36nqT/tAZtBclYs2YN1q5d2+V46Oo9WgzS77Vk9Z6yBZhQKERqaip0dHTQ1NSE5557Dtu3b8fChQuJ+HsIRVFM4VlP0IudtrY2sFisPlVM0+bOvVX68vl8REZG4ubNWwAosLW1sfytt/Dxxx+jtbWV+f02NjbC1NSU+f3SF1hNL5Kjd9SU0ZGCFjvV1dWM36Cs0Q+th1YzAgBoaUFxcTHy8/M1upCCzr2uq6tDcHBwr7u9dKhYsv0a7TlrbW2ttFCxssUfn8/H3LlzUVZWhvPnz2vs59UbGicAhUIhrl+/DhcXF4VbYIhEIty+fRv19fXw9/eHkZERKioqkJubC319fbS1tcHY2JgpideERtryIhaLmR9oYGCg0vMo5UHmlfPDTiT0Oy8GcP7MGcZSQlM+k85+lTrWLrAYMwWuE5+CtkHHqrjgwv9QffEXgMVCY0MDs2v54MEDvPLKK7h+/Tq0jMwhbmmA8fBAjFn0+SPPU19ZgrvfvgFK2P7ILmB3dGX0SotBZfQEpUMtWlpaaGtrw9NPP43PP/8cr7/+usZ8XpqALAKwubkZqampMDMzg6OjI+7cuYPJkyfL9RyydvZITU3F5MmTH4pENubNm4sdO3bAwNQUWugQJ6KH3zk+n8/s7NfW1oKiKKYaUlP9Qunq1DFjxih9R42OftCCuafoh6TJNAA0ALh58qRUX19NQywWIzs7G01NTQgODu5T7jWPx2OuAfX19cw1gA4VK+I7pGzxJxAIsHDhQty/fx8XL17UWMsbWdBIAXjr1i3Y2toq1AC3vb0dqampAAA/Pz9oa2ujtLQUBQUFTMUan89HTU0NqqurUVtbC319fUYMauoEJwld3cbn8xmDZ02lp5Wzk7s7Ov9kMz/4ACM/+EAjP4OsrCy8+eabSEvPgFgkBNjaMHAZA/txM2HtHYbUL+ZA1FKPuXPnYs+ePVK+hQsWLMC5c+c6HoilhZCNp7qcsG7/+SW4mWcxYcKEf8+XEcmeoDU1NRAKhQpNaJeccEUiEWbPno2PPvoIy5Yt08jPS530JgCrq6uZ5P8RI0agqakJKSkpMtvmyNvZ44cffsA777yDqKgo7Nu3D2w2G/pGRlIWKAIAwocikKIoptLX2dmZmTMlveQ0IRdV0iJKme3nenp+OvrB4XDQ3NzMFG/Z2trCslNxoRhAfXW1xjYZoAvvWltbERQUpJAUqe5CxXSv4r6k+Chb/AmFQixevBiZmZm4dOmSxla6y4pGCsCUlBSYmZlh2LBhCnnM5uZmpKSkwNzcnKmCzcvLQ01NTbcVayKRiNlB4XA4YLPZzI9XGTso/YXOxdHT02ME7kCh88r5iRkzpKqT1O3CLw+//PILNm/ejPKKCoCioGVgCl0bN7SVZEFHRwdpaWkoLi5GUFAQTE1NAQARERFMD2yroBnweHrVI4/L57Ug/at5EPOa0NjY2OfPV7InaE1NDZqbm2FqasqIQWNjY7lEm0gkQnp6OsRiMVgsFmJjY/Hf//4Xq1atIuKvGyR9/WgkU1N8fX2ZFlpcLhc3btzA9OnTe31ceudPJBLJ1dmjMwadRAj9+6MNqKurq6XmTbFYLFVRLBaLmbnSyspK5Sk1dOem+vp6jYmCdI5+zIyNlbpdBECgoXOcSCRibHOCgoKUkltMURQaGhqYa25ra6tUe1JZCouULf5EIhHefPNN3Lx5E0lJSYPCpF/jBCD9IRoYGGDkyJH9fjx6Re3u7g43Nzdml0wkEsm8SyYWi1FfX4/q6mpUV1erfYLrDF0laGlpqXbX/f5CURS4UVGwuXKF2YUQALifnQ1bW1v5c0YOHAC+/BL4+29FD7VHeDweVqxYgcTERCkPtaNHjyI0NPSRCvPHH3+8Y4daiw3/t3+FgcWj4arcs7+h4cqvMDMzQ3l5uULGSYeKa2pqUFtby3jDWVtbw9LSssfvklgsRkZGBgQCAXR0dBATE4NVq1ZhzZo1RPz1QGcBKJmaIrkwADq+R5cvX0ZERESP72l3lb59oSsByG1sZERAQEBAtxdkOueLnivb29thZWUFW1tblRQmSUZBAgMDNbKYTygUQtfMDPQ7QQFImzEDNnv2aFy3JXqBJxKJEBgYqLICDjr3tKamBvX19TAyMpKqKu78/Va2+BOLxVi+fDmSkpJw6dKlQdGeE9BQAZiZmdllj155oCgKRUVFuH//Pry9vWFjY4PW1lZkZGTAxMSkzy11JJNaq6ur0dbWxkxwNjY2Kq+Co/2iXF1dMXz48EFx4aUr4fxiYmAyeTI43333SN6gLDkj2g8LSYCHuxg+PioXggCQnZ2N559/HiUlJSgrK+vWXsjd3b3Dk42lBT37EbAOehJOodHQYv/7KpK/XABhfQVycrLh5uam0HHSoWJ6FU6HiukKPsmLqVgsZgSBoaEhZs2ahTfeeAPr169X2nfwypUr+OKLL5CSkoKKigocPnwYcXFxPd4nKSkJb7/9NrKzs+Hi4oK1a9diwYIFShmfrPD5fCZES+/c0zYVnQULn8/HxYsXMX369G7nK1mLPWSFbWQESZlWZ2GB9IMHoaenB19fX5nnOIqi0NLSwohBLpcLc3NzZq5UtF2MrB5/6oZxM4iPh++5c+A+9Pisrq4Gn89nhI66uy3RXWdYLBYCAgLU9n4KBAKpUDGLxWLeHysrK7BYLKWLv3fffRenT5/GpUuXFBaZ1AQ0UgDm5ORAIBDAx8enT49BJ6vW1NTA398fxsbGqK+vR1ZWFpydnRXmqt7VBGdhYcFMcMrOwauoqEBOTg68vLw02i9KHuj8uK6ql+WtuOu8kyEG0K7iMAtFUYxBbleWCZ2hBcvde/dAicVg6RjAaHggnB5/FhbDxqAo+QIqD38KADIXhPR13J1zmExNTZlJt7CwEG1tbTA1NcWsWbOwYMECbN68WakLkNOnT+PatWsIDg7GU0891asALCwsxJgxY/Cf//wHr776Ki5cuIAVK1bg5MmTUsU7qoYWgI2NjUhNTYWVlRXGjBnT5W6rSCTCuXPn8MQTTzwiBiiKYnb+gJ6LPfrExx+j8a23kJ6erpBK384FAIosuKNbpllYWMDb21tjoyCSfX07uxn0ljeoSnNl2s6JFtOasitJe1bS7xGPxwObzYaOjg4CAwMVnkMpFovxwQcf4PDhw7h06ZJCopKahMYJQLFYjNzcXHC5XPj7+8t9f3p1JRKJ4O/vDx0dHZSVleHevXsYPXq0UuP29ARXVVWFxsZGmJiYSE1wioLe3SwsLISfn9+ArkKioXsxl5WVPRIG64rOeYNdrZy7y2VSFRRFITc3FzU1NRg7dqxcOx4ikQibNm3Cd999h4aGRgAUtM3sYOYzCU35aRBU5eP777/r1pxX0bS3t//bJqumBl9//TX09fXx999/Y86cOfj6669VetFlsVi9CsD3338fJ0+exO3bt5ljL7zwAhoaGnDmzBkVjLJr+Hw+ysvLcfv2bYwcObJHg3aKonD27FlMmjRJSgB0LvZQuPjDv/Ypw4cPh5ubm0Ifv6uCO1royFsNqkiPP2VCi1RZ3Qy6c01QZMVsV9BdfAwNDTXCcqs7RCIRkpOTIRAIoKenh8bGRhgZGTHvUX8LN8ViMTZs2IDff/8dSUlJ8PT0VODoNQONFID3799nerzKA22fYGpqCm9vb6YSrLKyEv7+/rCwsFDSqB+Fz+cz4qS2thaGhoaMGDQxMenzF5MWFdXV1QgMDOxVKA0E+tvXt7uV8+Ph4VLVjDwAUJEApLvK1NfXy+SX1RNlZWVYsmQJLl++AqFQ2kRYmbuAnaEoCtnZ2WhsbERWVhbWrVsHLS0tiMViTJ8+HWvXrsXYsWNVMhZZBOCkSZMQFBSEbdu2Mcd++eUXrFixAo0PzY5VDf29KCoqgr+/v0ytJs+dO4fx48czqQOKKvboaYz0Trwq7FNoQ3O6iITe2afb0vUkQJTp8adI+tvXV7JiVvI9UnS3pba2NqSkpMDU1LTXbinqpKucP4FAwOQz0xEiyapied4jiqKwefNm/Pjjj7h48WKfo5GajkYmSbDZbCasISscDofJhXN3d2cSq9va2hAaGqry9kS6urpwcnKCk5MT0yqturoaycnJ0NHRkWrCLuuPjM6P1PSWS/Ig2dc3JCSkT2FzFosFExMTmJiYYPjw4czK+fqyZRj/zTdgoUP8NZWVwexhR4Q+8TA3ig/0KCTpFITm5maMHTu236kATk5OOHbsGADg2LFjWLNmDYqKiwEVrt0k2yQ6ODhg8eLFmDNnDnbv3o2cnBwcP35crflKXVFZWfmITYOdnR2amprA4/HU8vthsVjQ0tLC+PHjZa5O1dbWZuZDRRZ7dAUdgeFwOAgODlauJ93Fi9CeNQu6AGwB2D6sNKY7CeXk5EAkEknt7EvmoanS468/KKKvr7a2Nuzs7GBnZycV/cjNzVVY3iCPx0NKSgoTRtfUndTuCj50dHTg4OAABwcH5j2iW9NlZWVJVRX3NCdTFIUvv/wS3333HS5cuDBoxR+ggTuAtM9UYWEhwsLCZDq/uLiYCfHa2dmBx+MhIyMD+vr6GmeJ0tkygaIoqdVud6sUOrTNZrOZ0PZAR7Kvb2BgoFIEhKJWzroPXfuZx0XXtg3K8MvqCpFIhNLSUoUXgnSFpPu/k5MT4uLi8Pjjj+OHH35QW26QLDuAo0aNwsKFC7FmzRrm2KlTpxAdHY3W1la1LaAEAgFj0iwLV65cgY+PDywsLBRa7NHVuLKysnqt9FUUehJmyBSANkBqYUV3t6EjKa2trYx/JZfLRWVlpVo8/uShuroaWVlZSsvT7ilvkO4AJAt0eNrGxgaenp4aL/4oikJQUJDM809LSwvzHjU2NsLY2JgRzZKhYoqisGPHDnzxxRc4d+4cgoODlfly1I7mKCMJZN0BpP2eqqurERQUBBMTEzQ0NCAzMxMODg7w8PDQuC1selva2tqa8T6qrq5GXl4e+Hy+lGUCLfLoJuampqbdJosPNCT7+gYHBytNpHe3cs7Ly0N7e7vMK+fO04w2HrZwkoCujG1ra0NwcLBSd8TYbLbKxF9eXh7q6urg5uaGuLg4hIaGqlX8yYq9vT2qqqqkjlVVVcHU1FStu+fyXly1tLQgEAiYOVEZ4o/H4yEtLQ36+voICQlRyaKZ1en/9QBIGuSwWCyYmZnBzMwMI0eOZAru7t+/D4FAABMTEzQ2NkJXV1elBRKyUlZWhry8PKX29e0u+sHhcHD//n2Z8ga5XC5SUlLg6Oio0TmUfRV/AGBkZAQjIyO4u7szoWIOh8N0LyorKwNFUaiursaXX36JM2fODHrxB2ioANTW1oZQKOzxHD6fj/T0dAgEAiZ0SLd18/T0hLOzs4pG23dYLBYsLCxgYWGBUaNGgcvlorq6GkVFRcjOzoalpSWMjY1RVlam0OplddNTJZwy0dLSgqWlJSwtLZn3m8Ph4MGDB8jJyenTyplGJBIxnnjBwcGDYoeWrmDmcDgYNmwYnn76afj6+iI+Pl7jxR8AhIWF4dSpU1LHzp07J1NkQVOgKApsNhu1tbUwMTGBnp6ewueAxsZGpKenw9bWFp6enmpbYPYWitLT00NdXR309fURFBTEVIPeu3cPRkZGTI61vGbmyoAu0lN1X199fX24uLjAxcVFKvqRlpbWZfSDzk10cXHRaBsx2o+wL+KvM12Fim/duoVt27ahsbERYWFhSE9Ph7Oz86Bx1+gOjROALBar1x1ALpeL1NRUGBsbw8/PDywWi6kgDQgIgJWVlQpHrBgkV3IjRoxAa2srCgoKUFxcDACor69HcXGxyu0AFI28lXDKQt6VsxDSPxbJ3T/JbhjK3M1UJXRVdlVVFUaOHIlnn30WI0aMwL59+9T2+rhcLu7fv8/8u7CwEOnp6bC0tISrqyvWrFmDsrIy/PrrrwCA//znP9i5cyfee+89vPLKK7h48SIOHDiAkydPqmX88kLn+7m5uaG4uBhXr15lfPRsbW0VYjNVVVWF7OxsjBgxAq6urir9PQoA6KBj948CwH/hhW7PbWtrQ3p6OnR1dTF27Fhoa2vD1NQULi4uUjs6//zzD3R0dBgrLgsLC5W+Jkk3g+DgYLUW6fUW/TA1NUVTUxPc3d0xYsQItY2zNyTnV0X7/GlpacHCwgL29vYQCoXYu3cvqqqqsG/fPmRmZmLXrl0Key5NRONyAIGOpNmrV6926dVVU1PDqPPhw4czvoFcLlcpPkDqgu63OWbMGJiZmTF5MHV1dRq32pWV/lbCqYru8gaHhYTAFA/F38NcJaFQyBj5qtMsVdHQfVRHjRqF559/HnZ2dkhMTFRrZ4WkpCRMmTLlkePz589HfHw8FixYgKKiIiQlJUndZ+XKlcjJyYGzszPWrVundiNokUjUa4Sjq2IPepFSXV2N+vp6mJiYwM7Ork+LQlVX+nbLxYvAunXAtWvdnkJ3OpLF40+y73V1dTUAyJRjrQj662agKiiKYsz29fT00N7e3q/ohzLpLP4UPb9SFIX9+/dj+fLlOHLkCKZNmyZ1m7pM7SmKwvr16/HDDz+goaEBjz32GL799lt4eHgodBwaKQCbm5tx8eJFPPnkk1I/9pKSEuTl5cHLywv29vZoa2tDZmYmtLW14efnp3FViH2BDrtVVFQgMDDwkSo8erVL28vQrbvoimJNFVWKqIRTB5IrZw6HI9XayszMDNnZ2dDW1tYos9T+UlBQgJKSEnh5eeGll16Cqakpjh07pnRj86FCbwJQls4enW2m6EWhnZ1dr6bKkpW+mm4l1dDQgLS0NLi4uGDEiBFyzW+SOdYcDqfbHGtFIOlmEBQUpNG/lZqaGmRmZsLT0xNOTk5q8xvsDWWLPwBISEjAkiVLcODAAURFRSn88bujN1P7zz77DFu2bMHevXsxbNgwrFu3DllZWcjJyVHod0sjBWBra6uU+z09YdF+fiYmJmhubkZGRoZCHOo1BZFIhOzsbDQ1NSEoKKjXVT292qUnOLpFjiz+WaqE9uqiJ5yBSufOL83NzdDW1oa7u7vCzb7VRVFREYqKijB69GjMmzcP2traOHHixKB4bZpCdwKwr509JBeFNTU10NfXZyIEnc1wBQKBVK9cTRYqdHh61KhR/c7ppqtl6d9uS0uLwro2qcLNQFHQVcne3t5wcHB45HZV+Q32hirE37Fjx7Bo0SL873//Q2xsrMIfX1Y6OxpQFAVHR0esWrUK77zzDoCOPF07OzvEx8fjhR5SJeRFI+NV9JdMJBIx/Qjb29sREhICPT09cDgc5OTkqCVvRVnQr5OiKIwbN06mSYTNZjM/Tkn/rDt37kAgEMDa2ppZ7aorNFlWVobc3FylVsKpChaLBWNjY+jq6qKqqorpk1tTU4P8/HyNWTn3leLiYhQWFsLb2xuvvPIKAOD48eNE/CmYrr4XtLkzbQ8jT2cPyaR22lS5qqoKqamp0NbWZsSgnp4e0tPTYWBgoLJK374imQKjiHmjc441j8dDdXU1KisrkZeXB1NTU2bxLM/3XVVuBoqgsrIS2dnZPc7FveUNSu6gKkvoqkL8nTp1CosWLcLevXvVKv66orCwEJWVlVLhaDMzM4SGhuLGjRuDXwBqaWmBzWaDy+UiNzcXBgYGGDt2LFgsFoqKilBcXAxfX1+ZXPQHArQFA916py+rLMkKV09PTzQ3N6O6uhoFBQVMRTG92lXVCpWuhAsMDFRpJZwyaW9vR0pKCoyNjRlLHldXV5kq7jSZBw8eoKCgAN7e3nj99dfR1taGM2fOyGxWTOgjD3eeRM8/D/EPPzBG0X2FzWYzgk/SczQ9PR1CoRBGRkZwdnbWmOhAZzq3hFSWx5+BgQHc3Nzg5uYmFU4vKCiAgYEBIwZ7aiemLjeDvlBeXo7c3Fz4+/vL3Dq0s2sCHf1QhGtCd6hC/J0/fx4LFizAjz/+iGeeeUbhj99fKisrAaBLE3v6NkWhkQIQ6PjyZWRkwMnJCSNGjGA8/xobGxESEsK0RRroNDU1IS0tDXZ2dgoz4GSxWDA1NYWpqamUf1ZZWRnu3LkDMzMz5iKhDD80TaqEUyR0myQzMzP4+PhIfVaasHLuK6Wlpbh//z68vb2xdOlS1NXV4dy5c8rtAkGAtr4+Y4Ss8+ef4FVWgtXJtqY/0J6jIpEIFRUVTKu0O3fuQCQSMSJH3jZZyoLuoEPP8araee7ctYluS5eamsoIarqimBZ5muJmIAt0x5T+WNLQ0Q9jY2PGNYFOO5DVb7A3VCH+Ll++jJdeegm7d+9W6E7aQEUjcwDz8/Nx+/ZtuLq6wsPDA+3t7cjKygIA+Pv7q7USUZFwOBxkZWUppdl6d3SuJDQ2NmbEYG/J47IwUCrh5IVuk2RpaSnXhC+ZN9irU7+REehvdjugkr7F9M6Ar68v3nrrLRQXF+PChQsD0kppoCAWiyEwM4Mulyt1vLvuMn2FoihmF14yYkJ32KiqqkJ1dTXTSkyd6SJ0bqJAIEBgYKBGzPFisRj19fVM3qBYLIaNjQ2MjY1RWFg4ILxZ6UrvwMBApe2mSkY/ampqmFx0eaIfqhB/165dw9NPP42tW7di0aJFGvO5dc4BLCgowIgRI5CWloaAgADmvMmTJyMgIADbt29X3HNrogDMyclBaWkpTE1NYWVlhfz8fMYCQBNWqoqgtLQUeXl58PHxgb29vVrGIBAImGTfmpoa6OnpMWKwL6u4gVQJJw+tra1ISUlRSJskyZWzVMXd44/DvrlZ+lxnZyAvr7/D75aKigrcuXMHY8aMwbvvvos7d+7g0qVLgya1QlMRi8Vot7GBfl2d1HFFCkCxWMwsxAICArrdhZcsjqiqqgKPx4OlpSXs7OxUtlvd1taGtLQ06OnpaVzrThpaNBcXF6OqqgosFktKNGvarj7wbzV/UFCQyqIw3bkm0IKwq/dJFeLv1q1biIuLw+bNm/HGG29ojPgDui8Ceeedd7Bq1SoAHZFCW1tbhReBaJwAbG1txbx58zB58mTU1tbi4sWLePfdd+Hk5AQ7OzuNtjqRBYqikJ+fjwcPHiAgIAAWFhbqHhIAMMnj9E6VlpYWIwYlQx/dMZAq4eShpaUFycnJTGtBRX73JFfOvqGh6Lzn0bk3qiKprKxETk4OxowZg//+979ITU3FpUuX1LYYGUp8++23KCgowKdffindC3f16g5PvH4iuZsWEBAg10Ksc5U7XSlLF5EoGtrjj95Z1+Q8OtrNwMvLC6ampkwkpbm5mTHotrGxUWubQeDfFJzy8nKmRaq6xkH34KXfp87RD1WIv5SUFMTExGD9+vVYvny5RugHSVP7wMBAbN26FVOmTGFM7T/77DN8+umnUjYwmZmZg98GprGxEVu3bsX333+PyspK+Pj4YOHChQgICEB7eztYLJZcwkSToPMY6+vrERgYqLEJ9pKhDw6HA5FIJLXa7bwLK1kJ5+/vr5Er+L5A98ik81CVOXGIjYzQ2fSnCgD37l2FF+7QVhBjxozBxo0bce3aNSQlJQ1oi56BxLlz5/D999/jzJkzKONyoQPg1rp1GPvee/2ez1pbW5lKX19f3379FulK2erqajQ2Nio8d7i+vh7p6el98vhTNXRf366qkpWdViMPtI9sVVUVgoODNSoFh45+0H6D+vr6EIvF0NbWxtixY5XSPjMjIwPR0dFYvXo13n33XY35jvVmak8bQX///fdoaGjAxIkTsXv3bowaNUqh49A4ASgSifD666/j1KlT2LZtG+7evYvExETcvn0bkyZNwrRp0zB27FgIBAJQFAUbGxvY2dlplO9dV2hijoss0KEP+kLQ1tbGFDTY2NhAJBINmEo4eaC7lri6umL48OEqeU62kRHoKZAPIP/27W5Xzn2Fw+EgMzMTY8aMwebNm3HhwgVcunQJbm5uCnkNBNlpaWnBmTNnkJiYiJMnT8LU1BQxMTGIjY3F+PHj5U53aWhoQHp6OhwcHDBq1CiFXuza29uZOYAWOXQXkr58H6uqqhhvUE3v207nUfr7+/daRKHotBp5kMy/Dg4O1uiWoe3t7UhNTUV7ezsoimIKlhTZsSU7OxuRkZFYvnw51q5dqzHiT5PQOAFIURQ+//xzvPzyy8zEQIdNExISkJiYiNTUVEyYMAFPPvkkxo4dy5inalpVG81AyHGRhc5GyFwul/HX8vX1VXvoQ1E0NjYiNTVVY7qWdF450zYVvVbcPSwqoQDwnZ1Rc+0aMjIy4O3tja1bt+L48eNISkpSmcAldA+Px8O5c+eQmJiIY8eOQU9PD7NmzcLs2bPx2GOP9Tpn0CF9Dw8PptpXWdAih+5CYmBgwHQhkaU1Je3xp+lWXp0taeTNo6PTamhBqEyjfkmXjODgYI3Ov+4c9tXS0pI7b7A3cnNzERkZicWLF+Ojjz4i4q8bNE4A9gZFUSgpKWHE4M2bNzFu3DhERERg3LhxYLPZTFUbncisTjHY3NyMtLQ0xi5gsOyQ0SLJ1NSUablkYmIiFfoYiNCtp2iTcU2jq4q7LlfORkaQlOMUgFNz58Lrww+xa9cuHDhwAElJSQrvLUnoP3w+H5cuXcKhQ4dw9OhRAEB0dDRmz56NSZMmSV0QKYpCYWEhioqK1CKohEKhVBcSXV3dbne8KIrCvXv3UF5e3mWbS01C0W4Gkkb9HA5HoUb9ksV3wcHBGh1d6i3nT5a8wd64d+8eIiMjMWfOHHz66aeD5pqrDAacAJSEbmqdmJiIxMREXL16FQEBAYiMjMT48eOho6ODtrY25odmY2Oj0t232tpaZGZmws3NDcOGDRs0q5Cu+vpKmqlK7lL1ZqaqSdTV1SE9PV0hradUQU8Vd+6jRj1i8tkC4JP330d8fDwuXbqE0aNHq2Scu3btwhdffMG0cvzmm28wbty4Ls+Nj4/HwoULpY7p6emhra1NFUPVOIRCIa5cuYKDBw/i6NGjaGtrQ3R0NOLi4hAWFoY1a9YgMjISU6ZMUbs3audCMklTalNTU+Tk5KCpqQmBgYEavUBUtpsBRVGMUT+Hw0FLS4uUUb88Ak4kEiEzMxPt7e0ICgrS6OK7vhR8yBv9KCwsxIwZMxi7FyL+emZAC0BJKIpCVVUVjhw5gsTERCQlJcHb2xtRUVEYP348DA0NpSwObGxslJJ0SlNeXo47d+5g9OjRcHR0VNrzqBrJSrjuXpekmWpNTY3UhcDc3Fwjf5S1tbXIyMjo8XVpMp1XzhOeeAKdLwVlAAKtrXHx4kX4+vqqZFx//vkn5s2bhz179iA0NBTbtm3DwYMHkZeX12U7qvj4eCxfvhx5EvY3LBbrEVf8oYhIJMK1a9dw6NAhJCQkoKqqCoaGhti0aRNefPFFjcr5ogvJaK9BoVAIbW1teHp6ws7OTiPnAEA9bgaSv9umpiZmx8vW1rbHz5QWVCKRCIGBgUq9nvUXRVT7dhf90NPTg52dHerr6xEREYHo6Gjs3LlTY79jmsSgEYCSUBSFuro6RgyeP38eHh4eiIqKwoQJE2BiYiK16rK1tVXYD502Xy0qKoKfn9+gMtTtqRKuOyTbUXE4HFAUxezIakquJm3IPXr06C4bpA9E2tvbYWppydiMiACY6Ovj22+/xdy5c1X2voeGhiIkJAQ7d+4E0PF9cHFxwbJly7B69epHzo+Pj8eKFSvQ0NCgkvENRPLz8xEVFQVbW1sEBATg1KlTqKqqQkREBGJjYzFjxgyNcRig26Vpa2vDxMQENTU1EAqFPboKqAtNcDNob2+XiqQYGRkxYtDExITZ8RIKhUhLSwOLxUJAQIBG55Urw+pFMvqxe/du/Prrr2Cz2Rg7diwOHDhA7KxkZFAKQEkoikJjYyOOHTuGxMRE/PXXX3BxcUFUVBQmTpwICwsLcLlchfhdicVi5ObmoqamBoGBgWoPySgSeSrhuoP+LOgikvb2dqkLgTpWsHQ14pgxYwbVLhOdozkiJQX79+/H50VFmDJlCm7evAltbW2cOHECISEhSh0Dn8+HoaEhDh06xJicAh1WBw0NDUx+myTx8fF49dVX4eTkBLFYjKCgIGzevBk+Pj5KHetA4n//+x+Sk5PxxRdfgM1mQywWIzU1lcmLfvDgAaZNm4bY2FhERUWpLQWDy+VKtUvT0tLq0lVA3XMA8K9QlezxrW4651fq6Ogw9mcFBQXQ1dWFv7+/xgjorhCJRMyOalBQkFKEakVFBeOhp6enh5SUFMyZMwfx8fEKf67BxqAXgJ1pbm7GyZMnkZCQgNOnT8PW1hbR0dGYOHEi7OzsmC142uJA1vwPoVCIrKwstLW1ITAwUKOrsOShv5VwPT0u3YGgurqa2ZGlV7uqSGSurKxEdnY2/Pz8NLoaUV6am5uRnJyMYcOG4a+//sKGDRtw+vRphIWFQSgU4vr16/1boHQWE91MIeXl5XBycsL169cRFhbGHH/vvfdw+fJl3Lp165H73LhxA/fu3YOfnx8aGxvx5Zdf4sqVK8jOzh4QeZnqhqIo3L59GwcPHkRiYiLu3buHJ554ArGxsZg5cyYsLCxUIgbpPGHaRqmr56TTFugwsbKiMr0xEPr60pGUyspKVFZWAgDs7e01KpLSGVWIPw6Hg6ioKPj5+eG3336DtrY2Kioq8ODBg27zjJXBhg0bsHHjRqljnp6eyM3NVdkY+sKQE4CS0D5cCQkJOHnyJMzMzBAVFYXJkyfDwcEBTU1NMDU1ZSak7vIx2tvbpUIHmpyLIQ+q7Ovb2XRWlve9P9A9cP38/GBtba3wx1cXXC4XycnJcHNzw+XLl7F69WqcOHECkyZNUswTdHVxVKAA7IxAIMDo0aPx4osv4uOPP+7zsIciFEUhNzcXhw4dwuHDhxkv1bi4OMyaNQvW1tZKETv0wkpej7/W1lZmDmhqamK6a8izEJeXxsZGpKWlwdnZWePNqOldSiMjI7i4uDC7g3QkhS6O0ITrjyrEX21tLaKjo+Hh4YH9+/er9XVv2LABhw4dwvnz55lj2traGn9tGdICUJLOPlz6+vqMGHR1dUVjY2OX5qctLS1IS0uDmZkZfHx8NCJ0oAhEIhFu376tlr6+subB9JXS0lLcvXsXAQEBfQ5nayJ05xJnZ2fcuHEDq1atwrFjx7p0nO8zcgjAvoSAu+LZZ5+FtrY2/vjjj76MmIB/vVRpMUh7qcbFxSEmJgb29vYKET/FxcXIz8/vtyVNW1sbIwYbGhqUsiCkdymHDx+u8UboPB4PKSkpsLCwgLe3N/NZ0ZEUer6UTGeysbFRSyRKFeKvoaEBM2fOhLOzMw4dOqT26ucNGzbgyJEjSE9PV+s45IUIwC7g8/m4ePEiEhIScOTIEbBYLERFRSE8PBzDhg1DU1MTDA0Noauri6amJjg5OSm8T6w6oSvhRCIRAgIC1Prj6i4Phq4olvc9LykpQX5+vkb1YVYEdM9iJycnpKamYunSpUhISEBERIRin0gOAQh0FIGMGzcO33zzDYCOUJarqyuWLl3aZRFIZ0QiEXx8fBAVFYWtW7f2ediEf6EoCsXFxYx91s2bNxEaGorY2FjExsbC2dlZ7t8V3YKsoqJC4R5/fD6fEYP0glById6XeZduhzgQXBpaW1uRkpICa2treHl59fh6eTweIwYlvVltbGxUUhikCvHX1NSEmJgYWFlZ4fDhwxqRbrVhwwZ88cUXMDMzg76+PsLCwrBlyxaN9JKVhAjAXhAKhbh8+TIOHTqEI0eOoL29HVFRUdDV1cWxY8ewc+dOWFlZMROSInao1IkmVMJ1h0gkkqooBiDlrN9bHgxdyBIUFKTRJrTy0traiuTkZDg4OCArKwuvv/46/vzzT8ycOVM5TyhjDiDQYQMzf/58fPfddxg3bhy2bduGAwcOIDc3F3Z2dpg3bx6cnJywZcsWAMBHH32E8ePHY+TIkWhoaMAXX3yBI0eOICUlBd7e3sp5PUMYiqJQVlbGiMFr164hMDCQEYOy+JeKxWLcvn0bTU1NCAoKUqodjUAgkFoQ6uvrS3kNyjL39sXNQF3Qu/oODg5ybzLQ3qwcDge1tbV9eq/kQRXij8vlIi4uDoaGhjh+/LjGdJ86ffo0uFwuPD09UVFRgY0bN6KsrAy3b9/W6GJQIgDlgPbh+u9//4tr165BX18fMTExCA8Ph5eXF7hcbo9O+JpOW1sbUlJSYGJiojGVcN1Bdx+hdwZ6c9YvKChASUmJQgtZNAEej4fk5GTY2tri7t27eOWVV7Bv3z7Mnj1b3UNj2LlzJ2MEHRAQgB07diA0NBQAEB4eDnd3d6Zib+XKlUhMTERlZSUsLCwQHByMTz75BIGBgWp8BUMDSS/VhIQEXL58GT4+PoiNjUVcXFyXAkQgEDDRAlX55tGIRCJGDHI4HJmiA4pwM1AVzc3NSElJgYuLS7eFNLIi6aFHm3TTi2cLC4t+z/WqEH8tLS14+umnwWKxcPLkSY2xOuqKhoYGuLm5YevWrVi0aJG6h9MtRADKybp16/D999/j2LFjEIvFTE4Nh8PB9OnTMXXqVIwZMwZcLpcxQLazs+tTuFKVDIRKuO7ozVn/wYMHKC0tRXBwsEavxuSlra0NycnJsLa2RlFREebOnYtffvkFzz33nLqHRhjgSHqpJiQk4MKFCxg1ahRiYmIwe/ZsjB49GgUFBbh+/TrGjBkDPz8/tVaiisViqS4kLBaLEYN05bMy3AyUBW3j5O7ujmHDhin0sWmTbvq9EolEUt6s8oo3VYg/Ho+H5557Dm1tbThz5syAmMdDQkIwbdo0JrqhiRABKCc3btyAnZ0dhg8fzhyjfbgOHTqExMRElJaWYtq0aZg2bRp8fX3B4/EemZA0aXdtIFXCyYKks35jYyNYLBZcXV3h4uKiMSGD/kKLP0tLS1RUVODFF1/Enj178PLLLw/4z4+gWXT2Uj179izs7OzA4XDwxBNP4Pfff9eoVBHJvrtVVVUQi8XQ0dGBUCgcEIvA+vp6pKenq6QfuaQvI4fDYbpl0Yvn3nZ0VSH+2tvb8eKLL6K+vh5//fXXgEjf4XK5cHV1xYYNG/DWW2+pezjdQgSggqHzYWgxeP/+fUyZMgXTp09HYGAg2traQFEUbGxsYGdnB0tLS7WKQbr/7YgRIzS+Ek4eKIpCXl4eqqqq4OzsjIaGBtTX18PIyIgR4sbGxgNSLLW3tyM5ORnm5uaora3Fs88+ix07dmDBggUD8vUQBhYnT57Ec889B1dXV5SUlMDOzo4JEwcHB2vU4lYoFCI9PZ2JyPSWKqJu6JaU6upH3tLSwqTVNDc3w8zMjJkvOy+eVSH++Hw+5s6di7KyMpw/f15jw/bvvPMOZs2aBTc3N5SXl2P9+vVIT09HTk6ORnvMEgGoRCR9uBITE5GdnY3Jkydj+vTpCA4OhkAggEgkYnIxVG3oSXfBGAiVcPIg6V84duxYZuLqnECup6c34PI1+Xw+kpOTYWJigubmZjz11FP4/PPP8frrrw+I8RMGNs3NzfDw8MDmzZvxyiuvPOKlam5ujpiYGMTGxiI0NFStYeHObgY6OjrgcrmM8TSPx4OVlRWz26Vu/zxNa0nZ1tbGRFLq6+thbGzMXKsMDAyQmZmpVPEnEAiwcOFC3L9/HxcvXtRoT70XXngBV65cQW1tLWxsbDBx4kRs2rQJI0aMUPfQeoQIQBVBd9Sg2zWlpaXhsccew5NPPomQkBBQFAU+nw9ra2vY2dkpvUfmQKqEkweKopCTk4P6+nqMHTu2W4sAkUjE5AzRjcUlK4o1aReDhs/nIyUlBUZGRuDxeJg9ezY+/vhjLF26lIg/gsqor6/v0kKJ9lJNSEjA8ePHmSK5uLg4TJgwQaW7bbK4GdD+eVVVVYx/np2dHWxsbFTSiUgSTW9J2XnxDHQYHfv4+MDKykrh849QKMTixYuRmZmJpKSkQXWN0iSIAFQDtA8XLQb//vtvhIaGIiIiAqGhoWCxWFI9Mm1sbBQ6eQ6kSjh5EIvFyM7ORnNzs1zm1ZI5Q9XV1f1OilYGAoEAKSkpMDAwgFAoRExMDNauXYu3336biD+CxsHn83HhwgUkJCTg6NGjYLFYmDlzJmbPno1JkyYpdbeNx+MhNTVVLjeDzp2Iegp9Khq6K1F/zbNVgUgkQnp6Otra2mBqaora2lpm8WxjYyOTHZcsz/HGG2/g1q1buHz5skbshg5WiABUM935cEVGRmL8+PHQ0dFhEnPp1WlfJ0+KonDv3j3GrFXTK+HkQSwWIysrC62trQgODu6zHUV/k6KVgUAgQGpqKnR1daGlpYWZM2finXfewerVq4n4I2g8tJfqwYMHcfToUfD5fERHRyMuLg5TpkxR6G5bS0sLY5rcVzeD9vZ2RgzW19czZsqSHaAUBd2VyN/fH1ZWVgp9bEXTVc4fvXimQ8V0jqWNjQ2sra3lvlaJxWK89dZbuHLlCi5dugQXFxclvRoCQASgRkH7cB0+fBiJiYmMD1dUVBQmTJgAAwMDcLncPjVMF4vFuHPnDurq6pTe11fViMViZGRkoL29HUFBQQoVaZ2Toun+pDY2NiqpKBYKhUhNTYW2tjb09PQQFRWFN998E+vXryfijzDgEIlEuHr1KhISEnD48GE0NzcjMjIScXFxmDZtWr9+U8pwM6DNlKurq1FbW6vQIrLi4mIUFBQMiK5EkuIvMDCwS2FH23HR71dnO67ehL5YLMY777yDM2fOICkpCe7u7kp6NQQaIgA1FIqiUFtbi6NHj0r5cEVHR2PChAlMEQDd99HW1rbbH5g6+/oqG3piEggECAoKUmpoie5PyuFwmKRoyYuBohGJREhNTYWWlhYMDQ0RHR2NV155BZs2bSLijzDgEYvFuHnzJiMGORwOIiIiEBsbi4iICLl+U3T1rDLdDDq3paRN/+3s7OTurFFYWIiioqIB0ZVIFvHXFa2trcx82djYyPRztrGxeWQDQiwWY82aNThy5AguXbqEkSNHKuOlEDqhEgG4adMmnDx5Eunp6dDV1UVDQ0Ov96EoCuvXr8cPP/yAhoYGPPbYY/j222/h4eGh7OFqHHTXi+PHjyMhIQF//fUX3NzcEB0djcceewyWlpZoamqCmZkZ05KOFnma1NdX0YhEIqSlpYGiKAQGBqo8yZy+GCijzRKda0NRFMzMzBAVFYUXXngBX3zxhUYWqBAI/UEsFiMlJYXJiy4tLcX06dMRGxuLqKioHltsVlVVITs7G15eXipzM5AsIqM7a3Q2nu4KiqKQn58/YIzp+yr+OtPe3i7Vls7Q0BC2trZobm6Gr68vPvroI/zvf//DpUuX4OnpqeBXQegOlQjA9evXw9zcHKWlpfjpp59kEoCfffYZtmzZgr1792LYsGFYt24dsrKykJOTM6h2sPpCU1MTTp48iYSEBJw5cwZ2dnaIjo7GpEmTYGNjw6y2LCwsmJWqpvX17S9CoRBpaWlgsVgICAhQ62uTbElVU1PDXAxsbGz6ZPpNT7oikQgWFhaYNWsWYmJisH37diL+CIMeOp+Xts/Kz8/H1KlTERMTg5kzZ0p1VXrw4AHu3bunVjcDsVgs1aOcoihGDEo6ClAUhbt376KqqgrBwcEan4YjEomQmZkJgUDQL/HXGXon9cGDB5g1axZEIhEoisLOnTsxb968QXWd0nRUGgKOj4/HihUrehWAFEXB0dERq1atwjvvvAOgI7/Dzs4O8fHxeOGFF1Qw2oFBS0sLTp8+jYSEBJw6dQrm5uaIjo7GqFGj8M0332D58uWMtYAykpjVgUAgkLJ4UKfXWGck2yxVV1dDLBbL5fNI5zMKBALY2toiOjoaERER2L17NxF/hCEH7elJt9ykvVTj4uJw+/Zt3L17F3v37tUYNwM6WkN7DdI+rzY2NqipqUFdXR2Cg4NhaGio7qH2iLLEnyQURWHLli3Yvn07ZsyYgatXr4LP5+Po0aOYOHGiwp+P8CgaeUUpLCxEZWUlpk2bxhwzMzNDaGgobty4ocaRaR5GRkZ45pln8Mcff6CyshI7duxAWVkZ3n77bVRUVCAjIwOVlZWora3FzZs3cePGDeTn54PL5WIgpn/SXng6OjoaJ/4AQEtLi+mnPGnSJAQGBkJXVxd3795FUlISMjIyUF5eDoFA8Mh9xWIxMjMz0d7eDnt7e8TGxmLKlCnYtWuXysTfrl274O7uDn19fYSGhuLvv//u8fyDBw/Cy8sL+vr68PX1xalTp1QyTsLQgMViwdvbGx9++CFSU1ORnZ2NKVOm4JNPPsGePXtQV1eHQ4cOobKyUiPmMxaLBQsLC3h5eeHxxx9nitKys7NRXl4OIyMjNDY2QigUqnuo3ULPQ8oWfzt27MDu3buRlJSEgwcPoqysDCdOnICvr6/Cn08W5J37BgMaKQArKysB4BFDTDs7O+Y2wqMYGBjAyckJ165dw+rVq3Hw4EGwWCwsX74czzzzDJNb09DQgFu3buH69eu4f/8+mpqaNGLy7A1a/BkYGGik+OsMi8WCubk5Ro0ahcceewyhoaEwMTFBSUkJLl++jJSUFDx48ABtbW1MC0EejwcXFxfExcUhNDQUP/zwg8pe559//om3334b69evR2pqKvz9/REREYHq6uouz79+/TpefPFFLFq0CGlpaYiLi2N2ZggERcNisTB8+HDk5+dDT08PFy9exJw5c3Dw4EGMGjUKERER2LVrF0pLSzViPmOxWDAxMUFbWxv09PQQHBwMMzMzFBUVISkpCWlpaSgrKwOfz1f3UBkkIxDKFH/ffvstPvvsM5w+fRrBwcEAOhbPYWFhaimKkXfuGyz0OQS8evVqfPbZZz2ec+fOHXh5eTH/ljUEfP36dTz22GMoLy+XMoF87rnnwGKx8Oeff/ZlyEOC27dv4/Lly3jzzTeZYwKBAFeuXMHBgwdx5MgRCAQCREdHIzw8HB4eHmhsbOxXRZsqaG9vR0pKCkxMTODj4zPgw6GdjWdZLBaOHz+OmJgYrF69Gj4+Pvj9999Vmg8TGhqKkJAQ7Ny5E0DHxcDFxQXLli3D6tWrHzn/+eefR0tLC06cOMEcGz9+PAICArBnzx6VjZswdKAoCps2bcLChQvh5OTEHKO9VBMSEnD9+nUEBQUhNjYWsbGxcHd3V8t8RodRu7Kn6mwvRbs52NjYqC3HnRZ/fD5faY4KFEXhp59+wrp163Dq1Ck89thjCn+OviDv3DdY6LMApKt5emL48OFSX3pZBWBBQQFGjBiBtLQ0BAQEMMcnT56MgIAAbN++vS9DJuBfH65Dhw7hyJEjaG5uxowZMzB16lR4eXmhqakJbDabyRmUTLhWF21tbUhOToaFhQW8vb3VPh5FQlEUMjMzUVxcjK+++orp87t06VI8/fTTCAoKUsnr5fP5MDQ0xKFDhxAXF8ccnz9/PhoaGnD06NFH7uPq6oq3334bK1asYI6tX78eR44cQUZGhtLHPNiQxS2hpKQES5YswaVLl2BsbIz58+djy5YtJHH+IRRFobKyEkeOHEFCQgIuX74MX19fxMbGIi4uDiNHjlTJ74mu4heJRL3upNH2UlVVVVJ2KXZ2dirxGgVUJ/5+++03vPfeezh27BjCw8MV/hx9oS9z32Chz7MGndiqDIYNGwZ7e3tcuHCBEYBNTU24desWlixZopTnHCqw2WxMnjwZkydPxvbt23Hz5k0cOnQIW7ZsAYfDwZNPPolp06bByMgIFRUVYLFYzGRkbm6u8p03Ho+H5ORkJq9usIm/O3fugMvlYvz48aAoCtOnT8e8efNw4sQJTJkyBZcvX0ZgYKDSx1JTUwORSNRl2kVubm6X96msrCRpGgqEz+fj2WefRVhYGH766adHbheJRIiOjoa9vT2uX7+OiooKzJs3Dzo6Oti8ebMaRqx5sFgsODg4YMmSJfjPf/7DeKkeOnQImzdvhqenJ9OfWFnzCe1QAIDpmNET+vr6cHV1haurK2OXUl1djfv37yvdaxRQnfjbv38/3nnnHRw5ckRjxB/Qt7lvsKCSZWNJSQnq6upQUlLCrIwAYOTIkcyX2svLC1u2bMHs2bPBYrGwYsUKfPLJJ/Dw8GBsYBwdHaUUOqF/aGlpYcKECZgwYQK+/PJLpKSk4NChQ/j6669RVlaGadOmMWIwKyurW3sDZdHS0oLU1FTY2NjA09Nz0Im/3Nxc1NXVwdPTE88//zwsLS1x7Ngx6OvrY86cOWhvbx9Uvo2Entm4cSOAjkhJV/z111/IycnB+fPnYWdnh4CAAHz88cd4//33sWHDBvJd6QSLxYK1tTUWLVqEV155BQ0NDTh27BgSExPx1Vdfwc3NDbGxsZg9e7bMPYN7o78OBXp6enB2doazszMEAgEjBgsLC2FgYMDMvz35IsqDKsQfACQkJGD58uU4cOCAVHEnQb2oRAB++OGH2Lt3L/Nvekfj0qVLzEogLy8PjY2NzDnvvfceWlpasHjxYjQ0NGDixIk4c+bMkPcAVBZaWloICQlBSEgItmzZgszMTCQkJGDPnj3Iz8/HE088gSeffBJGRkbIyclh7A3s7OwU0gC8M1wuFykpKXBwcICHh8egE393795FTU0NRo8ejZdffhmGhoY4fPiw1PdbkT1Se8Pa2hpsNhtVVVVSx6uqqmBvb9/lfezt7eU6n9A/bty4AV9fX6mdioiICCxZsgTZ2dkq2SkeqNDVufPnz8f8+fPR1NSEEydOIDExEdOmTYOdnR0TJg4KCuqTGOTz+UhNTYW+vj78/Pz6LSh1dHTg6OgIR0dHCIVC1NbWoqqqCsnJydDR0WEiM2ZmZn2aH1Ul/o4dO4YlS5bgjz/+QFRUlFKeoz/0Ze4bLJBWcIQekfThSkxMRE5ODsLDw/Hkk08iODgYAoEAfD6f8bqjf0z9obm5GSkpKQrt6akpUBSFe/fuobKyEt7e3pg/fz5EIhFOnTqltBCPrISGhmLcuHH45ptvAHRcIFxdXbF06dJui0BaW1tx/Phx5tiECRPg5+dHikD6QXe50osXL0ZxcTHOnj3LHGttbYWRkRFOnTqFyMhIFY90cCDppXry5ElYWFgwYeJx48bJNJ/RRWrGxsYK203sDpFIJGU8Tafp0F1IZHluVYm/U6dOYf78+fj111/x9NNPK+U5FIG8c99gYWCXUhKUjqQPV1paGuPD9eeff+LJJ5/Eli1bmD7D9+/fZ7zuKisr++R11dTUhJSUFLi6uqosYVtV0G2gKioqMGbMGCxatAhtbW04ceKE2sUfALz99tv44YcfsHfvXty5cwdLlixBS0sLFi5cCACYN28e1qxZw5y/fPlynDlzBl999RVyc3OxYcMGJCcnY+nSpep6CRrH6tWrwWKxevwb7HlGmo6kl2pVVRV27NiBxsZGPPvss/Dy8sKqVatw5cqVbuczHo+Hf/75B6ampvD19VV6agybzYaNjQ18fHwwadIkjBkzBkCHA8SVK1eQnZ0NDocDsVjc5f1VJf7OnTuHBQsW4Mcff9Ro8Qf0PvcNVsgOIKFPUBSFoqIipnfnP//8g/HjxyMiIgKhoaFgsVjg8XiwtLSEnZ0dbGxsep1oGhsbkZqaimHDhsHd3V01L0SF0D1AfX19sXjxYnA4HPz111+wsLBQ99AYdu7ciS+++AKVlZUICAjAjh07EBoaCgAIDw+Hu7u7VI7awYMHsXbtWhQVFcHDwwOff/65RoZ51IUi3RI+/PBDHDt2jMmhBjpM84cPH47U1FQSAlYwfD4f58+fR0JCAo4ePQo2m42ZM2di9uzZePzxx6Gjo4O8vDyUlJTA2dkZXl5eal2wUhSFxsZGpguJQCCAtbU17OzsYGVlBW1tbZWJv6SkJDz33HPYvXs35s6dOyAW8j3NfYOVIS8A6+rqsGzZMhw/fhxaWlp4+umnsX379h53ZMLDw3H58mWpY6+//vqQDXtRFIXS0lIkJiYiMTGR8eGKjIzEhAkToK2tDS6XC0tLSyZU0Tlhvb6+Hunp6RgxYgRcXV3V9EqUR2FhIYqLi+Hv74833ngDxcXFuHDhAqysrNQ9NIKG0Z0APH36NGbOnImKigqm7+3333+Pd999F9XV1SrNGR1qCAQCXL58mbHPEggEmDBhAi5fvoxly5bhgw8+0CiRQ1EUmpubGXuZtrY2WFpaoq2tDSwWC8HBwUoTf1evXsXTTz+Nr7/+GosWLdKo94UgzZAXgJGRkaioqMB3330HgUCAhQsXIiQkBP/73/+6vU94eDhGjRqFjz76iDlmaGgIU1NTVQxZo6F9uA4fPozExETGhys6OhoTJkyAvr6+lPGpra0tWlpakJ6ejlGjRsHZ2VndL0HhFBUVoaioCP7+/li+fDlyc3Nx6dIlpdkoEQYmtFvCsWPH8MUXX+D//u//APzrliASiRAQEABHR0d8/vnnqKysxNy5c/Hqq68SGxgVIhKJ8Msvv+Ctt94Cm82GlpYWoqOjERcXh6lTp6rMu08empqakJWVhba2NlAU1eNivD/cunULcXFx2Lx5M9544w0i/jScIS0A79y5A29vb/zzzz8YO3YsAODMmTOIiopCaWkpHB0du7xfeHg4AgICsG3bNhWOduBBUZSUD9fFixfh6enJiEFTU1NcvnwZ9vb28Pf3h4eHx6Cr8i4pKUF+fj4CAgLw7rvvIj09HRcvXhz01WUE+VmwYIGUWwKNpFtCcXExlixZgqSkJBgZGWH+/Pn49NNPiRG0CiktLYW/vz9WrVqF999/Hzdv3kRCQgIOHz6MmpoazJgxA7GxsYiIiICRkZG6h/tI2FcgEDBdSJqammBmZsYY//dn/k1JSUFMTAw2bNiAt956i4i/AcCQFoA///wzVq1ahfr6euaYUCiEvr4+Dh48iNmzZ3d5v/DwcGRnZ4OiKNjb22PWrFlYt24dDA0NVTX0AQdFUYwPV0JCAs6dOwcrKytUVVXhzTffxOzZs9Xmgq8sHjx4gPv378Pf3x9r167FtWvXkJSUxLSwIhA0GXd3dxQXF0sd27Jly6CuipQFiqJw5coVTJ48Weq4WCxmvFQPHz6MsrIyTJ8+HbGxsYiMjFRLhKi3nL+2tjbGa7C+vh4mJibM/CvP9SwjIwPR0dFYvXo13n33XSL+BghDWgBu3rwZe/fuRV5entRxW1tbbNy4sduuI99//z3c3Nzg6OiIzMxMvP/++xg3bhwSExNVMexBwW+//YbXXnsNfn5+yM7OhoODA6KjozFp0iTY2tqivr4exsbGzMpUE1bS8lBWVoa8vDwEBARg48aNuHDhAi5dugQ3Nzd1D41AkAl3d3csWrQIr732GnPMxMRkwP0W1YFYLEZmZiZjn1VQUIBp06YhJiYG0dHRKmmxKW/BB5/PZ8RgbW0tjIyMpLqQdDfe7OxsREZGYsWKFfjvf/9LxN8AYlDGDVavXo3PPvusx3Pu3LnT58dfvHgx8/++vr5wcHDA1KlTkZ+fjxEjRvT5cYcKFRUVWLZsGQ4ePIhZs2aBy+UyPlwLFy6EpaUloqOjER4eDh0dHRQUFMDQ0JBZmRoZGWn0JFNeXo68vDz4+/tjy5YtOHv2LJKSkoj4Iww4TExMSLpCH9DS0kJAQADTrSUnJweHDh3C7t27sXTpUoSHhyMuLg4zZ86ElZWVwuezvlT76urqwsnJCU5OThAIBKipqUF1dTWKioqgr6/PiEFTU1NmvLm5uZg5cyaWLFlCxN8AZFDuAMpqvbBv374+hYA709LSAmNjY5w5cwYRERH9GvtQgcPhdFkEwePxcPbsWSQmJuL48eMwNDTEzJkzER4eDhcXF9TX10NfX5/ZGVRUSyRFUVFRgTt37sDPzw9bt27FwYMHkZSUBA8PD3UPjUCQC3d3d7S1tUEgEMDV1RUvvfQSVq5cSfIN+wFtBE+HidPT0zFx4kTExcVh1qxZsLOz6/d8pmirF5FIxHQhqampgVAoxIEDBzB+/Hhs3rwZ8+bNw5YtW1TeJ57QfwalAJQVuggkOTkZwcHBADr6bc6YMaPHIpDOXLt2DRMnTkRGRgb8/PyUOeQhRVtbGy5cuIDExEQpH67w8HAMGzYMDQ0N0NXVZXYGJVem6qCqqgq3b9+Gv78/du3ahb179yIpKQleXl5qGxOB0Fe2bt2KoKAgWFpa4vr161izZg0WLlyIrVu3qntog4LOXqp///03wsLCEBsbi5iYGDg5Ock9nynb508sFiM3NxcffPABzp8/z/Qtf+aZZzBlyhSlWcsQlMOQFoBAhw1MVVUV9uzZw9jAjB07lrGBKSsrw9SpU/Hrr79i3LhxyM/Px//+9z9ERUXBysoKmZmZWLlyJZydnR/xBiQojq58uGbOnIkpU6bAw8MDDQ0N0NbWZsIUqsixkaS6uhpZWVnw9fXFTz/9hD179uDSpUuMSz+BoAnImh7T1aLl559/xuuvvw4ul0s8BxVMV16qwcHBiI2NRWxsLNzc3Hqdz1Rl8lxSUoKIiAhERkbiueeeYyy/Lly4oDGLXVLAJBtDXgDW1dVh6dKlUkbQO3bsYIygi4qKMGzYMMaK4cGDB5gzZw7T/szFxQWzZ8/G2rVriQ+gihAKhbh69SojBrlcLqKiovDEE0/Ay8sLTU1NTH9MOzs7mJubKzU8weFwkJmZiTFjxuD333/H119/jQsXLiAgIEBpz0kg9IW+dCahyc7OxpgxY5CbmwtPT09lDXHII+mlmpCQgCtXrsDPz48Rg121yKSLTtra2pRq8lxeXo4nn3wSU6dOxXfffcfMq2KxWKNCwKSASTaGvAAkDGxEIhFu3rzJiMHa2lpERERg2rRpGDNmDJqamkBRFLMzaGlpqdCJqqamBhkZGfDx8cHBgwfx2Wef4ezZswgJCVHYcxAImsDvv/+OefPmoaamRqPaFw5mKIpCTU0N46V66dIleHp6IjY2FnFxcfDy8kJ7ezsOHTqEkSNHKlX8VVZWYsaMGQgLC8PPP/8MNputlOdRBO7u7lixYgVWrFih7qFoNEQAEgYNYrEYycnJTIJ1eXk5pk+fjunTp8PPzw8tLS0QiUSwsbGBnZ0dLC0t+zWJ1dXVIT09HaNHj8axY8ewceNGnD59GmFhYQp8VQSC6rlx4wZu3bqFKVOmwMTEBDdu3MDKlSsRGRnZpVk1QflQFIX6+nocO3YMiYmJOHfuHNzc3MDj8aCjo4Nbt24pzTu1uroaUVFRCAgIwK+//qrxhUCkgEk2iAAkDErofBg6wbqgoABTp05FREQEAgMDwePxwOfzYWNjA1tbW1hbW8slBuvr65GWlgZPT0/89ddfWLNmDU6cOIFJkyYp8VURCKohNTUVb7zxBnJzc9He3o5hw4Zh7ty5ePvtt0n+n4bA4XAwY8YM5Ofng8/nw9HRkdkZDAwMVFiko7a2FtHR0Rg1ahT++OOPAVHoQQqYZIMIQMKgh6IoxocrMTERd+7cwZQpUzBjxgwEBQWBz+ejra0N1tbWsLOzg7W1dY8rxYaGBqSmpmLUqFFISkrCqlWrcOzYMUyZMkWFr0qauro6LFu2TCqXdfv27Uwua1eEh4c/Urj0+uuvY8+ePcoeLoFA6CdLlizB33//jfPnz0NHR4fxUj116hQsLS0RExODuLg4hISE9DnSUV9fj1mzZsHFxQUHDx5UaN9geSEFTIqHCEANY9euXfjiiy9QWVkJf39/fPPNNxg3bly35x88eBDr1q1DUVERPDw88NlnnyEqKkqFIx5YSPpwJSYmIiMjA48//jhmzJiBkJAQiEQi8Hg8WFlZwdbWFjY2NlIr3sbGRqSmpmLkyJG4ceMGli5dioSEBLX7P0ZGRqKiogLfffcdU80eEhLCVLN3RXh4OEaNGoWPPvqIOWZoaEiKmQhqQd65b6hTUFAACwuLR/IxW1tb8ddffyEhIQEnTpyAkZERYmJiEBsbi7CwMJnDoE1NTYiJiYGVlRWOHDmiduFECpiUAEXQGPbv30/p6upSP//8M5WdnU299tprlLm5OVVVVdXl+deuXaPYbDb1+eefUzk5OdTatWspHR0dKisrS8UjH5iIxWIqPz+f+vzzz6nx48dT2tra1OOPP05t2rSJunDhAnXhwgXq6NGj1P/93/9Rd+/epUpKSqgTJ05Qd+7cofbt20cZGRlRx48fV/fLoHJycigA1D///MMcO336NMVisaiysrJu7zd58mRq+fLlKhghgdAz8s59BNng8XjUiRMnqIULF1JWVlaUnZ0dtWjRIurEiRNUQ0MD1dLS0uVfVVUVFRYWRk2dOpVqbW1V98voN/v27aO0tLSouro6dQ9FoyA7gBpEaGgoQkJCsHPnTgAdeWwuLi5YtmxZl/5Fzz//PFpaWnDixAnm2Pjx4xEQEEDCeHJCURQePHiAxMREHD58mPHhioqKwoQJE5Cfn49Tp06hpKQEXl5eOHr0KH7//XeZu8Uok59//rlPHW3Cw8ORnZ0NiqJgb2+PWbNmYd26dXI1gScQFIG8cx9BfgQCAZKSknDo0CEcPXoUQqEQM2fORFxcHMLDw5mds5aWFjz99NNgsVg4derUgLNOIQVMsqM5xj1DHD6fj5SUFEybNo05pqWlhWnTpuHGjRtd3ufGjRtS5wNAREREt+cTuofFYsHV1RUrVqxAUlISiouLMXfuXFy+fBkzZszAm2++ifLycjg4OODAgQNob2/H119/je3bt6OxsVGtY6+srIStra3UMW1tbVhaWqKysrLb+7300kvYt28fLl26hDVr1uC3337DnDlzlD1cAkGKvsx9BPnR0dHB9OnT8d1336G0tBSHDh2CsbExli5dCnd3d7z22mtITEzEc889B7FYzISPBxp6enrYv38/Jk+eDB8fH2zatAkrV67E999/r+6haRykJlpDqKmpgUgkgp2dndRxOzs75ObmdnmfysrKLs/v6aJP6B0WiwVHR0e8+eabeOKJJzB58mSEhoaCx+Ph9OnT2Lp1K55//nkcOXIEiYmJShNNsiY995XFixcz/+/r6wsHBwdMnToV+fn5GDFiRJ8fl0CQh77MfYT+oa2tjfDwcISHh2P79u24ceMGEhISsGzZMrDZbOTn58PExETdw+wTQUFBuHnzprqHMSAgApBA6IGPP/4Yr732Gj755BMAHZ1h3N3dwWKx8MYbb+CNN95Q2nOvWrUKCxYs6PGc4cOHw97eHtXV1VLHhUIh6urqYG9vL/PzhYaGAgDu379PBCCBMERgs9mYOHEiJk6ciE8//RQcDgdmZmbqHhZBBRABqCHQPnRVVVVSx6uqqrq9iNvb28t1PkF+fvnlF+jq6jKtl4YNG6ay57axsYGNjU2v54WFhaGhoQEpKSkIDg4GAFy8eBFisZgRdbKQnp4OAHBwcOjTeAmEvtCXuY+gHPT09ODs7KzuYRBUBMkB1BB0dXURHByMCxcuMMfEYjEuXLjQbWeJsLAwqfMB4Ny5c6QThQLR09PrtQm7uhk9ejRmzJiB1157DX///TeuXbuGpUuX4oUXXoCjoyMAoKysDF5eXvj7778BAPn5+fj444+RkpKCoqIiHDt2DPPmzcOkSZPg5+enzpdDGGL0Ze4jEAgKQL1FyARJ9u/fT+np6VHx8fFUTk4OtXjxYsrc3JyqrKykKIqi5s6dS61evZo5/9q1a5S2tjb15ZdfUnfu3KHWr19PbGCGKLW1tdSLL75IGRsbU6amptTChQup5uZm5vbCwkIKAHXp0iWKoiiqpKSEmjRpEmVpaUnp6elRI0eOpN59912qsbFRTa+AMJTpbe4jEAiKh9jAaBg7d+5kzFADAgKwY8cOJowXHh4Od3d3xMfHM+cfPHgQa9euZYygP//8c2IETSAQBhw9zX0EAkHxEAFIIBAIBAKBMMQgOYAEAoFAGNJs2LABLBZL6q+rnrIEwmCCVAETCAQCYcjj4+OD8+fPM/+WtWcugTBQITuABAKBQBjyaGtrw97envmztrZW95AGNZs2bcKECRNgaGgIc3PzLs8pKSlBdHQ0DA0NYWtri3fffRdCoVC1Ax3EEAFI6BO7du2Cu7s79PX1ERoaytiLdEV8fPwj4RV9fX0VjpZAIBB65t69e3B0dMTw4cPx8ssvo6SkRN1DGtTw+Xw8++yzWLJkSZe3i0QiREdHg8/n4/r169i7dy/i4+Px4YcfqnikgxdSBEKQmz///BPz5s3Dnj17EBoaim3btuHgwYPIy8t7pCct0CEAly9fjry8POYYi8V6pPUTgUAgqIPTp0+Dy+XC09MTFRUV2LhxI8rKynD79u0B2xJtoBAfH48VK1agoaFB6vjp06cxc+ZMlJeXM9eKPXv24P333weHw4Gurq4aRju4IDuABLnZunUrXnvtNSxcuBDe3t7Ys2cPDA0N8fPPP3d7HxaLJRVeIeKPQCBoCpGRkXj22Wfh5+eHiIgInDp1Cg0NDThw4IC6hzZkuXHjBnx9faWuFREREWhqakJ2drYaRzZ4IAKQIBd8Ph8pKSmYNm0ac0xLSwvTpk3DjRs3ur0fl8uFm5sbXFxcEBsbS37ABAJBYzE3N8eoUaNw//59dQ9lyFJZWfnIRgH978rKSnUMadBBBCBBLmpqaiASibr8YXb3o/T09MTPP/+Mo0ePYt++fRCLxZgwYQJKS0tVMWQCgUCQCy6Xi/z8fNIXW05Wr179SL5357/c3Fx1D5PwEFLnTlA6YWFhUj09J0yYgNGjR+O7777Dxx9/rMaREQgEAvDOO+9g1qxZcHNzQ3l5OdavXw82m40XX3xR3UMbUKxatQoLFizo8Zzhw4fL9Fj29vaPFBdWVVUxtxH6DxGABLmwtrYGm81mfog0VVVVMv8odXR0EBgYSMIrBAJBIygtLcWLL76I2tpa2NjYYOLEibh58yZsbGzUPbQBhY2NjcLes7CwMGzatAnV1dVMceG5c+dgamoKb29vhTzHUIcIQIJc6OrqIjg4GBcuXEBcXBwAQCwW48KFC1i6dKlMjyESiZCVlUV6FhMIBI1g//796h7CkKOkpAR1dXUoKSmBSCRCeno6AGDkyJEwNjbGk08+CW9vb8ydOxeff/45KisrsXbtWrz55pvQ09NT7+AHCSQHkCA3b7/9Nn744Qfs3bsXd+7cwZIlS9DS0oKFCxcCAObNm4c1a9Yw53/00Uf466+/UFBQgNTUVMyZMwfFxcV49dVX1fUSCAQCQe1cuXIFs2bNgqOjI1gsFo4cOSJ1O0VR+PDDD+Hg4AADAwNMmzYN9+7dU89gFcyHH36IwMBArF+/HlwuF4GBgQgMDERycjIAgM1m48SJE2Cz2QgLC8OcOXMwb948fPTRR2oe+eCBCECC3Dz//PP48ssv8eGHHyIgIADp6ek4c+YMUxhSUlKCiooK5vz6+nq89tprGD16NKKiotDU1ITr168PuW18WZzvOzOYLwAEwlCnpaUF/v7+2LVrV5e3f/7559ixYwf27NmDW7duwcjICBEREWhra1PxSBVPfHw8KIp65C88PJw5x83NDadOnUJrays4HA6+/PJL0qJPgRAjaAJBRaxfvx7m5uYoLS3FTz/99IjxaVd89tln2LJlC/bu3Ythw4Zh3bp1yMrKQk5ODummQiAMIlgsFg4fPsyk1lAUBUdHR6xatQrvvPMOAKCxsRF2dnaIj4/HCy+8oMbREgYDZAeQQFARGzduxMqVK+Hr6yvT+RRFYdu2bVi7di1iY2Ph5+eHX3/9FeXl5Y+EiggEwuCisLAQlZWVUp6rZmZmCA0N7dFzlUCQFSIACQQNhVwACIShC+2rKo/nKoEgD0QAEggaCrkAEAgEAkFZEAFIGLT0VmHXFUlJSQgKCoKenh5GjhyJ+Pj4Hs8nzvcEAkEZ0L6q/fFcJRB6gghAwqCltwq7zhQWFiI6OhpTpkxBeno6VqxYgVdffRVnz57t9j6rVq3CnTt3evyT1fm+M+QCQCAMXYYNGwZ7e3tcuHCBOdbU1IRbt25JdVYiEPoKqacmDFoiIyMRGRkp8/l79uzBsGHD8NVXXwEARo8ejatXr+Lrr79GREREl/dRpPN9ZyQvAAEBAQD+vQAsWbJEKc9JIBBUB5fLleqIVFhYiPT0dFhaWsLV1RUrVqzAJ598Ag8PD8YFwNHRkakUJhD6A9kBJBAecuPGDamCCwCIiIhQWMFFSUkJ0tPTpZzv09PTweVymXO8vLxw+PBhAB22EPQF4NixY8jKysK8efPIBYBAGCQkJyczBshAh8l+YGAgPvzwQwDAe++9h2XLlmHx4sUICQkBl8vFmTNniAUUQSGQHUAC4SGVlZVdFlw0NTWBx+PBwMCgX4//4YcfYu/evcy/6Un/0qVLjPlpXl4eGhsbmXPee+89tLS0YPHixWhoaMDEiRPJBYBAGCSEh4ejJyteFouFjz76iHS/ICgFIgAJBBURHx/fa1FJ54sBuQAQCAQCQRmQEDCB8BB7e/suCy5MTU37vftHIBAIBIImQQQggfCQsLAwqYo7ADh37hypuCMQCATCoIMIQMKghcvlMoUWwL8VdiUlJQCANWvWYN68ecz5//nPf1BQUID33nsPubm52L17Nw4cOICVK1eqY/gEAoFAICgNFtVTBiqBMIBJSkrClClTHjk+f/58xMfHY8GCBSgqKkJSUpLUfVauXImcnBw4Oztj3bp1WLBggeoGTSAQCASCCiACkEAgEAgEAmGIQULABAKBQCAQCEMMIgAJBAKBQCAQhhhEABIIBAKBQCAMMYgAJBAIBAKBQBhiEAFIIBAIBAKBMMQgApBAIBAIBAJhiEEEIIFAIBAIBMIQgwhAAoFAIBAIhCEGEYAEAoFAIBAIQwwiAAkEAoFAIBCGGEQAEggEAoFAIAwxiAAkEAgEAoFAGGIQAUggEAgEAoEwxCACkEAgEAgEAmGIQQQggUAgEAgEwhCDCEACgUAgEAiEIQYRgAQCgUAgEAhDDCIACQQCgUAgEIYYRAASCAQCgUAgDDGIACQQCAQCgUAYYhABSCAQCAQCgTDEIAKQQCAQCAQCYYhBBCCBQCAQCATCEIMIQAKBQCAQCIQhBhGABAKBQCAQCEMMIgAJBAKBQCAQhhhEABIIBAKBQCAMMYgAJBAIBAKBQBhiEAFIIBAIBAKBMMQgApBAIBAIBAJhiEEEIIFAIBAIBMIQgwhAAoFAIBAIhCEGEYAEAoFAIBAIQwwiAAkEAoFAIBCGGEQAEggEAoFAIAwxiAAkEAgEAoFAGGIQAUggEAgEAoEwxCACkEAgEAgEAmGIQQQggUAgEAgEwhCDCEACgUAgEAiEIQYRgAQCgUAgEAhDDCIACQQCgUAgEIYYRAASCAQCgUAgDDGIACQQCAQCgUAYYhABSCAQCAQCgTDEIAKQQCAQCAQCYYhBBCCBQCAQCATCEIMIQAKBQCAQCIQhBhGABAKBQCAQCEMMIgAJBAKBQCAQhhhEABIIBAKBQCAMMYgAJBAIBAKBQBhiEAFIIBAIBAKBMMQgApBAIBAIBAJhiEEEIIFAIBAIBMIQgwhAAoFAIBAIhCEGEYAEAoFAIBAIQwwiAAkEAoFAIBCGGEQAEggEAoFAIAwx/h+YvmTaUKK/5wAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_lattice(simple_cubic);\n", + "plot_lattice(graphite);\n", + "plot_lattice(fcc);" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "c6512444-6c86-4e31-bc6a-2c8b1e00c28d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0.92, '3D Lettuce')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "16a2ced17e174aa692881e37979f49e1", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xm4ZVdd54+/1p7POXeuManMlZAZMkBCVZjEQEQaBB5tQNEgrQ3aaNu09lcRBKUfwAck2g2KNvpDAqjQNjZ2AEEIKoQkDKkxlUpqnqc7nmmPa/3+WGfvc84dKvfWHepW3fWCelL3DHuvvfeps9/3M7w/QimlMBgMBoPBYDCsGKzzvQCDwWAwGAwGw9JiBKDBYDAYDAbDCsMIQIPBYDAYDIYVhhGABoPBYDAYDCsMIwANBoPBYDAYVhhGABoMBoPBYDCsMIwANBgMBoPBYFhhGAFoMBgMBoPBsMIwAtBgMBgMBoNhhWEEoMFgMBgMBsMKwwhAg8FgMBgMhhWGEYAGg8FgMBgMKwwjAA0Gg8FgMBhWGEYAGgwGg8FgMKwwjAA0GAwGg8FgWGEYAWgwGAwGg8GwwjAC0GAwGAwGg2GFYQSgwWAwGAwGwwrDCECDwWAwGAyGFYYRgAaDwWAwGAwrDCMADQaDwWAwGFYYRgAaDAaDwWAwrDCMADQYDAaDwWBYYRgBaDAYDAaDwbDCMALQYDAYDAaDYYVhBKDBYDAYDAbDCsMIQIPBYDAYDIYVhhGABoPBYDAYDCsMIwANBoPBYDAYVhhGABoMBoPBYDCsMIwANBgMBoPBYFhhGAFoMBgMBoPBsMIwAtBgMBgMBoNhhWEEoMFgMBgMBsMKwwhAg8FgMBgMhhWGEYAGg2HJ2LlzJz/zMz/DNddcQ7lcZvXq1bzkJS/hH//xH6e89mUvexlCCIQQWJZFX18f119/PT//8z/PN77xjVnv861vfSs9PT0Lsv5HHnmE97///YyNjU157oMf/CD/8A//sCD7MRgMhsXGCECDwbBkHDx4kGq1yv3338+f/Mmf8N73vheA1772tfzFX/zFlNdfdtllPPjgg3zmM5/hIx/5CK997Wt55JFHeOUrX8kb3/hGkiRZ0vU/8sgj/P7v/74RgAaD4YLHOd8LMBgMK4ef/Mmf5Cd/8ie7HnvnO9/JnXfeycc+9jH+43/8j13P9ff385a3vKXrsQ9/+MP8+q//On/6p3/KVVddxR/+4R8u+roNBoPhYsNEAA0Gw3nFtm0uv/zyaaNqM73+f/yP/8FNN93Exz/+ccbHxxdkHY899hg/8RM/QX9/P+VymZe+9KV897vfLZ5///vfz2/91m8BcPXVVxfp6QMHDiCEoF6v89d//dfF429961sBnYK+6qqrpuzv/e9/P0KIKY9/9rOf5a677qJcLjM4OMhLXvISvv71r3e95qtf/SovfvGLqVQq9Pb28upXv5qdO3cuyHkwGAwrAyMADQbDklOv1zlz5gx79+7lgQce4Ktf/So//uM/Puv327bNm9/8ZhqNBt/5znfmvZ5vfetbvOQlL2FiYoL3ve99fPCDH2RsbIyXv/zlPP744wC84Q1v4M1vfjMADzzwAA8++CAPPvgga9as4cEHH8T3fV784hcXj7/97W+f8zp+//d/n5//+Z/HdV3+4A/+gN///d/n8ssv51vf+lbxmgcffJBXv/rV9PT08Id/+Ie8973v5cknn+RFL3oRBw4cmPe5MBgMKwRlMBgMS8zb3/52BShAWZalfvqnf1qNjIx0vealL32puvnmm2fcxpe+9CUFqD/5kz85677uv/9+ValUZnxeSqmuu+46dd999ykpZfF4o9FQV199tXrFK15RPPaRj3xEAWr//v1TtlOpVNT9998/7f6vvPLKKY+/733vU51fwc8884yyLEu9/vWvV1mWTVmjUkpVq1U1MDCgfvmXf7nr+RMnTqj+/v4pjxsMBsNMmBpAg8Gw5PzGb/wGP/3TP82xY8f4whe+QJZlxHE8p23knb3VanVea9myZQvPPPMM73nPexgeHu567sd//Md58MEHkVJiWYubMPmHf/gHpJT83u/93pR95anib3zjG4yNjfHmN7+ZM2fOFM/bts3dd9/Nww8/vKhrNBgMFw9GABoMhiXnhhtu4IYbbgDgF37hF3jlK1/Ja17zGh577LFp6+Kmo1arAdDb2zuvtTzzzDMA3H///TO+Znx8nMHBwXnt59nYu3cvlmVx0003zfiafK0vf/nLp32+r69vUdZmMBguPowANBgM552f/umf5u1vfztPP/00119//azes2PHDgCuvfbaee1bSgnARz7yEW677bZpXzMfH8GZBG2WZXPeVr7WBx98kPXr10953nHMV7rBYJgd5tvCYDCcd5rNJsCsO3qzLOPzn/885XKZF73oRfPa98aNGwEdPbv33nvP+tqzRSdnem5wcHDaDueDBw9OWYeUkieffHJGIZqvde3atc+6VoPBYDgbpgvYYDAsGadOnZryWJIkfOYzn6FUKp01/ZmTZRm//uu/zq5du/j1X//1eac977zzTjZu3MhHP/rRIq3cyenTp4u/VyoVgGkFXaVSmfbxjRs3Mj4+zrZt24rHjh8/zpe+9KWu173uda/Dsiz+4A/+oIj05SilALjvvvvo6+vjgx/84LQm2J1rNRgMhrNhIoAGg2HJePvb387ExAQveclL2LBhAydOnOBzn/scTz31FH/0R380JdU6Pj7OZz/7WQAajQZ79uzh//yf/8PevXt505vexAc+8IFZ7TdJEv77f//vUx4fGhriV3/1V/nUpz7Fq171Km6++WZ+8Rd/kQ0bNnD06FEefvhh+vr6ilF1d955JwC/+7u/y5ve9CZc1+U1r3kNlUqFO++8k3/+53/mYx/7GJdeeilXX301d999N29605v4//6//4/Xv/71/Pqv/zqNRoM/+7M/4znPeQ4/+tGPirVce+21/O7v/i4f+MAHePGLX8wb3vAGfN/n+9//Ppdeeikf+tCH6Ovr48/+7M/4+Z//ee644w7e9KY3sWbNGg4dOsRDDz3EPffcw8c//vFzujYGg2GFcb7bkA0Gw8rhb/7mb9S9996r1q1bpxzHUYODg+ree+9V//f//t8pr33pS19aWMUAqqenR1133XXqLW95i/r6178+633ef//9Xdvp/LNx48bidU888YR6wxveoFatWqV831dXXnml+vf//t+rb37zm13b+8AHPqA2bNigLMvqsoR56qmn1Ete8hJVKpUU0GUJ8/Wvf13dcsstyvM8df3116vPfvazU2xgcv7qr/5K3X777cr3fTU4OKhe+tKXqm984xtdr3n44YfVfffdp/r7+1UQBGrjxo3qrW99q/rBD34w6/NiMBhWNkKpVm7BYDAYDAaDwbAiMDWABoPBYDAYDCsMIwANBoPBYDAYVhhGABoMBoPBYDCsMIwANBgMBoPBYFhhGAFoMBgMBoPBsMIwAtBgMBgMBoNhhWEEoMFgMBgMBsMKwwhAg8FgMBgMhhWGEYAGg8FgMBgMKwwjAA0Gg8FgMBhWGEYAGgwGg8FgMKwwjAA0GAwGg8FgWGEYAWgwGAwGg8GwwjAC0GAwGAwGg2GFYQSgwWAwGAwGwwrDCECDwWAwGAyGFYYRgAaDwWAwGAwrDCMADQaDwWAwGFYYRgAaDAaDwWAwrDCMADQYDAaDwWBYYRgBaDAYDAaDwbDCMALQYDAYDAaDYYVhBKDBYFhWKKVI0xQp5fleisFgMFy0OOd7AQaDwZAjpSSOY5rNJkIIHMfBcRxs28a2bSzL/M5qMBgMC4FQSqnzvQiDwbCyyaN+aZqilCKO4+JxpRRCCCMIDQaDYQExAtBgMJxXpJSkaUqWZcVjcRx3iTulFFJKIwgNBoNhgTAC0GAwnBdyUZckSZeoy9PAZxNzRhAaDAbD/DAC0GAwLDlKKZIkKaJ+uYADZiUAp9ueEYQGg8Ewe4wANBgMS0oe9cuyDMuyCuHX+fxcBeBkjCA0GAyGs2MEoMFgWBKUUmRZVli8TCf+YGEE4HT7niwI88aTvr4+IwgNBsOKw9jAGAyGRWdyyncm8ZdztufOBSEEtm13rWdsbIydO3dy9913mwihwWBYcRgBaDAYFpUsy0iS5KxRv8nkiYmFFoI5nYLQdd2uhpQ4jo0gNBgMFz1GABoMhkWh09sPnj3qdz6ZLkJoBKHBYLiYMQLQYDAsOLl4yse5LVehNFMJtBGEBoPhYscIQIPBsGDkUzxOnjzJqlWrsG172Ub95oIRhAaD4WLDfDsZDIYFIW/0CMOQJ554Ali8Gr6FYD5rywWh4zi4rluIwyRJaDQa1Go1JiYmqNVqhGHYFQ01GAyG5YCJABoMhnkzudFjpWEihAaD4ULDCECDwXDOdDZ6KKWwLKuoqztXi9GljBoulg2qEYQGg2G5YwSgwWA4J6SUpGk6xdsvF3DzEVfLOXV8LswkCKMo4rvf/S633347nucZQWgwGJYMIwANBsOc6IxmdY5Zy1kIAbgUnE+R2SkIwzDsqiE0EUKDwbAUGAFoMBhmzeSJHpPFX/5Y/lrD2ek0vJ5rythxnIsuUmowGJYOIwANBsOsyAVJlmVnNXU2AnD+GEFoMBgWGyMADQbDWVFKkWUZaZrOepybEOKCEIDLZY2zOZ9GEBoMhoXECECDwTAjk1O+sx3nJoQwvnezYD6d0kYQGgyG+WAEoMFgmJbJ3n5zEQ8XgtC4ENY4W4wgNBgMc8UIQIPB0EWntx/MPurXSacf4FyJ45hDhw5RqVQYGBjAcS7+r6mFFmJGEBoMhmfj4v9mNRgMs6az0UMIcc62I+eaAh4dHWXr1q14nsfRo0eJooje3l4GBwcZHBykv7+/S9jMl/NdA7hU+382QRhFEdVqlUsvvdQIQoNhhWAEoMFgOKdGj7Mx1yYQpRT79u1j3759XHfddaxfvx4hBGEYMjY2xujoKLt27SKOY/r7+wtB2NfXd1F44y210JosCEdHRzl8+DBr1qwxEUKDYYVgBKDBsMI510aPszEXARhFEdu2baPZbHLXXXfR19dHHMcAlEolSqUSl1xyCUopms0mo6OjjI6OcuTIEbIs6xKEvb29sxaEy0HMnO8IZCe54AOTMjYYVgJGABoMK5gsyzhz5gyHDx/mlltuWbAb+mwF4JkzZ9i2bRurVq3i9ttvx3GcGd8nhKBcLlMul9mwYQNKKRqNRiEIDx06hFKKgYGBQhD29PQYkTIL8okuOaaG0GC4+DEC0GBYgXQ2esRxzNjY2ILevJ9NAEop2bNnDwcPHuTGG29kw4YNUwTIswlIIQSVSoVKpcJll12GUoparVYIwv379yOEYHBwsBCFlUplWYqU872myQJwMkYQGgwXH0YAGgwrjPzGnTdp2La94J59ZxNwzWaTrVu3kqYpmzZtoqenZ8H22dvbS29vL1dccQVSykIQDg8Ps3fvXmzbLqKDQRCcd6/C5ZICfjYBOBkjCA2GCx8jAA2GFULnTTq/4eedvgstRGYSgCdPnmTHjh2sW7eOG2+8cUE7eidjWRZ9fX309fVx5ZVXIqVkYmKC0dFRTp48yfj4OAA7d+4sRGGpVFq09ZyN8y2M5ioAJ2MEocFw4WEEoMGwApjc6JHfkGF+nn0zMVkASil56qmnOHbsGDfffDOXXHLJgu5vNliWxcDAAAMDA1x99dXUajUef/xxSqUSx48fZ/fu3fi+X4jBwcFBfN9f1DVdqBHAZ8MIQoNh+WMEoMFwkdPp7Tddh+9ijG3rFID1ep2tW7cCsHnzZsrl8oLu61yxbRshBNdccw0AaZoyPj5eWKI8+eSTlMvlQgwODAzged55XvXisNACcDJGEBoMyw8jAA2Gi5Tc2y9P+c5k77KYAvDYsWPs3LmTyy+/nOc85znLzrOvMwLnOA6rVq1i1apVACRJwtjYGGNjYxw4cIBarUalUukShK7rznsNy0HkLLYAnMxMgjCOY773ve9x6623EgSBEYQGwyJiBKDBcBEyF2+/xUoBHzx4kFqtxvOe9zzWrl27oNtfClzXZc2aNaxZswag6JYeHR1l7969NBqNKVNK5jq27mJNAc+VXBAKIWg0GoU4NBFCg2HxMALQYLiI6EytzXaix0JHAKvVKhMTE5RKJe655x6CIFiwbS8kcxUPnuexdu3aQsxGUVRYzjz99NOEYbioY+sWk/MtADvXATo9b1LGBsPiYgSgwXCR0OntB7Of6JGnZecrApRSHD58uGimuOqqq5at+FsIfN9n/fr1rF+/HoAwDAtBOHls3cDAAP39/dOmwJeDaFkuAjD/RWS6OlUjCA2GhcUIQIPhIqCz0SO3dpkt+U1yPiIgSRJ27tzJ6Ogod9xxB/v37z+n7VzIBEHAJZdcMu3YuqNHj5Km6ZSxdSYFPHUdwLN+fo0gNBjmjxGABsMFTN7okabprFO+k8lvtvn758r4+DhbtmyhUqmwefNmfN/nwIED8xY3SyVKFmM/sx1bl4vAarV6XsfWLRcBOFME8NkwgtBgmDtGABoMFyhzafQ4G/l75loHqJTiwIED7Nmzh2uvvZarrrqq2NZsZwGfT5a663W6sXUnT55kbGyMH/3oRwghuuYYL+XYuuUkADs9Ks8VIwgNhmfHCECD4QIkt3c516hfJ501gLMljmO2b99OtVrlBS94AQMDA13PXwgC8HySj60TQnD06FFe/OIXn3VsXT6lZLEEynIRgLld0UJjBKHBMBUjAA2GC4jORo+zefvNhc4awNkwMjLC1q1bGRgY4J577pnWC+9CEoDnW/zkNZtnG1v3zDPP4DjOFEG4UJzvc5BzrmUIc2U2ghD0L1qVSqUQhsvhHBkMC4URgAbDBYKUkkajwdatW7ntttsK37T5kkc/ni0FrJRi79697N+/n+uvv57LL798xv1fSALwfDLTOZo8ti7LskIQLsbYuuUkAM/HOqYThM1mk0cffZQXvehFxS9aJkJouJgwAtBgWOZ0RieyLOPMmTPAwtawPZsADMOQbdu2EYYhd999N319fc+6veUuAC+km3dnOhjOPrYuryOcy9i6xUq9zpXlso7OWlbP80zK2HBRYgSgwbCMmdzokU+aWOjRbWebBnL69Gm2b9/O6tWrueOOO2Y17eJCEIDLhXMRDZPH1qVpWkwpOXjwIDt37pzT2LrlFAFcDgIQ9FryqKCpITRcjBgBaDAsUzqjfnkK6lw7dp+N6SKAUkqeeeYZDh06xE033cSGDRvmtL0LRQCez3Uu1L4dx2H16tWsXr0amHlsXR4dHBgY6BLyy0kALod1wNnFqBGEhosBIwANhmVG7u2XJMmURo/Z1uvNlckRwLzWUErJpk2b6OnpmfP2znWNC2EDciGxGMc609i6sbExnnnmmSlj65aL8FouKWCg+MVrNhhBaLgQMQLQYFhGzMbbbz7iaiY6I3YnTpxgx44dXHrppVx//fXnNM/2QooArgSebWxdFEUEQYBSqphjfD6E2HIRojC/dLQRhIYLASMADYZlQOcNIk/HLWWHrWVZpGnKzp07OX78OLfcckshFs6FC0EALoeb7fk6R5PH1m3duhXbtmk2mxw7dmzasXVLIQiXaw3gfJmtIHzPe97Df/7P/5nrrrtuQfZrMJwNIwANhvNMp7cfPHsKdDEigEopnnzySTzPY/PmzZTL5XltbzHS1Bcr51uI5uKkv7+fK664YsaxdZ31g7mJ9UKzXGoRYW4p4LkykyD8/Oc/z/33378o+zQYJmMEoMFwHuls9MgNgZ+NhRaAR48epdlssm7dOp73vOctyE3vQogA5lwMTSDzpVN4zTS2Lq8h3L9//6KNrVtuEcClWkv+b7/RaMy53tZgOFeMADQYzgN5o0eapnMe57ZQAjBNU5588klOnz5NqVTikksuWbAb3nwF4HKJAq0UzhZ5y8fW9fb2csUVVyClPOvYuoGBAcrl8jldw+XUBLKQKeDZkGUZURRRqVSWbJ+GlY0RgAbDEjObRo+zsRACcGJigi1bthAEAffccw9btmxZ0GjUhRABXA4ic7mkPOeyjsUcW3exNIGcC7VaDcBEAA1LhhGABsMSktu7zDXq18l8BKBSisOHD7N7926uvvpqNm7cWNQcLicBuNzF48XGfIToXMbW5WnjIAim3dZySgEvZg3gdDQaDYB5198aDLPFCECDYQnobPSY7O03V85VACZJwo4dOxgbG+POO+9kaGho3tuciQshAphzoaxzMVnISOTZxtYdOXKEXbt2USqVuiKE+di65ZYCXmoB6LrunEb4GQzzwQhAg2GRyRs9coE1H/GXv3+uYm1sbIwtW7bQ29vLPffcM+Ums9BduxeSADyfXIgp4Lkyl7F1YRiedWTdUrLUNYCNRuOcaycNhnPBCECDYZHo9PqaT8p3MnMRgEop9u/fz969e7n22mu56qqrpl3D2WYBnwtGAF5YLKUQnTy2LkmSwnJmbGyMNE2pVqtdTSWzmT+90Egpl3S/9XrdNIAYlhQjAA2GRUApxcTEBEmSUKlUFkz8wewFYBRFbN++nXq9zl133UV/f/+Mr12MCOBy9wFcLpGW5bCO8xmJdF23a2ydEIL+/n5GR0enHVvX39+/JJG5LMuWNB2bRwANhqXCCECDYYHJo36HDh0iiiJuvfXWBd3+bATg8PAw27ZtY3BwkM2bNz9rWs1EAM8Py+UcLZdUtJQS3/dZt24d69atA6aOrYvjmL6+vi5BuBi1euejBtCkgA1LiRGABsMCkXv75ePcbNtelCjY2aJrUkr27t3LgQMHuOGGG7jssstmdUNZaME2H0GZZRl79uwhSRJWrVrFwMDAotaFLRcRdj5ZLgJwuiaQyWPrms1mUUO4mGPrlroGsF6vmwigYUkxAtBgWACklKRp2uXtt1gCcKYIYBiGbN26lTiOeeELX0hvb++8t3munKugrNfrbNmyBcuy6OnpYe/evTQajSLiMzQ0RF9f36LdmH+070c04yZ/8c2/4BP/4RP0BIvvybZchNdyWMezRd2EEJTLZcrlMpdeeumUsXWHDx9GSlnY0uSC8FyObaltYIwANCw1RgAaDPOgs9Ejv4nmNxvbtgtBuJBMJ9ZOnTrF9u3bWbt2LXfeeeeci9eXQxfwyZMn2b59Oxs2bGDjxo2FGIiiiJGREUZHR9m5c2cR8RkaGmJoaIienp5zusFPfs8XH/4iH/zfH0QGkkQm/Ic/+w/87W/87aIKo+USfVxOAnAu65hpbF0eITxw4MA5j607Hylg0wRiWEqMADQYzpFObz+gS/zBwkfVptuulJLdu3dz5MgRbr75Zi699NJz3ub5qgGUUvL0009z5MgRbrnlFtavX1+MyAPwfb8rBdhoNApBeODAASzLmjJ1Yq5i5tjpY/zeJ34PicTus4krMTtO7uATD3+Cd778nXM+/rmwHITXchGA8/UB7Bxbd/nll6OUolqtFmPr9u3bVxhX55+XmeruljoF3Gw2jQA0LClGABoM50Ae9cuyrBjkPhnLshYtAphlGY1Ggy1btgCwefPmed08ztckkDAM2bJlC1mWsWnTpuIYzjaXNo/4XH755UgpqVarjIyMcPLkSZ5++uli6sTQ0FCXyfBMKKX403/4U+IkJigHhMMh/YP9RCLii49/cVEE4GNPPsa2Pdt43abXLfi2z4XlIgAXehScEGLK2Lr883L69Gn27NkzZWxdEARFRNxEAA0XM0YAGgxzIG/0yCNUZ7N3WcwawPHxcR555BEuvfRSbrjhhnnfqCzLIkmSBVrh7ATgmTNn2LZtG2vWrOGmm246p2iLZVn09/fT399fjCGbbDLc09NTCMKBgYFp9/P9nd/HsR1c2yUkhAkQlwhGm6NsO7KN51723DmvbTqaUZPPfOszfPDBD+L0ODz4xIMkccL1W67nOWuew++87nfOixBbLgJwsSeBdH5egBnH1g0MDBDHcRHdXwqMD6BhqTEC0GCYJUqpIuoHzz7RYzFSwFmWcfr0aarVKrfddlthlTFfljICqJRi79697N+/nxtvvJHLLrtswfZr23bX1Ik4jhkdHWVkZITdu3cTRVHRMTowMADAeH2c4ZFhMpkRxRElr0RUjZCrJVjw0PaH5iUAx2vjfGv7t/jyo1/m8d2PczI6SVpOQcLokVGCUsCZA2f4twP/xqGJQ/zZL/zZkoux5SIAlzrqNnlsXecvEGmasnPnTvbt2zft2LqFptFoFOswGJYCIwANhlmQ27vMZaLHQjeB1Go1tmzZQpqmrF69esHEHyxdF3Acx2zbto1Go8Hdd99NX1/ftO9XSi2IIPU8r8tTrtlsFvWDhw8fBuCBTz/AmdEzOLZDHMUADK4epBk2if2YR/c9es7737Z3G7/yR7/C3gN7yQYyEi9BCQUSBAIlFA3VIKpH9Jf7+bd9/8a7vvguHvj3D8z72OfCchKA53Mdnb9AHDt2jOc+97mkaTrt2Lq8jnChLIqMEbRhqTEC0GA4C5MbPeYy0WOhRJVSiqNHj7Jr1y6uvPJKPM9jZGRk3tvtZCm6gPN5xP39/WzatOm8zHwtlUps2LCBDRs2IKXk4Ycf5rGdj6GkIhUpMpUISxCrGDWqkOskh88cppk0KbmlOe3rqf1P8Rt//BvsPbCXWMSkVqo/P3Q3CqVpSuZmhElIyS3x5R1f5s4r7uQtL3zLQh/+jCwXAbjYKeC5IKXE8zwGBgamjK0bGxtj//797NixoygxmO/YOlMDaFhqjAA0GGagc44vTO3yfTYWQgDmaajh4WFuv/12Vq9eXXidLSSL2QWslOLgwYM888wzXHfddVx55ZWLIjaacZMwDRkszy6NJoTg+099n1qzhuM4eIFH1IyQUhJlEXEtxh6yqdVr/O8f/G/e9Pw3zVq07tq3i7f9/ts43jhOqELUGoWltLBR6PMiLKEjxDYgoZk06ZN9CEvwiX/9BG9+wZuXrAt1uQjA8x0BzMntnSaL0clj66IoKlLGk8fW5V6Es72GpgbQsNQYAWgwTKLT228uKd/JzDcFPD4+ztatWymVStxzzz34vg8sTm3hYkwCyc2xd+zYwejoKM9//vMXvMbpe099j69+/6ts2buFo6NH8VwP4Qh6gh5uvfpW3njPG7nr2rumfa8Qgn969J90ShYtyIQQ2I6NZVtYjkW/1c+YHOMb27/BZeFlxc19aGhoxhFku/bt4m3vfxujjVEmmhOotS1xpTrEHwIEet8KSEFZimpUpbe/l9F4lD//zp/zqy/91QU9XzOxnATgcogA5v++nm0tZxtb99RTT00ZW3c2E3NjA2NYaowANBg6mGujx9nIo2pzvbl2RsyuueYarrnmmkX3F1yMGsAsy3jkkUcKAbuQxfMHTx3kdz79Ozy287HiMc/3mKhPgA0n5Un2Ht3LP3znH1g1sIp7br2HD73pQwReULxeKcWhk4cYXDtYrBnAEhZKKhDQHGmiVivGGGPTpk3FzT03pM7rwHJD6qcOPMXb3v82TgyfoC7rsJaulG/xd2saE2gJdVnHSRwcy+Hvt/39ihOAyyUFnP9bmGsEdvLYuk5B2Dm2bmBggKGhoa6xdfNNAf/rv/4rH/nIR/jhD3/I8ePH+dKXvsTrXve6s77n29/+Nu9617vYuXMnl19+Oe95z3t461vfes5rMFxYGAFoMLSQUhLH8byifp3kX+xzMZSN45gdO3YwMTExY8Rsoev18m0uZATw9OnTJEnClVdeycaNGxdUXHzm65/hD//2D0lkt22NzPR59lyPNEvJVEYmM4bHhvmnH/4Tj+56lP/06v/Ez93zcwghePrA08RJTJLp7TiW/jq0hIXM9PmNGhGre1ZTbVbxPO+shtRKKd79l+/m+PBxYhkTD+iGEoVCqHYEUCCmP9+tS9pIGvT5fRwZP8K+4X1cs+qaBTt305GvYzkIwOWSAp5tBPBsCCEolUqUSqVpx9YdOXIEKSV79uzh4MGDDA8PUyrNrc60k3q9zvOe9zze9ra38YY3vOFZX79//35e/epX8453vIPPfe5zfPOb3+SXfumXuOSSS7jvvvvOeR2GCwcjAA0rntzbLx/nthDiD9rRgyzLZiUAR0dH2bp1K319fWzevHnGiNlyjgBmWcauXbs4ceIEtm1z7bXXFs+N18d572ffS8kr8Zq7XsM9N93D0eGjfPnxL/OaF7yGy9dc/qzb/5tv/Q0f+KsPIG1J4AdkWYbneAhbEGcxSiiyNEPRjrz6rk9P0EO1XuV9n38fn/vXz/EX7/gLHt2mu3tty8Z1XFKZ4jouju0QpVF7pymMTYzx5JknuWXtLcD0htTv/7P3c3rsNIlMqHt18DsWLlp/Wn/PhU6efqalM4QUJFlCKnXT0Re2fIHf/vHfPpdLMWuWkwBcLhHA3OB9oU2pJ4+tq9frHD9+nB/84AecPHmSn/mZn+HlL385P/ZjP8brX/96rrzyyllv/1WvehWvetWrZv36T37yk1x99dX80R/9EQA33ngj3/nOd3jggQeMAFwhGAFoWNFIKRkdHUVKSU9Pz4KJP+iOAJ4NpRT79u1j3759s2qSWKwawPlus9Fo8MQTT2DbNrfddlsxpQTgM9/8DB/7+48x0ZggIeHz//J51vSvIVUpkYz4k6/+CeuG1nHHxjt44wvfyAuuecGU7X/5u1/mfX/xPh1R9WySJKFSrlBP69AqtXQdlyRNCJyAMA1RKKI0wkotUpVScks8c+QZXvPB13B9+Xpcx6Ue1VHoJo0kS7BsC1e4JGjLlvp4Hdkj+dHRHxUCcDL7j+3na49+DeUommET+qdGVZVs/V20U8FCCLDbtYGkoFxdCzhYGuTRA+duQTNblpMAXE41gIvdgCOEoKenhze96U288Y1v5NJLL+WTn/wkx44d45/+6Z+4+uqr5yQA58r3vvc97r333q7H7rvvPn7jN35j0fZpWF4YAWhYkXQ2ehw6dAjLsrjhhhsWdB95BOFswiqKIrZt20az2eSuu+4qJhScjcWKAM4nBXzy5Em2b9/Ohg0buP7662k0GiilODV6ind+5J08uuNRco1jCYugL6BeqyNLkkhGBF7AgTMHOHD6AF967EvcufFO3vmKd/Ki618EwFhtjN/71O+RSa30Sn6JUIbEWdy1DtuxSdKkLahaSClJsnaEN4kTvnXqWzh9DqSAAq/kYTs2juNQT+t4jocVWCQTCW6Py4GRAzMe/7v/57uZaE7QaDTIVmVddX85wtKPKZQWg6390kQLWAV4WiimfkrqpxweP7zo9XnLRQCeS73sYrHUQlQpVXwHXHfddfzWb/3Wou/zxIkTU7xE161bx8TEBM1mc17paMOFgRGAhhXH5EaPhTZs7uRs285Hoa1atYrbb7991v5hC23ZAudeAyil5Omnn+bIkSPccsstrF+/vtjeydGTvPw/vhzLtQicgCRLyGSmvRWTFFvZpGlK0BPQjJv4jo9UkjRL+f6e7/OOA+/g1c9/NR/8mQ/ynk+9h2q9CoBjOyhPkTZTUBC4OtoHFCIzSiNsyy4Eo0xl8d4wCUmzlDRJib2YzM7orfXq1LFQeL5HPa0TpzED7gDhRIiHx/7T+6c9B3/ztb9h37F9JElC6IXgtkRVHvATHcIvU1BDiz6LInKZ60VVVzAGlGG8PI6Nzf6R/YtaB7icBCDMr+5uociybEnXEYZhkYUwGJYKIwANK4o86pd/wQshsG2bOI6f/c3nwHTRus7C7xtvvJENGzYsub/gQmwzDEO2bNlClmVs2rSpq4NRCMFf/tNfEkcxKlNEsa6ps22bwAuQliQmJksystEMr+QhLUmmMnpKPSRS18F9Y/s3ePzJxznxzIkiqma5VteM1k6BnaXtv3u2R1M2Ae2niKAQZY2ogRQSoQSRFyHKgkE5iEylbtSwBSpThGlI4AQIKTgxfmLKOajWq/zl//1LRmoj1NM62WBWWL507k9mUgu/sOPNk0s8c/1tASnICcnIrhF+4aO/wEPvfYj+8rNHh8+F5SIAF6LxYqFY6ghgs6k/p0tpA7N+/XpOnjzZ9djJkyfp6+sz0b8Vwvn/l2YwLAH5RI84jrvEHyxuBNCyrK5tN5tNHn/8cU6dOsULX/hCLrvssjnfeJeDD+Dw8DCPPPIIlUqFF77whVNuXI/tfIyn9j9FM2qSpO1u3SzLSEmLFK3v6E6JpJmQjqSU7BK1sIZQgjRNGW+Ms337dk6MnCBMQoIgIJYxSZgUgimRuuYPII3bwjDN2n9XUmE7NnEWI4QoBKkSCpUoIhEx4U0U58IrtdSZgCiJCFTARGOCOOn+ReHD/78Pc+T0EYQQhF6o07yi1QCktJCQdQnDdIs/aEf/cvJGkQ6vaaUUu/bu4qX/9aV845FvcPr06S7xuxAsNwF4vtcBS1MD2Em9XgdY0lFwmzZt4pvf/GbXY9/4xjfYtGnTkq3BcH4xEUDDRc+zefstdgo4v7GdPHmSHTt2sG7dOm688cZzvsGczwhgZ8PKjTfeyGWXXTbt6772va8hlcTxnCINmyNsARZkUtu0+K6vU7IyJWpG+J5PlES4tkscxiS1BATUm3VCEVLxKzg4uIFLkmhxmV8/JZWOJioJAnqcHhphAyklju3QTJr6syBaEzg6NG9DNlAlxZAYIqpF+D2+tm5RClmThAMhTw0/xXPXPxeAkfERHv7hw2QqoxbXUKtaKUyhRb9UEiaAbrcajYu2fZlJ66j2cxLJWH2MX/vLX+M3fuI3uH719fT29jI0NMTg4OCMhtSzZbkIwJWcAs7nAM9nn7VajT179hQ/79+/ny1btjA0NMQVV1zB7/zO73D06FE+85nPAPCOd7yDj3/84/y3//bfeNvb3sa3vvUtvvCFL/DQQw/N+3gMFwZGABouanJ7l7N5+02O0i0k+azXXbt2cfToUW6++WYuueSSeW9zoQvmZxMBjOOYbdu20Wg0uPvuu+nr65vxtU889USxXSZvVkFKO4oVJRGWZTE0NMRoc5SsmeG4DpmVEY1EOlLmgLJ1FHdCThB4AUO9QyQtdWX5FkOlIcaaY1iuRRzqSJ1jOUghUY5iIpmgbtXJvEynXyVFGlY2JETQtJrUhY7GpEmK6+lwXDgeUlpfYvfp3YUA/NMv/CnDE8OU+kqcqp5qT/tQChm3xN9kjZ9frknis+vxXBiqVoQSRZRFeJ7Hp77/Kb7wX75AiRIjIyOFuXBuLDw4OEhPT8+cjceLa3Ueya1xzvc68rUspQCs1+uUy+V5HfsPfvADfuzHfqz4+V3vehcA999/P5/+9Kc5fvw4hw4dKp6/+uqreeihh/gv/+W/8Cd/8idcdtllfOpTnzIWMCsIIwANFyV5yjdPl53N3mUxI4BKKXbv3o3rumzevHlBUjznYjA9m22eLQI4NjbGli1b6O/vZ9OmTWediauU4tBxfaNJkxRlqyldsVJNrYtsyAae45FJLdqtzKI50gSlO2iV3VJMSs/9HamNMDQwRJIl2rev2aq169h0mqXESUxVVcFv2a3k0TUbHZ3zgApQBlmXnExP0iN6IAYv8Ip9ylTyzMgzAJwaOcXXHv8apaESx84cgz5t7SKRqKbS4q8TMenvcobnHLpTwxKEI0ilniAxUhvhV/7qV/jKb3+lMKSu1+uFufD+/fuxLKsYPTY0NPSs9VzLpfN2uawDzo8AnG/d3cte9rKz/hL36U9/etr3PPHEE/Par+HCxQhAw0VH5xxf4FmjCp1p2oXk2LFj1Go1Vq1axZ133rlgN5TFEIAzRQCVUhw6dIinn356Vh6FANt2b6PRbBTvD7yAKInaES+l05qTkVKSpIk2ZrZcoigiDVOEEFiuRdZSRkopLNuiIRukEyl9gY5ERmmkfQCTpBB51bBKQzR0Y0cipn7jTY7CVSBJEybkBGujtZRECeHpyF4URTxzRgvAD372g4RByKmRU4S9IfS0OnhDtPjrbAKZfLo6BWDnc2r61yupwIIo03WLe47u4Tc/95s88AsPFF5yPT09hSF1tVplZGSEkydP8vTTT+P7fhEdHBwcnGIwvlyE13LxAISlrwHMx8Ath+tgWDkYAWi4aOj09pvLOLeFjgDmKd9Tp07R19fH+vXrF/TGNluD6bluc/L20jRlx44djI6OzjiWbjoOHjuIQuHaLp7jFQ0ftm1jWzYlr4SytEFzpwDLBWgmM11H12wLPmW1xqm1miSkLbVxs0qYaE7QG/Tqjm6hfQBt16berFNTNSxhgQCVKZQzSeRaaDGWXx4BOJD1Z5wZO4OoCWzHhgTKTpnDJw7z0Pcf4tuHvs1EbYLaeE37+fW1rsd4x3Ys9PE5HX9X6Mhj2rH/zo/GNHWBUkqUqwjjEM/2iLOYhx5/iF95xa/wnEue0304lkV/fz/9/f1cffXVupFmfJyRkREOHjzIzp076enpKQThwMDAshKAy2EdsPQ1gM1mc0kbQAwGMALQcJHwbI0eZ2MhBWC1WmXLli14nsc999zDrl27Fjy9nB/XQgrAyRHAarXKE088QalU4p577plxLN103HDNDQRewEQ8gUgFQaA7dPOmD9VUJF6Ca7vYlq09/BRd+89URlgLdepY6NSusEVb/AkLJbVwSZKEkdoInuuhlMJxHASCuqxr4VcY8gExXV22CNpp4FycZfo1SX9CbaRGOSxTCkrUmjXsCZsPf+vD2GWb6sGqfk8GVCnSyIXHn0vb4Dll5khgfhlduoViB1LIwkPRc7QI/MDff4AH3/ngWa+F4zisWrWKVatWAbqOc3R0lJGREXbv3k0URfT09KCUYnx8nN7e3vMWhVsuY+Dg/KSAl9ICxmAAIwANFwFSSuI4nlPUr5OFEIBKKY4cOcJTTz3FVVddxcaNG7Esa9EsWxZidFsnnY0lx44d48knn+Sqq67i2muvnfP5/Kfv/pNO+YKu35tc/5fpdSdZQpIlOJaD4zhFQ0dOGuowmbAFKlW6hs9RWFiFqBOZFohKKeIkZiQZoeSXSK20PWe3tY6u+j/QwkvRFl3ZpL97MDEwgXXSYlX/KqSQyHFJNpBxpnaGqBq1awlHgX7gCuAIOhU8Uwp4uu5f1Xo8jwz6tGsBXf0Zzz0J0yzFFjaP7nqUrQe38rwrnzfTpZiC53msW7eOdevWFdMnjh8/Tq1WY+vWrSilitrBwcHBeTcmzIXlFAE8HylgEwE0LDVGABouWJRSRZdvHj04lxvIfAVgkiTs3LmT0dFR7rjjjiLaAovXYbzQwjI/bzt27ODUqVPcdtttrFmz5py29ZV/+Yq2com0CJRS4ro62pdlGWma4koXKfRN1nK0oHNwtFdfGut0fiR1VFC0zqOXYSkdlREIFIosybBcS/+sdLNJfbwOFRBuK3qoZFuI5RE/Gy2yOsnv9y46omcDFZjon2B9up5mrUnvQC8AWS1ri0XQ4i1rvWcdkDdbThf16xCFuThW9iRxmkcq86gkaB9EJ0BKie/6RFnEx7/xcf7XL/2vOV2fYilCUC6XWb16NcePH+eee+6hVqsxMjLC6dOn2bNnD+PhOFuPbeXGq27ktfe8Ft+ffNIWjuVWAzjbyTwLgYkAGs4HRgAaLlhy8QdzS/lOJo9+ncsNaHx8nC1btlAul9m8efOUG+RiNZgstAAMQ+1SXKvV2Lx58zl3JJ4aOcWuvbsoD+hohu3YWJZF2Ay7Iny+71Or1YrGDgAncLA9m6HKECfHTnbN81WBwlEOGe05u3l6GDrS4koW3b0K1Z62MfmjMVnHtKxmCsqtx+ogfcmZ8Ay9fb0IKYjTmNrJmt521NpWBDTQoi3vKm5Oc4JsChHbNa/YYapfYEqXjUwqUzKVYQubKInoLffy6KFHqUU1evz5jRALk5Cv/+Dr7Duxj6NnjnJq/BR7ju7hxPAJ7eP4L3D8yHHuvv7uwnvw6eGnGamP8FMv+Kl57TtnOaWAsyybU9nDfMmbQAyGpcQIQMMFS54KnW/aKE/1zEUAKqU4cOAAe/bsYePGjVx99dUzegwudwF48uRJtm/fDsAdd9wxryjP3zz0NzriZ7nYjo2yFM1GU/v6dYxpc6ypXz22ZRNVI6JqhKc8XecnFAQtW58oxfZtJLItAoVAWardyBGjRZOgXX832YIloLvxA6Z6FUq0sPOBFIYZZkAOgIQ0SlGxaovIXLjV0GlggAGgPvX8CEvodXWMiVNKYUlramd0np5OQXk6uhklEWVPi+ugEjCcDPOFH36Bt21+29SdPQs/eOoH/OOj/8hjOx5j34l9ZCLDdXSBpLIUju0gHIGl9GftMz/8DJ9+4tNg6VF6SaYNurc+s5Vfe9WvzduQermlgM+HEbTBsJQYAWi4YJlP1K+TXABmWTartE8cx2zfvp1qtfqs3bGWZS3KnOE8ajkfpJQ8/fTTHDlyhJtuuolt27bNe13Do8OAFnNYrW5KYeG6bpcAnDIGjW4j4nq1rps8XIFyWz6CSluiFMKwFR1TmSrqAJHob7U83RsBeTBTdfw9pXsW70zlXq2uYIXiYP0gz/Gew/CpYV2TKNAiMB/xVqctOH3aDSX5dgS6k3nyLmwxZXZw13lSrRSxDXEWU6aM67iMRCP4rs8/bv3HWQvA8fo4f/3Vv+ah7z3E3qN7i7rPLMu45JJLqMZVklQ3U3WO0vNdn4yMiVCbcGdk2qRaKf76O3/N0ZGjvOnmN3XVD87VkHq5pYCXehTcwMDAku3PYAAjAA2GQkjOplZvZGSErVu3MjAwwD333HNWQ2RYvingMAzZunUrSZKwadMmyuUy27Ztm7eoHOzXYtjC6rLSULJ7u1EzmiJ4hNUWC1mW6QYSXxR1gEIIvR0bsLQoEwjdFGIrLfYs2hG/fNsJ+psuF3+5RUsnFu0aPiY93/p7ohLqcZ2wFrZf36lvJN0dxQPoGcAdx5eL1S4haOtmlryusSDvIs6FbFmngZMsYfWa1ZwJzxAlEU8deYrx5jj9pX5m4sCJA/zhZ/+Qx558jGqzWnx2HNuhXCozUZ+gGlZ1R3YHju3oyGwakSX630cYh7i2i7K0AHRdl38+8M8ci4/xgVd9YIohdS4IZ2NIvVwE4PmwgdmwYcOS7c9gACMADQbg2RtBlFLs3buX/fv385znPIcrrrhiVtGN5ZgCHh4eZuvWraxZs4abbrqpiHQsRGfx6sHVCCEYr40XN1DP8bCwKPmlYgKIQDDUN0StViPOdIQ07w4GLRillDoCiCoEk0AUDRMWFlLIwv8vzdJ29C/XUXnTh0+3WMujc51BHtnxc+fjuWCUcLh2mKyetV/fWbfn0habCl1HeEY/ZdmWfjydVPuXb2cyatLfBaiGwqpYNNIGI9GIfquS2Nj8yzP/wmuf+9opmzl08hAffPCD/OsT/wpCj91TSuk0v6XP4XhjnDRL8VQ7JGoJC9/1CdOQNNVm3IlMis98kiUEXkCYhtiOTWZl7Dm1h9/+ym/zlf/yFYDCkPr48ePs3r27MKTOBeHkX55MCtikgA1LixGABgNnj9SFYci2bdsIw/BZZ+BOZjl1ASul2LdvH/v27ePGG2/ksssu63p+NvOAn41V/avwfZ84iSkFJSxhEacxpOAH7c5g13WRsSROYoQQeI5H2SmTWNrEO59+oUR7jJzjOghL4AQOcRKTyUyvGT32r6j96zpopo/45bYrdsfPk+lsDGnN6M3I2lYtHvrvnf6BCe1IY8sAerINTr6mQsxmuuYOOq5BHv3rQAiBShRZKaMe1ym5ekdJmvDovkd57XNfi1KKr33/a/zzD/6Z/Uf2s/fIXmzbJlUpWdpqbBC6c933fMIkLK55Ls49x0MqSTNpd7H4vk9Id3QQoBJUoAQykcTE7Dmzhw9+5YO859+9Z0ZD6gMHDrBjxw56e3uL6SS5IfVyiQCeDwHY0zO/Rh6DYa4YAWi4YFnIaMFMQu306dNs376d1atXc8cdd8zZGmK5pIDjOGbbtm00Go0ZRexCRCvXrFqDRBbHHcpQT+KgO8WbpAm21OpLKUWURMQTOhIYuAHjahzLtfQsXASV/gq+72NbNuWeMtVGlUbUoBk32ynSPKA0WcwFk37On59c4jX5506/vpYWcHF1N3OemhW0u3VzAUjH+/pBTIiu/XZ+boumkNwvMa9lzCeUTEJI/ZowDlFSFd6GX3niK6hxxXe2fIdmo0lYCwmjkMALqDfreCUP27WJoxjbtnFdlzBpCzrbtkmyhJJfIkqjKb8IpCIt1uh7PqlMtS2NFZCk7TCoUooHv/cgb7rrTVy79tri8ekMqUdGRhgdHeWpp54ijmOCIMCyrPNuSA3GB9CwMjAC0HBBsxBRK5iaApZS8swzz3Do0CFuuummc67PWQ4p4LGxMbZs2UJ/fz+bNm2asW5xIc7l2oG1xEmM53lkSYZw2mInjuKibg8FMpa6Lq5VH6ikwvVdwjjUx9bq6h1cN6g9/dDTRGoTNSq9lcLjr3mqqcVVD+0UcI5FO/2b0v2N1/lYLuYmp4U7DaKBy3ou48jpI21LmzzVG7XePzlIVgEmdIRPZNP8wiLzpXSIxDxtPam+UKGwHAtZldADTdksvA8PnjjIF49+EU96RM0IIQR+yUcqydDQEArFaHUUz/XIVKajsh14nofjOV2iMMcPfGJiAi8ohF9xeh1rakpbwN9u/Vve84r3TD3ejv2tX7+e9evXF4bUe/bsoVqtsnXrVgAGBgbOiyE1LH0NYL1eNxFAw5JjBKDBQLcAbDQabN26lSzL2LRp07y+mM9nClgpxaFDh3j66ae59tprueqqq856E10IsXp6/DS9lV6qzSqgb/RJrMWSzGTXz5aw8HyPqBEV77cdmyROigaDcqlMf28/zaSpbUfQQkgiaTaaeuJIihZ5MW37lpxOrdupUyY3iuTCa3JaOJ/lm4FruaRpSsktkURJu9awc7tRx7ZAp4lFq9M3pZi7W0T58hFx+aQSKGoFu+oY0evK0gwhtTULVmtOMnqbURyhEp1GtbFRth6PODwxTFAOCPxA+11m3dfYsR2kJac0gOQEpYA0TqeIQyEEkYpwLZcoa19Dx3X41z3/Cq+YdnNTyA2pe3t7cV2XG264gWq1yujoaGFI7bpuV0PJYhpSw/lJAZ+r96bBcK4YAWgw0BaAJ06cYMeOHVxyySXccMMN804Dna8UcJqm7Nixg9HR0We1qslZiAjg/iP7tdhBR1FcuqONtm23o2f5KLZJ5DYkwha4jku9WSdKosJ+RCI5efokSdpqSsj98kALp3wOL+j0b4eAmhLhm3yPz187OVpowdryWkp2iZpda2/DQwvPYvG0haSl/yhPzWj/kkfwcgorm05ykWm3vC8RqIZCVTqiqYFERQpXuji2NszO6y0BKn6F4bHhQmwGXkCcxniOR6ISojTCcbtvB47lUOmpMB6OT1k7gF/SdYGumBRRtmD/8H6qYZXeoHfa905H5yjHvr4++vr6uPLKK8myjPHxcUZHRzl8+DBPPvkklUqlEIQDAwMLPrVjKVPASilTA2g4LxgBaDCgBdWRI0eoVqvccsstrF+/fsG2uxgC8Gwdu9VqlS1bthAEwbTTSWZiIdZ6+PjhQnhkWUYWZ11duVHUtn9J05RUpkUaWKFNo6NGpLtm0c0iQgmEJXQESkG9WSdRCVZg6e13ImibQXu0Bd50ET6Y3v4l9whU7T+O4yBSHWXzLE+fq0xOrRtUHdtpNZooS0HSUe836bV5VBDAcq0pEbrOdSlL6fMVK0SlJRwdPSNZliVe5NFoNLqEfMkrUQ/rRX2h4zrg6oadlBSZSNzUxXO9IprYG/TSSBrEVtyVpi+WY1lEKprW2zAlRSrJ8YnjcxKAneehE9u2i+7hjRs3kiQJY2NjjIyMsGfPHprNJn19fUVDyXwNqWHpI4DNZtNMAjEsOUYAGi5oFiJqVavVGBsbw3EcNm/evKDF2POdMzwTM4m1o0eP8uSTT3LVVVdx7bXXzqluaiHOZZIlOi3bwhY2ru8ShfoxJRV+ySdqRqRZim3bOIFDWA91M4GCUqVEGIUIS2BZFmmcUuotEccxSZJo0UhLlNRof4uJjv+2fPPaB5cviKkisPPnvPNXdfxsQ39fP71JL9R0Q4SQLTE3XdY0317eROIBjZZvodtR85iptghs/SVv6phCXqPYOoeWslDN1pSUQKd9Ez+hPlLveo/v+CQiwfVdAj8gkQkKhbIUpxuncSxHvzdLUELh2i7CEpypn8H3faJYXzfP05NZwkgfsB/4RCLCd3wsy8KztIVMqVwiFCEykZypn+E5PGeag5me2You13VZs2ZNMas6DMOioeTYsWOkaVqIwXMxpD7XsZDzwYyCM5wPjAA0rGhywRQEAZdccsmCd+ItVRNIlmXs2rWLkydPcttttxU3x/ls81yQUoIEz/eI4xiVqSnRo86fXdslzVKSJMG2bfr7+hk+rd2TBQLbspFKas8/KYvaQmz06LQmutFiuvv7TI9NmrHblT720WlcmyKCZ1kWru8yFo7hSQ+n5GBXbTI7a4u8PMLo0Y7y5Q0kHRNHVKJrG4UvEJnoFnyC9mOd5KnrjuORSkINRFnoxhApSax2jWRQCaj0VpiIJnSjTNoszjdAlGph5zgOjbCB7/h4vkeYhqhUR+I6J4HEic5zu65Lf6WfmqqhMkWYhQR2QKy0nU+mMjKZ4bs+I/WRaS7AzJxr2jUIAi699FIuvfRSlFLU63VGR0cZGRk5J0Pq/N/AUglAKaWJABrOC0YAGlYkaZry5JNPcvr0aW677TZOnTp13rt157rdPFrXaDTYsmULQgg2b958zsXkCxIBlEmxPoEgTmJsYeN4DmmiBUUURfRWeklTnX4M6yGe4+H5HrWxGlG9HUEk03/SekomtbISnsC2bazUIsymb1zAbv2J6W4KyZ/L6wbz/yYdr5t0CsqVMsIWlN0ycRoXETQiur0HA3REcHKEsdTyM1SisHoh00JYOEKPlQPdMZ3plKpqhwa7on95s4hAp8WV0uuwXD0NxRlydLRLwEhTCzDf9YlSHa1LsqTw+7MsiyiJtMiWEqlkcf0DP9AWOy0c28GxHaI0ohpXpxplKwjKAU2l3xNlUVELOlsWwgdQCEFPTw89PT1cfvnlSCmZmJhgdHS0MKQOgqBLEE5nSA0sWQ1gva6jtqYG0LDUGAFouKA5F2uIiYkJtm7diu/73HPPPQRBwPDw8KKkavMU8Ez1TedKLixPnjzJ9u3b2bBhA9dff/28bqCznQRytmPpq2h/wSiLipoz3/H1N43UEacoiUhVSrVRxcLCciyd9q3pGr8kSrQYs6AyWKEpm0RZRG2ihnIUJbvEYHmQsZNjeh0tEdYlXlvdt10NGdAWVCntRhFJt8jqqN9DwVDfkI6wuQl9QR8T9Qksx0JIgfJVdxfy5Hm++TbXASc6fk5b1i9xqxmkZQg9Jf3bOm/F2juuATaISOBUHAInIBMZdbdOb9rblYbPmz6iOOqKLvqOT6YymlFTR/ssfX0QFOKvEH5ZRJqmBEFAGIeQ6Ghgaul0vG3bhKpbjF+z6hrmwmJMArEsi4GBAQYGBgpD6rGxsWJcXach9dDQEP39/UseAWw0GgAmAmhYcowANKwYlFIcPnyY3bt3c/XVV7Nx48bihmPbdlfX5EJRzMJdYAEohGB4eJgjR45w6623LkjTSmdU8WyMVEd4zftew0+/+Kcpl8s8c+wZDp05xMmxk5wYPsFwzzDSkVAGW9nUrTo2NjjgZA62tEkmtI2KZVtUyhUtkqUilSmqpBCBgBI0VIM4i2mEDZAwEAxoMZNEOlLYOWmj006lTHdHb56GFZP+m/+9816fRwiBoC+gmTZZXVrNRDRBParTU+5hJBwhsXXdHDbt7mNop2vzUymBNWgBSMsSRrUFa+EPmIu9Tmua/L+TL4urG0JsZeM4Dp7jUfErOP0O1cPV4mWW0JYwE80J3V0tM6TS0b6R2kgRDQSoR3Vs28b27SIaJ7UTN5aw6Cn1dAnLJEnwfR+Fwi25hLItAF3X5ZqhuQvAxRZdjuOwevVqVq9eDXQbUu/atYskSYpIXLVapbe3d9H9BxuNBrZt6yktBsMSYgSgYUWQJAk7duxgbGyMO+64o5hIkLNYqdo8jbSQN7cwDDl+/Dhpms7bp7CTZzsHB04c4Av/+gX+bee/UUtqPPDQA3iup6N2LY++KImQtkQogXQkEqltRoROCUqkTl9KgSc8vMzDlz5jtTFiGZPaKapHYaFTyAKdDo3DmB63R3enxg3SUI82U1bbCgXRskmxBbitGsHOFG9npq/Tg8+nHfGz6JossnrNauIsZiKcoGJX9N+jCcp+mabd1GLPb70+pzOQ3BGBVL7Cirs/A6r1P4HQ6WObwnew+O8ksSocLY6FEmSxjuCFSchYbQzpauHNaRCpwLM9zsRnptRhCksUHb+do+BUpkjjtGhi6YwYhjLEt30qQaUQ3VEUsXpgNaez011CqS/o05HfOXA+RsFNZ0h94sQJJiYm2LJlC0BXQ8liGFLX6/UlN7o2GMAIQMMKYGxsjK1bt9LT08M999wz7W/ai9mtC7pJYyG8yoaHh9m6dStBEDAwMLCgdUOTawC37tnKDVfcwLe3fZsP/92HOTZyrJgda1kWjucUY8BKXolm3MS2WuPdUFiZhXIUSigsYeloU0fDQ2zFxE5MLashyjodmosnJdrryKIMlSpKPaXiGkWNCLLWJIpIgaNrAxWqqD3LxeOMSNpze/O0cD6CTelIXSNu0B/0U21UsVObsl0mjEPiOMayLd3kkk7q3J3O31ABfSDPSG0J0zn5oxVBVOh0skrU1GaSlogUnoCg+9hErB+TSkfrsIF1oM4ofZ46hJylQ6ZIJaecH0FLoEsBVncKNPcsjNKIuB4TuAElT896roU1bN/WgrvFJUOXzHzeZ7oci5ACngu5IfXq1as5duwY99xzD9VqlZGRkUU1pM47gI0ANCw1RgAaLmjO9qWplOLAgQM888wzXHfddWedhLFYAjDf33yji0op9u3bx759+7jxxhsLL7SFZHIE8AOf+QBPHX6KVKTaWLgj/SelxJUumdDnrBk38RwPx3KKY1ZK6To5SxXiz7IsLa4QyETvSyCQrtTiRoKVWrpGTglsbOr1Or3lXtIsJRMZtrBJw3aHahEBzHR0TLii3SghRFsYdUYBFW2vv86PhGo/1tvTi0LpubuZIqyFyFgSBAFJkpBZGVZikZEVfnjTGjnn6eAKMIo+J3SUBLS8CHNRWJybfAqJ0uu2PAu8Vuo4z3pbomh0UUJ7BBYp7X69XZrtbRfnAtpryNPmFtiWXYhCqVqCzNIj+DqvazNpEqUR/b39pEmK53mEomUR4/vcvP7mmT9oM7DU1iszkY+B6zSkvuqqqxbNkNrMATacL4wANFyUxHHMtm3bqNfr3HXXXQwMDJz19YspAOe77fxYGo0Gd999N319fRw6dGjBU9adEcBv/ehb7Dqwi8RKihFhgRcUdWQASZwQBAFN2UQIQZzGWMLCsZzCQiQ3eBaW7loFQLaFiJAC5bRSoK0O2MzJsFwLS1q4PS6c1vtOsxSltFddFrY6gh3dQCGE7qZVUqF6W5GxXFDlx9XZENIReStq9zpq/3BhcGCQRtbAtV2UVDjK0TV0qUSmErtk6+hfK00rRCui1lkDmP+RQIV2F3BnhLBjRByqZZOTtd6TgbXK0o9Zrchoq37Qai1cJaotaK32PkUmUH1KN5jUOq4x7fMjEEWENiMrTJ2FFMX5UEq1haFopa2FQrqysMYZtAfxe3wkkszJuPeae+f8+TsfKeDpmEmITmdIPTo6yujo6BRD6qGhIfr6+mZ1PCYFbDhfGAFouOgYHh5m27ZtDA4Osnnz5ik2D9OxWAIQ5ldfODY2xpYtW+jr62PTpk3FsSxGzWLeBfz1x7/Of/qj/6QFW0eGK4xDhBBFE4ZSijAMKZVKRQOAVLI77araTQ7CFkWkSUgtypSlEKkomhoArMyCDDIvo5k2sXttZEkSyIAkSmiEDWQidaSvNTO4EFC5cJoU2SuiV5lq+/VBd/OHQEfTHCj1lFAofFufgExl9IpeEjchljGVoEKj3iCxE52CbYkvkXWk0Tvv5xKdpvUkVmIV4tRyWynslkhUUrUnb/ggSgLqaCsZT0cXC6GYqbbgdHWjhkTXXwopijQvlda1nWhH/3J/xbwJRKJFT6f9jEAUEdO8GaQ4VfkaLQjTkPHGOP2VfkrlEomd8OIrX3yWT9r0nO8UcOc6ZmMB47oua9euZe3atUC3IfX27duRUjIwMFAIwpnSvMYE2nC+OP+/bhkM86DzC1UpxTPPPMOPfvQjNm7cyPOe97xZiT/Qgmo5CUClFAcPHuT73/8+V155JbfffnvXsSyGALQsi10Hd/GrH/1VMpkRZRHNepPADbrWFcYhtmXrBhD0GKvA1q+J4ggpWyIwj0S1mj6klPo51YoKtqZpKBQybh+LshTK0ULExaXslZFIQiskK2XYlq3TodAtsqDdxBEypaNZINredJ2WLwnd0ToBPf09uI5LpjItGlvHWXJLpGGKKAv6/D6Eq82qO+sOpzRuQLvhZBV6dBtKbzelbZadp2IzsMoWotRughGZwG60RImkWBPo12K1Ioet+j4V6aheviZVVli9FrZta8NmmbXPj9X+dySEKKKEwhZdXcJdM4tFt8gNkxBb2dRUjasHry4Mp+fCcokA5inguZIbUt9888286EUv4s4772RoaIjR0VF++MMf8p3vfIedO3dy7Ngxms22x2IeAZwPn/jEJ7jqqqsIgoC7776bxx9/fMbXfvrTny6uc/4nCIIZX2+4eDERQMNFQRiGbN26lTiOeeELX0hv7+xnkMLiRgDnuu00TdmxYwejo6M8//nPZ3BwcMprFkMAPnXoKf70oT8lTmM83yPNUoQQhLUQr+IRp3F7jVkKGUU0sNloEpQDRpujhWgQShQ2LVLqDtM8epWnZYXSdX9C6S7YIgKGAhdqzRoiEwRuQCQjVKoYPjNcpCMnN67k9X8odFdtaVLDhGpFG0VH40anzUpH84MlLGzLJk5104MMJQ2vQeAExKGekVsOypTKJUYaI0hLatFmibZAy9O/rXQu/cDB1r6cbiEHOqrUU+qhRo1UpsWaVKrrKEUsUKVWOhiF5Vs6UpiK4phEJgoxmNdCWsoq0rYq6jhfLdPoPK0LHfWCqWwL7Y7HcZlS5yiVpJE0sLDoD/rP9jGbkeVSA7gQ65iNIbXneXzmM58hiqJ5mU7/3d/9He9617v45Cc/yd13380f//Efc99997F79+4iOjmZvr4+du/e3bVew8rDCEDDBc+pU6fYvn07a9eu5c477zynQmzbthfFBgbmJtaq1SpbtmwhCAI2b948Y5fhYgjAP/riH3F45DA9lR5tCky7li+ux1NEIOi0sG3beJZHdbxKEie6gL5lbpz/L+8CtrC6okpF12pLBErZ6kJt1cLFozG+7WMpizXlNTy972ld69cSNkq0hGBe72e3xR4Kbc/i5z+2uoVtoSNvjmo3WrRm/uLC5ZdfTiNp6POrtLhxbRc8tCgLQNS18Fw7uFZHSXsD6nFdb9ee1BUMXZ3Bsiyx6q0O4linwS3bwnVcBvoGkJnEzVrRR9lac9KOolIDUdFWMJRBZrLdEY2CiCliTjV1mhynFeWLtPCTop12zesT8ykjEtk+z/niHQpLmVw8orTwDuOQHtGDY53bbWU5pYAXWohOZ0h99OhRhBA8/PDDxS979957Lz/xEz/By172sllv+2Mf+xi//Mu/zC/+4i8C8MlPfpKHHnqIv/qrv+K3f/u3p32PEGJBvEMNFzbn/9ctg2EejIyMsHXrVm688UZuvfXWc7ZaWewawNls++jRozz66KOsX7+e5z//+We1mJjt1I65kKapFl5Cp3nTNMV3fHxXryOux3jOVAudLMtIskSLI6slwoTqqgVUQrVtRjqigNCKPlktIYRVdKcqFEmSoFDYTZuJoxOs61nHqmAVruN2mUAXUtPpTiOqTOkaPVqNDa3MpLBEt9hoBdsqvRUyMj0lQ2bEsRa8cRLj2A4iE8hM6vSqgDiNGVw7WKRbQQvZGQWEAobali/5ujzLY+3qtbjSpeJW8D0fPLBLNiStNLFqdTa3oqZKKbJUd+fmM4TzdLKFpV+ntE2MUNoTsOJX6OnpYWj1EBtWbeCyVZexumc1A6UBeku9lLwSvu9j2ZY+R7SiuJZAOJM+c6LVvGLrWswkTfBs75wjgMslBXyuM4nnguM4XHnllXzyk5/kbW97G2984xt517vexalTp/jLv/zLWW8njmN++MMfcu+97aYby7K49957+d73vjfj+2q1GldeeSWXX345P/VTP8XOnTvndTyGCxMTATRc0AwNDfHiF7943jUsizWyLd/22cRalmXs2rWLkydPctttt7FmzZpn3eZsp3bMlj2H93Ds1DEqvRWitG33klu/OLajp6XUo65IYG683EybRCrS3niTo0a0hIKlhYgQWkRN8aGzBMrrEGxCkKUZpaREHMbFurzAY/3AeiYaEzTdpvYizNO4VtvzrrPxQyQCyu0GCiwtjHBaViouYEOpUkIgCNOQIAjoC/oYD8ch03VugRswVh1DoQjsAOELRquj9Jf6qUU1HTlrNV90HV/npeoHjrfsboQenxf4AbWRWnGeQEcSVaog1KJa2K2onSv1N3cMlrSQZYktbB1BTbTAzucOB16AIxyckv6qt4SF53qUnTLVWpUszUhkghBaIPb5fYSJbuipJTUiosJWJreZKUR3K/qaR1KVUkgp+blbf+6cPoPLJQJ4rjWA50qj0WD16tX87M/+LD/7sz87p/eeOXOGLMtYt25d1+Pr1q3jqaeemvY9119/PX/1V3/Fc5/7XMbHx/noRz/K5s2b2blzJ5dddtk5H4fhwsMIQMMFzUIVMHdO7Fjo3/7Plq5tNBps2bIFIQSbN2+mVCpN+7q5bPNc+NLDXyqsVFzfLQyec9IsJc1SPMdDxALf80lVqqd3ZKmOAOoBt0C3p11nQ0RRp9bqIu0USblVi/IUVmJpS5mGA4ouURonWnz6nk9fqY/RdJR6WG+nODtESrHfTGEpfVPPp5EoSxX1gsIWVMq6SzPOYt2YoiSpTCk5JVRDi59QhviOTzNpIsoCRzqk6PPg2R6JStpiL/cGzGsScxxgAMrjZR1VFAIncHBSpxBRhVFzqzmErFWTV7Z0p3Kk1yxtiUgFWSlDIHA8h4HKgO6uFoLV3mrOTJzBd3yEJYiSiExmjIyPgNCRKCvVot1zPX1crXNXcSvESYy0tOAUShRRxbz+svAlbLGqvIq7Lrtrrh+/4vovlwjgUgvAyQJuMdm0aRObNm0qft68eTM33ngjf/7nf84HPvCBJVuH4fxjBKDBQPfEjsUQgNOlgE+ePMn27dvZsGED119//ZxuOgstAL/zxHeAdgep7dqF318neeSv1+0lszLiNKYZNbtqyaDdfDBdJ64SWpwUBs55kKwj+iodiVt3SRspid8Wo47jkCqdO5VSkiYp/V4/A30DjI6P0rSbRYNI577tkk2mMl1L5whdkyikFlOerp/rH+gnynQXc+AENOMmju0QpiGrxWoaqkHSTEjTlNWrVzM8PEzfQF9x3ip+hdF0tH1c+oD1tcpk25pGgLXOYiAb0FM0HJuwrqNuuW9kpVKhNl7T57WVOqfUipK1RupZtqUtc+romj5b29UMq2Fw9H6rfhXbs4ndGMdxcGxHm0y3LlUqU4QtdL2nTLuEs0AQOAENR89hzptF8jpBy7PIVMdnREC/f27p3/x6rkQBWK/Xz3miz+rVq7Ftm5MnT3Y9fvLkyVnX+Lmuy+23386ePXvOaQ2GC5fz/6/NYJgHC5Uy6owALjSTU8BSSnbv3s22bdu4+eabufHGG+d8w1loATg8NqzTi0hkJlGJmrGeUliCE+EJztTO0Gw2ixFgatL/EDril0feJqMs1Y4Yqm7hISJBpCJsp1uIWnb3tiqlCrawCWshZbfMmp41RVStY4M6bSooLFQKv8LWpI3+vv4uMWMLG4EgyRKUUtRqNSp+BSQEvQGjI6M4wqGZNnEttzgvtmVP7UwWuiZQILDQkU3lKpqutgKxbbsrQuiXfcJ6SMWpYDkW9LSsXlrnU1m6qUal2qewv9xPX9CnvQjLIPxWmj2VxGFMY6LBxPAEY2fGaNQaJEl3dLdIWVtT/y0N9g22O34L5xedOs/QUcfCl1AojowcOefP5XJJAS9FDWAnzWZz1pH/yXiex5133sk3v/nN4jEpJd/85je7onxnI8sytm/fziWXzH18n+HCxkQADQbaN+nFmgec3xRzu5okSdi0adM5/+a/kAJwvDqua9rcACUUjqtn/GZhhlfyipRrGIc04yaplxa+d7l5cyHgJt2/hRCFOTG0m0GKCKGl0365D6BSCjuxkWnLoDiQeJ5XNGPkAsH3fBRKW4+0GjCUVKiqYtAaJCtljIVjWjz63dFFkYoiRapQlPwSlqfP51B5iDiLizq4TGa4jotsSqrNKpVyhWq1WnQGSylJVYotbDK0R6GU3ePWlGxN42h1zKpM29+M943Tm/QSN+JCcLi+i5XpjtGIiMsrl7NvZB/NsImQAiuycKWLb/s4rqO3HSpsx0b5quiyLsRca5+gU8i1ek13HPsuFa+CJSx820dmkpJdwvbtQvT6vk8oQi02VTvyJyxRdDor9LFYwsLxHWpxjaeHn+aGNTfM6TOYC+blEAHMsmzaeeGLRb1en5cR9Lve9S7uv/9+nv/853PXXXfxx3/8x9Tr9aIr+Bd+4RfYsGEDH/rQhwD4gz/4A174whdy7bXXMjY2xkc+8hEOHjzIL/3SLy3I8RguHIwANFzwTI64nCuL1QmcC8vh4WG2bt3K6tWref7znz+vKEMuABeiaUVKyaETh7SJsyW1dYrS5yNJEvBgoj5RiKncaqXLPqSFUKJtEkw75dvlwzdpuRJZeOeJSBTiD9DiqmJjS5sszbT5tNWuCfTxdfey1W5CQIKoClY7q0nLKaPOaDHXNp8+ks/PdV2XUl9JCziV0YybhFmIa7kETsBENIFjOyR1nfqN0xhXuMTERFlEv9NPQzVwLZcsyyj7ZcYaY/p4Wl27QDt61jGWLgkSRi4dwW7aBLWAQAa4ZZc4i4mJtVlzpOh3+hkKhkiihCzIus635VranDpOod6O5klX6ukglu4GFlar5lHqP3Gst7+2by2NekML9UhPKbFdW6eP4yrS0dY9GVm7RtNpz1kujs0D4Wi/xutXX39On0FYHgLwfNQAzkcAvvGNb+T06dP83u/9HidOnOC2227ja1/7WlFXeOjQoa7jGR0d5Zd/+Zc5ceIEg4OD3HnnnTzyyCPcdNNN8z4Ww4WFEYAGQ4vFFIAjIyMcPHiQG264gcsuu2zeoi3/Qj8XAThaHeVvv/23bNm7haePPc3BEwcZrg4XnnOdFBE8T9fOKV8rGduy20KvIzWYR4SgHe1rPVmkCfNO4DwKmHflktK2RmkJpXyqiCopgiTAciyiqN0QArpBxXbswrcuJ0szSm4JW9lYgcV4Nk4q9Txhy7PoqfSQOrpxxXf0HNtm2sQWNnEW41keru1iYxM2Q9yySxIlREQEdkCYhdSjOk7gEGYhvu0Tixg3cElEgmVbRbezVBJR093PRTRN6VS3QpF6KcpXSEdCCFmsBVeP3UM9qetmDCm7xF8lqCCkoN6oF3WR+Xm2Qj1iTlak9i1sjYfLaxAV2kLm2MgxSm6Jkq1TkFJKHOkghY68hjLUv8C00vDCa4noDpFv2zbSkgRuwBUDV5zTZzsXgCs1BTzfUXDvfOc7eec73zntc9/+9re7fn7ggQd44IEH5rU/w8WBEYAGQ4vFSAHHcczp06dJkoS7776bvr6+BdluLgBnG63Isoyv/eBrPPjPD7JlzxaiLOo61lyQdVJM60CgIqXn0rYaGQqxpbpv2hZW24RYTbqZ5+nIzrq//LEMbc1SEqiwnSa2WmXKwtLjzCYbUefbcoVLLOKuY7BsiyjTM4tlQ9IjevBKHna/TWZp/7wojshURiNuFKP2XMclSzIypf0NZSxJ6yl+0PZlDLOQkltCBpLewV6EbNm+xIpKqcJYNta2umlNPMn9+7D0ebIsC8/z8CyvqLcMVQg+BG6A23BpTjRphu2xYfl1WdW7ipHRkcJUO6XdwCEQZCLD8R1kQyIyQVbOtMhWbZucPGrejJtYvkXJKuE6ro76xlDuKROGrRQwSk9ZUar7s6J0faVA4Ns+N6+7mXNhuaWAl2odSikzC9hw3jAC0HDBs5Ap4IVsrBgbG2PLli3Yts2aNWsWTPxBtwCcjnqzzsNPPMy/bPkXth/YzuEzh6mGVQBczyWTWWGXIoTAcRySrNUckGf2Os6p5WlhJzKBctsCT4juebGFMBBtYWgLu/2afHJEq7NVyLapsSUsXVvm6QgYLf85gSjEnO/6+MovooCdoseyuqeMeH0eYdburg38ACT4oU+kIpSrkE2JU3JIRVqIoyRL2tYzCsZ/OA6JtkVZtXYVTdkkzVLCOKRiV5hIJrCERSNtUHJKNLMmZbtMmIT6PAvRFlGWjsQNVgZxcAib4ZR51qWkhFW1aEQNBvsGqTfrxfOVUgUyODNyput6Z3SIeVePfsviDFvZZM0MK7GgT3sLCiWKaR75NavLuhaliVXYsVQnqvjlluWN19HZ3EHxubAEZbfMCza8YOqLZsFyiwBeKF3ABsN8MALQYGixUClgpRSHDh3i6aef5tprr0VKSa1WW4AVtjmbABweH+YV//UVnBk/g+/5xCoujH4d10Eqie3aXdEgx3FIwqSIvOWRnuKG7Lde24oiFZYgnZ2hdD9WTP9Qsvuxlmh0LG3pkpsmS6WbRZTTEilxO8KYi1MlFXEWE5QCwkZY7DdNU4TTFilKKRKV4ClPW7nEIWGs05mVSoV6rY4IBWmSomJFmqVU4yqW0OlOO7PJ4gwRCbIko2dNDypQDFeHdddvy2amETcIygHNpIlru4RpiGd74EHFqzBeHydJEmzHxnVcXcMowXM8kiTRtix5/ZuyKDfKJLWERtIAoNao4bkelmXhuz7VieqUay6ErvETmU7Ry0gWHotStBpwUlA1BfnvILkQ90VxTWvUULHCxqZUKhFnMbIusYPWNBK6o3+Wben5x2jrmiRLeNGVLzqHT3O7A3glCsBGo0G5XF6y/RkMOUYAGgwtFkIApmnKjh07itmeg4ODHDhwYMHtZfKb5eTtSin5uf/+c4xWRxmsDNJIGohEvy4mxqpYhHE4ZXu5KbLKWnWALYFXRAHtVnSmlb7MJ1YopYraPugQgqr1XqtdGwjttLBAFLNuC2/AjpSwcltCMkJ3wLqiaz1hEuKVvSJamaQJJbukp1ogKJVLxOMxTo+DSnRnsVACf41PM2oSuAG2besuV9tCJALXcak36mQqQ1pSj1VLFI7t4AZuca6KfTglwixESonnePqY0RYzlrDwHI/ecq9OBVvaNDkXOFmiP2eO5RBlEUEaYFdtGo1G96xk1a7fa9QbXdfbsR1cxyVKIlJSlKd0ql5NMsLO0+wJug6xR2L5VtE4Q27MrRRxENOT9pCSFqnQ6kgVyvozUER4Le3VWKzFcRC24MD4ATb0bzjbR3dalosJNCx9DaBJARvOF0YAGgwt5isAq9UqW7Zswfd9Nm/eXMzyXSx7mckCcKw6xm/+z9/k4OGDeMojjEIstBDJo31lv1yIs1Smxfv9sk9zolkIDr2DVqrWbvmztYREbuuS243kqeTJEUGBKKIpRcMHHSbRKB21SzsaSBDt6RkuhXj1bV9HpDqON05iAj/A9/SUiz6/j5JbIq7FONLBqThUq9Xi9f4an2pUJXADokynkJMkwXEcAj+g5JVYPbCa07XTjI2NaU+9QNDj9eC43d6CCkUzbeLZHgJBnGgrl5JTopk2KdklLaZpexcWkTPRtvBRUtHf7CdpJIX1TE7gBmSpFmHNZhNhCW1PIvVnKkxC0jjF930tKCeVR+Y1lBJZXEslFZa0oKVvumo2hSBRCU7g4NoulaDC6PioXncdRI9oeze6bTGrlCrEcI93bqnM5eIBCEtbAxjHMWmamhSw4bxgBKDhgmehbhzzEWpHjx7lySef5KqrruLaa6/tWtNC1xbm5POA/+Ff/oGvfPcrPPrEo4RpqOfYloNpI30iFl1j1WzbxrZsLCxtupxmuiavFW2zHKtt9JtHi1piUCihmzdsCjPofMJHLuZc4WIJi0Ql3U0mov3azM6wpa0jbnmdXGvkmAoUjudgi+mNul3HJY1S0jQliRJGRkcQjtBmyrX28ft9fiH6Jk84UUoRxZEef9cHlV4djQmjEAeHcm8Z27Ypu2WklCS1tpFynMUEKsCzPVKlR+K5tksjadDj9HRHPztrIpEMuAM0x5tMjEx0RZw8x0NJpdParRpJQItNJcisrBCLQRAQNkM91aTzmFrd2HnKHQs97zgGNaF0Z3BuDZO1PQoBxtU4a9w11CZqJDJp+yzWFKpHIcpt4Qda4PqeTyITnjP0nCmfudmw3CKAS7WWel3Xd5oIoOF8YASgwdDiXCKAWZaxa9cuTp48yW233caaNWumvGYxDaa/9ujX+N0//V3CUAsC27JxPD2+bDrSqD2vFyDJEp1itYQe/5a27D5azSEqVUWdWD6mzLa1T5xl6akWtmXj+R7YOgVeRBVtHxQEfqBn9aKohTUdeVTtLmLL0lEoi9bINHR6M215wjRFk4GKFksy0zfnwA9IZUqYhcXc4ihpeQP2+WRZRuAFKKXIkgzlKTxL19Ll6fPJdjJe2SMkpCmbeL0epXKJJEqIsxgyneZOB1IG1g6gRhWN8UYhkBpRg8ALQGiBaQmLVKY4loMlrEJ8OsKhx+1BViVjw2MkiRaM+bVzbZcwCvFdnyTWhsxlv4xUsjg+y9bdw0qp4rrn9ZZ59LRzBrEoCVSidAo4766esFBDHWn6/H2tWcjVehVXuHo0Xj6XmNaM5tQic7Ki+cp1XGphjYpTYdeOXQwNDTE0NERvb++sfzlbThHApRSAjYau9TQC0HA+MALQYGgx10hdo9Fgy5YtCCHYvHnzjOOcFisCePjUYT78hQ8XIgC0+OgNeqnG1WnfkyYpQY+ODmZZRpqlOLaDbds4JYe4GXdF8AAtIqSgr7+P3p5eXU+YxV1doXktXzkoE8Wt9KpMtK+ccnBcnVZcO7iWalglTEItzrJM/5GZFkuZNi7OsoxqvaotZ6RkPB6n3FNGNRSxjGkm2hrFEe2vsNzjL0sykjghUVoY+gOt6F+HBnddF9dx9eSOVs1dZ01bKlNSkdLb10utWmubIKMYi8egAl6PR6VWQSg9MzdOYt2s4fnYto2SikTqNdhCR1pFLGiMNogarS5mIfB8D1vaRHFEM2lS8kvEYYzv+MRpTD2sFxY1AJ7rYVt6RJ7t2TTTZhGNK8ynBeC0TLvjjo7fVq2lCnV9Y34H6IxSSiWJnAiVqkIUogAfiEEmEmvAKrrBB8oDZGRcPnQ569atY2RkhEOHDiGEYHBwsBCEQRBM+5mE5TMHGJa2BrDRaBAEwZLWHBoMOUYAGi54FnIe8GwjdadOnWLbtm1ceuml3HDDDWe9eS303F7QN6kH/v4BqvXqlH0HfjCjAARI4qSI1HmOpyNXGeDqaFtnd7BC4bouPb09+J5PhvbGs4SF67hFpCvJEpRUhI2QUrnUTj8rLUozqW1dRsIRFIq+cl9htyKVJMsy3Z2MTa/Xy6Fjh4r1KlpziT09zkw22+dy8vXK0owk6p51q0qqPc+2hS1sHT1MEl27VyqRWdmU14VZiF2yEcmkxgogVjFxJaZH9CAaAifW0T6VKWxlI4XUItO2SdOU6EyEQBDYWghZloXv+IhU0GxqQdtX6tNTPZT25+tcr+3b9FR6GJsY0z6ElRLNZrOIlELbXscqWYi4FfnreC7v4EaBCAWqp23bY1u2FsEWJFaCitpNN8IXekJM/jvBuEIMCNyyqzu5heC6tdexYcMGNmzYgJSSarXKyMgIx48fZ/fu3ZRKpUIMDg4Odome5ZICzs3HlzIFXC6Xl03007CyMALQYGhh23Yxc3YmpJQ888wzHDp0iFtuuWVWA9QXIwX8P//mfzIyMTLFm81zPeq1OoN9gzq12yFa8rq+OIrpK/dhY1Ov14maOhollcRxHF17JtopwTXr15DIREfqmhlBJaAZNbtGtuXpS6UUURgVESuZyaLmznKtws5lIpqg5JVoRh1rFLqmb7g+3FWnaNm6c3kgGGAsGcMreaRh2jUKTylFs97UkcSOrzXbs4nl1Gs6WcwhtJlyySsV0cmcVGqLGddx6dBa7edVSijCYuawIxxoah/BKIu0ULYsHBwdBRSCklciiiOd1hVQDsp4lsf4xHhx3n3XL6ZwJCqh1+/lzGjb/69Zb+L4DlESFTWTeK1ji6d2Xxc2Lrm5d12hKq2aS0/oMYCtSSESSSS1YMUDFXdbwAglkGOSUqVUzNHutICxLIv+/n76+/u5+uqrSZKEsbExRkZGePrpp4miiP7+foaGhli1ahVZli0LEbTUI+lyAWgwnA+MADQYWjxbBDAMQ7Zu3UqSJGzatGnWnXsLnQJuhk3+1//+X6RJil/y8VxPp2XTmDiJEY5gfHwcHIqaOmiPjZOZpFlr6vFpUnfyOpb+Kujr6WNkbESfC5nhujpNmqcyAcJ6SBAEekpGK31aRPlaWMoiEAGOp73+KuUK9aRtaCyEIExCAj/oqsVLpK5JVLaOCKlUGzP7+NhKR4ziJMbxHEQqyNIM27FJk5RatUalr6K7bFvrcvvcLpPknMlWK5arb/jNtKkjc7a2ixFCYAu7SO2W/TK1aq3L7sZRjq53bP1sCx3xKztlSk6JWlSjmlRRDW12bQkLHx8LSzfBkEEKoQzxfV+L9DQuRLDne6hEMT4xrid1ZO1rkTcCKdGa1NLsPKxW+lbSJf6K52RLcAXo9HZuxdM6jtyKRyXtiSz5tVNKYbkWEycnGNwwSKWvwquue9WU85zjui5r1qwpamQbjQYjIyPFiMR8u8ePH2doaKjooF9q8n+nS5kCNhFAw/nCCECDocXZInXDw8Ns3bqV1atXc+eddxaju2a73YUUgP/2xL8xUZvAsRxtRxJNGhWGFnmu6+qRbUrhuA5hTRsh25ZddPTma0syXa+XqATXc0lTnYYsV8qUvXJR/5ZmKZnMiMII27HxXI84mRphi9IIKSVpmrJ2zVpi2appy+Ku6FqU6GhhluoUcJ5Ozk2Mla27VKWUxFF7P2mWIiyBX/JRqSJt6MYS3/fp6+mjkTb08XkWgd1qBpEZSZoghGjPtkWL38APUFYrMtZKA/Z4PchMEscxGRlN2SQkxLd8omZUHIenvK4RdbZoN9OAboYJrIAkTXRzR6tpRSktwtJminQlMpG6I1voNSdZooVzva4jUhbt69eKxKVpStAfUGtqE+d80khBy+OvGEmX2/l4+pcDJ3XIRNZO7QrVLgFwQIWTxF/HdpTQEeWJExNcvupyBkuDs/4Ml8tlyuUyl112GVJKDhw4wPHjxzl69ChPPfUU5XK5SBcPDAwsmSBb6gigMYE2nE+MADRc8CxkDeBkoaaUYt++fezbt48bbriByy67bM77W6gJIzlbdm/RdX71KoGaubA+CROCnoCoGdGcaOK4TmHpAVo8+L5PFEbtzmClOxLHx8YRtqB3sJdG2CCU7UYTS1i4tqujibGkUqpQj+rTjgoTQlBP6ghLGz8D+K6PQJBmaSH4bNvGwaHeqOtmDtr2JcIRWFhUq1XdPdyyNrEsiyiNKDtl4maMa7mkYUpDNgizUNcO9jsIKXR3tHBwPZeSV0IiqUd1kiwhRU8BSa3u/G5MTMWt4NrdUbeICK/skTR13aOcVDhoCxvb0UIuF0wWlp7CIiVlr0wiEypuhfEz43iOR7lcplltFiLbtnVndTNsaiEvJUmqazdLvvYaFJbAD3x97juXXozpbc/rLSa7BPqXA5EJbGxkKBH9kz7PeZ1gbvUjOppLWtdUee26Siklw0eHqYZVeoPeGT+PM2FZFkEQUC6Xuf3220mShNHRUUZGRti9ezdxHBfp4qGhIXp6ehYtYpanopcqIlev100HsOG8YQSgwdBislCL45jt27dTq9W4++67z3mWb5GmyyMw82T/0f2EkRZkcRRT7ikTxu2xaLkBseM6VMereJ43RfzlRFFEUGmNVWutzXEcgiAgSiOajSZBb9CVVpVKdtXoxdWYcqmM53uEcUiSJUWEzQs8lFBF5M1zvcLOJN9Xnn6uN+rUG/Uu4SKkICgH2tvP8pGZpJE0iuiiZVnEaUxYC/EDn5JfAgG+8LFKFk2lm1pS2VZIeXNF4AZ4jqfHmIlkal0gkKmMlJTADYpOYNANIE7goCKFh4cr3KKrWWWKJO5uRLGFXUz/KPtlZCKZqE3oaSiZoh7Xi/PiuI4Wy3GrLjWNi9nNeaq5t6eXRrNB2Ai1YGuZZncKNWiJNamtfJRS2tYnF3VoaxglFcJui55OT8HO657XAE42/FYoms0mP/+pn+eL7/iirpWcI51NIK7rsnbtWtauXatrO5vNIl184MABbNvu6i5eyHTxUncjN5tNIwAN5w0jAA2GFp0CcHx8nCeeeIK+vj42b97cZcMxVzrn9i5EKstzva6fo0bU1XkbJzFu2aXRbCAsPUmjVCnpZo9ponTNelN3lNbbqeS+3j5ODZ8iCiM9Ki3QdiXTpXsR0Agb1Jt1yj1lskRbugRBQC2raZPkTFu0hLGu+4vjuIh2pVlKrVHTqWyBHjmWaCFjWZYeM2YJsGGodwiroc9nKlOSNGH89LhOH2cp1VB3RQdegAqmOdiuZesJHr7l49q61jFMwikiXaEIZUjZLaMyVYx5s9ATTpLxRI+Py+sOxTSfldZSfMcnnoi1jU4H+Xn1A584irWFDAlBECCF1NNOlCDKIvzAL7qXXdslSRMctGgUsuXXp2fwoWw9UUXJDm9A0TZxFllLIOYp3U7xnTcCWaKoEVRS1wZa0ipe6wgHgWD7we38yoO/wqd+8VNnPe/TMZPwEkJMSRePj48zMjLCkSNH2LVrFz09PYUY7O/vn9e/saUeA2eaQAznEyMADRc8C5kCTtOUgwcP8vTTT3Pttddy1VVXzXv7+Q0ly7IFublsWNcxa7V1v27Wm5R6SjoyqCCLM0pBCdfRkSky6O/rJ2yGpJmOhgkhivoulShWDa5i+MwwgavTcbVGjagR0dfTp8eR1ZqUekvTThjJt9es61SzsARNmiRZQpzG2EKLFUT7PAgEcRozXhvXEcLcv85qR009z8PydeNEGIecapzCD3yaNS1WhSWIG1o8WbY2ec6yjDiKsZRVjPWa7hoWo9kci1RpIZoLuzCdKgQ9z6NEiZHGiE6b548HHmVZptasFanTTmzbpuyUcaVLo6qNfwM3KISaZVnYtk1fbx/V8Sq+7ZMKvZ40SVFCaeFX8glkgEx0zSZOq5nFgkpaYYKJooYPT69DpQora4+i62wEydPTSNoj3vL0r91K+4btDu2uSKPVGuNnQckr4bkeSZrw7Se/zb8982+8+LoXT/sZmYnZGkFblsXg4CCDg4Ns3LiRJEmK6OCuXbtIkoSBgYFCEFYqlTn9+13KMXBw4c8B/va3v82P/diPzfj8y172Mh5++OElXJFhLhgBaDC0UEoRRRH79u3jzjvvZGhoaEG22xkBXAiuvvRqfF83ExS2HJauxyv7ZepJHc/2SGSiPeVahEmI67ooVFd3cPH8WKi9AOMmPX09eL5HI2wwUZ1goDyAhUVaT+mt9IJFEdXLmzfyCFiapNrfzhJF9A+6R7Dl6ejqRJVUpthWSySrTKcobT36rNJT0X6FtkdKWngG+mWfJNSNK7kIzqeU2Lauv7McS0fSkqSo68qnl+QTO0CbJefk3c6+o7txLWFRckrESUyj3iC2YgICmnTb14R2iF/yIQXP8nA8h0xmKKmwsWnWm1RH296Mru/q65OlOMLBxi4MsotzZOuGD9/1UZ7S4jFv3HUChC1oploIu46r5xCHTSzfIosyHUFV3bN+OxtwCj9A2ZogonS0sCDvHu6YMGI7NjKWOtLYMpj2rdYsYqVtd37v//wer7v1dfzk7T/JdZdcN91HeArn6gPoui7r1q1j3bp1KKW6uov37duH4ziFGBwaGtKzlM/CUqeAL/QawM2bN3P8+PEpj3/5y1/mHe94B7/6q796HlZlmC1GABoMQLVaZefOnSil2Lx584LWFeXiY6EE4CvufgXv994PdR3FCYKAKI6oNWv4lk9QCrQXX0tkdJIkCY7jYFkWaTLV1C6OdMF9luooXW9PL7V6jf6sX6dsZUq1WtX1aBWfZtwWQpZl4VgOnuuhPJ3eFVKnjvP6tjRLCWMdhcy7YUHfePPolUiFTuU5Okro2R5pvb1WG5tm0sT2bKyo3WEtrLaQk0pSLpX16DvaBr9ZlhXGxTKT7ahjB5bQUTmZScpWmdO109oOxtEiNRQhJbtEM9PHbqHT1NKWxFYMCchYkqmsaCpwJn3V2sImQV8LMojiSI/T60BKiXIVtmdTa9b0hJAkJlMZYaa7kT1HdyALIVjVt4pxa5wo1uPbinS/bM397RB/gvaMYSUVwu14Po/2ybZfolQSfH1cuXl3fhxKqaLBJ4syzoyc4VPf/BR//vU/Z1XfKm654hZe8/zXcN+t980YAV+IUXBCCCqVCpVKhcsvv7wrXXz48GGefPLJrnTxwMDAFLG31AKw0WjM2k5qOeJ5HuvXr+96bNeuXfzmb/4m7373u/mZn/mZ87Qyw2wwAtCw4jl27Bg7d+7k0ksv5ciRI4viQbaQncADfQPctPEmfrDjByB1/V2SJtpCxLEKMeE67pRmBKAweg7KAc1Gt1k06MaQSllHJTzPw4kcxs6MUepvj7pTUhFWQ93kYaliskgsY6xAT8MIYz1pI48OVsNqMQO4SEOK9oQNz/LwHA+/zy+aC/LXOq42qAbaEcUso1FtFNYmQTnAD/yi4ca1XQIv0GlhlSEzWUQti4kPQptTZ2lG4ATtppLWLOW6qOsIl+q+diEh/V4/sYwRkSBJk3ansEXx90LUTKNtgiCgNlIr5irHcayFmtTnpqjLlNqYuZlqX8KSo82q4yRGuIJVq1YxVh2jOd7EL/n0l/ppJA2SRJt3o7TdTi5uFLpzWXhC3wF8iighErBb620dclcDU+ckEQSO3X0LybcdyQgHh2Mjxzg2coyvb/k6veVeXnTji7j/Jffzgo0v6HrfYgivyeniOI6L7uInn3ySNE27mknK5fKClWnMlkajwdq1a5dsf4vN2NgYP/VTP8XLXvYyPvCBD5zv5RieBSMADRc85xo5yLKMp556ihMnTnDbbbfR29vL4cOHF6xbt5OF9gJ880+8mR9s/wGZpUefua5LqaekZ96imwoymdFX6WOiPjHl/UopwlCPbYvCqJjlC7qmrVar4Ve0311PpYeJ2gR9q/tIkkkRxTDR4qui5wu7nqtr1pJIz7aNml3iKY+4OZbu/s0niPRWegnTkMDV3ced0aoszoizGDdwi/o327FJs5R4XDdMqEz/KWbs2oKJ+sQU4WZbNq7fnlIiU0kQBEzICRpho7j2uShTKGJiHRVs1UsGboCSiolkQtfkSalF09nozLwKQW/Qmuohul/jBR5Zojt+86acLMuK7SsUzaypp4R4Fq7nMjw2TOAEZCrD8zxkqqNpnenOQAX4thbW5d4yZxpnqId1LYhtVTSHdFwoXUNY7vAOlOj6zFZnsEAwEAwgM9l1vXLRbtlWlz1NtVHlqz/8Kl/70de4deOtvP3H385P3PoT+j1LMArO87wZ08V79+7FdV2CICBNU+I4ftZ08UJwMXUBSyn52Z/9WRzH4XOf+5wxt74AMALQcFEwpb7pWWg0GmzZsgUhBJs3b6ZUKhXiJsuyORk9z4aFHgf3k/f8JL/1R79FI2zQ19dHGIU6BdqxiyzLaDQalEqlYtbsZMIwxPN05C2JElSmqPgVwjBEppL+nn7SONWNEWMh5f5yEaHqRDYkvX4vQU/A0dGj1MN6UUPXH/TjuR5C6QaNvp4+UtGaH9wSC8rRr42JcX0X13GJ4ojA1j6GjqM7TT3fwxc+URwxfHgYGekonrKUNnPOO1MDh9RK8SyvECv6/wKZysKDsOyUidMYx3ewbKsrOpgmKZGMtN2MsKiUKvjKZywaK8RyaIWUrXK3F2CeSRUCz/H0WDfhE7n6OJIwoTZR040XGWC1/ig99SNOdQOL7emocZIlCLs9hs3xHXAhbeoUOwLdJOL42MKmmU291pZlYVUsXMulltSo+BUc29E2K0GTRtZo11NmaMHpAGmrGcQS2jJGtXwPBXiOV8x4tt1W/aVlo4SeHx0lEYEbdNU1gt7Gzv07+bW//jWuWH0Fv/mTv8k1/jVLGnmbnC7Osozx8XEOHjxIGIZ85zvfobe3t6u7eDEE6oWeAu7k3e9+N9/73vd4/PHH6e2dux+kYekxAtCw4jh16hTbtm3j0ksv5YYbbii+2Du7dRdaAC7kOLiJiQmeeOIJrlp3FU8eepIojiiVSlMMiUGne53UaUeWaI99yy1Y4igmivQ2omrE6MSoNg8WOo1rOzaO59CoNnCbLrhTG1oc22GsPkZ1vErgBfSWerFsS9ccug5xGhep3GpU1aLI82kmOq3Z2UQSpzFxGhN4AbVarVvYZ1BTNVb1rCKshTryh8JxHGLVYa1iQ6ISbGF3+Q52IoSgGTexylr4+Zavo5cyKq6/Z+uu4CzLGBsfQzqSEiViOy6aSaQlKTtlxrNxXNulx+uBho7CFrWPMsUVLrXxGgCloNS1FsvW5tq1idqUX2RyW5uMDMu3aNabRf2mg1OkyxOZ0GP30KDRtV2/4hOlke7ITmKk0lFUx3JwHZeG3dCRPWUV00mkkLohJERH/xKKtC/oKOBQaagwuwbdcRyUApphExsbx3YIvICeUo9OYYeThKkDR0eO8mt//Wvcesmt/O59vzvtdVoKbNtmaGiIWq2G67o85znPKaKDO3fuJMuyru7ihRrfdrHYwPzt3/4tH/3oR3nooYe47rrZNf4Yzj9GABpWDFJKnnnmGQ4dOsQtt9zCJZdc0vV83qyxkJG6nIVKAef1itdccw0vuPkF7D22F4kkDMMphs0FChzlIIXEcZ1p6/4EgrAZ4pV0xEoqiWM5evRbqlOS/X392hiaAMu3SFMdRVOZ0u/t8VgVrNIWIi1RliRJ0YXrum5x01RKEUahtl2xLSLZFml5M0mzqRs9bGETh21xJ4RgtDGqo3VofzvH7/4qyzt7J/vtTSaVKa6lO6PzNXjCw7ZsMrSfYST1pBTP90hICGWIEzvEItZrdR1iO6bX76Ue1akltS7R6dt6XF1uXTMZP/DJ4owo1u/xyzr1niOROD16lJ8XeV2TSTKpaxebaROJJAkTLcocgVfyCJOwML72bZ9ItbebyhRcCFWoRS7aAkUKqe8Mrp7CQgKyJhFpexKIlJLx5jglty1kS6USo9XRrmNrxk293zTSEVHfIx/zl4/PE0Kw/dh2fvlvfpn/WvuvvGXTW856zRaT3AYmb25Yv349Sinq9TojIyMMDw8X6eKhoSFWrVrF4ODgOfuEXgwRwC1btvAf/sN/4MMf/jD33Xff+V6OYQ4YAWhYEYRhyNatW0mShE2bNk37pZvXfi1krV7OfFPAUkp2797NsWPHuO2221izZg333n0vn/3KZ3F8R1uxpKmeguHqFGngBaQyJUxCHKmNgtM01d2mimkbRHIBEJQDSNsNF0oqHVFzbMJ6SEmVaMZNsjSjXCrT09dDJCIsxyrESbPexMHB9u1ifNtkkjTBxS0mj3iuRxInhTjIsoyMjKASEDXatYF5uhrQNYXepK+y1q6kkviO3zW5ZDKO45DQPhcZGY5wULGOCtZUrVh7XhsoHMEadw21pEaj2SBNUjKVab9D6RJYQbH+KIy0tU0HucGy53tE9agrvdgpkv2yj5SSRlWnaEN0OjVPrebX3REOqUrJyBhcPchwdbgQfoC2iEmmCtCG1dANIYgioqmU7gomo5gYIkp6jBwZEOppM3EWFwIwCIIZywzy1LVSStebKh0pLCKuaUQmM0abo7zv79/HN7Z/g4++6aOs6Vsz4zVbLKZrRhFC0NPTQ09PD1dccUWRLs4nk+zYsYO+vr4iOtjX1zfrdPGFPgv4zJkzvO51r+NlL3sZb3nLWzhx4kTX87Zts2bN0l9Hw+wwAtBwUXC2GsDh4WG2bt3K6tWrufPOO8+a3l3oub2d2z1XYRlFEVu2bCFNUzZt2lTcMK674jreeO8b+fJ3v1w0f8hMIoXUpsKNanFO0iwl8LRoSGJde1cql4jDuGtdCj3tIYxCBnoGtPdeqn34ULrWbLQ2ylh1jN5yLwP9A8QyJrMyyn6ZRCX4rq/PYctHzrd8KuUKsYwLW5rOCKRt27iOS9kvIxDU0hpKKDKpp2tIJQmjEMdzsLCIo5jwdFhsx/M8/HJ353an2Oy0h5kOy7Yg0+8JHG2pk/vr1bM6Li4Ojo6UCQvf9YmTmPF4HE95Okrp2kSp7rSNs5ioqkWdsNrCqpNKuULSSPSklUliIWpqCx/LtopI4OQIZ94wk6QJUkgG+gdopk1qtRpxRQuzXPC5tlt0NU8msqPiHOQdw8IShRl31tDTRfI0s7AFqtISdC0B7gc+YTj99kFHYV1LWxIppT93na93XRfHaovw7zz9HV7zsdfw3fd+d0nrAmF23ch5ujj3CY2iqEgXb9++HSllV3dxqVSa3oi81YhyITeBPPTQQxw8eJCDBw9OyagAXHnllRw4cGDpF2aYFUtneGQwLDFKKfbu3cuPfvQjrrvuOm699dZnre1bLAF4rpHFsbExHnnkEYIg4O677+6KFliWxZtf+Wbu/6n7KbklbQNjWUj0nNnJnaBhHBJ4OjKVp3yVpQjK7eaJPOJnWzZxrJsRPNsjDEMaYYPR6qhOFWJR8SuIVDDUM4Tv+DRlk1jG1KKantdraVuYKIsYqY5Qa9T09I9M26yEaUhKiu/7jNZHGamOMFwdRtoS5SgtPtE3ZNdxi+MbGhginUiLm/XAJQP4FR+v7OGVPFzf7TJ3jrN4Ssq7EyUUJbeEJS2aYXPKdUpJiYhYVVqFoxzd2dwykY5FO8VsCQvH1vWWrusWli55GlwpPfmjElQI66Fu9BB2cVxCCF2zV/K7xB8wNa0PhFnIwOAAbuBSrVVRUauDWVg006a2tRGWFuLT/HLkuE7xeer04cvnAiulsNxWjZ9iyjnM7Ay/38dyWtdH2EV3t2u5+o/t4tm6ycixHPp7+0nipEsQpUlK1IywEqsw4D5TP8OHvv6hGa/ZYnEuo+B83+eSSy7h5ptv5kUvehF33HEH/f39nD59mscee4zvfe97PPXUU5w6dWpKF/18BeAnPvEJrrrqquL74fHHHz/r67/4xS9yww03EAQBt956K1/5ylfOed8A999/f9E4Nd0fI/6WNyYCaLgoieOY7du3U6vVuOuuu+jv75/V+xYzAjiX7SqlOHz4MLt37+a6667jyiuvnBJFyEXle/7je4jiiP/3yP+jJtr1ZzKTRGmruSOOirq7PBIItOv3Al1b1mg0cGxd+9fIGrr+LouxXIvR0VGEEly6+lJOnjnJmfEz9FX6SN0Ux3VwA5d6Ugforonq8I4Lm6Fuaihp25IojmhEja5jyyOUgR9oLzuZdYmysaNjZGmmp3T0lnSasjWjV6Bn2vquT2ZlhZgpl8o6ZSp1B7AldJ1hKEMypUfHzXQdAi8gyzJGmiPa8oaAULQjWEooXMstIpZCCHzX1x2xrS7nNEtxS7rJIwxDglJAYiVIJLaysbAIegLiRkwWZnqEmadr7ZIs6RKAlm3hlT3iKGZ0YhTHcoizuPjlJhdqURZRdsrU43rXMfklH+XqppG807ezc1k4LS/ClCIlXIwMVNouSCo9DWRifEJPfUHgl3zSOJ3WYDyzM9zAZaLRYUkkaDeRWOBaLlZs0e/1k1opf/29v+auq+7ilTe+ctprsxhkWTYv+xchBL29vfT29nLllVfq5qGxMUZGRti/fz87d+6kt7eXkydP4rruvATg3/3d3/Gud72LT37yk9x999388R//Mffddx+7d++e1lvwkUce4c1vfjMf+tCH+Hf/7t/x+c9/nte97nX86Ec/4pZbbjnnYzZcuAg1F+8Mg2GZkqZpIbDGx8d54okn6Ovr49Zbb51Tgfb3vvc9rr766inu9vNl69at9Pb2cs011zzra7MsY9euXZw6dYrbbrttxpF0x44d49ChQ7zwhS8E4N3/89184dtfKOrnOrEsC8/3itSb7/mFULQsHXmxXIt6WKeYEYuuNWuGTcZqY6Bg3eA6kiShWq0ShiFu4NI70IvruzRjPQc46A2Ipe76zf3U8oiS7/vatiSJdNTIsfXPcmqNXh6VLAV6xnEuPiZ2TxCPxfSv76en0jNtetPr94i99nko2a1ttLbpOi62raOcYo3Qo8wm4dgOnu3RaLa6ah2KVK7bmpmWiISSKIEPrnARSkdWo2MtP0IhCKyAOIxxE5ewro/D9V3CLCSTeqxd7mPYWYfnVbQ1j2M52K7uxM7sTNdCtqx4ch/FMA0JnED/d432ZAxsLfRLbolIRnhlT888Vlqg9fT0MGaNMRaOFcclhIASkLVSvBJELKBJIRKVUrorONNd0n1BX9d5C7yAuNkuLXA9txCRMzXlpEmKZVtF+tUv+UU09/2veT+vvuXV075vodmxY0ch3haDPF3853/+53zqU59iYmKCV7ziFbz+9a/nla98JRs3bpz1tu6++25e8IIX8PGPfxzQ0cvLL7+cX/u1X+O3f/u3p7z+jW98I/V6nf/3//5f8dgLX/hCbrvtNj75yU/O/+AMFxwmBWy4aFBKcejQIR5//HGuvPJKbr/99jl35y20X99ct9tsNnnssceoVqts3rz5rPOIJ6eV3/vL78WxHcrB1KJyKSVhM8S2bIIgIE5ifNen5JVA6W7NRGqbkFSmBCU9FUMpxUR9AiUVfZU+PXbM1h3BKG21UqvXaEQNPYMXi6ga4aM96XJ83y887uJEp2TTNCUKo/8/e38eLdl9X/ehn99wphru1CNGkiAIgCDFCSSIphINES3Fciw5S+GK42RpsiUvxYwlRY4tyrIsKfajbTlaihRZWpL8YtkRYyXrWXpLSazYkixZbxGkIqAbIAECEECQAImp+/adquqMv9/v/fGtc6rq3tuNRvdFAwJrY2F1d90aTp2q7tq1v9+9N1mUEcWXeJ0C5EVOpCN6ugebUO/WDNYHDNYv7Z7cn1VY+aojfyDmk6KUNo26qUl1SkpKohJR46IU3/iFkd387RvVYGLDseQYHnG07pa77FQ7svdIQuxjKCAfiVmm/ddWKVG8eis9cQCXDt9ITV1VVzS1jLfb0Wuv34MejIoRrnAS6NyOa5WM1K22nfKngkT9VE1FkiX41BP1JaC7JX9GGVQipqeF0W4ENNORcJDdPxWr2fMPQAnKyWXtXt88iqog2NA1s9RNTdM0C++Hgy/z7D6STL6c7O3uMR6N+eHf+GH+i//5v+DZrWcvefujwqtdBdeOi3/8x3+cRx55BIB7772X//1//995+9vfzqc//ekrup+qqnjggQf48Ic/3F2mtebDH/4w999//6G3uf/++xeuD/BN3/RNl7z+Em98LEfAS7wh0DQNDz30EFtbW9xzzz2XJU6Xw2tpAtnc3OTcuXOcOnWKu++++2U/iPYTwCzNSOOUnb0d1lfWubh78eDelnO43NHP+pjIkOe5jPO0oqqmsRwoUQoVjOsxdVOz0lvBaPkAbx8zTmNKSgn8DamYONrWiAZiYmxqsT0hIygZDQfCwnFVdYUKivX+Oj54yroU4jENUHaFY7w9Jvc53nmGx4YdYWx38Q5g36l2wXW9uYchaHGjxibGBIPPPbGSmrt5RDbCGktZlxRVQUFBEhIh+NMU7lrX+NwfOPdtTmEcxZjMkE9y6roW4qw1xpiFIOqyLMFIVlytZW+u9jU1NYlNJDBaaSHsNl0YEw+GA/bqPVFW505RZMRwEVRg5MXdnJqUwhUzBzDSb9xyMo9HJxpG0Jql29dQoShdSWrTA+fJ1U7UThvJKD+8/N+rlvy1KPOSXujxwNMP8E0/90388n/1y3z1bV/9svdztbieVXBlKc/zYx/7GP1+n9FoRJqmL3MrwYULF3DOcerUqYXLT506xWOPPXbobV544YVDr7/fubvEVw6WBHCJNwSeeOIJqqriQx/60DV1+R5lYPM8LmcCaZeln3zySe666y5uueWWq77PO269g0995lNs72yzNlwT1ahZ/OBN45RJOSEUgTRNyVKpkGuJV4umabrR76A3EPIUZOxojcU3UoGmtWZvbw9lVTfuSwcSXDyejMlURpzG5GV+qBtSaUXlK6q9Srpu04xQBcY7Y8Zh3BGTLM0wylB7ybobJANG1Ugy+4KTWrMpa/H1wXNtjFmoJpOTP/tZamR0Ov8z0xjiEJPFGU3cMK6EEM+jUhXaaxISiWlR0kTiisXzHkURpm/IRznV5HAiaqwhzmT062pHkiW42uGcW6ipK3zRNX+05zDOpAaul/XYLDcPvX/nJQzcpEac3YCKFINswFa+hQtupui56T6hB194VDVrI2ldwSDqcaSmho8oxipLMRHHtFIK5RTHhscYF+MuNiaE0Dm8Gy87pDa2h4Z2T4oJK/0V9po9nt1+dVXAV1sBnMd4PJZ92Cnp+9OeB7jEnz4sCeASbwjceeedR9Lh+2q6gFuFbR5N0/DZz36W7e1tPvCBD7C2tvaK7nM/AfyFv/UL/Nkf+LO8cOEFdnZ36KU9fCbjX4A0WSQ5RSEq1vHjxwmTQFXPRqVFWXQGjtrVDHoDtNbs7O0wnowl4Nmrrqd2d3uXEzeewKTSvtHej3OOYlxI/qDmAIECIaWhCZR5ySSfyBh1IAHKTSU5d/W47p4HAJXEoSQ2EUPDtGPYKIPyijiKOxOGD16UrKnpoHXLaj9t8wh+kfxNYY38E7lbyhg8YbrDSNntzYXpf6UviVWMxRL6Ad1If7BSoq6WRUmkZfewmWOiIQSiVPYhy3FJMZ4eh5Ku5TiLiRoh1sHLc2lcQ93UbKxuECURjWsYj8dkJmNSTg7EzgCd8aVqKqIoksYbbeW1jQecWj9F0RSMilFH9inpWkCCCSinuuc7ffJ4PNvFNoN4gK8O/5JT7pTESYxWeqEaThtN2ksZj2T3NI2EDLVVfd1LXVUduXw1cT0JYJsBeDX/Zh0/fhxjDC+++OLC5S+++OIl95dPnz79iq6/xBsfyx3AJd4QsNYeSTXT9RwBj8djPvWpT1FVFWfOnHlF5A/odvTmcWz1GP/oo/+oc4ROigk0cn5WBitd28R+bI+30WiiKCKJRUG1xgoJ0FLPNspHbO9tSzvI1DQRXEA14goNJnBh68LBx5geYl3WVHklY1ZtSGxCalLcxFHsFpSTcuZGncbUKBTGGXGZ9hLSYUo6kP+10dIbHEXd7RrfULqSwhVUXuJmSlfKfuPUmOK8qIVVU1G5akE5bNHWmDVNsziSpKQMJSYY0pBig5xnE4QF16GmUhXZeibu3qBRQclzjVOMNWyc2CC1KYN0wOrqKqvDVayzUMqIdl6F9c5jsqnKN42J6a30GJ4YkgwSilrO27gY09TiwD1sLK6UIjIRlauIU8kuDCHMArIN0taBYpgOeev6W+k1PSIXodFCnKNDsjan7u5QBkajEduT7Usq3VVZEeu4e2+mvZRgxJnu8dS+nsUDhYbIRKRRShpJnI2rHZ8///lD7/uocDUxMFeLtgbuav7diuOYe+65h9/93d/tLvPe87u/+7ucOXPm0NucOXNm4foA//bf/ttLXn+JNz6WCuASS8zh1TSBzH8wtn3EN998M3fcccdVqQ6XGit/3T1fx1/51r/CL/5/xNlXlIW4fqsSGwtRLsvZuFdb6extaDAYyrIkSRJ84bsP/LIqZd/MNRhjhJxN9/0CAWWl3is0gd2tXVY3Vg/N3tNadx/mGBlJOuckemSOXGijiV1MuS0EJRQStdKUM1UoWUmokR06UiHZxhoZO07NC61a5hpHIBCbg3uA867n1hFdVIUYF/ThZMAh9xfZiBW7glaa3WaX2ktszTbbQoyaRcKklMLHHnow3htT1VW3AziPSM9yD13uiLIIExsh0XXV7eJpoxlEAyb1hJiYSTVhhRVG9UgUzmlzSWxiMGJCIGFBhWvjcJRSJDpBO80kn5DZjMxmYiCqCoq66Kr32nBtX/rufBNk13I732aYDonMQWNPXdfYWFzNhymuC9f1dRccvjZYQynF//ZH/xs/+B/9IJG9uuq1l0NbBXc9kOf5NbWA/Lf/7X/Ld3zHd/D+97+fe++9l5/5mZ9hPB7zXd/1XQB8+7d/OzfddBMf/7jkKX7/938/X/u1X8v/8D/8D/y5P/fn+Jf/8l/yx3/8x/zSL/3SkTyfJf70YUkAl3hD4CjUP6CLBjlqtMSyDad++umnD+0jfqX3eSm15WPf8TEefOxB/vjRP+7qwpSRD+6qqbpO1qqUmJb2w7hsStl3qxvyYlrtpcSoEUcScFzmkikYdEDFSn5Fdr0wkuM32h0xXB1ilCG2MVmaEVuJVAmNkDkCGAyDtQHW2C68up/0KXYKXC09twolbRN7BTayXQewVZZGNZ3655xbIO/JIFlQI621DOxARqTQjVTb26dxSlVV5OWs0mx+5w0lBo6WCDeuoWxKalcTE1PXNbGZRt6ogDlhaC42Xce0D56qlqBsb/xBNW0Ota/RqaY37LE12ZIdzEm1aG4JonhabaVvty6x1uIjT58+IUjWXxqlsksZpOe48c3C35dggziLnaKclMR2MQdPa00v7ZElGbnKKUYFIQ+g6YwgQcl5bJ3Ce/kew2zISroiz1OBiUQR3RvvYay0p7Rq5X4Fdh6t2Sivxan+K5/8Fb7va77vkte/FlzvHcCrVQBBYl3Onz/Pj/3Yj/HCCy/wnve8h9/+7d/ujB7PPPPMwnP50Ic+xCc+8Ql+9Ed/lB/5kR/hbW97G7/5m7+5zAD8CsaSAC6xxBxeLROIMYamaXjwwQcZj8fcd999DIfDa7rPyxFApRT/5G/+E77pr38Tu+NdtNJSF+eme4ClEL44iaWxYs6Z27iGrd0taX9QEgrc0IhZpCgZ747lX45IQpAVSurClPyKgmJSECURNrKoSLE73j30OAGKPQmn9tYT+YiLL13s3LAtggsH8v585XHaoYPs2hkto+I2S28QDdBhNiYPBNlN9DNSZ7XFOouuNL7wxFr2Br3yNDTdXprRhpz8UJNC191L6Cr5AHQsj71fBWxjY9L1lPr8bB9SG02USYNIVVSUVYkaKZxzjMfjrus5MxmFK7DGdr3L8+8DpRUmMTjl6KmeGGhCRuOkWaWu666mLosy6qammkwNOLFUyKVm0Y2a2AQaURDzOqegoGqqhX3A+fdQILCT7zCpJ6wN1qCGUEmodmKTbh8xV3nXPnPYeU16MubOEPNI5Sp+/g9/ng+89QO8/6b3H3q7a8H13gG81hq4j370o3z0ox899Ge///u/f+Cyj3zkI3zkIx+5psdc4o2DJQFcYok5vFo7gFVVsbOzw7Fjxzhz5swrzic8DO0O4KXMLyc3TvJTf/2n+Kv/r7/KYDCg3BVyUpQFSSTGibIoMV4coSYyNCPZh2uCqETBiXqjUGzvbVPulahkavzofAChU37aSBntNeOLY3prPQoljtDLIbEJ49FYWkGMtEqEJlCMZTRZjQ+qsq5ykNK5Sb3bR4ZzKPwiadRKL6iCTd0Q6oDWouq1kSlxFJMoUcW8EwNJHMU45WhUI4rXFJ0Ctg9eedLjKcWLi8fQZvGVriRZTSSWxQfqSl6PeVRenndTNCSrCeWkJHeSixjrmNrVnRqbDlK88vjIU1KS6pS8mqmZcRRT6pJMZxgMiUrYnezK66WFQHej4SDnKjYxTd7Ifubc/Rht6NOncQ1FVUjAc2uKCQGM5BHWdc2F7QvEJmaQDmTvsA39biDti8KLQ9pbvMMFCceunewEtmsGLcqy5OLk4oHzfRS43juAf5p7gJf404+lCWSJJebwahDA559/nieffBJrLe973/uOhPwBnVJxOcXyw/d+mB/57h9hd2+XJE66D7eyLsHD6nAV70QVKiYFaZRiI9vVmGHoRph5kUMCXvtZ5lzbIDG/7zclgoFAOSkl5uISU64QgrSNbOfdfl/wgXJcUpYlJjFkqxlRGnV7Z91tfTjUCNPCVVf2OrZjTGssWZIR2YiqrigqMZCUTdn1F9d1TagCpjIkdULapPTpo70mChE2WFSYducGRRVV2NQS2YgkSVgZrhD3JB8x6EBFhfOOujrojE6iZCHbz9d+ZqjxNckgIVvPqHoVLnUUXoiY1/5gpA3gje+aQ5rQUISCYAK1q8VVXNVURYVtLFmZkZQJTMTgEpmo+5IRpbP3rzWWQTZgmA1l/3JavaecWhhXV65iZ7LTKZYtinGBNlo6o31J1IvoDab9xNPn3vZHd8/DSUj1UaPNX7zeLuAllnitsFQAl3hD4Ch3AI+KAHrveeKJJ/jSl77EW97yFl588cUjO05YJICXUy3+8rf8ZV7YfIFf/s1fxuNJ05SiKGQnralIbELjG3zw0tpQNmg0XvsuBsY3HhqJAsHOduJQU2PD9NNemVk+XAgS4TIZT4jjmDiNxanazEZ+mc0odoSoKH3QZeqdGEvaUOQ4i9FGE1ygyiuMNYfWuAE0eQP7puzt/RslBgsdNL2oh9OOiZtcchy5Hy64LtjYN+JgDYVUuRltFl7ndD2l2JTO4drXVGXVkZtAwMce7fQBBVNp1SmS7b5itp7hlbxu2367UwD7UR+C7HBqpcUoMoc0TVFWdS7b1KSzkbqCYTbE15LJV45LXOXEKDQl/62ZxBrZN1RWXmdtNMqIqSjRCbvFLmUoZ0HRc+eh8Q0XRhfI0qzLAwRwpSNKInSiyZuZYqm1JtXy5WH+chtZMju7/VGh/SK1JIBLfKVgSQCXWGIOR+UCrqqKc+fOdREvRVHw/PPPH8ERznAlCmCLv/1df5vPfeFz/Puz/54iL7DWCpEKshenlaaX9NgabQHSFexyJ0pe2/3KVHULetaQ0ca2TOvN2s7fFsELUbNGwoEDgSSVLD0KKPdKrLYdufDBL+yRhRBQlSIxify5CR3hM8ZITdr0cXztqau6e/1UUERR1JGhQOj6bR1iGGmaBlMYTP/yYz+tNMYKaVRKLeQLaqMJBCGjzh14PWpq4jSmntREKhIFSylRWVXAYhlsDMi38s644YOHTLqYWxNO00xd2tPGkspV5HVOL+p1u4dJPA2HnjqsA4E4icl93oVgxzomryWU2ypLHGLK3bIzZBhjMMYQx3GnirXnqtFNV53ngycfT+9HW1KbkgwSxuWY7WJ7Qb1sdzNDCIyrMZWrOL56HG00ZVGijJLzNvf9yAdP7nJSm3Y9x3ESU+uaO0/eednX62pwvQngcgS8xGuNJQFcYok5HIUJZGdnh7Nnz7K2tsb73vc+rLVShXXEo+VWXbnS4/0H//U/4Ju//5vZnmzTNA2+8mRZJqHAjWN7tC1BykZ2wTqX7D5RzDcyJvNGgpWDDp3i05I/pVTnClVBkUSy+B8IQnxCoNAF8XoMDspRKQ0Xc/EkLVksRpeOC2m7hTs3qQqYRJpKWjOIieQ1DS4cnoPo6YgsSsaa1tiO6NWulh09Vy/UqrVoo2KMvrR6HNJAmISuLi6EMAs79jCqR0SrEaEJ2GCxyoqq2ohy1r7G5ajEDi1mmr7tvFvYr0yjlJ1qR55DZKlVLUTOhRkJ8xJfU5UVRVEQEeHV4nuoVSOVUtKSEks3dF3WlHlJaUvqqu72B9ud0dqLwWQ9XWdUjbrRbbfDF0nsUFM3vLj1Iv24L6Pu0qOsOqCQJyaRmjrg+OpxLpQXSGzCicGJQ8/ztaA9x9drB/BaY2CWWOJasSSAS7wh8HoZAX/pS1/ic5/7HLfffjtvfvObu+O6nGP3atHFi1zh/d586mb+s2/4z/i1f/1r5E1OkiSURYlzTurX4kDd1Hgnio9v/GLsSHuKgxAEbTRBLZK/tmGj7ZQNIaBj3QUOm8gIGZ7W07V9qCpT2MySNinVuJLHvgKEZtEA056P1jyRxmnn3E1UQtBCQDWiOAYbSBMJaI7TWEKIfdN142ql8cFfvoFi+vDa6E4pXTjGIMSvN+wRVJCx5vRyn8vzrF0tcTImpiordKoXXM9WWyITUfoSi+3y8doMvi6uxk4jc3xBQ0OqU3aKHTn3yhD5WYyPVjJidc309Z+qms47mtAQ22nkTdVQ57Mn1u4ztq0kzsn1gxf3tFbiMB4mQ0bViDKUMs72oLwi1DPn8Lgay05i09Bb6XUGme7cqYAxhiiLOF+epxf1OLW62Gd7VHDOdX+nrgfG4zHHjx+/Lo+1xBKHYUkAl1hiDldLAL33fO5zn+OFF17gve9974F/2F8NAng19/ujf/lH+fRnPs2fPPsnYCB3OQZR/JRSxHGM957d0a6oXZf6LLR0H/ZtH22rbrXHEwhoq4liMQ2YyAhJ2O/WRcjQaDIiMhEucsR9ySkMxaXz4QDZV0wXR3at0qWVxjpLGqWoIM5kjIwWa19TNiVN01CFCj/2CyNLmLZn2AgfPEYZTGVmppcpSWiKHBtK0uE0r9AlooJOjTDeT/9HGj328r0FguEa1zVjgOwWRlG0ECcDogK2+X22tLhIzrVWUqU2WBkwDmMKXwjhmo5lS1cS67jLaSwmM1Lpg5dqOFfhK3ktYx1jG+l59o04uq2yXf5i7Wsh2FUl43BEIewIvw+4IBVz2moGaoBtLONqLKRPzaKDWnfvTrHDWrxGopOFHczV3iqlKakbcQO3iuy3vevbLvueuFpcTwMIyA7gsv93idcSSwK4xBsG+/fPrgZXQwCLouDcuXN47/nQhz5Elh1cUG/v9yj6iufxSgmg1pp/+fF/yYe/78Ns726DB5OajvxUeSVtCI2+NPmL6PIDvPdCBLWWMaoHjZZ8PjTZUM6FsQY8h5K/ebTdtHUle3OVqVCritjEQuBqcIXrOnZDHbB9i/IStOy87OA55XA4qroi6kc471C1OkDyQJSx+d7ZFu2Y1nlH0OHAdZrJGFeU1EoTVJ8sG3SK5mFoQkPWyxb7jPfBecfa2hqbW5uH/jwEIVi9fg/TM/jKk9uc3OckKiG1oi4qFJGKKJuS0pVEKqKe7JMnA+igiYkxzlAVFYUqMMp0pPWw82KUjNh7aY+8yGUP0ooZpGka6ZMOEmvjg0d7Tc/2yJu8i8tpY4NAchF36h2GYSi7nibQy3pslVsH3L79uM933/vdlzx/14LrGQEDSxPIEq89lgRwiSXmMN/YcSVE7eLFi5w7d44TJ05w9913X/IDpFUWXg0C+EpJr9WWv/Ftf4O/8Yt/g5VshZJyYQeuKAqJZDnsX4c58tchyIenUtI0Erw0fWzcsCEtIUHGlFfisK1djTUWowy9uCfK1JTkVr4imIDqiTJnMIQ6EEURo8loRljnTq9SEu9isRThcOJ1WKRIW1nX3jYyUUeG2i8azgWqokYDYZyTrhyTIOzpOWlNIu2vHn/Z3EY5dMX2aJukn1COy9lz6Fnp79WBylXi1nYNg3QgfcbT0emknsxGv/WOdC6bhKRJsJHt8v1c7QhNYFJM8N4vdmm/zNvTBSHglasIOkiwdKXRRhzQWSSh040S00ogYL1EC+01ewfuLyAj8uf2nmPt2BqpTdlr9g49R3/m7j8jxphXAdezBg6WBHCJ1x5LArjEEnNoCdzLEbUQAs888wxPPPEEd955J7fccstlrz/v2D3KD5lXqgC2hPX4seNSpeZldyuOxFXaVA1VLvtzyk8DjqdxL8RcmhyEWSB0FEecPHWSMpTURU2ykqAjTapSfO1n948iMlFnYnDB0biGyERMygnjaizmjem+mtKzlo8uF07DSryCzrRk1SG7Zq5xEvI8dQ7PkzyjTdezWyMxKmmSinrYqojISLgdabrgDqphsaJJDbZ2VDRsbb2Ijg6PJ9FaU7saow1rwzXKvOzy8qyxBCUKY5ZmNKZBWUV6LJXomKamRnYEUyWX0UitmwuOSEXdKNcoQ2pTCdSe1s/pWswbrnZUZdUdT2YzEpvgnJNWEV93ZHXh2JUmsvI6tZmFdVlLzuH0dbBWxs3zOX9t5iBMzSpOyx5gaxYygJlG8zgx9JwfnyeLMjZ6G91KQYvbb7idH/uGH7vEG/Da8VqMgJcu4CVeSywJ4BJvGBzVCBgurwY453jkkUfY3Nzk/e9/P+vr66/ofud3vq4Vr4QAPvPMMzz++OPceeedfPqxT2ONpWwkgqMqK9I05eJIGha6FhCQD+qUl1WG2r23/kqfsi5l968v1XI+zEKIs0E2i0xxnrIsu8cKIYhBRM2iVwLiRvbeU4da9tmm7lOtJD/PB98ZTWBaq2YjUpsKMQyK2MZCpryQqdAEySS0oJw6dNzZupkvBdvvw67U3NVFTmwS1CHvm9jGFK6QdgtXyNjcaHnsWMlIezrG1l5DBelgZuBosRCtUinI5DyNqzFJnDDsDZmMJ1htiZXsc042JwdUTu+n56wuuzE+iDrci3vEidw2L3NRCQ8x5VRV1eU+Hvblx3nXubO7cxnP8g1DIw7z+RDxEAKTakLlKk4OTlJ5qagbDAb89H/y0yRRcukX4xqxJIBLfKVhSQCXWGIO80TtsMaOyWTC2bNnMcZw5swZabm4ArzSyJYrxZUQwNag8uKLL3LPPfewsbHBr/wfvyIf/sGjg8Zay87OzmKnbEuor/RfiQBY2BvtsbqySj/rs1PvkFjJ8Gt8MyMEc+towQZsKiPCupS4nGE6ZDwZd33EyighTG3LiBei6HCM98RJ2raXNK7BOUeFRMS0e3HzzRghSIuIUQaDwXiDDXamdk4NCpGJqKlnJpLu5MjzVShsatjbvQgBjKqIV9e689GOfOMQdxmFZVFiU0tZldS17MkppUjjdMH5W2wVxL14wZk6X21XTkp6WY9JM6Gf9PGxjMm9mxpPrGcYhnjtDzRwtLDagobYxBJoPanZnewuRNpYbbtYHR/kvloiOp+zuB9KK+Io7gK+d8tdgguzSJq59YXgJVTaKwkfb1zD1niLXtpDW813v+e7uev4XZd58107nHPXbQcwhECe50sCuMRriiUBXGKJObStB4cZQS5cuMBDDz3EDTfcwF133fWK1II2T+2oswBfjgBWVcXZs2dpmoYzZ850BpUvPPeF7kO8NWbked65OWHq4k003vqO8LTNILL4xuxyQEUSBu28YzwZo3oKFRQl5WXPlULR1A15Mw0VtpZ0mFIYMSRoZHToG49qZJ+QII9TN7WEJLuGxjWz1orpyLhF8IsyXktuA4G8yenTpygO7gg6I6PfQ00U7X3HEfUYCAGaAmfyBUVMK81evbegTs/vFLbHc0CBDDKGb7tz0yQl0rNxrwuOlBSfSP9v3/bZ3N0kNSnBSaTPhc0L3d5fL+mR2pSmaZgUE1SlqCfTsa9dfA/Nv1f3K3nt8Rtj6Kd9dt2unKMoErOPkhF81VRdBA/QRdfIU5uZQFqST/t9S0mjTKlLEpvw3V/13bw/ej9/+Id/yNraGseOHWNjY4Ner3ek+7TXWwEcj8dLF/ASrymWBHCJJfZhP1ELIfD5z3+ez3/+89x9993cdNNNV3W/r0YUzOXuc3d3lwcffJC1tTXuueeehdHz4194fOG6RVHQNE1HjFQQ1S1E++af7edt+5ABMKBjPSODHgoK6p2aXtpj2B9SHxaQ196V9zRNgzZiukDBbrHb1cwppfBKxr9eySjZKjtT7hpLQ0NZlZ0LuHGy/6e1pnASam3swZBvqy11M8vU00p38SYtmbRYYitO2UNfA6PJ0h71ZELkwdUNKok7whdH8YKyB1AW5YxEI72/+68DUOYlUT+S4OxpIHLtawiwsb5BFEfS6esCRVFgmSl6pjEEKzuQdVUzykeMGMkxK4nnSaO0M+d0Yc1cvg2jbX0JKpBXueQOOiHreDHyOO8W+6HhAMENBDSSJemDF5XXTrMlp27hjXSDH/mzPyJd1HnO5uYmm5ubPPXUU8RxzMbGBseOHWN9ff2aVyteixHw0gSyxGuJJQFc4g2Do1ID5hXApmn4zGc+w87ODvfeey+rq6vXdL/XiwC+8MILfOYzn+G2227jtttuWzg3Tz7zJC9tvjS78nTciZp15QYVUKnqiNBh8SntbXWku98DkMj4zztPIFDUBYN0QO7yAzd3XirGrJUxY2Qi+lmfUTOSyrJq8TbtsVShWrgsjVJxs2rbBT0TwGKZTMTpGhHhlIz52vPhGoePPCqWSBnHrOOXgBhlVCNmjHCJMaq3uMTQlAFlwDUlURp1/blaa1Kbdo8ZkLDlOImpazGG7M/9m4f2GhUp6kaicUxiaELDxeoiqUsZrA64WF5EeUWik65SbWAHbE+2Dx3/tmaXohFyHNu4C36ed8FbK+ezfW+4ZmpKqeQ+bWSJkkgU2LYyJkhYtNVW3NuukvH/nKlDhWlTjA6EKKCMgoRZpzSKoRmyO9nlH/67f8jHvuFj9Ho9er0et9xyC845tre3OzKY5zmrq6scO3aMY8eO0e/3X/G/B8scwCW+0rAkgEsssQ9tHdxoNOLs2bOkacqHPvQh4ji+5vt9tUfAIQSefPJJvvCFL/Dud7+bkydPHrjNb/7eb3YjvSiO6A16fP7zn5+1SUzHce2YTmm1UPMmD4R0/8aqCz7Gy2Uhnu7XBXHaRlFEURekUdqpWCB7XngYpkOUVl2tm47FMdv1Db/c83dCZtqg4FY5lCcDOtMEF2Q/rvLUdd2N5JMokY7bQwwgVwofPMpaUKJ5haaZXR4UeZUvqGstjDMSvmyme3KEzm3c7g5GcSRh1D0hsLWrO8WyO49lQ17nbOgNVFBdnV4wEtzckrGqqRZGuc472VvUhiiKup08pcUAlFgxXDR1sxDhM6/s1XWNSfYpo2rWbAKiNjZzfYJdg8z8+2ZA12iigqJneqykKyit+Bd//C/4z9/zn3Pbsdtm586YjuyBrC9cvHiRzc1NvvCFLyz8fH19/dB93v24njuATdNQVdVSAVziNcWSAC6xxD4YY9jc3OSZZ57hlltu4Y477jgSdfHVVgCbpuHhhx9mNBpx3333MRwOD73Nk888SQiB9Y11xtWYrb0t2QOc7vb54A+oep0hpOUxRnb+9juvVSIOXQI0qmGv2KNsSoYrQ2pds9HfoKaWOJiq6uJPXOVmRpkwq0dLomRhj2w/rJLGCYUi1lOXr6u7kXMSJUJ0lBCiOJHrBB+EEDlH5SqKUJBUCTaW1os269CaaX7gJV5+xUwd1dYSfEPAE4JHTcld7g8qnyBjYKstRVMIATNiSrHKduqZ81LJ5ypHYw4hqQp85WlomDQT0JBFGWVTsuN3hHTXhTSRRIaVZAWjDHmRi4vXKVzjuj3DecRpTFWJ0hqZCGusqK9NNRtv2/hAj/D+82OsIVe5vGfc3PtouvsXIlEBtZJdz57psdZbo/TiDk9Nyi996pf4B3/uH1zycbIs46abbuKmm27Ce8/Ozg6bm5s8/fTTPPLII6ysrHTj4uFweOjf5+upAI5GMopfKoBLvJZYEsAl3jA4CpIWQqCqKr7whS/wrne9i9OnTx/BkQlerT5g7z2TyYQHH3yQJEm47777LqtWbu9tc/zkcTZ3pW2iqZvOWOGd7yJf2riVTglUs/w2Fc2ZHFo3pxJHb2cOQUbJVVXR1A1ZnLGX71HXNQ0Nxhp5XC3EsXWaqkgcsQTZZcPQuX81GqusKHpVBYFO8Yp0dEBp2z/+NNZQNzVKKwzy+IbpSLiCyd6kC7TWStRLh+Tk6UbCjrURg0ln7JmqaiYqqfOaWCsSE6GjSHLwNAvkOXhRvzSa2sq5qF0Nh4jDkYkoXIF1lsHGgIZGlMx2JB/E6IOVfUYXZPcu0Ql926fMSnwjZNvhFjIYYxt3BPEwtPmMIHuHrYlDK01s425H0mtPTd2pva35pgkNdVOz5/bwjV/8AsFsvzP0xXgUq5gszuin/c4QBFC4gvu/eP8Vh6hrrVlfX2d9fZ3bb7+dsiy73cFnn30WpVRHBjc2Nrq/K9eTAE4mE2BJAJd4bbEkgEssMUVVVTz88MPUdc1tt912pOQPXr0R8Gg04v777+fGG2/kzjvvvOyH2CfPfZJnLjzTkT+QPTiYc2YaqQhrx3TzCl+SJNSqXiBaXV5gJu7NNhS6JYLGGOI0ZlJNxOyhNVmS4fGzkWQQBdNGthvHBgK5y+lFPSFNLlDWpTSXIIpeFmVCGpUSA4SZjSiTKKFqqoUsPxWkVq51tnbqndYkWSLH7sWU4JwT97AVI4dCoYNGOdU1foQmzAwxlcaUSv5YBgxSrwazVpB2vNsen8fP3K+HoCWsjWtoyoZCC1mLTdzF2ICMkyMbYRsrfb8e8pDTS3rYicW5ud3G6bktm1LItApdu0bZlN3xlUUp0Sz7vrRoowkmYK0l6MAgHWBjy6SciJLYctMQmNRy2WE7pCEE6IvKOtADTq+dZlyPyV1+gOg9t/sc93/xfj705g9d+mRdAkmScOONN3LjjTdKz/XuLhcvXuTZZ5/l0UcfZTgccuzYMfI8v24j2TzPieP4SDNBl1jilWL57ltiCcQxe/bsWYbD4RXvDL1SHLUCGEJgMpmws7PDO97xDm6++ebLXv/nf/3n+elf+2kGvUXVoW3MUCh0JFls7Qd2FwujIE5iGeU2khXXKVrT34QoCHGcKjXtLlnQErjcmj2MFlKjtSaxyUKAszXi6LVaxqBN0yyYDuahlByXR7LjggkLip8OmjKU7BMFxbRROXH8Gk2apsRJjK412mkC0+q2th9ZVV2mYKt6tb/GJqZqhOSJDcJPn3eJdvGh6prVlsSKWUNVCh3rQ3cE9zuD60kNfWZNKA4ymzHoSR0cJV0mX2Yz8jpn0kyIk5g4xF238fy+Y/t+bB9Ho+lnfTGmNKW8H6Z1ds652e29dALnVY5XniIUojxO9wa3820ZScOh43Ol5XkPBgN6ugceLowu0It6RDpaiIwBeY89ev7RqyKA89Bas7a2xtraGrfddhtVVXW7g5ubm1y8eJGiKDqFMEleneDp8Xh85DE2SyzxSrEkgEt8xeO5557jkUce6RyzDz300JGPamHRXXyt8N7z6KOPsru7y+nTpy9L/sqy5Ps+/n38zqd/5xJ3JmO9Lg9u6gpWQXXGisQmrA5X6SU9ems9kp2E8zvnu7tQkeqcoq3i1o46lVI0jeTEzY8VvZcmitYcolAM0gG+kj2zmrojb2mSUpSHjyovibZNZFr91j6XzGTsbe2JQ9kVlJMSUxqpqlMebTW+8TR1I6NfLZEpxLMGDe9m0TXeC+nDhykxFJJ3ydGq1kyKCYFAVVdk/azrLEbJuNV5d2C3zjWORCdCapFz3e/1uVBeoG4kZHpVr0rtnK+74OYmaXCFwwRxD/dTcci2I9pMy+M753DOMSpkP80oQ8/0Fgwd88+hdS63ruNAYDvfJm9yPL5zkHfmIiPRQgBYOL56HOdctwMJ0mWcZRlGG6qm6lzBSZxwMb/4yl7/K0Acx5w+fZrTp0/jvSeOY+I45vnnn+fxxx+n3+93ZHB1dfXIRsQtAVxiidcSSwK4xBsGVxP78Pjjj/Pcc8/xnve8hxMnTgCvzqi2vd+jIJZlWXL27Fm899x4442XdS6GEPjun/hu/vDsH3aXNVOXahzJGHE37HZqlzJqts83VQXjKOb4seMopRjnY8b5GIBhMmS32JU9xEj281SYVsi1jRpIW0QURxLNcuAAxQ3csz0a17CX7y1EvHTH7GcZhYfBGksv6XVu5S7ketoa0vhmplhOlbDILqq8QQWqyWxkG8URWZZR6aoLktZay/OYdthqhCx652HqlDVBkdiUajrunR9/djErc4qfxVL6ckGZ68U92Xk0msrPTBfUoKwiyRIa1TByo+48utRRjUUZ1GiyKJPzhkKtKvRE40oheEqJWhfqgFd+waXbwgXHXr5H2ktFsUMLKQu+q7YD2RstKJjUk46wtfDWd6Nq56fP28CwN+zMObGNKb0YYtpzX7gCow2pTml8QxMatovtQ1/7o0IIoYuZectb3kJd11y8eJGLFy/yyCOP4JxjfX292x1sQ9WvBssauCVeD1gSwCW+IlGWJefOnesaMua/jb9aBPAoRsA7OzucPXuW9fV13vnOd/LUU09R15cOWf7+f/T9C+QPoG5q+v0+tatpfEO2mlG+VHYxHC0UiiROWF9f78ac8xj2hng843yMiaWGzeNlD29qTrHacmL9hES67OPnWZyhUEyqCS44tNH0e31UNTuO+RH0WrbGaDIispFEpwQxcGinaVxDPslpwpR04YlsdOjj4sDUhizJcDiUVgeaLpSSdpLJzgSnHTa1xFksQcU+0JQNrnHEdrbHNZ5McAqIFKOpwqe1xhjpQNZKYzAHlMHQCCmaP+9lU3bHpJSiF/fIehkVFU3aiDM5CPEFSE3KHnsyfvaS66ecopyUXRVfSAJRJVmIIPt+TWjITEZiLu22bqpZxp9Wml7Ukz8HGR3nRU4TNeLGNmqWKzm9/vw43caW1d5q92VNK90dT/fyTP/uBRXQVqODpnIVb91466HHd1TYHwMTRRGnTp3i1KlThBAYjUZcvHiRF198kSeeeIIsyzoyuLa29ooiZCYTUTqXI+AlXkssCeASX3HY3t7m7NmzbGxs8I53vOPAIvarSQCv5X7bUfXtt9/Om9/85pkL8xKk8r//5f+e3/z93+z+bI3FWEPlKjKddY7QKI5E+fMzstSOcbNetpABN4/GNRwbHuvGtfMuzeCneW79HnvFHlmSdWPDlpBsjbcWz4/S5HkuNWPKyF7alI/GJmZcj/HBszfe626TJrP+3FSnCxl5ta8P/YBVahp9Millrw9FnAq5O9ACM5eNWI/rmfnCG0xsSHspk2aCr2tUFFAe+rbHZDoadk6CritVkUWyl6eUmgUlN546n+32gRDroimIdNRVxE2aCZNd2albTVepooqGmaHEaENMTLwao3YVxXhqFrFxN6qNTcxwY0hzYXEPsHKy2xhF0aEEtWka0l5KURXTzENF0RSMGOGMwxsPMQeI9kLdG5CkCb1Y9t5Sm4rCaTXjaryQLei9J0kSKiomboLV4g7/mjd/zYHX8ihxORewUorhcMhwOORNb3oTTdOwtbXF5uYmjz32GHVds76+3o2LX47cjcfjpQK4xGuOJQFc4g2Dl/s2HULg2Wef5fHHH+dtb3sbb3rTmw69jda6yz87SlztCDiEwBNPPMGzzz67MKqGS6uKn/jXn+BXfuNXgGlTRjL9AHeiyo13x9jEduNgYw11VXe7gHhkh84c/EBsFa2yLkU1SQx1qLvxqwpyTrM0k0w9RHWMbDRzmx6iNhlrZBzpRXHKokxGxHXTvR6pTa/onF22vcTPrtPC1U4sHLUnHaRUZYUKishEKCuEbU/tLbhcqSB3OUVT0EwmuGrq7o2HBC35d847iZHBUhe17FUGIaBo6frt6R7ZMGOv3qNxDaNqJMd+ie8K5bikyKakN0nJrIx6e/QkhmdOiNJad/dTuYrNfJMTJ06ws7kjqm4QE01mMionRL4lgg6HjnQX1ROlEZWr+PL4y52jOCCk3yizMP5t1eSAqHi9pCfRPlMUTUGayJ+ttl2ETOMa6qqmiZru9Wl8w4n+Cd52/G0v+7pfC15JDIy1lhMnTnDixInOjLW/pq4Nol5bWzvwJXO5A7jE6wFLArjEVwScc3zuc5/jpZde4p577mFjY+OS1309KYB1XfPwww8zHo+57777DuSGHUYA/+izf8TH/+nHCSGQJqKK5ZXETjR1Q1VXmNh0qktsY6yx1KGW6BemHa37cteskbq2oi6656GUkvHvVPFrSWBkI/rDPq4Rt22r1LXjaqMktqTdKQM57zV1lzNXNiXBS0SJC9LxWzYlkY0OtGEAC2qT1uKs7Wrh1CweRpd6FsFRza6fxRl1VBOmES5mYGhKacHYv7c3e8gAIaCKithpnAnUsaHIJ7T1x5GW8a8KCrzsJfraS9BxCGzX25RJSa1rMcHgKd3h0SkAdVETUnltOqNEgH6vT2IS9np7mNLgKndoDdz58XlW11bRO5qJm2Aiw3A4ZNyMu7q3whXEOib4wE6xI8cT+VnH79z3phDCTCmdI37KKGxiGUZD2Z2cGnK00gyzIaNmRNM0uNphrKHwQmqVVgfUxK9/69cfei6OElebA6iUot/v0+/3ufXWW3HOsbW1xcWLF/mTP/kTiqJgbW2tGxf3+33yPD9yBfDixYv8N//Nf8Nv/dZvobXm277t2/gf/8f/8bJZg1/3dV/HH/zBHyxc9lf/6l/lF3/xF4/02JZ4fWJJAJd4wyPPc86ePYtSig996EOk6eVVpKMya+zHK1UWx+MxDz74IFmWcebMmUOjafYTwOfPP89f/vG/TFmXxLHEkIQQyNKMvMg7EmS1hQDrK+tc3L0oH35T9U+hxMVpZCw4zKRRZG+yR1Ht218LgSRJGI/GtDVsRhtWV1dlhzBKqEO9EGcCYjBwtZDINjrEGkuqU8q6lOOekoq8ySWuJU4pixITSYyMQUwCQcsxK69IVIILDoOR/Ln9GXZKM2yG+MqDl7Gx7VlqX1OGcqGTt96VqJpsLbuk+UQrja08JR4sJFGG33fdQGA8EeNMZKOZwzV4qb7TWswY1rO9ty0h1dqIQjaNfJknn845ohDhte9UtzROGdUjcpcTmsDw2JBqs5L3gYklJmb6ekVRhI0t1YqonFZZxvl4oaYPoHQlu8XubD+ypqsIVGGudm+erSlRcm1sWUlXiHWM96Lqei+GnCROuDC+0N2kJby9uCdEX/kFNTG1Kd9/3/cfev6PEkdVBWeM4fjx4xw/fhyQfb82aubRRx/l+7//+1ldXWVjY4Pt7W3W1tau+TEB/sv/8r/k+eef59/+239LXdd813d9F9/7vd/LJz7xicve7nu+53v4yZ/8ye7PS2XyKwdLArjEGxqbm5ucO3eOU6dOcffdd1/RN/zXgwv4/PnzPPTQQy9bRbefAP7Vv/dXmeQTyd6b7nmlSUpRFLOA5DjBKCMhvdslWS9jbMfURd31+bYf7FpptkZzu3pa2im00UQmIjEJo3K0oBYOsyGpTjGJYbfYnd7s0ue9drU4kq2YJLI4o3ayv9f+F4IYKjZWNnC1Q3tN3dQUrqDy013GEAlx1dLQkaq0iyEJYVo55xx7O3sy6jXSgqF2p73Aq4nEuri5bmUfyHdybGZJBhIUXY5LIi1ErnE143y3U6zi/pDIRHjrRTkMjkhFnYmibupO5cyijKZuut7kftYnL3MhTE3DXrMnBNNa0jjF4bp8POMNOhaHcBIllJRdHV5BwW61SzpIURcl+NoHLyHbTUNTNWxWm0JGE0NRFPToSe6ia/DBU3sh7U2Q4543bbSOaDlBc3uSsSKYQKIS0pDS132JmpmqkG0ryn6i2aJ0peQQ9vvsIXuesY35777mv+P08GhD2Q/Dq9UE0uv16PV63Hzzzdx111381E/9FB//+Md59NFHOX78OGfOnOE7vuM7+Ct/5a9c9WN87nOf47d/+7f5f/6f/4f3v//9APzcz/0c3/zN38w//sf/mBtvvPGyx3fUofdL/OnA9em9WWKJ64B5khRC4Omnn+bBBx/kjjvu4J3vfOcV/+P+WrqA2+M+d+4cd999N3feeedldxvn7/N//v/+zzz29GNifphWlcU2pixF1bLGksTi9px3vZZ5ybFjxzCRkZaLOdJ12K5e4yRaZJyPeeHCCwv5bv2kz7A/xClHVVWsRCvENiaOpv/bmMhKRVpkIlZ6K2gr5pCiKRhXYyb11EGrxN1b1kJuiqpgc7zJdrVNsIGyKnGN68bPZV1KcHQtmXhFXZBXOUVVdPuKVll80S4BLj4vX0/VtH56IORaK005KvG5Z5ANsANLoxuq3R2YKn5Z3MdGMVWoKH2JU06yD71eyD8EGQPnVU7w0mZiGjFfqOnuYBRHXa1a0zTsjneZjCdop4mVhFYnNiFJhPy1CuX84xSqIFlN5L2gFTRgwkzhMkoMQXEmRpFJPWGr2GKr2GKv2luIzmmdvL70BDXL9SNFDCwpEInRpKd6WGMZVSOKppDL4t4Cgb0UPBJ9k8UZURTxrXd/K9/53u+87G2OCtejCi5JEr7lW76Fr/7qr+Y7vuM7+PznP8+3f/u3X3MjyP3338/a2lpH/gA+/OEPo7Xm05/+9GVv+2u/9mscP36cd77znXzsYx/rauqWeONjqQAu8YaCUoq6rvnsZz/L9vY2H/jAB17xiOW12gF0zvHII4+wubnJvffey+rq6hXdp/eely6+xM9+4me7Ea0xRnqNpyPGOIopqqJTBeumFpVvusBf5iW33nIrX37+yxQUHQl0zi18OCVRQuMaJvkEPF2AsUYeY31tfWHcW1SS52aN7caQBBlZ1r7uFEK5eKYsNa7BeYlZaevo5n+eu5xRGOFrMbVERAvByWo/u5vCOtupcYddxzeeYlSQDJIu6kWh6EU9lFGUTvp+yaEpCmxTkcYaGwzNStLlDs4/j6ZoRPGLM4qqWHgegUBeSWVbP+5LNIufqW7GmIUu5LKWn0chwq04Gj1rcZk+qYW8xMY2UMouaT1dSoyt1NpVTYVWErGSk1NW5UKQ9/w+3+wESg4hkcS0dF9OtPy553uS7RfFFF7IHwryOieNUnKXL5xvhep2S621hBAY+zGRiThzyxk+/uGPH/o6vhrw3h/JCPhKMJlM2NjY4NZbb+V7vud7rvn+XnjhBU6ePLlwmbWWjY0NXnjhhUve7i/9pb/Em970Jm688UYefvhh/tbf+ls8/vjj/Kt/9a+u+ZiWeP1jSQCXeEOh3ZuL45gzZ85cVZXTUTZ2zONyI+CiKDh79iwAZ86cedk9xRYtAfyBf/wDbO5Iv6+xBlc7lFJkSUZRFwd297z3xEkMSA5dEiXsjfZYW1vjwuRCZ0Boaqlvi20s48+q7CrBBukA7z07ezvEVlyP+3f9QIhtVVSkSUowEox82BiwMz0ESKOUylfd/QWCjGl1QlVX0uebOLZH2/RNnzRKZZ8NIaN90wfHAnkMIaBGiqSfSLZev8d4azwjbHMvTTkqhdAeW2dnd4dJM5kRWMA3DW6SY5yi9gE3TFA+EPdialOT2lTeQw7qUOOCIy/zzkE9H7WilKiXtrK44Ejj9EBlWxInKKO6lhCHE4JfVRhlUEaaPdqA66quOjd3YQt6vV6n7LTPo81SPF+eF8U11rIbCQv7oFhpeglM3eEOSKZqYxsYrhSZzuhbMTbENqYf95lUk+59CrCRblB4+SLinad2otZ6JyPzNEtpaDiWHOOXv+WXr1tOXgjhuiiALa40CPqHf/iH+Yf/8B9e9jqf+9znrvo4vvd7v7f7/Vd91Vdxww038A3f8A089dRTvPWtr27u4hKvPZYEcIk3DLz3/NEf/RGnT5/mjjvuuOp/zF9NE8hhxLLNJTx+/DjveMc7XtFxK6X4vz/1f/PJc5+Ux5jGtmglbRWVqw41MIQQWOutsTPaWQh59s4TE5PHOdppyTdbXScvRblpGlnmj2yENZbdyS5NaLjh1hvIm/zA44AQBGstQQXqRvb9DhsFtg0THj9TijphS2JdHI4szYhURGgCozBiXI6JKtnJa1UuVSgJS148EPzIL7y2QQeSfgL1bATY7sxVruLCxQuyS2fn1guco97bI3aKRntUlqJjIdN1UZP0ElH6vLipjTIYaxZe1/XhOs47dsIO68N1JtVErhsbUBJCPIgH5HVO6UpKylkszPRQjDKdOuu87BoabyiDjMIzlc36i/saXS7uN1au6sbtbXh2iAJUEGxAR7LvF3yQdhdm/ct46V5uSaIKirRO8cYTmUiibKqDf4fyKu9iX9p2FwLdMpKPPKlO+do3fW0Xcn090L4nrhcBvFIX8A/90A/xnd/5nZe9zm233cbp06d56aWXFi5vmoaLFy++ov2+D37wgwA8+eSTSwL4FYAlAVziDQOt9VWrfvO4niaQL3/5yzz66KOXzSW8HF7aeolf/3e/LuTFzHpvi7qARsZAURQttIUopTi+dpyL2xcXVKbuODEYZwhRoAoVo2pEL+1RV7Xcn41IrCiG43zMTaduOjRuBKYu2djSqKbLHCzKgjgSotc+vtUSUl00MjKObSzRKdNxpkYT6YjdfLd7LqlJhfA62M63Wc/Wuw/ww0hvHOLOMNIhgC88SZyQpRlb1dYBdbLJGyE4KynVqKDc2iNuoDIeE0XYTCroEpvQ1DLybc9Hz05Hx9XiLmVrylFeMZ6MqeqKdJh2USgg7mel1KGKoNUW5VSX+ae1ROcEJYRtEA3wpaeuxUxTqAIzNPjtxfdf5arZKDcgo10b0E7IolJq9p5UdPt/VECPzgTSV32G0ZBxPUZH+tIZjEiun0Hieebdvutr64zCiJtXbua/vu+/vuTtXw1cbwJ4pUHQbdbgy+HMmTNsb2/zwAMPcM899wDwe7/3e3jvO1J3JTh37hwAN9xwwxXfZok/vVgSwCXeUMiy7JrVu+thApnvIX7ve9/bRUa8Uvzt/+lvMy7HmMiQxLKfNz9ebJqmi2ppjRXaaC5cvAAB4jg+UPOW2IRMZ2y5LRrTsDfek9gVbcjSjECg9jWVqzi2ekwq35zFpGaBePX7ffaKPXH5TgldByXO4PXeOk45RtVIzCVeatlcMzv/aZSKScEvLqcXvuDk+kle/NKL4lqtCrJU+lnbPuN5mMp0+4haiTFDaSUtJi6QX8wxkcFkRjp1u0MVE0W+NcLvjEgjKDRoLHYw6LLtiqYgIlrYmWv39tLoIIkLSCexcYYkShZG0N11QqAoiwNE0Bq7cK5jLTt3qZ3G4ihF5Sr6Sb87jkk5IckS6j2Jt9Fad53NwQaUV2IC0kpIYRvs3ba7qEVSrRox/4RYlMBxNZagb80lQ6xbOO9Io1Q6f5Xh2OAY777l3fy1+/4a773xvZe/8auA9u/l9dwBvFw+3yvF29/+dv7j//g/5nu+53v4xV/8Req65qMf/Sh/8S/+xc4B/OUvf5lv+IZv4J//83/Ovffey1NPPcUnPvEJvvmbv5ljx47x8MMP84M/+IN8zdd8De9617uO7NiWeP1iSQCXWGIfWqVufxDytaIdAdd1zblz5yjLkvvuu++aAmG3d7epXc3xY8fZ2ts6VPlSSuHddL9JIwv+rbI2R8qssRht2C13Jf+PISM9om6kM3h1sErTNBhtKOtSno9yTKoJURyhIzEUWCtq3uZ4U/a7vD80RDmNUjZHmxhtxO2qFtVIq+1MzdwHq62YV5yQq7qpqV3NRrzRnet2HB6QvUNXOskfnJLLRItpQymFiST02dWST5gOU8px2e0HhqKCrRGN9jQNKGtYveEUeETxm460A2ExJmWKop6RuPl9zDZ6xXnHhtmgNvWhXz72E0FlVOfQTe1UOZzL5Ata9h5bJTKLM6JYdg+TYUKxW9A0DUmc4GonfcRqGsI8HcmqMP399H5VmAU0B6aj4kEgRAHrLdpryrqkn/SFSM4ph/KLXGa0QSlFYhKG2RDjDL/ykV/h7W9++4Hnfb3gnFtUO19lTCaTI8/b+7Vf+zU++tGP8g3f8A1dEPTP/uzPdj+v65rHH3+82wWN45jf+Z3f4Wd+5mcYj8fccsstfNu3fRs/+qM/eqTHtcTrF0sCuMQS+9CqAPsdsEdxv8457r//fvr9Pvfdd9813/+x9WOsXlzl4u7FQ3+ulJLol0rco2mckle5RHbYWJb3bUZwEvnSuFkFl0J+Zo2lbEp2RjtorVnrr8n+2XRHSymFbayQk1TUukv1B4PkwSktfbKBgPNO1MUsk7EnSlS/puzGxvPIbCY/C0JG4zSGiXT/5kWO0uIsbTPsAGywVGXVPS9ggagZYzp3MECxV0igcWbxF8Y0bkRlpmNCGxENBzS57EPqRAsJLWohRYeQXZiSuKronNTOuwWVcjQeEWw4QBIP3EdZEMURa9EaNraM3GhGzKZfANoWmDYCKBAomkJGxf2YftRnPBmT59Ndy6nLuG35UF4RokBo5kKfQXb/WiXQIERRSY+0xxPHMaNqJM+hNQTNnQ4VlHQge89OvcM7Nt7BD7z9Bzg5XHSwXm9cTwNIWx13lAogwMbGxmVDn9/85jcvfEG85ZZbDrSALPGVhWUO4BJvKBzFN/h5AniU2N7epq5rTp8+zfve975rJn/OiaK1O9k99OdJlIiCNo0eSdKkM3MAVE1FExqUVdS6JupFpIOUOI3RRtTK9eE6K9kKq+kqRkvf68XxRS6OL1K6Wf6c917GkK64JAHSSnfxL1VTHbheXuX0oz6Ricjr/MAemdGG1KTktTyH2MbEJmZjuIGpDSpXhDwQNzG61FhvsU7+j5uYpJ+QDTLSfkqURLMsxHB4JIxxivKFi4R6jNdyrCZOiIYDIhOj0bjgqIuaYq+gqRuyfsbKYIV+1r9kFE2brZhEyaIhxU8d0lXR5SUehn7ax0SGvXKPcSNjV6NNp7ApJK6G+ZvP5fkFFxg3Y3qx5PVZZWdEVDEjfDVgprdp42CmP0cj2X8N3Y4mzExIdVN36rJWmtSmpFHajcorV3Hj+o38+nf9uuxyXifydSlcTwIIr44CuMQSrxRLBXCJJfahJZFHRQBDCHz+85/nqaeeAuCOO+44kvv9oZ/6IT7/7OcP3VtKk0UVSWmJCZknyGksTRiNl5y6qhZSVvkKhWK4NsRrj00tcRYzCAOCC1wYXaDwBXvNHrnL2Rhs4LWn2ClQK+pQAtjFutSzWJd5KKXIooxJNZERop41TwBkJqOsS6qqEoNC8FRUZDqjLEt842cql50SDzczI6hSLRhhCNPKssSK2hVmjtbYxoS6ZrR3geA93iuwgf6JVZy30uwRmgX1TitNYhLyUS4VbdYTJRJ0HeuYsiqpq7ojfM67rt2kU+/mFMl2LzONU8lyVFo6kKnxkadoCqnBQ1RFheJ47zi5y0lcQqEKSkqMNh3RtdqiGkVe5jRNw4QJeZHj1TTced/LFgioZpr5V8k6RFBBYmGSWdYgNfIcgqiw7Zg3tnFH9ufjgRKb8JF7PsLf/Ia/SRZls/PwGuKoauCuFFcaA7PEEq8mlgRwiSX2oQ3gPYooGOccn/nMZ9je3ua9730vDzzwwJHsFn7i//oE/9f/7/8SI0Hd0O/1ux2xNvR5HkmWUJRymTUSw9GRsWk/bFM2nXKTxUK4UpV2uXFJnBBCYGOwwaScUPiCOtScn5yXsauyrCVreOOl2m1uDw8tuXMEZqHOUwdpYuR+8yInuCAjxKnxA2THbaveOkAasyij2ZMgZGssdVMvvGYWS0WF1XaR/CGKT1VXUk82jV3pb/TZ3dklz/doxuPuukoZ4mOr1HVgkPUJNlDtSv4eyEg7hEDe5Ni5f1LrpmZ3vEtZlKQ2xSuPTeTcKySjcXtnm7WVNZx3NDTYaKbGeTw1NSpWWGs75VOFxd06Ob2a85PzZCYTohgkLzBKI+pRTd3UbO9tS4xP8DOypyHUQdRCNQt/bhGUkECVKEIVCHEQ40eYxcKoWuF6jvV4nYmf4LyjchI/U7qyM94YbTjzljP86Df+KLdu3LrwWlyv3btL4bUYAS8J4BKvNZYEcIklDsFROIHzPOfs2bMYYzhz5kz3IXetjQOPPvUoP/HzP0HVVN2YMC9yVoYr4sacjBeur7XuYkjS+PDdukkxgSDqTN2IaqO17pypSZTQVA0a6eAd9AYkftoK0kwom5La11zYvECwAYycw7bLttfrHSAXSilSmzLKRzJgnGuWKOqCftyXvb76YL5galOUl2BkowxpklK7emHHSSsNQTqC5/f7XCPGlDiaVpQFRz7KGTUjjPGoetyRdG0t6eoxQqRIvWaUjwCI0ohe0iPfyyXUuB1XH8JjQgjkdU4URRCgqqvu+VeuYnu0jdaa/rDPnto75A7A1Y4kkgDrNqam3cWL1JzzOMBeuceknmC0YafeoRpV6EZ3gc3z5ygQUJHE0bTu4XnjR+sSpgHVk9Fvd/u2BzggY11bgYFIzzqZCeCU4+2n3s6Pf9OP895bDjp8Xw8K4PUkgEVR4L0/8h3AJZZ4pVgSwCXeUDgqJeFaCeDW1hZnz57l5MmT3H333Qsh0Nc6bvqx/+nHCCp0KhbIiHU0HnXxJ3EsClzd1ERJRFVVJHFyqKPWey+kLht0Qc/dh6GfRsVUFc45ekkPG82pUVoxTIYM4yFNaIRcKiFEzjmcctSupqzKbqwLdPVfhS6IbCRqodIdkUmtjKf3nyeFkMa8yomJu8vjKF4YPTau6ZQyVzk0EvkSnJANkxia0MgOHzW+EQKXX9wleIgSje1lBJWijSWNUrYmMxWyLiUGJ0SBOI6pJ3VXG3ep92Dt6m4PsqiKhZGrD56iLoSgV+WhY/SyLsmSjCySdhevPalKKUNJULKHVzQFEzeRXcwmoBstkTF+NuJVSoh4R/AQ0wfMxecEZhl9Zvr3qoKQhO51aKNiWlI7MlLNp7QSFTnL+Jq3fA1/7T/8a7z/lvdzKbweFMDrOQJuXbhLBXCJ1xpLArjEEofgWgjgs88+y2OPPcadd97JrbfORl0tqbrW0XLjZqHKIQTJU5vGjMiFzByvSsGALiOwVZEU4tys65rQBE4eO0npSlZWV7i4dVGiXIzk0zW6YVyPyaKMrJcxLsfYSHLoXHAdWWnz3LAwrsfkpfTLuuBkz8yHjiAVTbHwoa9QaK3F3TpY63bGTJh9KGs0sY7Jq1yiaMZlF91hjZWcvKahaqqOmCRRQjWRsOOmknFxFEWz4F9EoayowAdCu6MXNMamrK2tob1m4ibdcYKEUHcEvJTLk0FC7GNRU2lfikUiN0/05ls5QMh0URUyloYD4doKRdmU0phiYga9AZvlZjdqVU4xdmMcDgLoWuO8k8iYarEjeL8aSwy2smCYvaZqWgHnZuN6VSt8NGdcYdZDHGzAYol0xAdOfoBve/O3ceuJWznmjrG3t8dgMDiU6H2lKYDj8ViqCJcmkCVeYywJ4BJLHIKr6QP23vPYY4/x/PPPc88997CxsbHw85asXCsB7KW9LmYlTVImxWRBXZvH6sYqu9XuAUdtIAiJDNDv9dmpdgAoxgUYKH2J1RaXO8qoZFJPWF1ZZWuydejjRJHs0uV1jvEGbTT9VDp6i7KgrEshI2pfyPBUhfJBCKJrHC8WL7K6soqNLFVTkUQJLjhUUB0xjHWMU/L6xEZCkK213ag7ECirksSK07ZpxABzwFkbZkYTtEJpTfAeXXv0pGKbbVKbolckPqUaV2RW4moSkyw4fYtxgQ8SCxNlshdoGys1bvtQ1AWJTRZyGNu6udrVonTui4NJ41RUOSU5fxfLi7IH6Rsm1URidZQEOocmdBmHwQQZ3U5NJp3SOs9NA2S9jKZqaFQjbR61h4au7xfkPrTXeOVn96PkPr32vO+m9/GxP/Mx7r31XsqyZHNzkwsXLvDFL34Ray3Hjh3j2LFjrK+vSz3g1HzzlUQAWwfwa616LrHEkgAu8YbCUY6AXwlRq6qKc+fOUdc1Z86cueS3+6PYLWxHVZGNKOuyG9/uV4ySOCH3B+NUQggdIcqyrDN5tHA4rJZ4kKqumDQT0jg9PN5FTR3HjXTfWmOJTMTacI29co+qqchMxlANGRdjJsVEQoeZjSLlbhSqmRIXPHv5HmtraxDAplb29oLv4k5CHYiJ6cd9vJN+39jG0sbhIkw0PUcu6kJ+D4vd8d53ESYAca9P2BlTG09ejNAuIl2N8U7Gvuvr69J5PJrrxW1vq2IiIqIoovRC+hrdoFMt2YdBSdC0E4WujYOJbCSkb75vOASqqmIlXZHXNYDXXowxQc45yOjVeUfhp/E7DnwzI2eBIF8OIgilEO72/TDvEA4hEJuYKI0oykJGuVPFUIU50k4g1AGTGLlsGg49TIe86fib+I2//Buz91+ScOONN3LjjTfivWd7e5vNzU2eeuop8jxnbW3twJek1wrXWwHMsmxJAJd4zbEkgEsscQheCVHb29vjwQcfZGVl5WXz/ebr4K4Wo3xEL+vNsvSUGBuMmX2gp7HErrjaLahUPniausFaK7trh3T4eu+JU4ku8d6LkrYiKlwHBb24R5wI6Yojua+2aaPZbai11MclcSKxJVnK6voqO9s7FJNCiNlUAewCjKfKlGsc5aRkdWWVSTnBqOlzc/LaVGVFpCO2ii0Sk3RkKksyxvmY2MWEECgnJcoqoijCWos24sB1jaOuxB0bNRGRjrDaUipNveIJUxewr2vyCxfI0mPEJmZrTxRQm1r6vT7VdkWEmDtKV6JQMobWQqojFcm5qaVNRSkFVkhfaISc6USzkWxQxJL/54PH4fB4dutdrLFC5quZGaa2NSlpF8cTQhDih15UV1tEQLk4km7fKwYjx1KrLpZGozsFEeTP7bg3ECQWJhFiqJWWcfRok3E57urn5qG1ZmNjg42NDd72trcxmUw6dRDggQce4Pjx4xw7doy1tbXrGskC138HcDn+XeL1gGUQ9BJLHIIrJYAvvPACn/rUp7jpppt4z3ve87LhzlczWt6P3fEuHlEsjDEd6VBhunyfiEnAxnaR/HlPXdcd+btUW0ccxaL6ZeLQpYFBIp23aZRirSVNUvKQs51vU9SFkNG5Foq6qelHfWmuaAq5bSJBwIN0wOpglZX+ChYrMSSOxS7cAOPdcecQbvfiQGrNrJJ2ElgMcR72ht1+o2oUGt2puVVVUeQFeZ5T1RXGGlaGK6wP1zEDQ+llv84kCfHKCmqqCAXnqM+fZzKeBW43dcNkPBHzSaZQPdUpSG0OIdDtOzrlyJKsUz21ki8CzjvKpuTi+CLxMKampqE5QNRKV5LFcvs0SbHaSv1bmOZV1u1pE1LZPk77BQE93eebc/CqRhHKgK+9hEFDF+UTVMDoGSHqDCFtdzDSEtI6x52WUPI/ePrKmiV6vR633HIL73jHOwC4/fbbCSHw2GOP8Yd/+Ic8/PDDfPnLX6YoDm9EOWpc7xFwv99fKoBLvOZYKoBLLHEIXo4AhhB48skn+cIXvsC73vUuTp06dcX3e60KYFVX3W6YUqJuJXGC1ppe1mOvkCgRHWkhVghJaFxDZCPSJO2ChgMBY4xEtmhxqI6KETExpSqpVCWjQu06wtWOfA+ck6l61/bVAqRpSl3VMqp0Thy6dUNiEyIj49Lx7phiUohqNXWjtg0U5aTErthubGm1JTRhYWw9TwCVEhLsvOPY8JiEW9swc7tOP3Qb31C7mu3RNlmRSbRKhLSgaE2oA9pa2JlQ+4JGQzMZE1yD7fXJogyFElVueihKK7J+Rm1qjDO4xi0QuaIpiCIZBc/vgrbxLNvlNnEkxHz+PdIGdlssq+kqeZRT+pJEJV3XMsxUulap6wiGowu71k7P+o1bsqgVK70VjDES5OwVyqjO1dye40Dojj0QCC5grWV9sN6NvP/95/8933zXN7/MO3iG9thPnDjByZMnueOOOxiPx2xubvLiiy/yxBNP0Ov1ut3B1dXVV4WovRY7gEss8VpjSQCXeEPhqL5VX06pa5qGz3zmM+zu7nLfffcxHA5f0f1eKwFcW1njiy98EZiqba4mVBJHsjXeIoTAcDCksU03flQosjSj3+vLSNWYbgHfB9mhU0Hha3Gpaq0pyoKghVDENib4gLHmcPIXZP+vl/RAw16+R6gCWZpRN3X3uoQQyKKsc7MCZIOMalLRNE1HYlrBKYRAVcvP2iDp8WR8aN4eyC6md540S9mb7OGDJzMZOQezBAExIsw3cBTT0GudEPVi1GqCGY1oxiMxTeQlNIp8JZDZxQ/xEAJ5nmPWhDCbxJBFGbaw+MbLyHlq8Ih1jPdeCCGKZDWhQMwyVkvsjGscqU1pgiiCpS8JOmAwrNgVdvPdjnR35DsoOXcOqWmrp2pjuwfqhah2xo4w+ztjtRBtjSYOMYUuFlVZFl2/AMYZBumgM998+oufPvyFuQTavMWuf1opBoMBg8GAN73pTdR1zcWLF9nc3OSzn/2sBJFvbHSEMI7jl3mEK8O1ZnO+EozH42UEzBKvCywJ4BJLHIJLKYCTyYQHH3yQOI45c+bMK/4AOooR8HvufA8PPfHQwfs2Wsa6CvbGe6z119jJdyibkiiKiOOYvckhQcNTpHE62zNrTQpTh25RFZCwoLy1DQ8EqS6z2jIqRgumk6IU1av2QnyG2ZCL2xIzE5sYPDRlQ5ZmjKoRYSL5hiY2YOV1iKMYo2RPrXGNEFotmX9tpE0WZ4yLMUYbhoMhg3TA5s4mAGVRojN9wAwDkkdYlRXaajy+c/Z2JLcBTER68hjq/BbeeEIoofDQTw89j0ELgXXekde57FkqCLG4XYMLOBwbJzfwTvISSSExiexo+kaOJUqoqKhcRWxiVCTB0TQyql1P1qmqis16U1TImgO7f+2oWSlR+kIcYN/kP7GJnKe6lMd0YtwpfSmuX+TcdNExYWbgibOY3fEuaZpSuIIXdl/goece4t03vvuS77N5vJzyFkURp06d4tSpU4QQ2Nvb48KFC3zpS1/iscceYzgcdmRwOBxe9RdA59yRkcmXw1IBXOL1giUBXGKJQ2CMOVAftrm5yblz57jhhhu46667rmpkdBQj4K//wNfzq7/1qwuXpUm6QM5CCGzvbVNT00t7B0wE+6G17ka8IFEkrXtWKcX53fP0B33WBmviInaNmD2mbuJLhUyHIGQosQlZmlEWJaYxNGWz0M4xHAwp8gKHhDaHQsa2pmdY768zrsbduQs+dNEuRhnKpqQopjV4aUxe5qz11uilPYqqwHlHFi6hAk5DjzMrcSrz56BFbGIGwxXypqLa24MQIFSYySbRsXWMNSiv8M6jCz3bl2NmunBeArGrphIiqqSfODIRw+GQEsnxa2NpDIZhLIRmVI5oQoOvPMoruS9qCaZWAdPIuLlt75ivafP4zq3sg+/igkII3e8zm3XHW9YlaSTE1laW2tQENzN/dL8qhbZazDRlTRSLkcYFx/969n99RQTwSkmbUoqVlRVWVla47bbbhPxubrK5ucmzzz6LUopjx45x/Phx1tfXJZroCnG9XcBLBXCJ1wOWBHCJNxSOMgamXUAPIfDMM8/wxBNPcNddd3HLLbdc9f0exQj46z/w9bz3He/ls098VkwdxlK4YiFoumkaMpWBnSlRHk8SSxD0fJg0SGDyPEGs6kocqnq2V7Y72SX4QJYIYejMGZpDyV9kI2nm0OIQ3t7ZJtXpAQU0MQm1q+kNeuzt7s3y6QLoRrPz4g7OO9bX1ylCQRKL67ef9smLXMjP9HmXVYlrHDt7O9JPbC2xkvF1bOOOEGklzSOZzaioaOrmQF5fpCOMkpF3IKCsJR6uUO/tEbzH1Q3l1kWi4bAbSUdRhI89NrZSg6ctW/UWlZ/uXOrQRbS0juDtsE1cxNDIuWgbTXaqHYnqSTIMhsqL0cbjZ7uFAYlsacOYmWUrwlzrx7TircvdU1LzF5v4wDi9qAvSKJXx87TmTqupu1gHUUunKwNtH3IxLogHcn7/4KkrM4LAtYVAx3HMDTfcwA033ID3np2dHTY3N3n66ad55JFHWF1d7dTBlzNdLHcAl/hKxJIALrHEIWhHwN57Hn30UV566SXe//73s76+fiT3ey1QSvFT3/9T/Nkf+LOkUUqVV9RB1ErnRJWz1mIwOJyMdhshd/MKlzKiQGVJRhRFZP2Mqq7YHe1S5zVoOrKhvIwQx+WYsinRWothITQyBp4eV2ylkq2pG6qyIrEJ2802TRC1Lm/yLjuuJaFb9Za0W+hYHrMdWaKomxobrNynbySoGljJVqReziuSKOl2yayxNFXDzmgHY4zE4SBxOVGI8NYvEHAfvJhN6rIbY7Zj4L18D+ccaZrOdtSsIRoO8Tt7aA+2cBhdE6+uAOKgrkwFSlTUF/MX8cZjg+QqJjaRcOyqwGqLCQZ33pFkCWkqe4vBB6J+hA+emprtchujDJGNaGoZ8UcmwliDxbITdnC4GdFrC2GmGX5dLEyb62el3cNoIzE15mAcUFEXrCarTEYTvPFdHVxwoWt0CQT6UV/USe/BCQF+ae8lnt99nhtWbnjZ9/JR1cBprVlfX2d9fZ3bb7+doig6dfDpp58miqIuZmZ9ff3Avt/1joFZKoBLvB6wJIBLvOGwv/D+aqC1pq5r/uiP/gjvPWfOnCHLspe/4RXc77UqgAB33HoHf+e7/w4/+f/+SXzkuzgYrTWDvkS2ECQXT8e6G+vtN36UXkaPbRMIgFOOoNriWDrnZxsB0vgGrbXUoE2bInTQB6vNpq/DvBNWFUJICGJGaPfyAkHGo42fKVUs3tYpJ4qiidnZ3emIbggB4w1RFDHMhthgqW2NNppJMZFdQaMoi5IojqTlYjqmdY2MnCMbob0m0Qlb4y3KppQKtKmRwp60nXrZKAX9AX57RKMDvhqhfYQdZES9iIICFxxjO+bEyRMUTxcYJfuSZVVivCFpEqI0QjvNhAllXlJMClZWVrCRZWu01b1eSZagIznfWSwRP00ju5BRHRGq6V4e08DmSEmo9PT16po62maQ6TkdxkOCk/dCFmWUrsRo04Vte+8Z2iE7xQ4hDQsjZq20GJB8TWSijpzHKzGJTTjZP3lF7+NXS3lL05SbbrqJm266CedcF0L9xBNPUFUVa2tr3bg4y7LrrgBe6xfJJZY4CiwJ4BJLHIKqqtja2uLUqVN81Vd91ZGpA0dhAmnxnf/Jd3LrqVv5vn/4fewUQuBaw0XtRdE5kZ7gfH7+kvfRjkPnUTVVRwC7EWK7W2boYlaUUp2Ddv/e23zjhApzUSJzhNB72YVrnanBTfMAHTA93WVZ0hv2hGzUNWmUsru3i/NOHLTTY/DeU5YlOsh4tQ41qU6JEgl4TpNUTA0hoIMmSiK8FkLUJLLHWPmKMpTooWZoh7Kzt1uRV7k0cAyn3cFYfNCoVU012sYDY7dNTCCNUwwGEhioAZN8gjZaArKDw0SGyEgXcTEpSEIiKmVTyei+aNjb3eP4xnF2ih05hqKCgi6kuR/3JVvRm07R7aJfgvT++sp3Yc7zPw8IQUxsgnXS9OJwlFrIX+1ramZqoA5amkBCEHKp1CwUWinG9Zhj9li3z5mGlDiLr/jvy/WogTPGdKPg/SHUTz75JFmWUdc1k8nkuhDBPM+5+eabX9XHWGKJK8GSAC6xxD48//zzfP7znyeOY9797ncfaWDrUZhA5nHmnWf4kY/8CL/wb36B57aeO/Dz8e4YHR/ugG2x0PABXUcwIKqPnhIHMyVb7X2pWR1aZzxo8+fmFKlWhfKlmBC0FxIc3ExJCmbaYWsClHThxS442d/LYiyWspR2kshGC9EyLUII3Ti8bkQFVEbIndWWoOX4i0ZMI6UrMdbQqEZ27YJhYAfkLmcYD2nihp2LO+xMdvAri+cw6/fR1QRfVSjv0b6miRqCkWPYHe1ilSWUgWbcYIwhyzKcdTSqIc1SspCxtbuF1poT6yc4vyVk/cLFC6Rx2jWtOC/rCPkolyidLGO1tyrk3s/tvnbCrRDw+d3AlgRab1nvrXdZkCCjcLzsPbZfHoBuV5ISfOYXFNlWtS1d2fUjV3lFEzU8dv4x7jpx1yXfc93jHtEI+EqhlKLf79Pv97n11ltlBWFri8997nN86Utf4tlnn12ImUmS5MiPYTweL3cAl3hdYNkEssQbDlf7gRJC4IknnuCRRx7hLW95S6cwHSWOagQMsL29zac+9SnefPrN/Isf/hd87Ns/xvpwfeGYvfdYd/nvefMZbHEco4wSBc4AGiFxejoKNmqR9HkJGW7/a2NC0EIcNRKqHKoABUIkpm5Wo82MvNVATqf80SAZdEEI6epglb3JHi64A6/LfJ9wv9cnjmPiJJbMvMhQhpLCFYzrMUUlxK8ONb1hj6gX4YzDGsuoGlFXNeNyjHcSx1KHmuMrxwkukIXsgFoa9fvEkSYMoHZjgnJM3ISqkBq+ST5hUk6khaQo2Nra4vzmefZGe+R1Tk5OnMZkccb5zfPENu7cq0VVUOUV1lkJnp57naqy4qWXXiIlJbKRdP2quYDnOeLXnhuttOTsxQOSKOmeS6fIBi/jdLWo3rVRMtrrBYNJSyqLppA6QBPT9jT/9Cd/+rLvue61uw4K4OVgreXEiRNYa3nnO9/J+973PobDIc8//zyf/OQn+aM/+iOeeuopdnZ2rnmtpMVyB3CJ1wuWCuASSyAk46GHHmI8HnPfffdRVRXPPXdQUbtWaK2pqurlr/gyeP755/nsZz/L2972NnZ3paLs+/7C9/GtX/2t/Or//ats7mzy4taLfOn8l3j24rOkOqVGFDGjzcKHeC/p0RQNjWuoXNV1xLZETwVR9AiIAUDLqLHb0gtiKHDKCWmb7gXOq47tGFj+IL+06k+7U+aduE299l2QsVIKi2VzTzL9TCQRMvuRJRlVU6EjTZ7P3Mz7CZsPnrzM6Q/6eOM7E4vSiihEpCZlXI8xwTAuxmilqXxFL+1RVqWEJKcxJSW9gfQxV1GCmRQoE8hHW7jYkNe5KKl+Ssz8rHmjLEsIUFc1eZSz4lYYuzFxFKODBHCnvZSyKrsQ7ZQU7bTsGFYFw2xIqUryJp8pttOsQaWEhHW9vcj5jUzEMB52BpzQzOreWnLTODkfbfYfgFGSt0gBoT9bDVBBFN6yKUltSgiBKI4Yl2P+8At/yEujlzg5uPwu4PVWAC93HMYYhsMhw+GQN7/5zdR13RlJHn74YUIInTJ47NixVxQzM4+lC3iJ1wuWBHCJr3iMx2MefPBB0jTlzJkzRFHEzs7Oke3qzeNaR8AhBJ566imefvpp3v3ud3Py5EkeeeSR7j5vPHEjH/uvPrZw/R//X3+cX/u9XyOLM4wxUo82pwyVVSm1bG3f7pTswSxLroXSCq98N+ZtWydc42ZGkTBTldrHaCP/5ncD2+NrVcJuz3CeD5TiSE1cgo0szrsFFTWNpGqujbDZf27no25ACHicxYybMX3VJ7MZQQUKV6BQ4lY2hsxkXeByKIPEy1jZ49Na01vpMWGCU46kPyR3BbaBpswZGXCVk/NTi9taTmvogppDCGJ4UVB76U1WSs5NP+vTNA2JSUTBrEo8Xow8DfSiHlWoJKx6vtEjTEla+9rG4txWXlS/XtSj8Y30M+cFDQ2DdLDY7BLEvRybuDMMWW3BTV8rryXompni2N5nFEXSCVw7bGP56ft/mn/wZ/7B4W/kKa6n+eKVHkcURZw+fZrTp08TQmB3d5fNzU2eeeYZPve5zzEcDjtn8WAwuGIiOx6PGQwGr8bTWGKJV4QlAVziKxoXLlzgoYce4qabbuKOO+7oPgSO0qwxj2sZATvn+OxnP8vW1tZCBd3l7lMpxU/8pZ/ga9/xtfzQP/0hLuxckKX3adBziyROOkOBx3fEog2CDsxcoARQTvYBF2JHCF3ES/f4rfHAyYX7dxE7IlnPkUbV3Vgewyt6mShwIUieX93UxDqmKIqZyhc4UFNXuxobWcb1mCpU1NQSMu1hr9pjo78hqqgSd3HuciFB0z24yET4xGO1JetlnHfnGYcxYRxIm5R+r09pSmyU4CmwTcCX0+dY0e0ytsS4Hc1qpRmmQ6y29F2foipIkoS6rkli2TsLIVCXNTYRs0bZlGil5flXNXEUS5hzMyXWzDqBCRDKQGYzsjgjiRP6WZ9xOWY8kVBtm1iKpiCLMvI67865QlF7IYGVq7DKzkb+JZAdHDPXqsZEZpYlWcGjLz566HtyHq/1CLjFyxFRpRSrq6usrq5y2223UZZlpw5+8YtfXDCabGxsYO2lP1qXCuASrxcsCeASbzhcyTfxEAJf/OIX+ZM/+RPuvvtubrrppoWfd60T0/y0o8LVEsuyLHnwwQcBOHPmzMJy+pXc53/07v+Isz97lpe2X+Lc0+d45JlH+OJLX+RPnv8Tnt18lqIuODY8RulKdsY74gQmLLp7p+qcVhqshDTvj3lpSeC8EUR7ja8XHcHtyFIpJfuBTtRFhZJR8hyyQUYxKjDWSHRKI6aWolwke1EULZyHEAI5uThd3TTapjWnTDuGX9h6gWE2pJf1uueRmITSCdlUqexF1mVNkRT0Qo+8ybtg6d1C+ngTk6HHNVtJjW8CqtEzIjtHAEFGquuD9c5B7YJDK01e5JKtOK3za3wjeX/OkJgEYsiLnCY06KDRXsbFyii89VDJa5OaFKOlh7h1a1dFRTkp0V5WAHq9HjoVd3LjG3pxj0k1WTiflatIbYrSiu16W0LB/VwVnBZXeFudNypHBAKpTSmKQp7Hy+D1MAIOIbziLuAkSbjxxhu58cYb8d53MTOf//zneeSRR7qYmWPHjtHr9RYMS3meLxXAJV4XWBLAJb7i4JzjkUceYXNzkw984AOsra0duI4xphuBvdYu4L29PR544AHW19d55zvfeeCDqs0svBKcXDvJN773G/nG935jd5n3nk8+9kl+7zO/xxde+gK/P/p9zu+dl3DhKenrzB1MTQGy1CbEjTlSN/+rntaPlaoLJe7Gk9Nz6p0QF5D7kgvnDjhIx7HzDtc4bG5FwSzrA6+NtbY7zgmTrvrNeDlfXRxNmDOxBOlN7iU9amoiHREnMTrRaK0Zl2Oo4GT/JDk5ZV5ijJHXIIFQBCIVUWtHcI5aBdTUxdzlUZrZPqXRhtV0lTRKyUs5vrbXuPGNZCsGOtIw37CSxikbKxtgREUC6Gd9RvmISEWcOnFKIlzKWeB3m9EXfJBQbWPpx33ycS5Et5Lr1dQMsgF1kD3R9nXqJT1RC2sZvxNANQrfE9dw+5o2NN17pVN5r+B7zutBAWz/Pl7tcWit2djYYGNjg7e97W3ked6pg22awPHjxzHGcPLkySNXAP/+3//7/J//5//JuXPniOOY7e3tl71NCIG/+3f/Lr/8y7/M9vY2X/3VX80v/MIv8La3ve3IjmuJ1z+WBHCJrygURcHZs2cBUdLSND30ei3Jcs4d6QfUKx0Bv/TSSzz00EPcdttt3HbbbYeS0Wt1FiuluO+O+7j39nvRWvP3f+Xv8yv/6lcIBOnmHWoaJd29rnEydlSQk6PcLNgZ6LpsffCS6xeQLtm5UXHrKlUoGSXP7SO2yuD8GLndNUttSlVWbFVb+NoTRZFUrwUvwc0qMGpG7IU9aTCZ7tu1MTfzJBbo4lM8nouTi5y86SSRFZNFXdddR65CUbtaatC0ZiVe4aK7SCgDsYpx1tE3fbazXVEaPSgz3ZMLgaBljN0SQKWUNIEYS+Maolges5f0OgOObzxJktCYhpe2XyK2MU45Nl/aZDAYkGQJZVkSqYi13pqQ3nyCCqJYJlFCmctuZ93UUhloLdpI53Ns4gMGmTY0uyyEFCZRwlaxJSaSSouiF6YrAunsNWoV1cY3GG2oXCXj4/LlzU6vhx3AayWA+5FlGTfffDM333wzzjm2trbY3Nzkp3/6p/n1X/91mqbht37rtzh16hRvetObrvnxqqriIx/5CGfOnOGf/tN/ekW3+Uf/6B/xsz/7s/zqr/4qb3nLW/g7f+fv8E3f9E08+uijl/w3cYk3Hl775YslljhiXEqx297e5v7776ff73Pvvfde9h+69sPgqPcAr3QEHELg6aef5qGHHuKd73wnb33rWy/5vK6FAIYQuso7rSUm5M9/7Z8n62X0ej16WY+e7hH7mEEYcDw9zkAPGKgBw2jY7ZqFKhBqGeW62snva2Q/zSnZ8asDqlGEctqwEQKhWYzWaHcNW/VIGUWsY1KbSgbgtLotiqQWLZ/k1IXsM77Ii+yZPRmHthE205DoLspGS5RNsAHVV6ieQg80lanY2tmiqiUvsD03IH25xohzej1Z50J5ATxyvUh+LX1Jbh2UsPAyKSSiJQmEOFDqkomfMOgPWF9Zx8SGyshuYtGIMaMMJUUo2Ml3eGnnJUIsUSvb422KquDC6AJfev5LbO1tsT3Zpq7rzkAS25g8zynHJdZYghGF0kZC/mBW77c/7qWLgdGGJEqofS1Zf66aVcW1pK8+6Oqufd2pwQrFJJf4m6ZpLvn+fD2MgI+aAM7DGMPx48e58847+bmf+zn+9b/+13jv+Z3f+R1uv/123vGOd/DEE09c02P8xE/8BD/4gz/IV33VV13R9UMI/MzP/Aw/+qM/yrd+67fyrne9i3/+z/85zz33HL/5m795TceyxJ8uLBXAJb4i8OUvf5lHH32U22+/nTe/+c0v+6HTkqGjJoBXMgJu+4fPnz/Pvffey+rq6mWvf7UE8DDyB/DuO97N2uoaz59/Xq5YQ9SP0FYvdAlnPoMBjLZHs1iYsKiyKac6Ja5V+DoDgRPSoa3uCKGcJDoVUFvdKYBJnHR7f9ZaiqogDzkNDY1tUFUnSc1URT0XSj09tuDDQm5eu9M2KSasDlcpXEGkIyovCpZWGgwM7ICL+UVc4zCxIYszRm5ESkpBga89QcPsbiXgmmb6nBoZmU7qCU9ffJpEJwziAdpq0iylyAsyk3W9zbtulxDJnZnE4CtPaGY7lk3d0FQNRVKQ2IQkTnDadeaNqqxoxg1RFLG2skbpSsq87JzHK3aFEaOF90S7D1i4ohvzj6vxoe5sFc+1xBBEvZxep3SlkM7pe3OeZLXGIq3162IE7JzrjufVhNaaO+64A4Df+q3fIooi/s2/+Tfceuutr+rj7sfTTz/NCy+8wIc//OHustXVVT74wQ9y//338xf/4l+8rsezxGuHJQFc4g2NEAKPP/44X/rSl3jPe97DiRMnrvi2R93aAS9P1qqq4ty5c9R1fdkR9Su5z8PQfijvJ38tPvzBD/Mv/o9/AQg5WumtsDnZXLhOILAarcIAxnvjA+HDQQVp+5iaB5SedTR778XIgJbrGN2pgfN9tTayNL7pRqNpL8U7z0vjl6h8JeNVlESeqFnuHUhAdXesYeZo9sF37Sbt8bZ1Zzs7O2TDTBoxGlG9lFaYxLBdblNVFTayJCR45Ym1OIdralwJyjCLwTGICtpW203zEdvdwDKUuMKR2QyVK6y1OITA5bXcZ9ewEmRUrbNpZE5rtEGU1byWurrJZEIapfKemCqlSimKSSGOaGuJ0oiqrBhX40UHMJDFQkBTm5K7nFE1mtX+MSPybf9wu0up1WxvECDNJE8xSRK8990XjdZw0b7Or4bT/pXievcAA/T7fbIs4yMf+ch1edx5vPDCCwCcOnVq4fJTp051P1viKwPLEfASb1jUdc0DDzzA+fPnOXPmzCsifyAE8HqOgMfjMZ/61Kew1vLBD37windxXgkBbD+AnXOd+nKYGvrD3/7DHFs7BkCapF01WYs4jklSiY7pJ31sPP0uuS8CpnOOwoKDtFXmWnXQOw92OhZ2M2XOWINR4mhNbELlK6IoEhf03L9eys4UyHlTykIeYZgR0Dbgusvkc6KujUYjghcSabUlSRNqW5O7nLIqSZKEE9kJcp2TF3nX0NE0jYx+24dTiLmlfVn07JzMw3nHuJG6vhAC43Is6l1ULRx7R1IaUKkSA0qryk0VTl96GtewW+2ys7fDpJh05qDW0ds0Dfkox1VOzDAWBukAherIXyBIrVs9zRqc5kK2569tA1kg2MwqAq21VKGi8eIC1lp3r1kcx8Rx3P3d2tnZ6cLRLzcqfjVxvQmgtfZlK+Z++Id/uPvCcqn/H3vssetyzEu8cbFUAJd4w0EpxWg04sEHH6Tf73PfffddVWr/q0EAL6Uqbm5ucu7cOW6++WbuuOOOV7QXpZS6og/OduTbkqDLfej1sz5/93v/Lj/00z/U9eZWo4pkkKCMIi/zbmymI81gMGDn4s6C0oabZQl2ZGaO9AU/IzCAjDcjhaqnYdPTkbFONWVekpgEjaYKFXEUY0p5fToyyUwta2vk9quA6CkJmz51F9ws0Hp6HNub2/Rv6rO2ssbWRPYCURIzM9RD9po9NJpUpexOdhmkAzbzTTmG9vm42f0R6JzAwYeuH7nrTQZ2qh2ykNFLet3xhHh6nsrQxe3MB3CrVHYr513T3k1bVCw45dgb72Fy6SDWSs+6fqfKXZEXJEYyAhvddLuWu/lut9M3r5S2v3YGHjMXbB08w96Q3Od47+nFB52u8++5hx9+GK01b3rTm7pxcBvc3b63rsdo1jn3iiJgrgWtA/jl/n7/0A/9EN/5nd952evcdtttV3UMp0+fBuDFF1/khhtu6C5/8cUXec973nNV97nEn04sCeASbzhcvHiRT3/609x666287W1vu+ol81dLAdxP1p599lkee+wx3v72t3PzzTcfyX3ux6X2/S6Hb/kPv4V//9C/5zd+/zeIU3Gh1k2N1VY+mJUmiiPKpsRYQ3+1z+jCCOLpYn1DNxrszAHTMXCow0Hi1h7TdP8vhGntXK7o9XuMRiPJmHOyBxjbmEkzITTiUm1jXtq8v/Z5d/c9JWchBHSYVZ3tE+VoyobcS+SLCqJOmtRgnZg9qqaiF/XYdbuSy1c3ByNsFr0tM7VSzVTAeVKsrCKf5DjvGKZDyQYM03OXKelJdlPThJuOu50QWm1kLLzwek9r3rz2OOMYTUaMi3E3AtdKY73FaMMojKQf2deyFoBHxWq2ixnouqDn9yhNYwhZ6HIOvfKM3bhTAt+88eZD31dN03D27FmUUrzvfe/rQpPnlen2993p07r7/6hxPRXA8Xh8RT3AJ06ceMUTiyvFW97yFk6fPs3v/u7vdoRvd3eXT3/603zf933fq/KYS7w+sSSAS7zhMBgMeOc739l9071avBptIC2pbInJY489xnPPPcc999zDxsbGVd3nyxHAqyF/Lf7xR/8xaS/lf/k3/0t3WV3WMp7Wi80bw5UhxWZBlVeoRM2Uyfm4EL8YHD2vAHakZu7wXO3I6xy1o0gGCaGW6rjYxMRpTD7OZ6SyJXvtnto8sQyLj+WMk3/9pnt5GITEKcDCxa2LDNeGJCrBWiG81lrqqhaXrE2YVBNqVwshVQEVIHi5/aUIYFDhQC9yq5q2jtvt8TY+8hBPSVe7G5nJ7t3+8+SDF+XUq5ny2ObxTce3aDmuUIduB7Fy1YILWysx3Cg9vR/XHroWRzWL4/WmbmQHc+79tFfu0Y+F4Nx5+k72o65rHnzwQaIo4t3vfveC8jZP8Np9wfZ9u99IcpRk8HqPgI+6BeSZZ57h4sWLPPPMMzjnOHfuHAC33357Fzh911138fGPf5z/9D/9T1FK8QM/8AP8vb/393jb297WxcDceOON/IW/8BeO9NiWeH1jSQCXeMMhSZJrJn/w6imAIB+En/nMZ5hMJpw5c+aaPhQuRwCvhfy1+Hvf/fc4uXGSf/Ib/4SiLIRoeSQCBYv3XshYmeMrj/a6i1xpnbYtcfDBLxoYQljcB2xVpilZa5qGpp42YuSGbJP9cskAAGrfSURBVCVja2erUwGNMRL7Mk+42qy66bnp9v6YOnMjcQF3at2U9BHRjVebUjIPk2GCb7zkA9YFBsNatMZus4sLDh97ibUJEGogPvwcdi7ofZd1qiQzYuaCE/Lm6bL6jDEyHtXT0XChZsSxJdWBWe+wC92I2QeP8rIj2Dmrm9kuX/satB3P+/MSO5PM/D5l2/QyZ+wBCaDuxT0GyYC/duavLTzfqqq6zu13vetdlyVd7c9agrjfSHKUo+LrrQBeyQj4leDHfuzH+NVf/dXuz+9973sB+Hf/7t/xdV/3dQA8/vjj7OzsdNf5m3/zbzIej/ne7/1etre3+Q/+g/+A3/7t315mAH6FYWkCWWKJS+DVcgEDfPrTn8Z7z3333XfNisClCOD8h+bVkr8Wf/0v/HX+4Gf+gG/84DcSRzFVqCRoOI6I+7GQjHYXrPZQg69kH01Z1WXMKa0ObQTpOofbyBgj5CSNUmIlVWyTyYQXnn8BVzviNBZ3crbSqVMdWqNJqzjOtZkEO7d3qBHSF7MQPdPytHyc44IjyRIiK27agR4wCiNRHFWYqX058ns1O4bu16nCGPRs/6/NKewEtf0xK3OvIYDDyXnRSrIUTZAYlrC4Txi8GFpUJOS7a+UIQiZVUPhKshQ7kqx0504+DPMO4MWDm6mX8yjqgr/0/r/E6ZXZl7CyLHnggQfo9XovS/4Ow34jSRRFC2HtTdNctZHktdgBPEr8s3/2zzoFfP7/lvyBvE7zO4VKKX7yJ3+SF154gaIo+J3f+Z0uomaJrxwsFcAllrgEXg0FcG9vD4C1tTXe8Y53HInycEDlmu5Q7c9eu1acWj/FL/3gL/Hw0w/za7//a5z70jn+5Lk/6Xp+ozRCoTDWdIYOgFAElJ31A8OUdISpIqgUxhiiKKIYi8LYOocb1+DxxHFMUAHrLa5xjC+OUUaxsrLC9nh71jYyRTsCns+pC/EcYbuUJ6i9Cwd1XtPohhhpzbDGUjYlzjssEtnSXhfLgQq7+ftTTMOnw5QA66lqqALaTyNwYrrQ7HmuFbw4o5VWC/cfnDwfpZU4jsMckW7HxpGMi4MLC2SRSEa7bSh0SwI7VXHu/XQYMV24PCy6m09vnOZHvv5Huj8XRcEDDzzA6uoqd9999zW/5y81Km6JT6sO7s8cvBReCwVwiSVeD1gSwCWWuASOmgA+99xzPPLII4Ds5xzVh868AvhKnL5Xi3e95V286y3vAuD87nk+9Sef4ovnv8izm8/yz574ZxRFQZqmNK6R9gkNiU1ovNSeNU1DYhKcc9KmoeTnIQQKVTDKR5S+7BQmkFqyvJF9v7apwyrL3s4ecRZThGJGbpSMQoOfqlYeCWQOCLlqlbf9e3qtWtfuv0Wws7PD8Y3jhBCIrOTnRSFixEiiV4KfzVFqRNnbR/4ISHyLVmLWmHNCt6ppMAGVKlSp8NpDxixHcFrC0ZLiTqWcEq/gAsYaOZaGjgi2jwvyXHDIuSB0Ic5yd9MYnpasGoU1tnvv73f/dmprzMLlSikiE/GNd35jR8bzPO96rO++++4jb/14uVHxfObgpUbF13sH8EpMIEsscT2wJIBLvOFwVB8yR0UAQwg8+eSTfPGLX+Q973kP586dO1Ji2RLAo9j3e6U4sXKCP3/Pn+/+/OAfPMgXn/sijWsoygKrLcPhkHE1ZjgYUpRCDiMbUVe1dOGaiNrVeCfHfWzlGC9tvSTjPCf7fU1oDjx2ZOV2kRUncrebqME1c+RFy2X79wQXMEeqaOjGwsW4oFwt6dFj1IxIVEJsYlGZ2riXiI6kdUYShRxLPef6VeHgY84fi0FUwrYfub2vhNnOohOHL2rq/p2S3LZbGTsdde9zBRtvcMGh4inBnDfezLmRUaIsOueE2NlplqOakj8lJhwCeOs74whAZCIGyYA3rb0JELLzwAMPcPz4ce66667r8n68nJHkUq7i6zkCzvN8SQCXeN1gSQCXeEPiwBjrKnAULmDnHA8//DC7u7vcd999DAaDa+ruPQzt/V1v8ncYbjh+A1/40heE/NlpFZjzZDbrds4iE5GXOQRI01QCiMucIi9QSDtEEiU0VUNd1QyHQ/YmewuPo5WmrEtMbDDGoJU0XyyMTgmLUSaXQuuUbdW/dHZ58IGmbNBK43AMzIDtepvGN4Rm+hq2iqJCyGMElHP336p1WnW7iN3jsqiwgexMHjjm9vdzZhXvpqqvm8tabMex0x1DVYsC2o7aCQihVNP3TTPb3Vx4HDVzZXfB3J0BeDpuzyT6BcAow3pvHWstVlnG4zEPPPAAp0+fvqYopmvBlRpJJMRbXRclcKkALvF6wtIEssQSl8C1KoBFUfDpT3+aqqo4c+ZMF8lw1ASwJbtf+MIXKIriNSN/IQTWems0jfTPaq07olY1FaEOxDamrKfsSEFVV+yMd9CRJu2lJHGCDx6j5UM7+MBLz72EjRa/q8ZWjCc2tlhrydJMrj9VozqDxpypQ35wyJ9bKIRc6bmfedja2yIQsMay2+wC0BTlLPR5bm+QAiF/+8fA+37fGWGUEEOFmjWTEA6/rUGek57+vjWwpEhuXxs1M3XtKif1ce1tVKKgR1fB572XXUQrpLPbMWwNM/u+QHVRO0EiaVQsx6uVZmOwIU7ixvPli1/mj//4j7nxxhtfM/J3GPYbSayVMfeFCxeI4/iajCRXiuUO4BKvJywJ4BJLXALXQgB3dna4//77GQwGfOADHyCOZ/kgRzla9t5jreWuu+5ia2uL+++/n09+8pM8+eST7OzsXLMKeqVolc7YxNjIdh/6cSxELY5jqrrCKktsZ+ciiaQrtnY1RVOgE03aT0mzqQwXIJ/kMIFYzW7X7XZNjSZJlHSjVq/94i5e2/Ixr/TBIkmLmM1DWkWvksuCC2zvbcuY1SjsVkVFI9dp/wVt6Pbv5k0cB5yzh+0dtr9tncXtMbXHup8Ito/bTi2nv7epJRkmRFkk5MxIhzEx+L7Hp3L8mFlGoA5zVX0qSH5jpESFnCfC8//H4Nc8kYlIbcqx7BghBGonzSGPf/FxbrnlFm6//fbXDfnbj/ZL2MMPP8zKygq33XYbxphOCdxPBo+KEC4VwCVeT1iOgJdY4hK42hiYF198kYcffpi3vvWtvOUtbznwIXgUCuB+p+/NN9/MLbfcQtM0XLhwgfPnz/Pggw9ijOHEiROcPHmS9fX1V2XEVVVVFz5rYrM4hp0SUOeF8DauoXIVWZx1jlqlFHUt5KGs5TIM6ERLlAzw0uZL3HDyBlbTVUpXdgHU2mjwMoJcGK96Lj36VXO/tiNiz0EXb0oXF3PhhQvc8JYbsLsF58cvwcrcdeu5+4NuL3A+2qa9z/1xKgstKWq6w9fsI4Gw0CSyQGynhpdhNKRnegQXsIlFG00TGmpXE8eS0ahjTdVUuOAwWsbmk8lERqBT8wxuSgSVEMC2L7odCSuriHoRAzVAWUUSJxReXovgA6NmhErVVdeUXS+0sTTD4ZB3vvOdC39HX83MwSUBXOL1hCUBXOINiaPYAXylSl0IgaeffpqnnnqKd73rXZw6derQ610rAbyc09day+nTpzl9+jTee7a2tnjppZd45JFHcM5x/PhxTp48ybFjx7oKrmvBZDLh7NmzXfvKz//mz2OMkco4Y2VPTxuquhIXrasAyKtcVDutiOOYsinl5438HIU4WxvfdQafv3ieKIq4+YabMcZQ1AVeefIyp67rbh+tvf1l0ebwzV+/fbs4ZE+uJYUNNKqh2tqh2pngjZKrNswq4NpcwZZM7hs1d/V0c5e1NXkg71eP7/YEL4t4enw5qEKRkLCarJLXOdZaAoG8ylEoEpvQi3pEccS4GLOWrZHXuRxTCJw+eZpJPhFSiKFylWQ2Ts0zJjbdcUc26oKpszSjVCVFVVCHulPOrLWsr66/zBN4bTFP/t7xjncc+gVt3kgy//+11tO9GjmASyxxtVgSwCWWuAReiQnEe89nP/tZNjc3+eAHP8jKysolr3stI+B55e/lzB5aa44dO8axY8e466672N3d5fz58zz11FN85jOfYWNjg5MnT3LixAmSJHnFx7Kzs8PZs2e54YYbuOOOO1BK8cLmCxR5gY0sURTRlA1REuFKhzWW2tfd7bXW5FXO+to65LPWixZGG2pdi9NVKaq6onY1Tzz9BCYyxFlM5Sucdl1w9IEdPzio9O0nf90BTW/fXlcjY+Cp6eL89i7HjMU5P1P92tvMj2qn8S0qmR3IfM9xu+fXmmIW9v5g4fcwffz2mC1C/gDGcrlWch7TKEVpRelK4iiWLxkGLo4uYpRhY7hB6crOMKOU9A8niexdWm1RzcH3k7GGjdUNLowuCKmMElQqhC/SEa528n5WovAygeeff57jx48TRZcKXHxtUFXVAvl7OfJ2mKu4/ft3NZmDSwVwidcTlgRwiSUugSslalVVcfbsWZxznDlz5mXrlK5WAbyWmBelFKurq6yurnL77bczHo85f/48zz//PI899hgrKysdGbySD6iXXnqJz372s7z1rW/lTW96U3f57t7u/7+9Ow+Pqjz/Bv49Z/aZ7DuEsC8BkpCNVYtQ2cQIAVe0glpxqdiiYlV+alsttdTlxSoVrbWI1moJi1YQBSRgAQWyEBIgBEgMAkkmezKZ9Zzn/ePkHDIhhOwzIffnurjUySxPTkbmm2e5bynkNOn2IRcXVmb3GrkE6cPTarfC7rTDqDdCp9HB7rSDBy+d3uQbiyUz/lKrOJX0weuqc4E38NLfYo1BSBAF9yAo71sDLs3MtXhxoexvAyDN7Lkg1eNrDHuiCuAcHBwqDmg6uyyXa2m6p/BKP17+0uldpeyKvAzMGmcKGw92KMvYzZ8b0jh4nRTkfDW+YA4Gu8sOnUYHH72PMvNqd9qV2cXKukpoNVpoVBpptk4lzRYqJXNUDBpe4xbS5X2C9bX18NH6QNSKsDqsyvfncDmgYqpL5WIYQ3///vjxxx+Rl5cHf39/hIaGtvl91Z0cDgeOHDnS5vDX3JVOFTffjtHaUjEFQOJNKACSa1JXbD5vSwCsr69XuhzExsa2qZ5YR8rLdHWNP5PJBJPJhMGDB8Nut8NsNiuzgwaDQdk36Ofnd9lrnTt3DgUFBRg7duxly9wN9gble3Q6pRp9DqcDOo1O2bcHQKn9B0hBUMWr0OCQHqvVaqHhNbA5bOB4DryaBy/wUkkSSF1CODWn1M0DJ4Wqy2bOgMsPUbREfljTPr4cpBBmhzT7JgCwAhVaEQLnXm5GeY1mryPaRfB6/lIrNdakN7J84rZJPuDExq9rWnjOZmGWNUg9jTmOg9ZHC97FwyAaUG+tR01tDQxaA5yiEwadAVabVXkeh9MBk9oEJ++UglwTgktAaFAoaqw1Sgs5QRTgFJ3Sc/FSuR6dSQdOzUFgAmwum1Tkm5P2Eeq1ekwfOx2Thk6CzWaD2WxGeXk5zpw5A71ej5CQEISGhiIgIKDHii8Dl8Kfj49Pl3bgaW/NQQqAxJtQACTkCq52CMRsNuPo0aMYNGhQu048tudwiVx6o63Lvh2h0+kwYMAADBgwAC6XCxUVFcohEp7n3Q6RnD17FufPn0diYiICAgIuey6bvfFwBs9DcAhQq9XQa/TQqDRuAVCtVsPpcILneLhcLui1emUmSuRE6H310h7FxsLGcAKcvcm+ziY16Vrd69l0JhDN/l0OVHJpFVnT4s5yTb/G2TjBJSh19Nxm+poOQZ5pdEKZneQYJx2w4Ju0dGusMygNi7v03639eDkAFml5nIFBr9NjxpgZWHzdYmz4dgP2HtsLu9MOm9MmFWwWpP16NrtNCciiIJ261uv1sNku/UwYY6ioqgA0gEancfsa0DhjywBRK8JutcPlckl7DhmDv94fdbY6+Kp9cf2Q6wFINR6joqIQFRUFQRCU99WxY8cgiiKCg4MRGhra7UvFTcNfTExMtwTPttYcLC8v79B2C0K6AwVAQq6gtRnAH3/8EadOncLYsWPRv3//dj1vW5eAu6unb2vUajXCw8MRHh6uHCIxm804fvw4HA4HeJ7HsGHDWpzFEARBqfEnn/rlNdLJU6vTCo1WI5XaAAetWnspDKmlGUnBLsDFXHDBhQY0wC7Ypb19AFy8y63bBmONBYrlPX1X0rwDiKzpXr/m95PDXzWAc423BUm3a9VSORu30jKAcoJWKQXT+N9irQjeyF+qzddYO++y4TRtDcdfIdA2vp6KV0Hnp4PGpMHyG5fjt9f/FgAwYfgEnCk5gz/950/4Lu876bo7rNCoNPA3+qPWWqvM7DHGYG2wwmg0SjOE8qUVBeigg81ig06vg8AEJbw4BScCgwNRIVZItR7VGnA8B0EU4HA4IIoiZkXPavE9qlKpEBYWhrCwMDDGlP2o8lJxQECAMjvYlTNk8p6/7gx/LWnpIMm//vUvmM1mpR84IZ5GAZCQK2gpAIqiiJMnT6KkpATJyckIDGz/ice2LAH3RE/fq5EPkfj5+aG2thZqtRrBwcG4cOECCgoKEBQUpOzv0uv1UKlU0GqkgrpOl5TWBCZAq9HC6rTCKTil1m0qjbL8qPfVw8bZ4HK64GRN9p5xl2ZT5ILJzJcBNZD+1mK41LO3aT2+q5FDn1wkuulsIA8p2JUBKAUg5yI1pNc1AgMGD0CJowQNtobLg2XzsjO8ND7RJSpBVv5+3EJg0xDZUp9iOVBqAJgAo8EIvVEPnuOxKGaR2xCGRQzDP379D5w8fxJv/fct7M7eDZvThur6aph0JqjVatgFKaRzHAer1arUalQONDReTLtN2j9oMEoziBqdBhZY3MJfU756Xzx23WMtXPRml6nZflR5qVjegtBVS8Vy+DOZTD0a/prjeR5paWl4+umnsX37dsyaNcsj4yCkOQqA5JrUVXsA5SUcuVZddnY27HY7Jk+eDIPB0KnnvZLuXvJtD6vViqysLBgMBiQlJSmhrKGhAWazGSUlJcjPz4evry/CwsJg0Bpggw12lx0cGuv7ad3Hr1aplf1/4KUafsp/N9G0YDSv4wGtNMuIeulx0OLSLFzTHryAeyhUwX2WUL5P08LQHIBaABcgnfyVTw43KfXiz/tDZZdO0zY4Gi6VgJGfq6V8wTU+n6GxJqLQ5DXlx6HJEvCV+gU37knkVBw0Omm5NCYiBlEBUS28KBAdGY21j6xFeW05/vrlX/Ht0W9RWlkKURRhMpgABtgFOxgYHA6HFPT00n5BObwDjTOFFisMvga49C6pfI9Od9l+SxWnwhvz30B/v/bNhgPuS8UulwuVlZVuS8UhISHKn7YuFXtL+AOArVu34rHHHsNnn31G4Y94FQqAhFyB/KEhCILygWI0GjFp0qRO1dBrbQawqw97dEZtbS2ysrIQFhaG6Ohot7EYjUYMGjQIgwYNgsPhUGZwmMjgdDohCAL0Rr1UP6/56V/Rdek/OOlAiLz/TybP+vFqHqJWvNS9wh/SHrwqXFqG1bg9UCLv62t++eSwKD9Wnk0sglRWpen95GViJi2Nh5pCodfq4ax3Sq3Umh/1lR/TfNmZScWdOY3Ubk2e1XUr/dK0A0iTa6PcxSA9r0FvUEL4ojj32b+WhPiF4KW7X8JLd7+EQ6cO4aP0j3Ao/xBEUYSe1wO8FARFJsJqlcIdx3HKbKBao4baR406Vx3EBhEajQa+Ol/YRbtywthH54PHb3gcM0fOvOp4rkatVre4VFxUVNTmpWJvCn/bt2/H0qVLsWHDBqSkpHhsHIS0hAIgIVcgf9BWVFQgNzcX/fv3vywIdQTP83A4HJfd7k3hr7y8HDk5ORg6dCgGDRrU6li0Wi0iIyMRGRmJsaPG4vCxw2CC1BqMcQwCBKg4FTieU4pEy0TuUt/fplS8CnqTXpqBExv3yPFSJwrmy8BCGfAjpN67Ps0fjBZDmEKu76eHtLRbCyn8ibh8Fo9JITTYGAydWpr50mg00FRrYFfZL/0N2nRmr+msnfzHJZVZkQ+TKAWg5RqArEkgFOEeBHWXvieTXgo9/np/3DH2jsuuW2smjJyACSMnAADKqsuwO2c39uTuweHTh6VxcAwO5oBOqwPP8XCqnXCIDmmmUGTSsi/HSd1DmAu8isfo8NH4fwv/H0aGjmzXWNqi+VKx1WpVutycPn1aOa0eEhKiLBV7U/jbtWsX7rvvPrz//vu49dZbPTYOQq6EAiC5JnVFeJI/PI4ePYrRo0cjKqrl5bb2ar4E3PSkr9x6y5Ph76effkJ+fj7Gjh2LiIiIdj02eUwyvs/5Xjr9q9eDgaHB3gCX4AITGPScXgm4gDSrxzP3D2m9Tg/ewMPitEh71hx2qcachkllX1jjz2YMIF4ULxVrlpdtWzr4weNS/1wHpNBXgcsPc8jkCTmeQ4ApQOpIwknhT2QiAk2BKK0ulQ6iNM7OXZG859DVGPLUl9rEuS0Hy/9serDFcOnfeY5XAuMjEx5pU8mhKwkLCMOiqYuwaOoi1Nvq8f6e97H5yGYEGgPx89ifo16ox1nzWRSWFaK4qhiiSoSKU0GtUmNY/2GYNGQSUsamYFy/cT32XjUYDK0uFQcFBaGmpgZ+fn4eD3/79u3DPffcg7Vr1+Kuu+7y2DgIaQ0FQEJawBjDqVOnAABjxozBgAEDuuy5m54CbqmIrKfCH2MMZ86cwblz55CYmNihAy6JYxKh1+lhtVmlbhM8B5VaBRVTgTGmFCd2uVxSqHNdKoui1+shqATYmE0qmwJAp9HBITrA1Eyp+aewA1wEB+ZkQAOkcisqTgplTff3yUvB8ixdPVrvFSzjADWvho/WB7yOh8VqgYbTQHSI8Pf3R729HvU19dLzqQA07/Alv748syiPQd30JZp0AWkaANVwC3+AFAD91H7wNfnikQmPtP6DaAcfvQ+W37Qcy29afmnojKGgoAAlJSWIiYvBl3lfop9/P0yLngaN2vPdPZovFcuz9IwxlJeXIzMzU5kd7Om6ewcOHMAdd9yB119/HYsXL/boL3OEtIYCICHNuFwu5OTkoL6+Xtrz5Ovbpc8v7wH0hpO+MlEUcfz4cVRVVWH8+PHw8Wm+rto2WpUWEKUPaFEUlXIw4Bo7JKh4aDQaMDClVppLcEHUiLAwC3gmzXLJhxIETpBO0qpE5XSqPKPGeAbmYuDVvLQ3EHAvluxi4DkePOMhOkWIFlHp7evWvaNpt40mM3+cyMFX7yuNlYlQ69RSKNSoUV5VjhCfEFhrrNI4BAZmZZf+Rr3SZ36T5WD5ZDDj2KVZS3nfYQuzinpOj4a6Bvwi6hfIyclBWFhYt9TQY4whPz8fZrMZycnJMBqNWHzd4i59ja7kdDqVU+kxMTGw2+3KUnFBQYGyVBwaGgp/f/9u/f/syJEjuO2227Bq1SosXbqUwh/xahQACWnCarUiMzMTGo0GkyZNwoEDBzrct/dK5PIy3nLS1+l0IicnB06nExMmTOhUoVqO4yC4pN68Pr4+qLXUKiGQAwen4ATP89Bopf1kLIjBLtqlfX4ig9PhhE6rg1OU9p+ZfEyocdZIXTQal8dFtajMGvJqXjlAwSCFQY1TA72gl/bsMQa9Rg+7xo7q6mo4nc5L9fqaBkD+0h8eUtcRP5MfVFApp3PVarU0Y8cYtCothAYBRr1ROhHcGHBFUZSeXz553PS0b9PXExsPtWhxKYDKOa75HkBIz2XQGDBv3Dw8PP3hy2royQHHaGw+Ddk+jDGcOHEClZWVSE5O7vBJ957S9HCWvOzbfKm4oqIC5eXlOHr0KAAoBaiDg4O7NDxnZ2dj/vz5eP7557Fs2TIKf8TrUQAk16SO/OVbXV2NrKwshIaGYsyYMeB5vs39gNtD3qxutVqh1+s9+kFhs9mQlZUFvV6P5OTkTp1uBqRw63A54Gf0g02wwcW5oNFqoObV0Gl0aHA0wCE4IAoiOI6DhtcAonRNDHoDGM9gc9rABAZey6PWVivtmXQ1Lplz0pIxQ+M/G8OfildB5EToXDqYBBM4cDCoDbC6rNKMjwAYA42oM9dJ/Xi5xj2YTQpB8+DBq6Tleb1BD71JD07koNfo0WBpULp6wAVomAa1tlqE+YehsKxQCXe8qrFlHWOXClfLAU/b7L/lk8oaSKGv6aHipnsDIS1FJ0Yl4rV5r4HjOPj5+WHYsGFuNfQKCgpgNBrdZrva896SZ4FramqQnJx81Z7WntY0/MXGxrY4s9e0sDljDDU1NSgvL0dhYSFyc3MRGBionCruTHjOy8vDvHnzsGLFCjz11FMU/kivQAGQEAAXL15Ebm4uRowY4XbqtT1t29qCMQZfX1+oVCrs378f/v7+yl6mnp5tqaurQ1ZWFkJCQhAdHd1l/VEBKVhqtBqoVWq4RJdU+oUHnKJTubYiE8FzUvATIEgFigVAo9ZArVXDpXJBI2jgEhoLS6saW6lBKqcicqLSPUPkRASKgeBdl74HhyidtJb32BlNRjRUNUgzlGhhryWTxqTiVfDXSeHJBRfsvB12rR2+vr7gDTw0Vg2qrFVQ8SrYGmxKSzWel0rDcBwnnfRt2qJOhHT4RF7i1Te53YZLhambjKXpv4f7hGPD3RsuG3PzGnoVFRUoKytDVlaW0sYvNDQUQUFBrR4aEUURubm5qK+vR3Jyste3K2tL+GuO4zgEBAQgICBAOVUs9yqWw7McBtuzVJyfn4+UlBQ8+uijWLlyJYU/0mtQACR9mnzwobCwEOPGjUNYWJjb17tqBrDpSV+dTocJEybAbrfDbDajrKwMBQUF8PHxUcKgyWTq1g+SiooK5OTkYPDgwRg8eHCXvRbPSR+aHM/BJbrARAaDxgAG6QCITqNTDrqITASv4tEgNCiP12l1cHEu2JkdBt4AQRRgMppgFayX9srhUjcNjkmlZYx2I4xqI2yQ+tfqNDql44W8BK1WqeET4oOa8zXK63Gce10+FaeCn95P2q/Y+L3IS88O5sD18ddjomEiXv/kdXBqDnUNddCJOthV9ktt1jjpEErT53arT9g8hzXd/ydnjiYBkFNzWHf7OvjoW9+X2byNX3V1NcxmM/Lz82G325Wlz9DQUGi1l4psi6KInJwc2Gw2JCcnu33NG3Uk/LXEYDBg4MCBGDhwoFsPbHmpWC4+3dpS8ZkzZ5CSkoLFixfjD3/4A4U/0qtQACTXpLb8RSwIAnJzc1FVVYVJkya1eNijKwLglU76Np29cTqdShgsLCyEXq9XwqCfn1+XfrBcuHABJ06cwJgxY9CvX78ue14AiOoXpYQ8xqTDE0rbN70edpfd7f5+nB8AKNejQWhQ2qTZnXapSDQnQKfTwSbY3HrlqpgKBmYAZ5Gup020ScGwcQYOkAKpS5CKGjMwqPVq6H30sDmkoMgYu1STj+MQ6hMqHUrBpbInNqcNapUa2mAtoqOisSh5ET7a/hFOFJ2AVquFTqWDxqqBSy09Tj7Zy6mkcTGOKaHQ7bBJ86LPwKXDKS4oJW20ei2mDJrSrp8Dz/MICgpCUFAQRo4cCYvFArPZjPPnz+PEiRPw8/NT9sEVFBTA5XIhKSmpyw+UdLWuCn/NtbRUbDabW10qLioqQkpKChYuXIjVq1d79BAXIR1BAZD0SXa7HZmZmQCAyZMnX3HJq7MBsK0nfTUaDfr374/+/ftDEASUl5ejrKwMmZmZUKlUShjsTG9UxhjOnj2L4uJiJCQkICgoqMPf15WEBYXhrrl34d9f/7tN9+cZD61GC1ElwipaLwu6PHgIEGAwGmCvt0t7AMGBd/AwmU0ICAqATWWDRqOBQ3DA6XJCpVLBYrNApVJBrVbDITigU+vA8Rz0nB6uIBecVU4ITFDCH8/z8NP6SUvWgksqPA0OGrUGLocLgRGBcOldSAhPAMdxWDB9AS5svKC8jkFrQJW1CpxBGj/Hc24zezzHg4G5Lwu30j5Ofjyn5WDSm6BXd3w/Hsdx8PHxgY+PD4YMGeI283z69GnwPI/IyEjU19d3+ynZznA4HMjMzOzy8Ndc06XiESNGKEvF8mzq7373O4waNQrfffcdUlJS8Oabb3rtNSOkNRQAyTXLbQmuibq6OmRkZCAwMBAxMTGt7o1qrW3b1XS0p69KpXJbyqusrERZWRmOHTsGxhhCQ0MRFhZ21X1dTYmiiBMnTqCioqJTZV7aYuWDK7Hz+50ot5e3ej+1Wg0VU8HBOS6rx6fhNVL9P45BVInw0fjAqXOi3lEPtUMNH7MPTAYTGhoaoNFqpNlFwQ6tRgsfvQ8sdotUYoZJs3KiSoTT6YRGpYGPyQf1rF56IU46nRzmE6YEPwDSEi7PwSW4oAvUwaK1IMQnBOMHjAcAPJj6IP6z8z+wXLDA1+QLh8shLTs77eC1/OXFpeVDIqL0PhA5UZn1k2c05eDHcZwUfFUCGM8wKGBQp34ezel0OkRERODixYsICAjAgAEDUFlZ6bb0Kc8OdvZQUFeRw5/BYOjW8NeSpkvFNpsNd911F1atWgWXy4UtW7bAbrfjjjvuoFZvpNehX1tIn1JWVobvv/8eUVFRiIuLu2qA6ughEHnmTxCETpV54XkeISEhGDNmDKZOnYr4+Hio1Wrk5+dj7969OHr0KC5evCiVN7kCl8uF7Oxs1NbWYsKECd0a/gApYDy15KkWP6Q5noPeoIfOpIOTd6LB1nBZyROdWge7aAev4cFUDFq1Fg7mgN6gh6/oCz+zn3QfTlpOdjqcsNfZoXFqoIMODsGhnOA26U3Q8FKvYdEposHWgAZbAzQGDZiDQc2rEWAIgF4rzbDJM4IiE+Fj8oEQJMCutYNTcQj0C1Ta1vE8j98s+g38TH6wWqSi1z56H6lbh8Aprd2Un7scBuWs13g7Bw4qXiVtC2hyMIUxBmikmcPrBl3XVT8a6Xo5ncjIyIBKpUJiYiL69euHsWPH4oYbbkB8fDx0Oh3OnDmD9PR0ZGZm4ty5c7DZbF06hvaO11Phr7m6ujp8/PHHuOWWW1BTU4MvvvgCkZGROHz4sMfGREhHcaylKRJCrgEOh+PSBn/GUFRUhNOnTyMmJqbNe99OnDgBjuMQHR3d5tftiZ6+jDHU19ejrKwMZWVlsFgsCAoKQlhYGEJDQ5UlbbnMi1arxbhx43psRocxhqSHk1BrqYWKU4EHD6PJiKqGKohwD9S+A3xR56oDGKDX6mFxWqDSqACVdJjDyZxQq9RYNnUZYkwxePytx+HgHXCKl0KvXqeHzWWDwWiAlVkv3a7Vw8mcENSC24ysWC2i4XwDgkxB0Gg18A/wR42lBlq1Fi7mAuMZ+HAeVqf0XMHhwZg8djLeTnnbbewpj6fgVPEpODVOaHQaVDZUwu6QginTSXUJmejewYTX8RANjQdGGk81u/UH5jhwJg6irwitSot3F7yL28fe3iU/F3kmTa/XIy4urtUwJe8bNJvNqKmpga+vr3KIxMfHp0cOPMhh1RvCX2VlJebOnYsRI0bg008/9fr9koRcjXfM7xPSDZSDCI31zcxmMyZMmAB/f/+rP7iRSqVqdXatKfmkr7xk3J0FnjmOg6+vL3x9fTFs2DA0NDSgrKwMFy5cwMmTJ+Hv7w9/f39cvHgRISEhGD16dI9+eHIch4nRE/HVka/gYo2HMJzssvAHAKgFOCMHrU4Lm2ADr+EBlRTebIINUQFReH3B65gwaAIAYMXdK/DHT//o9hRyeRk73A+ZCEyAVqtV9heqVCrotXqkzkzFxv9sBMdxqK+vB6fnYGVWuOCCyEQY1AaouEuzw/XqekQFuPeCtlqtmDt+Ls5eOAue46HWqGHSm+BwSr94cE5O6U/MRKa8H5mrWes3SO8djuMAzaUgCAD+en+kRqe28+q3zG63IyMjAz4+Pm3qlWsymWAymTB48GA4HA6lu0ZRURE0Go0SBgMDA7vlvSWHP71e7/HwV1NTg/nz52PQoEH497//TeGPXBMoAJJrmsPhQHZ2NpxOJyZPntzu4rYqlapNy1+e7ulrNBqVki42mw0//vgjiouLwRhDXV0dioqKeqS8TFO333A7dmXtglNoDNBXWGtwOBwI9A1ELauFwAtSSNPpEeobil9O+iWWTFjiNub7Z90PX6Mvnlv/HJwuJ3iOhyAK0Bv0sLFLPyuOk0rRNBU/MB6rb1+NURGjcCr7FE4Vn4LIRGg1WlicFjjs0vKxxWqBySX1kPU1+MKpcmJU8CjleSwWCzIzMzF9/HTsytmFnLM50EMPnVYHH4MP6hqkGU0mMKUwNKeVDnYwsfG/G7uZMLBLQVEOgo1lZBbFLYJG1fmwYbPZkJGRAX9/f6XIeXtotVq3Q0qVlZUwm83Izc2FKIpu+wa7Ihw1DX9Xm6nsbnV1dVi4cCGCg4OxceNGry+TQ0hb0RIwuWZVVVXhyJEj8PHxQVxcXIeWPwsLC1FdXY2EhIQr3sebevoCUlHr48ePIzo6GmFhYcqJz4qKim4tL9OSJ9c+ic37NwOQ9ruptWolEOoNeghqAVABDpcDKo0KUeFRuD72eswcPRPTRkxr9blzCnOw6tNVOFxwGLyGh6gVlVp8gBSgtDotXCoXxvQfg/uvvx8LkxYqX//4q4+xav0qWO1WBEUEodJSCY7joObVsDqs0ARp4IQTxmAjdME6fLPkG/Tz76ccIoqMjMTw4cOx/+h+LHttGeyitFcQKqC0uhQOh0Pp/qEs74IDUzNwQRygvTRrzHFSTUPGMfAqHtAC2iAtTvzmBEJNoZ36GVitVmRkZCAoKAijR4/u0p85Ywy1tbXKUrHFYkFgYKAyO9iR4ubeFP4sFgtuvfVW8DyPbdu2wWQyeWwshHQ1CoDkmnXgwAH4+Phg5MiRHf7QKy4uhtlsRlJSUotfl2f+OnvYoyvI+xyLiooQFxeH4OBgt68LgqB0ijCbzUp5me5exnvq3afw7dFv4XK5pJOynB2CSoBKo4KLudBgb4CfyQ+Lb1iMJ296UjmQ0VYZBRn47PvPcKr0FH6q+AmMMQSYAhDiG4KkkUlYPGUxIgIiWhzbdQ9dh7KqMgSFB6GqoUrqQyw4IYgCdEE6QAcIfgJC/EKwaswq+Pr6oq6uDgMHDsSIESOU57r9udtxrPgYbA6pJA3HcSirKYOLd4Hn+Uunixv7DbNgBqhwqa0du9TWjlNx4PQcxo8ej9337+7wtQeAhoYGZGRkIDQ0FKNGjer292fTkilVVVUwmUxKGGzLLxzeFP6sVivuuOMO2O12fPXVVy3WCSWkN6MASK5Zdrv96ne6ivPnz+P8+fOYMGHCZV/ricMebSWKIk6ePIny8nIkJCRc9cNKFEVUVVUph0hEUVTKywQHB7e5vExbFZwvwP/y/geL3YJqRzWKq4px5uIZlFWVYXbCbPz+9t9ftdNFd1j26jLsOrwL/iH+qLRWwulyQqvRwuFywBhkhBAkQO2rxrQR0/Bc/HM4efKk0vrN399fuWbZp7PxxFtPoLS6FIC0ZGp1WFFjqwFTMaUMjNLDOKRxqVeelGaNfY45aZk4IDAAz978LB6b8FiHvzeLxYKMjAxERERgxIgRPf7+dDqdyr7BiooKqFQqt32Dzd9j3hT+7HY77r77blRWVuKbb75p175hQnoLCoDkmuVyuTrdxaOkpASFhYWYPHmy2+3eFP5cLheOHTsGm82GhISEdu9zlDsfyGHQbrcjJCQEYWFhCAkJ6fIN74wxnD59GufPn0dCQoJHP1zPm89j1rJZUBvVqHFJLeL0Wj1cggvqYDW4QA6GYAPuHX0v4oQ4jB07FhEREbDZbEqx7srKShiNRvx7/7/xv+P/Q1V9lfQ8Oj2sTisq7BXKvj651p8Y3LhUrYLSQxiQvqZVaxHZLxLf/fo7+Os7dm3q6uqQmZmJyMhIDBs2zOMtyuRfOOTZQafTqbSmCwkJAcdxXhP+nE4n7r33Xpw7dw67d+/uloLphHgDOgRCSCuadwLpyZO+bWG325GVlQWNRoPk5OQOhbXmnQ/k8jJFRUXIy8trsbxMR8kFqSsrKzF+/HiP76mKDI3EkH5DcLb8rHRKFwwGrQG1Yq20L4/nUG2tRlh9GOImxiE0VNqPp9frMWDAAAwYMAAulwvl5eVY6rMUR04egYbXwOa0wWq1wsfHB3beDovNIu0DbCwQrbSLEy61jQMHgJMKDydEJXQ4/NXW1iIzMxMDBw7E0KFDu+5idQLP8wgODkZwcDBGjRqlvMeKi4uRl5cnHfzR6zF8+HCPhj+Xy4UHH3wQZ8+exZ49eyj8kWsaBUByzeqKYNa0E4inT/o2V19fj6ysLAQGBnboZGdL2lJeRj5E0t4N/oIgICcnBzabDePHj2/3TGV3GT14NE6XnIZvkC/sTjtsahsEhwBREKFT62DkjJh73VwEBga2+Hi1Wo2IiAhEREQg7ZU0pDydAoEJsDvsqKqugq+fLzT+GlTXVCu9h+VDH2CQ/glAo9aA1/JQq9RYGLewxde6mpqaGmRmZmLIkCEYPHhwRy9Jt2r6Hhs4cCCOHDkCxhj0ej2+//57GI1GZanY39+/x/4fEwQBv/rVr5Cbm4s9e/YoYZ+QaxUFQEJaIXcC8baTvlVVVcjOzkZUVFS3LvE1LS9jt9uVAyQFBQUwmUxKGLxaYWCn04msrCxwHNfhmcruMjluMrb+byscvAN2zg6tKB3ddVgdcDAHbhx04xXDX3ORYZFY9cgqrFi7AjqNDg32BsAFiE4RvgZf2ASbVCdQrgvIMaiggp/JDyYfk7IHccbwGe3+PuT3xLBhwzBw4MB2P76nyR0+9Ho9xo0bB57n4XK5UFFRAbPZjOzsbHAc51Zipqv3pspEUcSvf/1rfP/990hPT0dExOWHhgi51lAAJKQV8hJwR3r6dpeSkhLk5eVh1KhRGDBgQI+9rk6nQ1RUFKKiopQN/vJSsU6nU8Jg81kbm82GzMxMGI1GxMbGdtuHeEfdOOFGaN7RKKVa5ELOWp0WokbEksQl7Xq+uZPnYm/2Xny+73MYNAaIEKHRaMAYA894mPxMEE0iHMwBBxww6UwIMAXAwRxwMRcWxC2ASde+pfGKigocPXoUI0eO7NH3REfJ4U/uUCP/QqVWq936YFdXV8NsNuPUqVOw2+3KdoSQkJBOb0eQiaKIp59+Gnv27EF6enqvuH6EdAU6BEKuWYIgwOVyXf2OrbBYLPjuu+8QExOD0NDQHmul1hLGGH788UecPXsWsbGxXrNE1by8DM/zShjUaDTIzs5GSEgIoqOjPT5zeiVvfPwGPvzhQ9TYa+ByuWDQGqAOVyNuWBw+W/xZu59PFEWkPpeKU+dOwelyQm/SQ+AEgAFakxa1frWX2tI1/mKhU+kwefhkfHjfh+0KyeXl5cjJyUF0dDT69+/f7rH2tCuFv9Ywxtxa09XW1sLPz09ZKu5ogXNRFPF///d/2LRpE9LT0zF8+PCOfEuE9EoUAMk1SxTFNrdxu9LjBUHA2bNnUVpaCpvNppyO7ekwyBhDfn4+SktLkZCQAD8/vx577fZoWl6mtLQUTqcTPj4+GDp0KEJCQrxu9k8miiJmPTcLBRUFcAkuBIcGgwvk8K/7/oWYfjEdek7GGP604U/4aMdHMBgNqHI2ng7208Pm16RjCTioOBVGBY/Ck+OehFqtVt5jQUFBrQaksrIyHDt2TDmd7O06Ev5aYrfb3U5h63Q6JQwGBAS0OVS+9NJL2LBhA/bs2dOuft+EXAsoAJJrVkcDYPOTvvLMgnxysaysDA0NDQgKCkJ4eDhCQ0O7dU+bIAg4duwYGhoakJCQ0KHuCj3NbDYjJycHUVFS/9yeKC/TGS6XC3/f/He8uf9NODknNAEazEuYh7/M/0unnzsjPwOPv/E46vl61DXUQR+sh1VvBdDYrUSlRcLABHzywCcAoJRLKSsrg8vlUq5Z8zZr8laA2NhYhIWFdXqc3a2rwl9z8gy0PDsIwG3fYEu/qDHGsHr1arzzzjvYs2cPYmI6FvIJ6c0oAJJrVkcCYFtP+losFmWWq76+HoGBgUoY7Kq9SYDUJzcrKws8zyM+Pt6rQtOVXLhwASdOnEBMTAzCw8MBSNdVDtBmsxn19fUICgpSCil35TVrLzmYqNVqbD65GVllWfAN8MX7i96Hr75ruj/YHXas/OdK7Dq6CwNGDYBap4ZOrUNyVDJ8Db546LqHLpsdlfs4y9fMYrEo10wURZw5cwZxcXEICQnpkjF2p+4Kf83JNS3lMCj/oibXGzQYDGCM4c0338Rrr72GXbt2ITExsVvGQoi3owBIrlmMMakfazvu35GTvlarVQmDtbW18Pf3R3h4OMLCwjpV6sRisSArKwt+fn6IiYnx2v1zsqat6MaNG9dqDTX5mpWVlaGmpgZ+fn7KvkGj0dhjY7bb7W4HVLr7Gtc01MDf2LH6fg0NDTCbzTh37hysViuMRiP69+/fqT1wPaGnwl9Lmu4b3LZtGz7//HNEREQgMzMTO3fuxKRJk3psLIR4GwqA5JrVngDYVT19bTYbzGYzSktLUV1d3eFgU11djezsbERGRmL48OFe++EuY4zh1KlTKCkpafceRbvdrix5VlZWtqu8TGdYrVZkZGQgMDAQo0eP9vqADUi9qc+cOYOxY8fC6XQq10yv1yv7Bnuydt7VeDL8NVdSUoKnn34an3/+ObRaLUJDQzFv3jz86le/wujRoz02LkI8hcrAkD6vK9u66fV6pVSKw+FQZrlOnz4NHx8ft2BzJaWlpcjLy8OIESOUPXTeTBRF5OXloaamBuPHj2/3DJ5Op1O6arSnvExn1NfXK31yR44c6TWBqTVFRUUoLCxEYmKi0j4vMjLS7RS2vF1APhARFBTksYM3cu1Hbwh/jDHs3LkT33zzDXbt2oVJkyYhPT0dX3zxBaqqqjw2LkI8iWYAyTWrLTOAzUtxdFcQcDqdyixXRUUFDAYDwsLCEB4e7jbLVVxcjNOnTyMmJqZXbOx3uVw4evQonE4nEhMTodVqu+y5WysvExgY2OFAUVNTg6ysLERFRWHo0KG9IvydPXsWxcXFSExMbHV2Va6dJ18zp9OpHIjoyYM3cvhTq9UYN26cx09//+c//8GyZcuwefNmzJo1y6NjIcRbUAAk1zS73d7i7S2d9O2pICD3ji0rK0N5eTm0Wi3CwsJgs9lQUVHhNsPjzRwOBzIzM6HRaDBu3LhuLYsjl5eRQ7QgCMosV3vKy1RWVuLo0aO9plsGYwxnzpzB+fPnkZiYCF/fth9KaXrwpqysDBaLBYGBgcpScXe14vO28Ld161YsXboUn332GVJSUrr99fbt24dXX30VGRkZuHjxIrZs2YLU1NRWH5Oeno4nn3wSeXl5iIqKwvPPP4/77ruv28dK+jYKgOSa5nA40Pwt7k09fQVBcOt0oNVqlU4IAQEBXjs7Je+f88QBFcYYamtrlWBjs9kQHBysBJsrzXKZzWYcO3as1xRMZoyhoKAAJSUlSEpKgsnUvu4gzckHb8xmM6qrq+Hr66ucwu6qQyQul0s5Ue0N4W/btm2477778NFHH2Hhwo71V26vr776Cvv370dSUhIWLlx41QBYWFiImJgYPPLII3jwwQexe/duLF++HNu2bcPs2bN7ZMykb6IASK5pzQOgt/X0dTgcyM7OBgDExcWhvr4epaWlMJvN4DgOoaGhCA8P79SSZ1erq6tDZmYmwsPDMWrUKI+GVLlDhBwG5ZI88lKxXF7m4sWLOHHiBMaOHauUpvFmcuFvs9mMpKSkLj8Z7XA4lFnoiooKZa+lXEi5Iz9Tbwt/u3btwt133433338fd911l0fGwHHcVQPgM888g23btiE3N1e57a677kJ1dTV27NjRA6MkfRUdAiF9RtOZP2/o6dvQ0ICsrCz4+PggJiYGKpUKer0eISEhyl6u0tJS5ObmgjGmzNYEBwd7LAzKS6iDBw/G4MGDPX4NOY6Dj4+P0m1EnuUqKSlBfn4+/Pz8oNVqUVFRgfj4eAQHB3t0vG3BGMOJEydQWVmJ5OTkbin8rdVq0b9/f/Tv39+tkPLRo0cBQHmvtfUQibeFv3379uGee+7B2rVrceedd3p0LFdz8OBBzJgxw+222bNnY/ny5Z4ZEOkzKACSPqErT/p2BfkgQr9+/Vo8hcrzPIKCghAUFITo6GjU1NSgtLQUJ0+ehNPpVD6ge7K9mhxGo6OjERkZ2SOv2V4GgwGDBg3CoEGDYLPZcPLkSZSXlwMATp061SPlZTpDFEUcP34cNTU1SE5O7rZ9ek2pVCrluoiiiJqaGpSVlSE/P1/p3iLvt2xped3bwt+BAwdwxx134PXXX8fixYu98ufcVElJyWWz0uHh4aitrYXVau0VnX9I70QBkFzTOI5Tgp+3hL+ysjLk5uZi+PDhbTqIwHEcAgICEBAQgJEjRyr7306fPo3c3Nwe6U987tw5FBQUIC4uDqGhod3yGl2JMYbi4mLU1NRg4sSJ0Ov1ypLnjz/+qNSBCw8P95q6eaIoIjc3F/X19UhOTvZIdxSe5xEYGIjAwECMHDlSOURSXFyM48ePIyAgQHmvGQwGrwt/hw8fxm233YZVq1Zh6dKlXvFzJcRbUQAk1yxRFFFfX6/MWnhD+JODVEf3onEcB39/f/j7+2P48OHKB3RRURHy8vKUwxBhYWFdUvKDMeZWgiQgIKDTz9nd5CXUiooKJCcnK4cn+vXrh379+kEQBFRWVqKsrAzZ2dnKXkt5ydMTy+uiKCInJwc2mw3JycldWk6noziOg6+vL3x9fTFs2DBYrValq8apU6dgMpngdDqh1+sRFxfn8fCXnZ2N1NRUPP/881i2bJnH/19vq4iICJSWlrrdVlpaCj8/P5r9I92KAiC5ZmVmZmLatGmYPXs2UlNTMXv27FYLMHcnxhhOnz6tlPPoiiDV/ANaPgxx7tw5nDhxosXDEO0hiqKyhDp+/HiPXbv2aDqLNn78+BaXUFUqlbKk2bRu3vHjxyEIgjKj2lPL64IgKLUUk5KSvLbfs8FgwMCBAzFw4EDlFLjcr/jgwYNuh0h6OkTn5eVh3rx5WLFiBZ566qleE/4AYPLkydi+fbvbbTt37sTkyZM9NCLSV9ApYHLNYowhMzMTaWlp2LRpE86fP4+ZM2ciNTUVN910U7tqqnWGIAjIy8tDbW0tEhISOl3Ooy06259YEAQcO3YMDQ0NSExM7JG9aJ0lBymHw9GhotQdLS/T2TFnZWWBMYaEhIRuraXYVZov+wJQZlTNZjMAKAE7ODi420N0fn4+5syZg4ceeggvvfSSx8NffX09Tp8+DQBISEjAG2+8genTpyMoKAgDBw7Ec889h/Pnz2PDhg0ALpWBeeyxx/DAAw/g22+/xa9//WsqA0O6HQVA0ifIS2xyGCwqKsKMGTOQmpqKuXPnws/Pr1s+OJxOJ7Kzs8EYQ3x8vEeW9pr3J/b19VXCYEvlRZqOOSEhwWtnpJqSxwwA8fHxnR5za+VluqqIssvlQlZWFjiOQ3x8fK8Jf3K7ufj4+MvCHWNMOURSVlYGu92uhOiQkJAuf/+fPn0aN910E+6++26sXr3aK0olpaenY/r06ZfdvmTJEqxfvx733XcfioqKkJ6e7vaYJ554AsePH8eAAQPwwgsvUCFo0u0oAJI+hzGG3NxcbNy4EZs3b8bp06dx4403Yv78+bj55pu7rACz1WpFVlYWjEYjYmNjPb5HCoBbf+LKykqYTCYlDPr4+MBmsyErK8tr9nW1hdyRRKfTdduY5f1vpaWlqKmpgZ+fnxIGOzKj63Q63bqo9IbrfLXw11zTEG02m1FXV4eAgABlv2Vn97cVFRVhzpw5SE1NxZo1a7wi/BHSm1AAJH2afGBADoMnT57E9OnTkZqaipSUFAQGBnYoDNbW1iIrK8sriiVfSfP+xDqdDg6HA0FBQV4TWK/GZrMhIyMDvr6+PdaRRA7RZrMZFRUVMJlMSqjx9fW96s9aDqxyyO4NwaW94a8l8kx0WVkZqqqqYDKZlBDdluvW1Pnz5zF79mzMnDkT77zzTq+4hoR4GwqAhDRijOHUqVPKMnFubi5uuOEGpKam4pZbbkFwcHCbPqTklmNDhw7FoEGDvDL8NVdZWYns7GzodDqlJV1YWBjCw8O7bXm8sywWCzIzMxEcHIzRo0d7ZIzN+zprNBrl4E1LM8l2ux0ZGRlK8e/eEFy6Ivw153Q6UV5eDrPZrFw3OURf7RBJSUkJ5syZgylTpuAf//hHr/hFhRBvRAGQkBYwxnDmzBllZjA7Oxs/+9nPkJqainnz5iE0NLTFwPHTTz8hPz8fY8eORUREhAdG3n7l5eXIyclR6hLKnSHkWa6mhYI7OiPa1eR2dP3798fw4cO9YkxNy8s0beUnl5dxOBzIyMiAv78/xowZ02fDX3OCIKCqqkq5bqIoKodImp/ENpvNmDt3LsaNG4cNGzb0in2ThHgrCoCEXAVjDIWFhUhLS8PmzZuRkZGBKVOmIDU1FfPnz0d4eDgYY9iyZQuCgoIQHx+PwMBATw+7TS5evIjjx49fMbCKoqiEmrKyMq/oT1xdXY2srCwMHjwYQ4YM6fHXb4um5WXKysrgcrkAAP7+/oiLi+sVB2t6Ivw1Jx8ikZeKbTab0h1l5syZeOCBBzBixAh8+umnveIaEuLNKAAS0g5yhwk5DB46dAgTJkxAdXU1ysvLcejQoV7RKQOQNtGfPXsW48aNa1OP3KahprS0FKIoKjODbe0Z21kVFRU4evQoRowYgaioqG5/va5gsVhw5MgR6HQ6CILgVl6mO07GdgVPhL+WWCwW7NmzBy+++CLy8/MRFBSE3/72t7jtttswbNgwj4yJkGsFBUBCOogxhry8PCxYsAAXL16E1WrFxIkTMX/+fKSmpmLAgAFesTTZHGMMBQUFuHDhAhITE+Hn59eh55D7E5eVlfVIf2K5F/GYMWPQr1+/Ln/+7mCxWJCRkYGIiAiMGDECHMehvr5emeGqq6tDYGCgcu28od6it4Q/WV1dHVJTU6HRaHDHHXdg27Zt2L17N15++WU888wzHh0bIb0ZBUBCOqiqqgo/+9nPMHjwYPz73/9GbW0tNm/ejE2bNmH//v1ITExEamoqUlNTMXDgQK8Ig/JyWnV1dZcVpZa7Qchh0GazdXl/4vPnzyM/Px+xsbG9ZoZV3qcYGRmJYcOGtfjzl8vLlJWVKTUa5VnVnigY3py3hT+LxYJbb70VKpUKX375pXJNamtrYbfbe817gRBvRAGQkA5ijOHjjz/GokWL3EIOYwwlJSXYsmULNm3ahH379mHcuHFKGBwyZIhHwqDcKcNutyMxMbFD7eGuRq79JodBi8Xi1k2jI8udP/74o7JUHRQU1OVj7g61tbXIzMzEwIEDMXTo0DY9xuFwuJXlMRqNShhsb5mUjvC28Ge1WnHHHXfAbrfjq6++6rHOPWvXrsWrr76KkpISjBs3Dm+99RYmTJjQ4n3Xr1+P+++/3+02nU4Hm83WE0MlpFMoABLSjRhjMJvN2LJlC9LS0pCeno6YmBgsWLAAqampV5wZ6moOhwNZWVlQqVQYN25cj22gb9pNQ17ubGt/YsYYzp49i3PnziEhIQH+/v49MubOqqmpQWZmJoYMGYLBgwd36DnaW16mswRBQGZmpteEP7vdjrvvvhuVlZX45ptveuxn/9lnn2Hx4sVYt24dJk6ciDVr1mDjxo3Iz89HWFjYZfdfv349fvOb3yA/P1+5jeM4hIeH98h4CekMCoCE9BDGGCoqKvD5559j48aN+PbbbxEdHa2EwZEjR3ZLGLRarcjMzFRqz3nqw13uT1xWVoaamppW+xMzxpCfn4+ysjIkJibCx8fHI2Nur6qqKmRnZ2PYsGEYOHBglzxn8/IyAJQZ1eDg4E6fxJb7EQNS71pPhz+n04l7770X586dw+7du3t01nfixIkYP3483n77bQDSlomoqCg8/vjjePbZZy+7//r167F8+XJUV1f32BgJ6SoUAAnxAMYYqqqq8PnnnyMtLQ27du3CiBEjlGXiripsXFdXh6ysLISGhiI6Otor9iEC0gyPHAarqqrc+hPr9Xpln2JSUlKnW4b1FPmE8siRIzFgwIBueQ35JLa8VOx0OhESEoLw8HAEBwe3e7+lt4U/l8uFBx54APn5+fj22297dI+fw+GA0WhEWloaUlNTlduXLFmC6upqfP7555c9Zv369XjwwQcRGRkJURSRmJiIP/3pTxg7dmyPjZuQjqIASIiHySdqv/jiC6SlpWHnzp0YPHgwUlNTsWDBgg4XDZZnowYNGuSxfYdtIe99Ky0tRWVlJXieh0qlQmxsbK/Z8ycX046Ojkb//v175DXlwzdykLZarQgKCmrzfktvC3+CIOCRRx5BZmYm9uzZ0+OF1C9cuIDIyEgcOHAAkydPVm7/7W9/i7179+KHH3647DEHDx5EQUEB4uLiUFNTg9deew379u1DXl5et/0SQEhXoQBIiJepqanBl19+ibS0NHz99deIiorC/PnzsWDBAsTGxrYpDJaVlSE3N7dbZ6O6mnwIwW63w2QyobKyEgaDoUcPQnREWVkZjh075vHuL833WwYEBCjXrvkSu7eFP1EU8fjjj+O7775Denq6R96zHQmAzTmdTowePRqLFi3Cyy+/3J3DJaTTqI8OIV7G398f99xzD+655x7U1dVh27ZtSEtLw4wZM9CvXz8lDMbHx7cYBn/66SecOnUKMTExLW5c90ZOp1M5pDJp0iSo1Wq4XC5UVFSgtLQUR44cUfoTh4WFwd/f3yvCYElJCfLy8hAbG+vxa20ymTBkyBAMGTIENptNCYOnTp1yKy+j1+u9LvytWLEC6enp2LNnj8d+YZHrV5aWlrrdXlpa2uZgr9FokJCQgNOnT3fHEAnpUjQDSEgvUV9fj6+++gppaWnYvn07QkJClDCYlJQEAPjHP/6BoUOHIjExsde0o7Pb7cjMzITRaLziDKc39ie+cOECTp48ibi4OISEhPT467dV0/IylZWVAACtVouYmJhuOVHcHqIoYuXKldiyZQvS09M93t1j4sSJmDBhAt566y1lfAMHDsSyZctaPATSnCAIGDt2LObOnYs33niju4dLSKdQACSkF2poaMCOHTuQlpaGbdu2wd/fH0ajERcvXkR6ejpGjRrl6SG2idVqRUZGBgICAtq819Eb+hPLs6xtbaPnDeRSL06nEz4+Pkp5GbkLSU8HacYYXnrpJWzYsAF79uxBdHR0j732lXz22WdYsmQJ3n33XUyYMAFr1qzBf/7zH5w8eRLh4eFYvHgxIiMj8corrwAAXnrpJUyaNAnDhw9HdXU1Xn31VWzduhUZGRkYM2aMh78bQlpHS8CE9EJGoxELFy7EwoULUVVVhZSUFBw7dgwAMG/ePMybNw+pqamYNGmSx5f4rqS+vh6ZmZkICwvDqFGj2hw+eJ5HSEgIQkJCEB0drfQnzsvLgyAIShjsrv7ExcXFOHPmDBISEnrNLGvTPX8TJ06ESqVyC9I5OTkAoITBrigv0xrGGFavXo0PPvjAa8IfANx5550wm8148cUXUVJSgvj4eOzYsUOp61dcXOx2XaqqqrB06VKUlJQgMDAQSUlJOHDgAIU/0ivQDCAhvZgoipg9ezZqa2uxbds2+Pj4YNeuXUhLS8MXX3wBvV6vhMEpU6Z0SVu2rlBTU4OsrCxERUVh6NChXTLzJJ+mLisrQ2lpqVuJlK7qT1xUVITCwkIkJib2msLUgiAgOztbKVPS0nVgjClBuml5Gbm3c1e+bxhjePPNN/Haa69h165dSExM7LLnJoS0HQVAQnq5r776ClOnTr2sd6zD4cCuXbuwadMmfP7551Cr1bjllluwYMECXH/99R4Lg5WVlTh69CiGDh2KQYMGdctrNC2RUlpa6tafOCQkpEOdUM6ePYvi4mIkJibCz8+vG0bd9ZqGv4SEhDb9zDtbXuZqz/3OO+9g1apV+Prrr6/YYo0Q0v0oABLSBzidTuzZswdpaWnYunUrACAlJQULFizA1KlTe6w1nNlsxrFjxzBq1ChERkb2yGt2tj8xYwxnzpzB+fPnkZiY2GM9aTurI+GvJXJ5GbPZjNraWqW8TGhoaLuKdDPG8MEHH+D555/H9u3bcd1113VoPISQrkEBkJA+xuVyYe/evdi4cSO2bt0Kp9OJW265BampqZg2bVqnZnhac/HiRRw/fhwxMTEe7ZXanv7EjDEUFBSgpKQESUlJl82yequuCn/N2Ww25URxVVUVfHx8EB4ejtDQ0Fbb9THG8PHHH2PFihX473//i2nTpnXJeAghHUcBkJA+zOVy4X//+x82btyILVu2wGq1KjOD06dPvywQddS5c+dQUFDgdadmW+pP3LReXn5+PsxmM5KSkmA0Gj093DbprvDXnMPhQHl5OcrKylBRUQGDwaAcIvHz81P2dTLGsHHjRixbtgybN2/GrFmzumU8hJD2oQBICAEgBYf9+/cjLS0NW7ZsQV1dHebOnYvU1FTMmDHjsm4SbVVYWIiioiIkJCQgICCgawfdhZr3J1ar1WCMYdy4cb2mJV1Phb/m5KLdZWVlKC8vh1qtxrFjxzBw4EBYrVb86le/wmeffYaUlJQeGQ8h5OooABJCLiMIAr7//nukpaVh8+bNqK6uxpw5c7BgwQLMmDGjTbNhjDGcPn0aFy5c6FV750RRRG5uLqqqqmAymVBdXQ2TyYSwsDCEh4fDZDJ5RReS5jwV/pqTy8u8/PLL+Pe//w2LxYKf//znWL58OWbOnNnhXyQIIV2LAiAhpFWiKOLQoUNKGDSbzZg9ezYWLFiAWbNmtbgvjjGGEydOoKKiAomJib1m75wc/urr65GUlASdTgen06ksdZaXl0Ov1yM8PNyr+hN7S/hrateuXVi0aBFWrFiB+vp6bNmyBWVlZSgoKEC/fv08PTxC+jwKgISQNhNFERkZGUoYvHDhAmbNmoUFCxZgzpw58PHxgc1mwxdffIHIyEgkJSX1mhkfURSRk5MDm82GxMTEFg/DCIKA8vJylJaWory83Cv6E3tj+Nu3bx9uv/12rF27Fvfeey84jgNjDMePH8fYsWM9PTxCCCgAEkI6SBRFZGdnIy0tDZs2bcK5c+cwbdo0FBQUQKPRYP/+/V12iKS7CYKAo0ePwul0IjExsU1lcQRBQGVlJUpLSz3Wn1getyAIXhP+Dhw4gIULF+L111/Hgw8+2GOheO3atXj11VdRUlKCcePG4a233mq1zuDGjRvxwgsvoKioCCNGjMDq1asxd+7cHhkrId6AAiAhpNNEUcTBgwexaNEilJeXQxAEzJw5E6mpqZg7d67HZsfaQm6TxhjrcIgSRRFVVVVKrUEAShgMCgrqlrZq3hj+Dh8+jPnz5+OPf/wjHnvssR77mX/22WdYvHgx1q1bh4kTJ2LNmjXYuHEj8vPzERYWdtn9Dxw4gKlTp+KVV15BSkoKPvnkE6xevRqZmZmIiYnpkTET4mkUAAkhnVZRUYFZs2YhPDwcGzduRGFhITZu3IjNmzfj1KlT+PnPf47U1FSkpKQgICDAa8Kgy+VCVlYWeJ5HfHx8l7SLY4yhqqpKOVEs9yeWe+x2xWvI4c/lciExMdErwl92djZuvvlm/N///R+eeuqpHv0ZT5w4EePHj8fbb78NQArkUVFRePzxx/Hss89edv8777wTFosFX375pXLbpEmTEB8fj3Xr1vXYuAnxpO7r9k0I6TN8fHxwxx13YOvWrTCZTIiJicEf/vAH5OTkIDs7G5MnT8Y777yDIUOGYMGCBfjwww9RUVEBT/7+6XQ6kZGRAZVK1WXhDwA4jkNQUBCio6Pxs5/9DAkJCdBqtcjPz8fevXuRk5OD0tJSuFyuDj2/N4a/3NxczJs3DytWrOjx8OdwOJCRkYEZM2Yot/E8jxkzZuDgwYMtPubgwYNu9weA2bNnX/H+hFyLKAAS0syqVaswZcoUGI3GNtetY4zhxRdfRL9+/WAwGDBjxgwUFBR070C9iE6nwzPPPHPZwQmO4zB69Gi8+OKLyMrKQm5uLqZNm4b3338fQ4cOxbx58/DBBx/AbDb3aBiUQ4NOp+vS8Nccx3EICAjAyJEjcf311yM5ORlGoxGnT5/G3r17kZ2djYsXL8LpdLbp+bwx/J08eRK33HILfvWrX2HlypU9Prsrbzlo3l0mPDwcJSUlLT6mpKSkXfcn5FpEAZCQZhwOB26//XY8+uijbX7MX/7yF/z1r3/FunXr8MMPP8BkMmH27Nmw2WzdONLeheM4jBw5EitXrsSRI0dw8uRJzJw5Exs2bMDw4cORkpKCv//97ygtLe3WMGi323HkyBEYjUbExcV1y/68lnAcBz8/PwwfPhzXXXcdJk6cCF9fXxQVFWHv3r3IzMzE+fPn4XA4Wny8N4a/06dPIyUlBUuWLMHvf/97r1naJ4RcHQVAQpr5wx/+gCeeeAKxsbFtuj9jDGvWrMHzzz+P+fPnIy4uDhs2bMCFCxewdevW7h1sL8VxHIYNG4Znn30WP/zwA06dOoW5c+fi008/xciRI3HTTTdh3bp1uHjxYpeGQZvNhiNHjsDPzw8xMTE9Fv5a4uPjg2HDhmHy5MmYMmUKAgMD8dNPP2Hfvn3IyMjAuXPnYLfbAXhn+CsqKkJKSgpuu+02/PnPf/bYtQwJCYFKpUJpaanb7aWlpYiIiGjxMREREe26PyHXIgqAhHRSYWEhSkpK3PYU+fv7Y+LEibSnqA04jsOQIUPw9NNP48CBAzhz5gxSU1OxefNmjBo1CrNnz8batWvx008/dSoMWq1WHDlyBIGBgRg7dqxHw19zRqMRQ4YMwcSJE3HdddchJCQEJSUl+O6773Do0CF8//33cDgcXhP+zp8/j5tvvhlz587FmjVrPHottVotkpKSsHv3buU2URSxe/duTJ48ucXHTJ482e3+ALBz584r3p+Qa5H3/A1ISC8l7xuiPUWdx3EcBg4ciCeffBLfffcdCgsLcfvtt+PLL7/EmDFjMGPGDPz1r39FcXFxu8JgQ0MDjhw5gpCQEIwePdqrlyoNBgMGDRqE8ePHY8qUKXC5XLDb7aivr0dGRgYKCwthsVg8Nr6SkhLMnTsX06ZNw9q1a70iSD/55JP4+9//jg8//BAnTpzAo48+CovFgvvvvx8AsHjxYjz33HPK/X/zm99gx44deP3113Hy5En8/ve/x5EjR7Bs2TJPfQuE9DjP/59LSA949tlnwXFcq39Onjzp6WGSJjiOQ1RUFH7zm98gPT0dxcXFuOeee/D1118jNjYW06dPx5o1a1BYWNhqGLRYLDh8+DDCw8MxatQorw5/TQmCgPz8fKjVakydOhVTp07FgAEDUF1djYMHD+LgwYM4c+YM6uvre+wAjdlsRkpKCsaPH4+///3v3XZ4pr3uvPNOvPbaa3jxxRcRHx+P7Oxs7NixQ/mlrLi4GBcvXlTuP2XKFHzyySd47733MG7cOKSlpWHr1q1UA5D0KVQHkPQJZrMZFRUVrd5n6NChbqdY169fj+XLl6O6urrVx509exbDhg1DVlYW4uPjldtvuOEGxMfH48033+zM0EkzjDGUlpZiy5Yt2LRpE/bu3Yu4uDikpqYiNTUVQ4cOVUKe2WzG8ePHERkZiWHDhvWa8CeKotKZJCEh4bLOJC31Jw4LC0N4eHi39SeurKzE3LlzMWLECHz66adt6pZCCPFeFAAJuYK2BkDGGPr376/UQAOA2tpahIWFYf369bjrrrt6YLR9E2MM5eXl2LJlC9LS0pCeno4xY8YgNTUVUVFReOaZZ/Dxxx9j6tSpnh5qm10t/DXXvD+xRqNRwmBXdWCprq7GLbfcgv79+2PTpk0t9kkmhPQunt9NTIiXKS4uRmVlJYqLiyEIArKzswEAw4cPh4+PDwAgOjoar7zyChYsWACO47B8+XL88Y9/xIgRIzBkyBC88MIL6N+/P1JTUz33jfQBHMchNDQUDz30EJYuXYrKykps3boV77//Pr7//nuEhoZi//79CA0NRXR0tNfPALY3/AGASqVCeHg4wsPD3foTZ2VlufUnDggI6NB+vbq6OixcuBAhISHYuHEjhT9CrhEUAAlp5sUXX8SHH36o/HdCQgIAYM+ePZg2bRoAID8/HzU1Ncp9fvvb38JiseChhx5CdXU1rr/+euzYsQN6vb5Hx96XcRyH4OBgjBw5Enl5eVi9ejXCwsKQlpaGV199FcOGDcP8+fOxYMECjBkzxuvCoBz+5NO+HVliValUCA0NRWhoqFt/4mPHjoEx1u7+xBaLBbfffjsMBgM2b95M72dCriG0BEwIuaYsWrQIP//5z7F06VLlturqavz3v/9FWloavvnmGwwaNAjz58/HwoULvaIkTFeEv9Z0pD+x1WrFHXfcAbvdjq+++gq+vr5dOiZCiGdRACTEC1VWVuLxxx/Hf//7X/A8j1tvvRVvvvmmsgTdkmnTpmHv3r1utz388MN9rrk9Y6zV2b3a2lp8+eWXSEtLw44dOxAZGYnU1FQsWLCgRzuDyLo7/DXHGENNTY0SBh0OB0JCQpQwqNFoYLfbsWjRIlRVVeGbb76Bv79/t46JENLzKAAS4oVuuukmXLx4Ee+++y6cTifuv/9+jB8/Hp988skVHzNt2jSMHDkSL730knKb0WiEn59fTwy5V6qrq8P27duRlpaGr776CuHh4coycUJCQreHwZ4Of80xxlBXV6eEQbmdW01NDTiOw549exAUFNSjY/JGjDHMnDkTKpUKX3/9tdvX/va3v2HlypXIzc3FgAEDPDRCQtqPAiAhXubEiRMYM2YMDh8+jOTkZADAjh07MHfuXPz000/o379/i4+bNm0a4uPjsWbNmh4c7bXDYrHgq6++QlpaGrZv347g4GDMmzcPCxYsQHJycpeHQU+Hv5YcPnwYS5cuRXFxMURRxIwZM3Drrbfijjvu6PNLwOfOnUNsbCxWr16Nhx9+GIDUBSg2NhbvvPMO7r33Xg+PkJD2oULQhHiZgwcPIiAgQAl/ADBjxgzwPI8ffvih1cf+61//QkhICGJiYvDcc8+hoaGhu4d7zTCZTLjtttvw6aefoqSkBG+88QbKy8sxf/58jBkzBs888wwOHjwIQRA6/VreGP4EQcB7770HlUqFoqIinDhxAtOnT8f777/v0c4j3iIqKgpvvvkmVqxYoRQf/+Uvf4lZs2ZR+CO9EgVAQrxMSUkJwsLC3G5Tq9UICgpqtbXc3XffjY8//hh79uzBc889h48++gi/+MUvunu41ySj0YgFCxbgX//6F0pKSvD222+jpqYGt912G0aPHo0VK1bgf//7X4fCoDeGP1EU8etf/xqHDh3Crl27EBERgWHDhuHpp5/GwYMHERER0WNjqaysxD333AM/Pz8EBATgl7/8Jerr61t9zLRp0y7r7PPII490+diWLFmCG2+8EQ888ADefvtt5Obm4t133+3y1yGkJ1AZGEJ6yLPPPovVq1e3ep8TJ050+Pkfeugh5d9jY2PRr18/3HjjjThz5gyGDRvW4eft6wwGA+bNm4d58+bBZrNh165d2LRpE+666y7odDplmXjKlClQq1v/K1UUReTk5Hhd+FuxYgXS09ORnp6OyMhIj47nnnvuwcWLF7Fz505l/+tDDz3U6v5XAFi6dOll+1+7w3vvvYexY8di37592LRpE0JDQ7vldQjpbhQACekhTz31FO67775W7zN06FBERESgrKzM7XaXy4XKysp2zcRMnDgRAHD69GkKgF1Er9cjJSUFKSkpcDgc+Pbbb5GWloZf/OIXUKlUuOWWW7BgwQJcf/31l4U7OfzZ7XavCn8rV67Etm3bkJ6ejkGDBnl0PCdOnMCOHTvc9r++9dZbmDt3Ll577bUr7n8FpMDXEzOVYWFhePjhh7F161Yq9E56NVoCJqSHyN0oWvuj1WoxefJkVFdXIyMjQ3nst99+C1EUlVDXFnIHk379+nX1t0IAaLVazJkzB++//z4uXryIjz/+GCqVCg888ACGDx+Oxx57DLt27YLD4YDNZsMLL7wAi8XiNeGPMYaXX34ZGzduxM6dO73il4Tesv9VrVZfdbaXEG9H72BCvMzo0aMxZ84cLF26FOvWrYPT6cSyZctw1113KTMg58+fx4033ogNGzZgwoQJOHPmDD755BPMnTsXwcHByMnJwRNPPIGpU6ciLi7Ow9/RtU+j0WDmzJmYOXMm1q5di3379mHjxo14+OGHYbfbodPpwPM8li1b5jXhb/Xq1fjnP/+Jb7/9FtHR0Z4eEoDO7X8dNGgQ+vfvj5ycHDzzzDPIz8/H5s2bu3vIhPRaNANIiBf617/+hejoaNx4442YO3curr/+erz33nvK151OJ/Lz85VZDq1Wi127dmHWrFmIjo7GU089hVtvvRX//e9/PfUt9FlqtRo///nP8c477+Ds2bMYM2YMXC4XRFFEcnIyHnroIWzfvh02m80j42OMYc2aNVi7di2++eYbxMTEdPtrPvvss5cd0mj+5+TJkx1+/oceegizZ89GbGws7rnnHmzYsAFbtmzBmTNnuvC7IOTaQjOAhHihoKCgVje9Dx48GE1LeEZFRV3WBYR4FmMMixcvhtVqRX5+Pvz9/XHgwAGkpaXhySefRG1tLW666SakpqZixowZMBgMPTKmd955B6+99hq+/vprxMfHd/trArT/lRBvRIWgCSGkm+zYsQMTJky4rJuGKIr4/vvvkZaWhs2bN6OyshJz5sxBamoqZs2a1S0nWBlj+OCDD/D8889j+/btuO6667r8NTpLLoJ+5MgRJCUlAQC++eYbzJkzp9Ui6M3t378f119/PY4ePUpbIAi5AloCJoQo1q5di8GDB0Ov12PixIk4dOhQq/ffuHEjoqOjodfrERsbi+3bt/fQSHuHOXPmtNhKjed5TJkyBW+88QbOnj2LnTt3YtCgQXjhhRcwePBg3Hvvvdi0aVOXFWBmjOGjjz7CypUr8fnnn3tl+APc978eOnQI+/fvb3H/a3R0tPLePHPmDF5++WVkZGSgqKgIX3zxBRYvXkz7Xwm5GkYIIYyxTz/9lGm1WvbBBx+wvLw8tnTpUhYQEMBKS0tbvP/+/fuZSqVif/nLX9jx48fZ888/zzQaDTt27FgPj/zaIQgCO3z4MHvmmWfYiBEjmNFoZPPnz2f//Oc/WUlJCbNYLO3+U19fzz744ANmMpnY119/7elv8aoqKirYokWLmI+PD/Pz82P3338/q6urU75eWFjIALA9e/YwxhgrLi5mU6dOZUFBQUyn07Hhw4ezp59+mtXU1HjoOyCkd6AlYEIIAGnf1Pjx4/H2228DkJYpo6Ki8Pjjj+PZZ5+97P533nknLBYLvvzyS+W2SZMmIT4+HuvWreuxcV+r5I4haWlp2LRpE3788UfMmDEDqampmDt3Lvz9/dv0PFu3bsXSpUvx2WefISUlpZtHTQjpLWgJmBACh8OBjIwMzJgxQ7mN53nMmDEDBw8ebPExBw8edLs/AMyePfuK9yftw/M8EhISsGrVKpw4cQKHDh1CfHw83njjDQwZMgS33347Pv74Y1RXV+NKv8dv27YNS5cuxUcffUThjxDihgIgIQTl5eUQBAHh4eFut4eHh1+x/lpJSUm77k86juM4xMbG4uWXX0Zubi4yMjKU2dohQ4bg1ltvxYYNG1BZWamEwZ07d+L+++/HP/7xDyxcuNDD3wEhxNtQACSEkF6E4ziMHTsWv//973H06FEcPXoU1113Hd59910MHToUqampeO6553D33Xfjb3/7G+68805PD5kQ4oUoABJCEBISApVKhdLSUrfbS0tLr1h/LSIiol33J12P4zhER0fjhRdeQGZmJvLy8jB9+nR8+OGHWLJkCe69915wHOfpYRJCvBAFQEIItFotkpKSsHv3buU2URSxe/duTJ48ucXHTJ482e3+gLTseKX7k+7FcRxGjBiBlStXoqKiAm+//TaFP0LIFVEnEEIIAODJJ5/EkiVLkJycjAkTJmDNmjWwWCy4//77AQCLFy9GZGQkXnnlFQDAb37zG9xwww14/fXXcfPNN+PTTz/FkSNH3FrWEc9QqVSeHgIhxMtRACSEAJDKupjNZrz44osoKSlBfHw8duzYoRz0KC4uBs9fWjSYMmUKPvnkEzz//PNYuXIlRowYga1bt/ZIb1lCCCGdQ3UACSGEEEL6GNoDSAjxOu1pSbd+/XpwHOf2R6/X9+BoCSGk96EASAjxKp999hmefPJJ/O53v0NmZibGjRuH2bNno6ys7IqP8fPzw8WLF5U/P/74Yw+OmKxatQpTpkyB0WhEQEBAmx7DGMOLL76Ifv36wWAwYMaMGSgoKOjegRJCFBQACSFe5Y033sDSpUtx//33Y8yYMVi3bh2MRiM++OCDKz6G4zhEREQof5oXqCbdy+Fw4Pbbb8ejjz7a5sf85S9/wV//+lesW7cOP/zwA0wmE2bPng2bzdaNIyWEyCgAEkK8Rkda0gFAfX09Bg0ahKioKMyfPx95eXk9MVzS6A9/+AOeeOIJxMbGtun+jDGsWbMGzz//PObPn4+4uDhs2LABFy5cwNatW7t3sIQQABQACSFepCMt6UaNGoUPPvgAn3/+OT7++GOIoogpU6bgp59+6okhkw4oLCxESUmJW9D39/fHxIkTqZc0IT2EysAQQnq1yZMnuxWfnjJlCkaPHo13330XL7/8sgdHRq5EDvPUS5oQz6EZQEKI1+hIS7rmNBoNEhIScPr06e4YYp/x7LPPXna6uvmfkydPenqYhJAOohlAQojXaNqSLjU1FcCllnTLli1r03MIgoBjx45h7ty53TjSa99TTz2F++67r9X7DB06tEPPLYf50tJS9OvXT7m9tLQU8fHxHXpOQkj7UAAkhHiV9rake+mllzBp0iQMHz4c1dXVePXVV/Hjjz/iwQcf9OS30euFhoYiNDS0W557yJAhiIiIwO7du5XAV1tbix9++KFdJ4kJIR1HAZAQ4lXa25KuqqoKS5cuRUlJCQIDA5GUlIQDBw5gzJgxnvoW+pzi4mJUVlaiuLgYgiAgOzsbADB8+HD4+PgAAKKjo/HKK69gwYIF4DgOy5cvxx//+EeMGDECQ4YMwQsvvID+/fsrM7+EkO5FreAI6UMEQcDPfvYzREREYPPmzcrtNTU1iImJweLFi7Fq1SoPjpD0Rvfddx8+/PDDy27fs2cPpk2bBkCq1fjPf/5TWVZmjOF3v/sd3nvvPVRXV+P666/H3/72N4wcObIHR05I30UBkJA+5tSpU4iPj8ff//533HPPPQCkZdWjR4/i8OHD0Gq1Hh4hIYSQ7kangAnpY0aOHIk///nPePzxx3Hx4kV8/vnn+PTTT7FhwwYKf83s27cPt9xyC/r37w+O49pUpDg9PR2JiYnQ6XQYPnw41q9f3+3jJISQ9qIASEgf9Pjjj2PcuHG499578dBDD+HFF1/EuHHjPD0sr2OxWDBu3DisXbu2TfcvLCzEzTffjOnTpyM7OxvLly/Hgw8+iK+//rqbR0oIIe1DS8CE9FEnT57E6NGjERsbi8zMTKjVdCasNRzHYcuWLa0eUnjmmWewbds25ObmKrfdddddqK6uxo4dO3pglIQQ0jY0A0hIH/XBBx/AaDSisLCQ2qZ1kYMHD7q1NwOA2bNnU3szQojXoQBISB904MAB/L//9//w5ZdfYsKECfjlL38JWgzovJKSkhbbm9XW1sJqtXpoVIQQcjkKgIT0MQ0NDbjvvvvw6KOPYvr06fjHP/6BQ4cOYd26dZ4eGiGEkB5CAZCQPua5554DYwx//vOfAQCDBw/Ga6+9ht/+9rcoKiry7OB6uYiIiBb7GPv5+cFgMHhoVIQQcjkKgIT0IXv37sXatWvxz3/+E0ajUbn94YcfxpQpU2gpuJMmT56M3bt3u922c+dOTJ482UMjIoSQltEpYEIIuYL6+nqcPn0aAJCQkIA33ngD06dPR1BQEAYOHIjnnnsO58+fx4YNGwBIZWBiYmLw2GOP4YEHHsC3336LX//619i2bRtmz57tyW+FEELcUAAkhJArSE9Px/Tp0y+7fcmSJVi/fj3uu+8+FBUVIT093e0xTzzxBI4fP44BAwbghRdeUNqfEUKIt6AASAghhBDSx9AeQEIIIYSQPoYCICGEEEJIH0MBkBBCCCGkj6EASAghhBDSx1AAJIQQQgjpYygAEkIIIYT0MRQACSGEEEL6GAqAhBBCCCF9DAVAQgghhJA+hgIgIYQQQkgfQwGQEEIIIaSPoQBICCGEENLHUAAkhBBCCOljKAASQgghhPQxFAAJIYQQQvoYCoCEEEIIIX0MBUBCCCGEkD6GAiAhhBBCSB9DAZAQQgghpI+hAEgIIYQQ0sdQACSEEEII6WMoABJCCCGE9DEUAAkhhBBC+hgKgIQQQgghfQwFQEIIIYSQPoYCICGEEEJIH0MBkBBCCCGkj6EASAghhBDSx1AAJIQQQgjpYygAEkIIIYT0MRQACSGEEEL6GAqAhBBCCCF9DAVAQgghhJA+hgIgIYQQQkgfQwGQEEIIIaSPoQBICCGEENLHUAAkhBBCCOljKAASQgghhPQx/x8a3t7JI6lTsQAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Function to create the lettuce shape\n", + "def lettuce_leaf(u, v):\n", + " r = 1 + 0.3 * np.sin(6 * u) * np.sin(6 * v)\n", + " x = r * np.cos(u) * np.sin(v)\n", + " y = r * np.sin(u) * np.sin(v)\n", + " z = r * np.cos(v)\n", + " return x, y, z\n", + "\n", + "# Function to create the root\n", + "def root(t):\n", + " x = 0.1 * np.sin(10 * t)\n", + " y = 0.1 * np.cos(10 * t)\n", + " z = -t\n", + " return x, y, z\n", + "\n", + "# Generate the lettuce surface\n", + "u = np.linspace(0, 2 * np.pi, 100)\n", + "v = np.linspace(0, np.pi, 100)\n", + "u, v = np.meshgrid(u, v)\n", + "x, y, z = lettuce_leaf(u, v)\n", + "\n", + "# Generate the root\n", + "t = np.linspace(0, 1, 100)\n", + "x_root, y_root, z_root = root(t)\n", + "\n", + "# Plotting\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "\n", + "# Plot the lettuce\n", + "ax.plot_surface(x, y, z, color='green', alpha=0.7)\n", + "\n", + "# Plot the root\n", + "ax.plot(x_root, y_root, z_root, color='brown', linewidth=2)\n", + "\n", + "# Adjust plot\n", + "ax.set_box_aspect([1,1,1])\n", + "ax.set_xlabel('X')\n", + "ax.set_ylabel('Y')\n", + "ax.set_zlabel('Z')\n", + "ax.set_title('3D Lettuce')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2dce1256-7afa-4e86-8aff-5db7b13b4d4d", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "conda", + "language": "python", + "name": "conda" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/scripts/elements.json b/scripts/other/elements.json similarity index 100% rename from scripts/elements.json rename to scripts/other/elements.json diff --git a/scripts/periodic_table.py b/scripts/periodic_table.py index 34d5893..315e86f 100644 --- a/scripts/periodic_table.py +++ b/scripts/periodic_table.py @@ -1,9 +1,10 @@ +#!/usr/bin env python3 """ Script to process the periodic table as json into latex stuff Source for `elements.json` is this amazing project: https://pse-info.de/de/data -Copyright Matthias Quintern 2024 +Copyright Matthias Quintern 2025 """ import json import os @@ -13,7 +14,7 @@ outdir = "../src/ch" def gen_periodic_table(): - with open("elements.json") as file: + with open("other/elements.json") as file: ptab = json.load(file) # print(ptab["elements"][1]) s = "% This file was created by the periodic_table.py script.\n% Do not edit manually. Any changes might get lost.\n" @@ -46,7 +47,7 @@ def gen_periodic_table(): temp = "" add_refractive_index = lambda idx: f"\\GT{{{idx['label']}}}: ${idx['value']}$, " idxs = get("optical", "refractive_index") - print(idxs) + # print(idxs) if type(idxs) == list: for idx in idxs: add_refractive_index(idx) elif type(idxs) == dict: add_refractive_index(idxs) @@ -64,7 +65,7 @@ def gen_periodic_table(): el_s += f"{match.groups()[1]}}}" el_s += "\n\\end{element}" - print(el_s) + # print(el_s) s += el_s + "\n" # print(s) return s diff --git a/scripts/plot.py b/scripts/plot.py deleted file mode 100644 index b1be9ee..0000000 --- a/scripts/plot.py +++ /dev/null @@ -1,36 +0,0 @@ -import os -import matplotlib.pyplot as plt -import numpy as np -import math -import scipy as scp - -outdir = "../src/img/" -filetype = ".pdf" -skipasserts = False - -full = 8 -size_half_half = (full/2, full/2) -size_third_half = (full/3, full/2) -size_half_third = (full/2, full/3) - -def texvar(var, val, math=True): - s = "$" if math else "" - s += f"\\{var} = {val}" - if math: s += "$" - return s - -def export(fig, name, notightlayout=False): - if not skipasserts: - assert os.path.abspath(".").endswith("scripts"), "Please run from the `scripts` directory" - filename = os.path.join(outdir, name + filetype) - if not notightlayout: - fig.tight_layout() - fig.savefig(filename) #, bbox_inches="tight") - - -@np.vectorize -def smooth_step(x: float, left_edge: float, right_edge: float): - x = (x - left_edge) / (right_edge - left_edge) - if x <= 0: return 0. - elif x >= 1: return 1. - else: return 3*(x**2) - 2*(x**3) diff --git a/scripts/qubits.py b/scripts/qubits.py index 1458222..e6b2595 100644 --- a/scripts/qubits.py +++ b/scripts/qubits.py @@ -1,4 +1,4 @@ -from plot import * +from formulasheet import * import scqubits as scq import qutip as qt @@ -23,33 +23,36 @@ def _plot_transmon_n_wavefunctions(qubit: scq.Transmon, fig_ax, which=[0,1]): ax.set_xlim(*xlim) ax.set_xticks(np.arange(xlim[0], xlim[1]+1)) -def _plot_transmon(qubit: scq.Transmon, ngs, fig, axs): +def _plot_transmon(qubit: scq.Transmon, ngs, fig, axs, wavefunction=True): _,_ = qubit.plot_evals_vs_paramvals("ng", ngs, fig_ax=(fig, axs[0]), evals_count=5, subtract_ground=False) - _,_ = qubit.plot_wavefunction(fig_ax=(fig, axs[1]), which=[0, 1, 2], mode="abs_sqr") - _plot_transmon_n_wavefunctions(qubit, (fig, axs[2]), which=[0, 1, 2]) - qubit.ng = 0.5 - _plot_transmon_n_wavefunctions(qubit, (fig, axs[3]), which=[0, 1, 2]) - qubit.ng = 0 + if wavefunction: + _,_ = qubit.plot_wavefunction(fig_ax=(fig, axs[1]), which=[0, 1, 2], mode="abs_sqr") + _plot_transmon_n_wavefunctions(qubit, (fig, axs[2]), which=[0, 1, 2]) + qubit.ng = 0.5 + _plot_transmon_n_wavefunctions(qubit, (fig, axs[3]), which=[0, 1, 2]) + qubit.ng = 0 -def transmon_cpb(): +def transmon_cpb(wavefunction=True): EC = 1 qubit = scq.Transmon(EJ=30, EC=EC, ng=0, ncut=30) ngs = np.linspace(-2, 2, 200) - fig, axs = plt.subplots(4, 3, squeeze=True, figsize=(full,full)) + nrows = 4 if wavefunction else 1 + + fig, axs = plt.subplots(nrows, 3, squeeze=False, figsize=(full,full/3)) axs = axs.T qubit.ng = 0 qubit.EJ = 0.1 * EC title = lambda x: f"$E_J/E_C = {x}$" - _plot_transmon(qubit, ngs, fig, axs[0]) + _plot_transmon(qubit, ngs, fig, axs[0], wavefunction=wavefunction) axs[0][0].set_title("Cooper-Pair-Box\n"+title(qubit.EJ)) qubit.EJ = EC - _plot_transmon(qubit, ngs, fig, axs[1]) + _plot_transmon(qubit, ngs, fig, axs[1], wavefunction=wavefunction) axs[1][0].set_title("Quantronium\n"+title(qubit.EJ)) qubit.EJ = 20 * EC - _plot_transmon(qubit, ngs, fig, axs[2]) + _plot_transmon(qubit, ngs, fig, axs[2], wavefunction=wavefunction) axs[2][0].set_title("Transmon\n"+title(qubit.EJ)) for ax in axs[1:,:].flatten(): ax.set_ylabel("") @@ -58,15 +61,14 @@ def transmon_cpb(): ax.set_xticklabels(["-2", "-1", "", "0", "", "1", "2"]) ylim = ax.get_ylim() ax.vlines([-1, -0.5], ymin=ylim[0], ymax=ylim[1], color="#aaa", linestyle="dotted") - axs[0][2].legend() + # axs[0][2].legend() fig.tight_layout() return fig -export(transmon_cpb(), "qubit_transmon") def flux_onium(): - fig, axs = plt.subplots(1, 3, squeeze=True, figsize=(full,full/2)) + fig, axs = plt.subplots(1, 3, squeeze=True, figsize=(full,full/3)) fluxs = np.linspace(0.4, 0.6, 50) EJ = 35.0 alpha = 0.3 @@ -100,4 +102,6 @@ def flux_onium(): axs[2].set_title("Fluxonium") return fig -export(flux_onium(), "qubit_flux_onium") +if __name__ == "__main__": + export(transmon_cpb(wavefunction=False), "qubit_transmon") + export(flux_onium(), "qubit_flux_onium") diff --git a/scripts/readme.md b/scripts/readme.md new file mode 100644 index 0000000..4e9571b --- /dev/null +++ b/scripts/readme.md @@ -0,0 +1,9 @@ +# Scripts +Put all scripts that generate plots or tex files here. + +## Plots +For plots with `matplotlib`: +1. import `plot.py` +2. use one of the preset figsizes +3. save the image using the `export` function in the `if __name__ == '__main__'` part + diff --git a/scripts/requirements.txt b/scripts/requirements.txt index d93e9c5..4761a58 100644 --- a/scripts/requirements.txt +++ b/scripts/requirements.txt @@ -1,4 +1,5 @@ numpy +scipy matplotlib scqubits qutip diff --git a/scripts/stat-mech.py b/scripts/stat-mech.py index e642825..9661d0d 100644 --- a/scripts/stat-mech.py +++ b/scripts/stat-mech.py @@ -1,4 +1,5 @@ -from plot import * +#!/usr/bin env python3 +from formulasheet import * def flennard_jones(r, epsilon, sigma): return 4 * epsilon * ((sigma/r)**12 - (sigma/r)**6) @@ -17,7 +18,6 @@ def lennard_jones(): ax.legend() ax.set_ylim(-1.1, 1.1) return fig -export(lennard_jones(), "potential_lennard_jones") # BOLTZMANN / FERMI-DIRAC / BOSE-EINSTEN DISTRIBUTIONS def fboltzmann(x): @@ -45,7 +45,6 @@ def id_qgas(): ax.legend() ax.set_ylim(-0.1, 4) return fig -export(id_qgas(), "td_id_qgas_distributions") @np.vectorize def fstep(x): @@ -67,7 +66,6 @@ def fermi_occupation(): ax.legend() ax.set_ylim(-0.1, 1.1) return fig -export(fermi_occupation(), "td_fermi_occupation") def fermi_heat_capacity(): fig, ax = plt.subplots(figsize=size_half_third) @@ -83,8 +81,8 @@ def fermi_heat_capacity(): low_temp_Cv = linear(x) - ax.plot(x, low_temp_Cv, color="orange", linestyle="dashed", label=r"${\pi^2}/{2}\,{T}/{T_\text{F}}$") - ax.hlines([3/2], xmin=0, xmax=10, color="blue", linestyle="dashed", label="Petit-Dulong") + ax.plot(x, low_temp_Cv, color="o", linestyle="dashed", label=r"${\pi^2}/{2}\,{T}/{T_\text{F}}$") + ax.hlines([3/2], xmin=0, xmax=10, color="b", linestyle="dashed", label="Petit-Dulong") @np.vectorize def unphysical_f(x): # exponential @@ -104,7 +102,7 @@ def fermi_heat_capacity(): else: return a * x # ax.plot(x, smoothing, label="smooth") y = unphysical_f(x) - ax.plot(x, y, color="black") + ax.plot(x, y, color="k") ax.legend(loc="lower right") @@ -116,5 +114,9 @@ def fermi_heat_capacity(): ax.set_xlim(0, 1.4 * T_F) ax.set_ylim(0, 2) return fig -export(fermi_heat_capacity(), "td_fermi_heat_capacity") +if __name__ == '__main__': + export(lennard_jones(), "potential_lennard_jones") + export(fermi_heat_capacity(), "td_fermi_heat_capacity") + export(fermi_occupation(), "td_fermi_occupation") + export(id_qgas(), "td_id_qgas_distributions") diff --git a/scripts/util/colorschemes.py b/scripts/util/colorschemes.py new file mode 100644 index 0000000..fdb6fb1 --- /dev/null +++ b/scripts/util/colorschemes.py @@ -0,0 +1,190 @@ +""" +A colorscheme for this project needs: +fg and bg 0-4, where 0 is used as default font / background +fg- and bg- where is "red", "orange", "yellow", "green", "aqua", "blue", "purple", "gray" +""" + +from math import floor + + +colors = ["red", "orange", "yellow", "green", "aqua", "blue", "purple", "gray"] + +def brightness(color:str, percent:float): + if color.startswith("#"): + color = color.strip("#") + newcolor = "#" + else: + newcolor = "" + for i in range(3): + c = float(int(color[i*2:i*2+2], 16)) + c = int(round(max(0, min(c*percent, 0xff)), 0)) + newcolor += f"{c:02x}" + return newcolor + +# +# GRUVBOX +# +p_gruvbox = { + "fg0": "#282828", + "fg0-hard": "#1d2021", + "fg0-soft": "#32302f", + "fg1": "#3c3836", + "fg2": "#504945", + "fg3": "#665c54", + "fg4": "#7c6f64", + "bg0": "#fbf1c7", + "bg0-hard": "#f9f5d7", + "bg0-soft": "#f2e5bc", + "bg1": "#ebdbb2", + "bg2": "#d5c4a1", + "bg3": "#bdae93", + "bg4": "#a89984", + "dark-red": "#cc241d", + "dark-green": "#98971a", + "dark-yellow": "#d79921", + "dark-blue": "#458588", + "dark-purple": "#b16286", + "dark-aqua": "#689d6a", + "dark-orange": "#d65d0e", + "dark-gray": "#928374", + "light-red": "#fb4934", + "light-green": "#b8bb26", + "light-yellow": "#fabd2f", + "light-blue": "#83a598", + "light-purple": "#d3869b", + "light-aqua": "#8ec07c", + "light-orange": "#f38019", + "light-gray": "#a89984", + "alt-red": "#9d0006", + "alt-green": "#79740e", + "alt-yellow": "#b57614", + "alt-blue": "#076678", + "alt-purple": "#8f3f71", + "alt-aqua": "#427b58", + "alt-orange": "#af3a03", + "alt-gray": "#7c6f64", +} + +def grubox_light(): + GRUVBOX_LIGHT = { "fg0": p_gruvbox["fg0-hard"], "bg0": p_gruvbox["bg0-hard"] } \ + | {f"fg{n}": p_gruvbox[f"fg{n}"] for n in range(1,5)} \ + | {f"bg{n}": p_gruvbox[f"bg{n}"] for n in range(1,5)} \ + | {f"fg-{n}": p_gruvbox[f"alt-{n}"] for n in colors} \ + | {f"bg-{n}": p_gruvbox[f"light-{n}"] for n in colors} + return GRUVBOX_LIGHT + +def gruvbox_dark(): + GRUVBOX_DARK = { "fg0": p_gruvbox["bg0-hard"], "bg0": p_gruvbox["fg0-hard"] } \ + | {f"fg{n}": p_gruvbox[f"bg{n}"] for n in range(1,5)} \ + | {f"bg{n}": p_gruvbox[f"fg{n}"] for n in range(1,5)} \ + | {f"fg-{n}": p_gruvbox[f"light-{n}"] for n in colors} \ + | {f"bg-{n}": p_gruvbox[f"dark-{n}"] for n in colors} + return GRUVBOX_DARK + +# +# LEGACY +# +p_legacy = { + "fg0": "#fcfcfc", + "bg0": "#333333", + "red": "#d12229", + "green": "#007940", + "yellow": "#ffc615", + "blue": "#2440fe", + "purple": "#4D1037", + "aqua": "#008585", + "orange": "#f68a1e", + "gray": "#928374", +} + +def legacy(): + LEGACY = \ + { f"fg{n}": brightness(p_legacy["fg0"], 1-n/8) for n in range(5)} \ + | { f"bg{n}": brightness(p_legacy["bg0"], 1+n/8) for n in range(5)} \ + | { f"bg-{n}": c for n,c in p_legacy.items() } \ + | { f"fg-{n}": brightness(c, 2.0) for n,c in p_legacy.items() } + return LEGACY + +# +# TUM +# +p_tum = { + "dark-blue": "#072140", + "light-blue": "#5E94D4", + "alt-blue": "#3070B3", + "light-yellow": "#FED702", + "dark-yellow": "#CBAB01", + "alt-yellow": "#FEDE34", + "light-orange": "#F7811E", + "dark-orange": "#D99208", + "alt-orange": "#F9BF4E", + "light-purple": "#B55CA5", + "dark-purple": "#9B468D", + "alt-purple": "#C680BB", + "light-red": "#EA7237", + "dark-red": "#D95117", + "alt-red": "#EF9067", + "light-green": "#9FBA36", + "dark-green": "#7D922A", + "alt-green": "#B6CE55", + "light-gray": "#475058", + "dark-gray": "#20252A", + "alt-gray": "#333A41", + "light-aqua": "#689d6a", + "dark-aqua": "#427b58", # taken aquas from gruvbox + "fg0-hard": "#000000", + "fg0": "#000000", + "fg0-soft": "#20252A", + "fg1": "#072140", + "fg2": "#333A41", + "fg3": "#475058", + "fg4": "#6A757E", + "bg0-hard": "#FFFFFF", + "bg0": "#FBF9FA", + "bg0-soft": "#EBECEF", + "bg1": "#DDE2E6", + "bg2": "#E3EEFA", + "bg3": "#F0F5FA", +} + +def tum(): + TUM = {} + for n,c in p_tum.items(): + n2 = n.replace("light", "bg").replace("dark", "fg") + TUM[n2] = c + return TUM + +# +# STUPID +# +p_stupid = { + "bg0": "#0505aa", + "fg0": "#ffffff", + "red": "#ff0000", + "green": "#23ff81", + "yellow": "#ffff00", + "blue": "#5555ff", + "purple": "#b00b69", + "aqua": "#00ffff", + "orange": "#ffa500", + "gray": "#444444", +} +def stupid(): + LEGACY = \ + { f"fg{n}": brightness(p_stupid["fg0"], 1-n/8) for n in range(5)} \ + | { f"bg{n}": brightness(p_stupid["bg0"], 1+n/8) for n in range(5)} \ + | { f"bg-{n}": c for n,c in p_stupid.items() } \ + | { f"fg-{n}": brightness(c, 2.0) for n,c in p_stupid.items() } + return LEGACY + +# UTILITY +def color_latex_def(name, color): + # name = name.replace("-", "_") + color = color.strip("#") + return "\\definecolor{" + name + "}{HTML}{" + color + "}" + +def generate_latex_colorscheme(palette, variant="light"): + s = "" + for n, c in palette.items(): + s += color_latex_def(n, c) + "\n" + return s diff --git a/scripts/util/mpl_colorscheme.py b/scripts/util/mpl_colorscheme.py new file mode 100644 index 0000000..b77c7a1 --- /dev/null +++ b/scripts/util/mpl_colorscheme.py @@ -0,0 +1,84 @@ +""" +Set the colorscheme for matplotlib plots and latex. + +Calling this script generates util/colorscheme.tex containing xcolor definitions. +""" +import matplotlib as mpl +import matplotlib.pyplot as plt +from cycler import cycler + +# default order for matplotlib +color_order = ["blue", "orange", "green", "red", "purple", "yellow", "aqua", "gray"] + +def set_mpl_colorscheme(palette: dict[str, str]): + P = palette + FIG_BG_COLOR = P["bg0"] + PLT_FG_COLOR = P["fg0"] + PLT_BG_COLOR = P["bg0"] + PLT_GRID_COLOR = P["bg2"] + LEGEND_FG_COLOR = PLT_FG_COLOR + LEGEND_BG_COLOR = P["bg1"] + LEGEND_BORDER_COLOR = P["bg2"] + COLORS = [P[f"fg-{c}"] for c in color_order] + + + color_rcParams = { + 'axes.edgecolor': PLT_FG_COLOR, + 'axes.facecolor': PLT_BG_COLOR, + 'axes.labelcolor': PLT_FG_COLOR, + 'axes.titlecolor': 'auto', + # 'axes.prop_cycle': cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']), + 'axes.prop_cycle': cycler('color', COLORS), + # 'axes3d.xaxis.panecolor': (0.95, 0.95, 0.95, 0.5), + # 'axes3d.yaxis.panecolor': (0.9, 0.9, 0.9, 0.5), + # 'axes3d.zaxis.panecolor': (0.925, 0.925, 0.925, 0.5), + # 'boxplot.boxprops.color': 'black', + # 'boxplot.capprops.color': 'black', + # 'boxplot.flierprops.color': 'black', + # 'boxplot.flierprops.markeredgecolor': 'black', + # 'boxplot.flierprops.markeredgewidth': 1.0, + # 'boxplot.flierprops.markerfacecolor': 'none', + # 'boxplot.meanprops.color': 'C2', + # 'boxplot.meanprops.markeredgecolor': 'C2', + # 'boxplot.meanprops.markerfacecolor': 'C2', + # 'boxplot.meanprops.markersize': 6.0, + # 'boxplot.medianprops.color': 'C1', + # 'boxplot.whiskerprops.color': 'black', + 'figure.edgecolor': PLT_BG_COLOR, + 'figure.facecolor': PLT_BG_COLOR, + # 'figure.figsize': [6.4, 4.8], + # 'figure.frameon': True, + # 'figure.labelsize': 'large', + 'grid.color': PLT_GRID_COLOR, + # 'hatch.color': 'black', + 'legend.edgecolor': LEGEND_BORDER_COLOR, + 'legend.facecolor': LEGEND_BG_COLOR, + 'xtick.color': PLT_FG_COLOR, + 'ytick.color': PLT_FG_COLOR, + 'xtick.labelcolor': PLT_FG_COLOR, + 'ytick.labelcolor': PLT_FG_COLOR, + # 'lines.color': 'C0', + 'text.color': PLT_FG_COLOR, + } + + for k, v in color_rcParams.items(): + plt.rcParams[k] = v + + # override single char codes + # TODO: use color name with variant from palette instead of order + mpl.colors.get_named_colors_mapping()["b"] = COLORS[0] + mpl.colors.get_named_colors_mapping()["o"] = COLORS[1] + mpl.colors.get_named_colors_mapping()["g"] = COLORS[2] + mpl.colors.get_named_colors_mapping()["r"] = COLORS[3] + mpl.colors.get_named_colors_mapping()["m"] = COLORS[4] + mpl.colors.get_named_colors_mapping()["y"] = COLORS[5] + mpl.colors.get_named_colors_mapping()["c"] = COLORS[6] + mpl.colors.get_named_colors_mapping()["k"] = P["fg0"] + mpl.colors.get_named_colors_mapping()["w"] = P["bg0"] + mpl.colors.get_named_colors_mapping()["black"] = P["fg0"] + for color in color_order: + mpl.colors.get_named_colors_mapping()[color] = P[f"fg-{color}"] + + + + diff --git a/src/ch/ch.tex b/src/ch/ch.tex index ccdb97a..da2b008 100644 --- a/src/ch/ch.tex +++ b/src/ch/ch.tex @@ -1,23 +1,311 @@ \Part[ - \eng{Chemie} + \eng{Chemistry} \ger{Chemie} ]{ch} - \Section[ - \eng{Periodic table} - \ger{Periodensystem} - ]{ptable} - \drawPeriodicTable +\Section[ + \eng{Periodic table} + \ger{Periodensystem} +]{ptable} + \drawPeriodicTable - \Section[ - \eng{stuff} - \ger{stuff} - ]{stuff} - \begin{formula}{covalent_bond} - \desc{Covalent bond}{}{} - \desc[german]{Kolvalente Bindung}{}{} - \ttxt{ - \eng{Bonds that involve sharing of electrons to form electron pairs between atoms.} - \ger{Bindungen zwischen Atomen die durch geteilte Elektronen, welche Elektronenpaare bilden, gebildet werden.} +\Section[ + \eng{Electrochemistry} + \ger{Elektrochemie} +]{el} + + \eng[std_cell]{standard cell potential} + \ger[std_cell]{Standardzellpotential} + \eng[electrode_pot]{electrode potential} + \ger[electrode_pot]{Elektrodenpotential} + \begin{formula}{chemical_potential} + \desc{Chemical potential}{of species $i$\\Energy involved when the particle number changes}{\QtyRef{gibbs_free_energy}, \QtyRef{amount}} + \desc[german]{Chemisches Potential}{der Spezies $i$\\Involvierte Energie, wenn sich die Teilchenzahl ändert}{} + \quantity{\mu}{\joule\per\mol;\joule}{is} + \eq{ + \mu_i \equiv \pdv{G}{n_i}_{n_j\neq n_i,p,T} + } + \end{formula} + + \begin{formula}{standard_chemical_potential} + \desc{Standard chemical potential}{In equilibrium}{\QtyRef{chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}, \QtyRef{activity}} + \desc[german]{Standard chemisches Potential}{}{} + \eq{\mu_i = \mu_i^\theta + RT \Ln{a_i}} + \end{formula} + + \begin{formula}{chemical_equilibrium} + \desc{Chemical equilibrium}{}{\QtyRef{chemical_potential}, \QtyRef{stoichiometric_coefficient}} + \desc[german]{Chemisches Gleichgewicht}{}{} + \eq{\sum_\text{\GT{products}} \nu_i \mu_i = \sum_\text{\GT{educts}} \nu_i \mu_i} + \end{formula} + + \begin{formula}{activity} + \desc{Activity}{relative activity}{\QtyRef{chemical_potential}, \QtyRef{standard_chemical_potential}, \ConstRef{universal_gas}, \QtyRef{temperature}} + \desc[german]{Aktivität}{Relative Aktivität}{} + \quantity{a}{}{s} + \eq{a_i = \Exp{\frac{\mu_i-\mu_i^\theta}{RT}}} + \end{formula} + + \begin{formula}{electrochemical_potential} + \desc{Electrochemical potential}{Chemical potential with electrostatic contributions}{\QtyRef{chemical_potential}, $z$ valency (charge), \ConstRef{faraday}, \QtyRef{electric_scalar_potential} (Galvani Potential)} + \desc[german]{Elektrochemisches Potential}{Chemisches Potential mit elektrostatischen Enegiebeiträgen}{\QtyRef{chemical_potential}, $z$ Ladungszahl, \ConstRef{faraday}, \QtyRef{electric_scalar_potential} (Galvanisches Potential)} + \quantity{\muecp}{\joule\per\mol;\joule}{is} + \eq{\muecp_i \equiv \mu_i + z_i F \phi} + \end{formula} + + \begin{formula}{nernst_equation} + \desc{Nernst equation}{Elektrode potential for a half-cell reaction}{$E$ electrode potential, $E^\theta$ \gt{std_cell}, \ConstRef{universal_gas}, \ConstRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \QtyRef{activity}, \QtyRef{stoichiometric_coefficient}} + \desc[german]{Nernst-Gleichung}{Elektrodenpotential für eine Halbzellenreaktion}{} + \eq{E = E^\theta + \frac{RT}{zF} \Ln{\frac{ \left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{oxidized}}{\left(\prod_{i}(a_i)^{\abs{\nu_i}}\right)_\text{reduced}}}} + \end{formula} + + \begin{formula}{cell} + \desc{Electrochemical cell}{}{} + \desc[german]{Elektrochemische Zelle}{}{} + \ttxt{ + \eng{ + \begin{itemize} + \item Electrolytic cell: Uses electrical energy to force a chemical reaction + \item Galvanic cell: Produces electrical energy through a chemical reaction + \end{itemize} } + \ger{ + \begin{itemize} + \item Elektrolytische Zelle: Nutzt elektrische Energie um eine Reaktion zu erzwingen + \item Galvanische Zelle: Produziert elektrische Energie durch eine chemische Reaktion + \end{itemize} + } + } + \end{formula} + \begin{formula}{standard_cell_potential} + \desc{Standard cell potential}{}{$\Delta_\txR G^\theta$ standard \qtyRef{gibbs_free_energy} of reaction, $n$ number of electrons, \ConstRef{faraday}} + \desc[german]{Standard Zellpotential}{}{$\Delta_\txR G^\theta$ Standard \qtyRef{gibbs_free_energy} der Reaktion, $n$ Anzahl der Elektronen, \ConstRef{faraday}} + \eq{E^\theta_\text{rev} = \frac{-\Delta_\txR G^\theta}{nF}} + \end{formula} + + \begin{formula}{she} + \desc{Standard hydrogen electrode (SHE)}{}{} + \desc[german]{Standard Wasserstoffelektrode}{}{} + \ttxt{ + \eng{Defined as reference for measuring half-cell potententials} + \ger{Definiert als Referenz für Messungen von Potentialen von Halbzellen} + } + $a_{\ce{H+}} =1 \, (\text{pH} = 0)$, $p_{\ce{H2}} = \SI{100}{\kilo\pascal}$ + \end{formula} + + \eng[galvanic]{galvanic} + \ger[galvanic]{galvanisch} + \eng[electrolytic]{electrolytic} + \ger[electrolytic]{electrolytisch} + \begin{formula}{cell_efficiency} + \desc{Thermodynamic cell efficiency}{}{$P$ \fqEqRef{ed:el:power}} + \desc[german]{Thermodynamische Zelleffizienz}{}{} + \eq{ + \eta_\text{cell} &= \frac{P_\text{obtained}}{P_\text{maximum}} = \frac{E_\text{cell}}{E_\text{cell,rev}} & & \text{\gt{galvanic}} \\ + \eta_\text{cell} &= \frac{P_\text{minimum}}{P_\text{applied}} = \frac{E_\text{cell,rev}}{E_\text{cell}} & & \text{\gt{electrolytic}} + } + \end{formula} + + \Subsection[ + \eng{Ionic conduction in electrolytes} + \ger{Ionische Leitung in Elektrolyten} + ]{ion_cond} + \eng[z]{charge number} + \ger[z]{Ladungszahl} + \eng[of_i]{of ion $i$} + \ger[of_i]{des Ions $i$} + + \begin{formula}{diffusion} + \desc{Diffusion}{caused by concentration gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{diffusion_constant} \gt{of_i}, \QtyRef{concentration} \gt{of_i}} + \desc[german]{Diffusion}{durch Konzentrationsgradienten}{} + \eq{ i_\text{diff} = \sum_i -z_i F D_i \left(\odv{c_i}{x}\right) } \end{formula} + \begin{formula}{migration} + \desc{Migration}{caused by potential gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, \QtyRef{mobility} \gt{of_i}, $\nabla\phi_\txs$ potential gradient in the solution} + \desc[german]{Migration}{durch Potentialgradienten}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, \QtyRef{mobility} \gt{of_i}, $\nabla\phi_\txs$ Potentialgradient in der Lösung} + \eq{ i_\text{mig} = \sum_i -z_i^2 F^2 \, c_i \, \mu_i \, \nabla\Phi_\txs } + \end{formula} + + \begin{formula}{convection} + \desc{Convection}{caused by pressure gradients}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, $v_i^\text{flow}$ \qtyRef{velocity} \gt{of_i} in flowing electrolyte} + \desc[german]{Convection}{durch Druckgradienten}{$z_i$ \qtyRef{charge_number} \gt{of_i}, \ConstRef{faraday}, \QtyRef{concentration} \gt{of_i}, $v_i^\text{flow}$ \qtyRef{velocity} \gt{of_i} im fliessenden Elektrolyt} + \eq{ i_\text{conv} = \sum_i -z_i F \, c_i \, v_i^\text{flow} } + \end{formula} + + \begin{formula}{ionic_conductivity} + \desc{Ionic conductivity}{}{\ConstRef{faraday}, $z_i$, $c_i$, $\mu_i$ charge number, \qtyRef{concentration} and \qtyRef{mobility} of the positive (+) and negative (-) ions} + \desc[german]{Ionische Leitfähigkeit}{}{\ConstRef{faraday}, $z_i$, $c_i$, $\mu_i$ Ladungszahl, \qtyRef{concentration} und \qtyRef{mobility} der positiv (+) und negativ geladenen Ionen} + \quantity{\kappa}{\per\ohm\cm=\siemens\per\cm}{} + \eq{\kappa = F^2 \left(z_+^2 \, c_+ \, \mu_+ + z_-^2 \, c_- \, \mu_-\right)} + \end{formula} + + \begin{formula}{ionic_resistance} + \desc{Ohmic resistance of ionic current flow}{}{$L$ \qtyRef{length}, $A$ \qtyRef{area}, \QtyRef{ionic_conductivity}} + \desc[german]{Ohmscher Widerstand für Ionen-Strom}{}{} + \eq{R_\Omega = \frac{L}{A\,\kappa}} + \end{formula} + + \begin{formula}{ionic_mobility} + \desc{Ionic mobility}{}{$v_\pm$ steady state drift \qtyRef{velocity}, $\phi$ \qtyRef{electric_scalar_potential}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{charge}, \QtyRef{viscosity}, $r_\pm$ ion radius} + \desc[german]{Ionische Moblilität}{}{} + \quantity{u_\pm}{\cm^2\mol\per\joule\s}{} + % \eq{u_\pm = - \frac{v_\pm}{\nabla \phi \,z_\pm F} = \frac{e}{6\pi F \eta_\text{dyn} \r_\pm}} + \end{formula} + + \begin{formula}{transference} + \desc{Transference number}{Ion transport number \\Fraction of the current carried by positive / negative ions}{$i_{+/-}$ current through positive/negative charges} + \desc[german]{Überführungszahl}{Anteil der positiv / negativ geladenen Ionen am Gesamtstrom}{$i_{+/-}$ Strom durch positive / negative Ladungn} + \eq{t_{+/-} = \frac{i_{+/-}}{i_+ + i_-}} + \end{formula} + + \eng[csalt]{electrolyte \qtyRef{concentration}} + \eng[csalt]{\qtyRef{concentration} des Elektrolyts} + \begin{formula}{molar_conductivity} + \desc{Molar conductivity}{}{\QtyRef{ionic_conductivity}, $c_\text{salt}$ \gt{csalt}} + \desc[german]{Molare Leitfähigkeit}{}{\QtyRef{ionic_conductivity}, $c_\text{salt}$ \gt{salt}} + \quantity{\Lambda_\txM}{\siemens\cm^2\per\mol=\ampere\cm^2\per\volt\mol}{ievs} + \eq{\Lambda_\txM = \frac{\kappa}{c_\text{salt}}} + \end{formula} + + \begin{formula}{kohlrausch_law} + \desc{Kohlrausch's law}{}{$\Lambda_\txM^0$ \qtyRef{molar_conductivity} at infinite dilution, $c_\text{salt}$ \gt{csalt}, $K$ \GT{constant}} + \desc[german]{}{}{$\Lambda_\txM^0$ \qtyRef{molar_conductivity} bei unendlicher Verdünnung, $\text{salt}$ \gt{csalt} $K$ \GT{constant}} + \eq{\Lambda_\txM = \Lambda_\txM^0 - K \sqrt{c_\text{salt}}} + \end{formula} + + % Electrolyte conductivity + \begin{formula}{molality} + \desc{Molality}{}{\QtyRef{amount} of the solute, \QtyRef{mass} of the solvent} + \desc[german]{Molalität}{}{\QtyRef{amount} des gelösten Stoffs, \QtyRef{mass} des Lösungsmittels} + \quantity{b}{\mol\per\kg}{} + \eq{b = \frac{n}{m}} + \end{formula} + + \begin{formula}{molarity} + \desc{Molarity}{\GT{see} \qtyRef{concentration}}{\QtyRef{amount} of the solute, \QtyRef{volume} of the solvent} + \desc[german]{Molarität}{}{\QtyRef{amount} des gelösten Stoffs, \QtyRef{volume} des Lösungsmittels} + \quantity{c}{\mol\per\litre}{} + \eq{c = \frac{n}{V}} + \end{formula} + + \begin{formula}{ionic_strength} + \desc{Ionic strength}{Measure of the electric field in a solution through solved ions}{\QtyRef{molality}, \QtyRef{molarity}, $z$ \qtyRef{charge_number}} + \desc[german]{Ionenstärke}{Maß eienr Lösung für die elektrische Feldstärke durch gelöste Ionen}{} + \quantity{I}{\mol\per\kg;\mol\per\litre}{} + \eq{I_b &= \frac{1}{2} \sum_i b_i z_i^2 \\ I_c &= \frac{1}{2} \sum_i c_i z_i^2} + \end{formula} + + \begin{formula}{debye_screening_length} + \desc{Debye screening length}{}{\ConstRef{avogadro}, \ConstRef{charge}, \QtyRef{ionic_strength}, \QtyRef{permittivity}, \ConstRef{boltzmann}, \QtyRef{temperature}} + \desc[german]{Debye-Länge / Abschirmlänge}{}{} + \eq{\lambda_\txD = \sqrt{\frac{\epsilon \kB T}{2\NA e^2 I_C}}} + \end{formula} + + \begin{formula}{mean_ionic_activity} + \desc{Mean ionic activity coefficient}{Accounts for decreased reactivity because ions must divest themselves of their ion cloud before reacting}{} + \desc[german]{Mittlerer ionischer Aktivitätskoeffizient}{Berücksichtigt dass Ionen sich erst von ihrer Ionenwolke lösen müssen, bevor sie reagieren können}{} + \quantity{\gamma}{}{s} + \eq{\gamma_\pm = \left(\gamma_+^{\nu_+} \, \gamma_-^{\nu_-}\right)^{\frac{1}{\nu_+ + \nu_-}}} + \end{formula} + + \begin{formula}{debye_hueckel_law} + \desc{Debye-Hückel limiting law}{For an infinitely dilute solution}{\QtyRef{mean_ionic_activity}, $A$ solvent dependant constant, $z$ \qtyRef{charge_number}, \QtyRef{ionic_strength} in [\si{\mol\per\kg}]} + \desc[german]{Debye-Hückel Gesetz}{Für eine unendlich verdünnte Lösung}{} + \eq{\Ln{\gamma_{\pm}} = -A \abs{z_+ \, z_-} \sqrt{I_b}} + \end{formula} + + \Subsection[ + \eng{Kinetics} + \ger{Kinetik} + ]{kin} + \begin{formula}{overpotential} + \desc{Overpotential}{}{$E_\text{electrode}$ potential at which the reaction starts $E_\text{ref}$ thermodynamic potential of the reaction} + \desc[german]{Überspannung}{}{$E_\text{electrode}$ Potential bei der die Reaktion beginnt, $E_\text{ref}$ thermodynamisches Potential der Reaktion} + \eq{\eta_\text{act} = E_\text{electrode} - E_\text{ref}} + \end{formula} + + \begin{formula}{activation_overpotential} + \desc{Activation overpotential}{}{} + \desc[german]{Aktivierungsüberspannung}{}{} + \eq{} + \end{formula} + + \begin{formula}{concentration_overpotential} + \desc{Concentration overpotential}{}{} + \desc[german]{Konzentrationsüberspannung}{}{} + \eq{\eta_\text{conc} = -\frac{RT}{(1-\alpha) nF} \ln \left(\frac{c_\text{ox}^0}{c_\text{ox}^\txS}\right)} + \end{formula} + + \begin{formula}{diffusion_overpotential} + \desc{Diffusionoverpotential}{}{} + \desc[german]{Diffusionsüberspannung}{}{} + \eq{} + \end{formula} + \begin{formula}{roughness_factor} + \desc{Roughness factor}{Surface area related to electrode geometry}{} + \eq{\rfactor} + \end{formula} + + \begin{formula}{butler_volmer} + \desc{Butler-Volmer equation}{Reaction kinetics near the equilibrium potentential} + {$j$ \qtyRef{current_density}, $j_0$ exchange current density, $\eta$ \fqEqRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txc/\txa}$ cathodic/anodic charge transfer coefficient} + %Current through an electrode iof a unimolecular redox reaction with both anodic and cathodic reaction occuring on the same electrode + \desc[german]{Butler-Volmer-Gleichung}{Reaktionskinetik in der Nähe des Gleichgewichtspotentials} + {$j$ \qtyRef{current_density}, $j_0$ Austauschstromdichte, $\eta$ \fqEqRef{ch:el:kin:overpotential}, \QtyRef{temperature}, $z$ \qtyRef{charge_number}, \ConstRef{faraday}, \ConstRef{universal_gas}, $\alpha_{\txc/\txa}$ Ladungstransferkoeffizient an der Kathode/Anode} + \begin{gather} + j = j_0 \,\rfactor\, \left[ \Exp{\frac{(1-a_\txc) z F \eta}{RT}} - \Exp{-\frac{\alpha_\txc z F \eta}{RT}}\right] + \intertext{\GT{with}} + \alpha_\txa = 1 - \alpha_\txc + \end{gather} + \separateEntries + \fig{img/ch_butler_volmer.pdf} + \end{formula} + + + +\Section[ + \eng{misc} + \ger{misc} +]{misc} + \begin{formula}{std_condition} + \desc{Standard temperature and pressure}{}{} + \desc[german]{Standardbedingungen}{}{} + \eq{ + T &= \SI{273.15}{\kelvin} = \SI{0}{\celsius} \\ + p &= \SI{100000}{\pascal} = \SI{1.000}{\bar} + } + \end{formula} + \begin{formula}{ph} + \desc{pH definition}{}{$a_{\ce{H+}}$ hyrdrogen ion \qtyRef{activity}} + \desc[german]{pH-Wert definition}{}{$a_{\ce{H+}}$ Wasserstoffionen-\qtyRef{activity}} + \eq{\pH = -\log_{10}(a_{\ce{H+}})} + \end{formula} + + \begin{formula}{ph_rt} + \desc{pH}{At room temperature \SI{25}{\celsius}}{} + \desc[german]{pH-Wert}{Bei Raumtemperatur \SI{25}{\celsius}}{} + \eq{ + \pH > 7 &\quad\tGT{basic} \\ + \pH < 7 &\quad\tGT{acidic} \\ + \pH = 7 &\quad\tGT{neutral} + } + \end{formula} + + \begin{formula}{covalent_bond} + \desc{Covalent bond}{}{} + \desc[german]{Kolvalente Bindung}{}{} + \ttxt{ + \eng{Bonds that involve sharing of electrons to form electron pairs between atoms.} + \ger{Bindungen zwischen Atomen die durch geteilte Elektronen, welche Elektronenpaare bilden, gebildet werden.} + } + \end{formula} + + \begin{formula}{grotthuss} + \desc{Grotthuß-mechanism}{}{} + \desc[german]{Grotthuß-Mechanismus}{}{} + \ttxt{ + \eng{The mobility of protons in aqueous solutions is much higher than that of other ions because they can "move" by breaking and reforming covalent bonds of water molecules.} + \ger{The Moblilität von Protononen in wässrigen Lösungen ist wesentlich größer als die anderer Ionen, da sie sich "bewegen" können indem die Wassertsoffbrückenbindungen gelöst und neu gebildet werden.} + } + \end{formula} + diff --git a/src/cm/cm.tex b/src/cm/cm.tex index 67b1589..e5d6691 100644 --- a/src/cm/cm.tex +++ b/src/cm/cm.tex @@ -3,3 +3,58 @@ \ger{Festkörperphysik} ]{cm} \TODO{Bonds, hybridized orbitals} + \TODO{Lattice vibrations, van hove singularities, debye frequency} + + \begin{formula}{dos} + \desc{Density of states (DOS)}{}{\QtyRef{volume}, $N$ number of energy levels, \QtyRef{energy}} + \desc[german]{Zustandsdichte (DOS)}{}{\QtyRef{volume}, $N$ Anzahl der Energieniveaus, \QtyRef{energy}} + \eq{D(E) = \frac{1}{V}\sum_{i=1}^{N} \delta(E-E(\vec{k_i}))} + \end{formula} + \begin{formula}{dos_parabolic} + \desc{Density of states for parabolic dispersion}{Applies to \fqSecRef{cm:egas}}{} + \desc[german]{Zustandsdichte für parabolische Dispersion}{Bei \fqSecRef{cm:egas}}{} + \eq{ + D_1(E) &= \frac{1}{2\sqrt{c_k(E-E_0)}} && (\text{1D}) \\ + D_2(E) &= \frac{\pi}{2c_k} && (\text{2D}) \\ + D_3(E) &= \pi \sqrt{\frac{E-E_0}{c_k^3}}&& (\text{3D}) + } + \end{formula} + + \Section[ + \eng{Lattice vibrations} + \ger{Gitterschwingungen} + ]{vib} + + \begin{formula}{dispersion_1atom_basis} + \desc{Phonon dispersion of a lattice with a one-atom basis}{same as the dispersion of a linear chain}{$C_n$ force constants between layer $s$ and $s+n$, $M$ \qtyRef{mass} of the reference atom, $a$ \qtyRef{lattice_constant}, $q$ phonon \qtyRef{wavevector}, $u$ Ansatz for the atom displacement} + \desc[german]{Phonondispersion eines Gitters mit zweiatomiger Basis}{gleich der Dispersion einer linearen Kette}{$C_n$ Kraftkonstanten zwischen Ebene $s$ und $s+n$, $M$ \qtyRef{mass} des Referenzatoms, $a$ \qtyRef{lattice_constant}, $q$ Phonon \qtyRef{wavevector}, $u$ Ansatz für die Atomauslenkung} + \eq{ + \omega^2 = \frac{4C_1}{M}\left[\sin^2 \left(\frac{qa}{2}\right) + \frac{C2}{C1} \sin^2(qa)\right] \\ + \intertext{\GT{with}} + u_{s+n} = U\e^{-i \left[\omega t - q(s+n)a \right]} + } + \fig{img/cm_phonon_dispersion_one_atom_basis.pdf} + \end{formula} + \TODO{Plots} + \begin{formula}{dispersion_2atom_basis} + \desc{Phonon dispersion of a lattice with a two-atom basis}{}{$C$ force constant between layers, $M_i$ \qtyRef{mass} of the basis atoms, $a$ \qtyRef{lattice_constant}, $q$ phonon \qtyRef{wavevector}, $u, v$ Ansatz for the displacement of basis atom 1 and 2, respectively} + \desc[german]{Phonondispersion eines Gitters mit einatomiger Basis}{}{$C$ Kraftkonstanten zwischen Ebene $s$ und $s+n$, $M_i$ \qtyRef{mass} der Basisatome, $a$ \qtyRef{lattice_constant}, $q$ Phonon \qtyRef{wavevector}, $u, v$ jeweils Ansatz für die Atomauslenkung des Basisatoms 1 und 2} + \eq{ + \omega^2_{\txa,\txo} = C \left(\frac{1}{M_1}+\frac{1}{M_2}\right) \mp C \sqrt{\left(\frac{1}{M_1}+\frac{1}{M_2}\right)^2 - \frac{4}{M_1M_2} \sin^2 \left(\frac{qa}{2}\right)} + \intertext{\GT{with}} + u_{s} = U\e^{-i \left(\omega t - qsa \right)}, \quad + v_{s} = V\e^{-i \left(\omega t - qsa \right)} + } + \fig{img/cm_phonon_dispersion_two_atom_basis.pdf} + \end{formula} + + \Subsection[ + \eng{Debye model} + \ger{Debye-Modell} + ]{debye} + \begin{ttext} + \eng{Atoms behave like coupled \hyperref[sec:qm:hosc]{quantum harmonic oscillators}. The finite sample size leads to periodic boundary conditio. The finite sample size leads to periodic boundary conditions for the vibrations.} + \ger{Atome verhalten sich wie gekoppelte \hyperref[sec:qm:hosc]{quantenmechanische harmonische Oszillatoren}. Die endliche Ausdehnung des Körpers führt zu periodischen Randbedingungen. } + \end{ttext} + + diff --git a/src/cm/crystal.tex b/src/cm/crystal.tex index 283abfc..a38a8b6 100644 --- a/src/cm/crystal.tex +++ b/src/cm/crystal.tex @@ -6,11 +6,11 @@ \eng{Bravais lattice} \ger{Bravais-Gitter} ]{bravais} - \eng[bravais_table2]{In 2D, there are 5 different Bravais lattices} - \ger[bravais_table2]{In 2D gibt es 5 verschiedene Bravais-Gitter} + \eng[table2D]{In 2D, there are 5 different Bravais lattices} + \ger[table2D]{In 2D gibt es 5 verschiedene Bravais-Gitter} - \eng[bravais_table3]{In 3D, there are 14 different Bravais lattices} - \ger[bravais_table3]{In 3D gibt es 14 verschiedene Bravais-Gitter} + \eng[table3D]{In 3D, there are 14 different Bravais lattices} + \ger[table3D]{In 3D gibt es 14 verschiedene Bravais-Gitter} \Eng[lattice_system]{Lattice system} \Ger[lattice_system]{Gittersystem} @@ -26,7 +26,7 @@ \newcolumntype{Z}{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}X} \begin{table}[H] \centering - \expandafter\caption\expandafter{\gt{bravais_table2}} + \expandafter\caption\expandafter{\gt{table2D}} \label{tab:bravais2} \begin{adjustbox}{width=\textwidth} @@ -46,7 +46,7 @@ \begin{table}[H] \centering - \caption{\gt{bravais_table3}} + \caption{\gt{table3D}} \label{tab:bravais3} % \newcolumntype{g}{>{\columncolor[]{0.8}}} diff --git a/src/cm/low_temp.tex b/src/cm/low_temp.tex index 99d7ba1..064d0ec 100644 --- a/src/cm/low_temp.tex +++ b/src/cm/low_temp.tex @@ -95,7 +95,7 @@ ]{gl} \begin{ttext} \eng{ - + \TODO{TODO} } \end{ttext} @@ -132,10 +132,67 @@ \eng{Microscopic theory} \ger{Mikroskopische Theorie} ]{micro} + + \begin{formula}{isotop_effect} + \desc{Isotope effect}{Superconducting behaviour depends on atomic mass and thereby of the lattice \Rightarrow Microscopic origin}{$\Tcrit$ critial temperature, $M$ isotope mass, $\omega_\text{ph}$} + \desc[german]{Isotopeneffekt}{Supraleitung hängt von der Atommasse und daher von den Gittereigenschaften ab \Rightarrow Mikroskopischer Ursprung}{$\Tcrit$ kritische Temperatur, $M$ Isotopen-Masse, $\omega_\text{ph}$} + \eq{ + \Tcrit \propto \frac{1}{\sqrt{M}} \\ + \omega_\text{ph} \propto \frac{1}{\sqrt{M}} \Rightarrow \Tcrit \propto \omega_\text{ph} + } + \end{formula} + + \begin{formula}{cooper_pairs} + \desc{Cooper pairs}{}{} + \desc[german]{Cooper-Paars}{}{} + \ttxt{ + \eng{Conduction electrons reduce their energy through an attractive interaction: One electron passing by atoms attracts the these, which creats a positive charge region behind the electron, which in turn attracts another electron. } + } + \end{formula} - \Subsection[ + \Subsubsection[ \eng{BCS-Theory} \ger{BCS-Theorie} - ]{BCS} - + ]{bcs} + \begin{ttext} + \eng{ + Electron pairs form bosonic quasi-particles called Cooper pairs which can condensate into the ground state. + The wave function spans the whole material, which makes it conduct without resistance. + The exchange bosons between the electrons are phonons. + } + \ger{ + Elektronenpaar bilden bosonische Quasipartikel (Cooper Paare) welche in den Grundzustand kondensieren können. + Die Wellenfunktion übersoannt den gesamten Festkörper, was einen widerstandslosen Ladungstransport garantiert. + Die Austauschbosononen zwischen den Elektronen sind Bosonen. + } + \end{ttext} + \def\BCS{{\text{BCS}}} + \begin{formula}{hamiltonian} + \desc{BCS Hamiltonian}{for $N$ interacting electrons}{ + $c_{\veck\sigma}$ creation/annihilation operators create/destroy at $\veck$ with spin $\sigma$ \\ + First term: non-interacting free electron gas\\ + Second term: interaction energy + } + \desc[german]{BCS Hamiltonian}{}{} + \eq{ + \hat{H}_\BCS = + \sum_{\sigma} \sum_\veck \epsilon_\veck \hat{c}_{\veck\sigma}^\dagger \hat{c}_{\veck\sigma} + + \sum_{\veck,\veck^\prime} V_{\veck,\veck^\prime} + \hat{c}_{\veck\uparrow}^\dagger \hat{c}_{-\veck\downarrow}^\dagger + \hat{c}_{-\veck^\prime\downarrow} \hat{c}_{\veck^\prime,\uparrow} + } + \end{formula} + \begin{formula}{bogoliubov-valatin} + \desc{Bogoliubov-Valatin transformation}{Diagonalization of the \fqEqRef{cm:sc:micro:bcs:hamiltonian} to derive excitation energies}{} + \desc[german]{Bogoliubov-Valatin transformation}{}{} + \eq{ + \hat{H}_\BCS - N\mu = \sum_\veck \big[\xi_\veck - E_\veck + \Delta_\veck g_\veck^*\big] + \sum_\veck \big[E_\veck a_\veck^\dagger a_\veck + E_\veck \beta_{-\veck}^\dagger \beta_{-\veck}\big] + } + \end{formula} + + \begin{formula}{gap_equation} + \desc{BCS-gap equation}{}{} + \desc[german]{}{}{} + \eq{\Delta_\veck^* = -\sum_\veck^+\prime V_{\veck,\veck^\prime} \frac{\Delta_{\veck^\prime}}{2E_\veck} \tanh \left(\frac{E_{\veck^\prime}}{2\kB T}\right)} + \end{formula} diff --git a/src/cm/mat.tex b/src/cm/mat.tex new file mode 100644 index 0000000..1fece32 --- /dev/null +++ b/src/cm/mat.tex @@ -0,0 +1,14 @@ +\Section[ + \eng{Material physics} + \ger{Materialphysik} +]{mat} + +\begin{formula}{tortuosity} + \desc{Tortuosity}{Degree of the winding of a transport path through a porous material. \\ Multiple definitions exist}{$l$ path length, $L$ distance of the end points} + \desc[german]{Toruosität}{Grad der Gewundenheit eines Transportweges in einem porösen Material. \\ Mehrere Definitionen existieren}{$l$ Weglänge, $L$ Distanz der Endpunkte} + \quantity{\tau}{}{} + \eq{ + \tau &= \left(\frac{l}{L}\right)^2 \\ + \tau &= \frac{l}{L} + } +\end{formula} diff --git a/src/cm/misc.tex b/src/cm/misc.tex index 64101d5..8a813d9 100644 --- a/src/cm/misc.tex +++ b/src/cm/misc.tex @@ -84,19 +84,27 @@ \ger{\GT{misc}} ]{misc} - \begin{formula}{exciton} - \desc{Exciton}{}{} - \desc[german]{Exziton}{}{} - \ttxt{ - \eng{Quasi particle, excitation in condensed matter as bound electron-hole pair.} - \ger{Quasiteilchen, Anregung im Festkörper als gebundenes Elektron-Loch-Paar} - } - \end{formula} + \begin{formula}{work_function} \desc{Work function}{Lowest energy required to remove an electron into the vacuum}{} \desc[german]{Austrittsarbeit}{eng. "Work function"; minimale Energie um ein Elektron aus dem Festkörper zu lösen}{} \quantity{W}{\eV}{s} - \eq{-e\phi - \EFermi} + \eq{W = \Evac - \EFermi} \end{formula} + \begin{formula}{electron_affinity} + \desc{Electron affinity}{Energy required to remove one electron from an anion with one negative charge.\\Energy difference between vacuum level and conduction band}{} + \desc[german]{Elektronenaffinität}{Energie, die benötigt wird um ein Elektron aus einem einfach-negativ geladenen Anion zu entfernen. Entspricht der Energiedifferenz zwischen Vakuum-Niveau und dem Leitungsband}{} + \quantity{\chi}{\eV}{s} + \eq{\chi = \left(\Evac - \Econd\right)} + \end{formula} + + + \begin{formula}{laser} + \desc{Laser}{Light amplification by stimulated emission of radiation}{} + \desc[german]{Laser}{}{} + \ttxt{ + \eng{\textit{Gain medium} is energized \textit{pumping energy} (electric current or light), light of certain wavelength is amplified in the gain medium} + } + \end{formula} diff --git a/src/cm/semiconductors.tex b/src/cm/semiconductors.tex index 9e1f0c5..2c285c4 100644 --- a/src/cm/semiconductors.tex +++ b/src/cm/semiconductors.tex @@ -2,44 +2,47 @@ \eng{Semiconductors} \ger{Halbleiter} ]{semic} - \begin{formula}{types} - \desc{Intrinsic/extrinsic}{}{$n,p$ \fqEqRef{cm:semic:charge_density_eq}} - \desc[german]{Intrinsisch/Extrinsisch}{}{} - \ttxt{ - \eng{ - Intrinsic: pure, electron density determiend only by thermal excitation and $n_i^2 = n_0 p_0$\\ - Extrinsic: doped - } - \ger{ - Intrirnsisch: Pur, Elektronendichte gegeben durch thermische Anregung und $n_i^2 = n_0 p_0$ \\ - Extrinsisch: gedoped - } +\begin{formula}{types} + \desc{Intrinsic/extrinsic}{}{$n,p$ \fqEqRef{cm:semic:charge_density_eq}} + \desc[german]{Intrinsisch/Extrinsisch}{}{} + \ttxt{ + \eng{ + Intrinsic: pure, electron density determiend only by thermal excitation and $n_i^2 = n_0 p_0$\\ + Extrinsic: doped } - \end{formula} - - \begin{formula}{charge_density_eq} - \desc{Equilibrium charge densitites}{Holds when $\frac{\Econd-\EFermi}{\kB T}>3.6$ and $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{} - \desc[german]{Ladungsträgerdichte im Equilibrium}{Gilt wenn $\frac{\Econd-\EFermi}{\kB T}>3.6$ und $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{} - \eq{ - n_0 &\approx N_\text{c}(T) \Exp{-\frac{E_\text{c} - \EFermi}{\kB T}} \\ - p_0 &\approx N_\text{v}(T) \Exp{-\frac{\EFermi - E_\text{v}}{\kB T}} + \ger{ + Intrirnsisch: Pur, Elektronendichte gegeben durch thermische Anregung und $n_i^2 = n_0 p_0$ \\ + Extrinsisch: gedoped } - \end{formula} - \begin{formula}{charge_density_intrinsic} - \desc{Intrinsic charge density}{}{} - \desc[german]{Intrinsische Ladungsträgerdichte}{}{} - \eq{ - n_\text{i} \approx \sqrt{n_0 p_0} = \sqrt{N_\text{c}(T) N_\text{v}(T)} \Exp{-\frac{E_\text{gap}}{2\kB T}} - } - \end{formula} + } +\end{formula} - \begin{formula}{mass_action} - \desc{Mass action law}{Charge densities at thermal equilibrium, independent of doping}{} - \desc[german]{Massenwirkungsgesetz}{Ladungsträgerdichten im Equilibrium, unabhängig der Dotierung }{} - \eq{np = n_i^2} - \end{formula} +\begin{formula}{charge_density_eq} + \desc{Equilibrium charge densitites}{Holds when $\frac{\Econd-\EFermi}{\kB T}>3.6$ and $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{} + \desc[german]{Ladungsträgerdichte im Equilibrium}{Gilt wenn $\frac{\Econd-\EFermi}{\kB T}>3.6$ und $\frac{\EFermi-\Evalence}{\kB T} > 3.6$}{} + \eq{ + n_0 &\approx N_\text{c}(T) \Exp{-\frac{E_\text{c} - \EFermi}{\kB T}} \\ + p_0 &\approx N_\text{v}(T) \Exp{-\frac{\EFermi - E_\text{v}}{\kB T}} + } +\end{formula} +\begin{formula}{charge_density_intrinsic} + \desc{Intrinsic charge density}{}{} + \desc[german]{Intrinsische Ladungsträgerdichte}{}{} + \eq{ + n_\text{i} \approx \sqrt{n_0 p_0} = \sqrt{N_\text{c}(T) N_\text{v}(T)} \Exp{-\frac{E_\text{gap}}{2\kB T}} + } +\end{formula} - +\begin{formula}{mass_action} + \desc{Mass action law}{Charge densities at thermal equilibrium, independent of doping}{} + \desc[german]{Massenwirkungsgesetz}{Ladungsträgerdichten im Equilibrium, unabhängig der Dotierung }{} + \eq{np = n_i^2} +\end{formula} + + +\begin{formula}{bandgaps} + \desc{Bandgaps of common semiconductors}{}{} + \desc[german]{Bandlücken wichtiger Halbleiter}{}{} \begin{tabular}{l|CCc} & \Egap(\SI{0}{\kelvin}) [\si{\eV}] & \Egap(\SI{300}{\kelvin}) [\si{\eV}] & \\ \hline \GT{diamond} & 5,48 & 5,47 & \GT{indirect} \\ @@ -51,23 +54,107 @@ InP & 1,42 & 1,35 & \GT{direct} \\ CdS & 2.58 & 2.42 & \GT{direct} \end{tabular} +\end{formula} - \begin{formula}{min_maj} - \desc{Minority / Majority charge carriers}{}{} - \desc[german]{Minoritäts- / Majoritätsladungstraäger}{}{} + +\begin{formula}{min_maj} + \desc{Minority / Majority charge carriers}{}{} + \desc[german]{Minoritäts- / Majoritätsladungstraäger}{}{} + \ttxt{ + \eng{ + Majority carriers: higher number of particles ($e^-$ in n-type, $h^+$ in p-type)\\ + Minority carriers: lower number of particles ($h^+$ in n-type, $e^-$ in p-type) + } + \ger{ + Majoritätsladungstraäger: höhere Teilchenzahl ($e^-$ in n-Typ, $h^+$ in p-Typ)\\ + Minoritätsladungsträger: niedrigere Teilchenzahl ($h^+$ in n-Typ, $e^-$ in p-Typ) + } + } +\end{formula} +\TODO{effective mass approx} + + +\Subsection[ + \eng{Devices and junctions} + \ger{Bauelemente und Kontakte} +]{junctions} + \begin{formula}{metal-sc} + \desc{Metal-semiconductor junction}{}{} + \desc[german]{Metall-Halbleiter Kontakt}{}{} + % \ttxt{ + % \eng{ + + % } + % } + \end{formula} + + \begin{bigformula}{schottky_barrier} + \desc{Schottky barrier}{Rectifying \fqEqRef{cm:sc:junctions:metal-sc}}{} + % \desc[german]{}{}{} + \centering + \resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_metal_n_sc_separate.tex}} + \resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_metal_n_sc.tex}} + \TODO{Work function electron affinity sind doch Energien und keine Potentiale, warum wird also immer $q$ davor geschrieben?} + \end{bigformula} + \begin{formula}{schottky-mott_rule} + \desc{Schottky-Mott rule}{}{$\Phi_\txB$ barrier potential, $\Phi_\txM$ \GT{metal} \qtyRef{work_function}, $\chi_\text{sc}$ \qtyRef{electron_affinity}} + % \desc[german]{}{}{} + \eq{\Phi_\txB \approx \Phi_\txM - \chi_\text{sc}} + \end{formula} + \TODO{work function verhältnisse, wann ist es ohmisch wann depleted?} + \begin{bigformula}{ohmic} + \desc{Ohmic contact}{}{} + \desc[german]{Ohmscher Kontakt}{}{} + \centering + \resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_ohmic_separate.tex}} + \resizebox{0.49\textwidth}{!}{\input{img/cm/sc_junction_ohmic.tex}} + \end{bigformula} + + \begin{bigformula}{pn} + \desc{p-n junction}{}{} + \desc[german]{p-n Übergang}{}{} + \centering + \input{img/cm/sc_junction_pn.tex} + \resizebox{0.49\textwidth}{!}{\tikzPnJunction{1/3}{0}{0}{1/3}{0}{0}{}} + \resizebox{0.49\textwidth}{!}{\tikzPnJunction{1/2}{0.4}{-0.4}{1/2}{-0.4}{0.4}{}} + \end{bigformula} + + + +\Subsection[ + \eng{Excitons} + \ger{Exzitons} +]{exciton} + \begin{formula}{desc} + \desc{Exciton}{}{} + \desc[german]{Exziton}{}{} \ttxt{ \eng{ - Majority carriers: higher number of particles ($e^-$ in n-type, $h^+$ in p-type)\\ - Minority carriers: lower number of particles ($h^+$ in n-type, $e^-$ in p-type) + Quasi particle, excitation in condensed matter as bound electron-hole pair. + \\ Free (Wannier) excitons: delocalised over many lattice sites + \\ Bound (Frenkel) excitonsi: localised in single unit cell } + \ger{ - Majoritätsladungstraäger: höhere Teilchenzahl ($e^-$ in n-Typ, $h^+$ in p-Typ)\\ - Minoritätsladungsträger: niedrigere Teilchenzahl ($h^+$ in n-Typ, $e^-$ in p-Typ) + Quasiteilchen, Anregung im Festkörper als gebundenes Elektron-Loch-Paar + \\ Freie (Wannier) Exzitons: delokalisiert, über mehrere Einheitszellen + \\ Gebundene (Frenkel) Exzitons: lokalisiert in einer Einheitszelle } } - \end{formula} - - - - - + \end{formula} + \eng[free_X]{for free Excitons} + \ger[free_X]{für freie Exzitons} + \begin{formula}{rydberg} + \desc{Exciton Rydberg energy}{\gt{free_X}}{$R_\txH$ \fqEqRef{qm:h:rydberg_energy}} + \desc[german]{}{}{} + \eq{ + E(n) = - \left(\frac{\mu}{m_0\epsilon_r^2}\right) R_\txH \frac{1}{n^2} + } + \end{formula} + \begin{formula}{bohr_radius} + \desc{Exciton Bohr radius}{\gt{free_X}}{\QtyRef{relative_permittivity}, \ConstRef{bohr_radius}, \ConstRef{electron_mass}, $mu$ \GT{reduced_mass}} + \desc[german]{Exziton-Bohr Radius}{}{} + \eq{ + r_n = \left(\frac{m_\txe\epsilon_r a_\txB}{mu}\right) n^2 + } + \end{formula} diff --git a/src/cm/techniques.tex b/src/cm/techniques.tex index 578c2ab..2013d3b 100644 --- a/src/cm/techniques.tex +++ b/src/cm/techniques.tex @@ -2,10 +2,71 @@ \eng{Measurement techniques} \ger{Messtechniken} ]{meas} + +\newcommand\newTechnique{\hline} + \Eng[name]{Name} + \Ger[name]{Name} + \Eng[application]{Application} + \Ger[application]{Anwendung} + + \Subsection[ + \eng{Raman spectroscopy} + \ger{Raman Spektroskopie} + ]{raman} + % \begin{minipagetable}{raman} + % \entry{name}{ + % \eng{Raman spectroscopy} + % \ger{Raman-Spektroskopie} + % } + % \entry{application}{ + % \eng{Vibrational modes, Crystal structure, Doping, Band Gaps, Layer thickness in \fqEqName{cm:misc:vdw_material}} + % \ger{Vibrationsmoden, Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fqEqName{cm:misc:vdw_material}} + % } + % % \entry{how}{ + % % \eng{Monochromatic light (\fqEqRef{Laser}) shines on sample, inelastic scattering because of rotation-, vibration-, phonon and spinflip-processes, plot spectrum as shift of the laser light (in \si{\per\cm})} + % % \ger{Monochromatisches Licht (\fqEqRef{Laser}) bestrahlt Probe, inelastische Streuung durch Rotations-, Schwingungs-, Phonon und Spin-Flip-Prozesse, plotte Spektrum als Verschiebung gegen das Laser Licht (in \si{\per\cm}) } + % % } + % \end{minipagetable} + \begin{minipage}{0.5\textwidth} + \begin{figure}[H] + \centering + % \includegraphics[width=0.8\textwidth]{img/cm_amf.pdf} + % \caption{\cite{Bian2021}} + \end{figure} + \end{minipage} + + \expandafter\detokenize\expandafter{\fqname} + \GT{cm:meas:raman:raman:application} + + \separateEntries + + % \begin{minipagetable}{pl} + % \entry{name}{ + % \eng{Photoluminescence spectroscopy} + % \ger{Photolumeszenz-Spektroskopie} + % } + % \entry{application}{ + % \eng{Crystal structure, Doping, Band Gaps, Layer thickness in \fqEqName{cm:misc:vdw_material}} + % \ger{Kristallstruktur, Dotierung, Bandlücke, Schichtdicke im \fqEqName{cm:misc:vdw_material}} + % } + % \entry{how}{ + % \eng{Monochromatic light (\fqEqRef{Laser}) shines on sample, electrons are excited, relax to the conduction band minimum and finally accross the band gap under photon emission} + % \ger{Monochromatisches Licht (\fqEqRef{Laser}) bestrahlt Probe, Elektronen werden angeregt und relaxieren in das Leitungsband-Minimum und schließlich über die Bandlücke unter Photonemission} + % } + % \end{minipagetable} + \begin{minipage}{0.5\textwidth} + \begin{figure}[H] + \centering + % \includegraphics[width=0.8\textwidth]{img/cm_amf.pdf} + % \caption{\cite{Bian2021}} + \end{figure} + \end{minipage} + + \Subsection[ \eng{ARPES} \ger{ARPES} - ]{arpes} + ]{arpes} what? in? how? @@ -20,11 +81,6 @@ \ger{Bilder der Oberfläche einer Probe werden erstellt, indem die Probe mit einer Sonde abgetastet wird.} \end{ttext} - \Eng[name]{Name} - \Ger[name]{Name} - \Eng[application]{Application} - \Ger[application]{Anwendung} - \begin{minipagetable}{amf} \entry{name}{ @@ -49,6 +105,8 @@ \end{minipage} + + \begin{minipagetable}{stm} \entry{name}{ \eng{Scanning tunneling microscopy (STM)} diff --git a/src/topo.tex b/src/cm/topo.tex similarity index 99% rename from src/topo.tex rename to src/cm/topo.tex index ddf6d12..191f716 100644 --- a/src/topo.tex +++ b/src/cm/topo.tex @@ -1,8 +1,8 @@ -\Part[ +\Section[ \eng{Topological Materials} \ger{Topologische Materialien} ]{topo} -\Section[ +\Subsection[ \eng{Berry phase / Geometric phase} \ger{Berry-Phase / Geometrische Phase} ]{berry_phase} diff --git a/src/comp/ad.tex b/src/comp/ad.tex new file mode 100644 index 0000000..8d38ddd --- /dev/null +++ b/src/comp/ad.tex @@ -0,0 +1,87 @@ +\Section[ + \eng{Atomic dynamics} + % \ger{} +]{ad} + \Subsection[ + \eng{Born-Oppenheimer Approximation} + \ger{Born-Oppenheimer Näherung} + ]{bo} + \begin{formula}{hamiltonian} + \desc{Electron Hamiltonian}{}{$\hat{T}$ \fqEqRef{comp:elsth:kinetic_energy}, $\hat{V}$ \fqEqRef{comp:elsth:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}} + \desc[german]{Hamiltonian der Elektronen}{}{} + \eq{\hat{H}_\txe = \hat{T}_\txe + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe}} + \end{formula} + \begin{formula}{ansatz} + \desc{Wave function ansatz}{}{$\psi_\text{en}^n$ eigenstate $n$ of \fqEqRef{comp:elst:hamiltonian}, $\psi_\txe^i$ eigenstate $i$ of \fqEqRef{comp:ad:bo:hamiltonian}, $\vecr,\vecR$ electron/nucleus positions, $\sigma$ electron spin, $c^{ni}$ coefficients} + \desc[german]{Wellenfunktion Ansatz}{}{} + \eq{\psi_\text{en}^n\big(\{\vecr,\sigma\},\{\vecR\}\big) = \sum_i c^{ni}\big(\{\vecR\}\big)\, \psi_\txe^i\big(\{\vecr,\sigma\},\{\vecR\}\big)} + \end{formula} + \begin{formula}{equation} + \desc{Equation}{}{} + % \desc[german]{}{}{} + \eq{ + \label{eq:\fqname} + \left[E_\txe^j\big(\{\vecR\}\big) + \hat{T}_\txn + V_{\txn \leftrightarrow \txn} - E^n \right]c^{nj} = -\sum_i \Lambda_{ij} c^{ni}\big(\{\vecR\}\big) + } + \end{formula} + \begin{formula}{coupling_operator} + \desc{Exact nonadiabtic coupling operator}{Electron-phonon couplings / electron-vibrational couplings}{$\psi^i_\txe$ electronic states, $\vecR$ nucleus position, $M$ nucleus \qtyRef{mass}} + % \desc[german]{}{}{} + \begin{multline} + \Lambda_{ij} = \int \d^3r (\psi_\txe^j)^* \left(-\sum_I \frac{\hbar^2\nabla_{\vecR_I}^2}{2M_I}\right) \psi_\txe^i \\ + + \sum_I \frac{1}{M_I} \int\d^3r \left[(\psi_\txe^j)^* (-i\hbar\nabla_{\vecR_I})\psi_\txe^i\right](-i\hbar\nabla_{\vecR_I}) + \end{multline} + \end{formula} + \begin{formula}{adiabatic_approx} + \desc{Adiabatic approximation}{Electronic configuration remains the same when atoms move}{$\Lambda_{ij}$ \fqEqRef{comp:ad:bo:coupling_operator}} + \desc[german]{Adiabatische Näherung}{Elektronenkonfiguration bleibt gleich bei Bewegung der Atome gleich}{} + \eq{\Lambda_{ij} = 0 \quad \text{\GT{for} } i\neq j} + \end{formula} + \begin{formula}{approx} + \desc{Born-Oppenheimer approximation}{}{\GT{see} \fqEqRef{comp:ad:bo:equation}} + \desc[german]{Born-Oppenheimer Näherung}{}{} + \begin{gather} + \Lambda_{ij} = 0 + \shortintertext{\fqEqRef{comp:ad:bo:equation} \Rightarrow} + \left[E_e^i\big(\{\vecR\}\big) + \hat{T}_\txn - E^n\right]c^{ni}\big(\{\vecR\}\big) = 0 + \end{gather} + \end{formula} + + \begin{formula}{surface} + \desc{Born-Oppenheimer surface}{Potential energy surface (PES)\\ The nuclei follow Newtons equations of motion on the BO surface if the system is in the electronic ground state}{$E_\txe^0, \psi_\txe^0$ lowest eigenvalue/eigenstate of \fqEqRef{comp:ad:bo:hamiltonian}} + \desc[german]{Born-Oppenheimer Potentialhyperfläche}{Die Nukleonen Newtons klassichen Bewegungsgleichungen auf der BO Hyperfläche wenn das System im elektronischen Grundzustand ist}{$E_\txe^0, \psi_\txe^0$ niedrigster Eigenwert/Eigenzustand vom \fqEqRef{comp:ad:bo:hamiltonian}} + \begin{gather} + V_\text{BO}\big(\{\vecR\}\big) = E_\txe^0\big(\{\vecR\}\big) \\ + M_I \ddot{\vecR}_I(t) = - \Grad_{\vecR_I} V_\text{BO}\big(\{\vecR(t)\}\big) + \shortintertext{\GT{ansatz} \GT{for} \fqEqRef{comp:ad:bo:approx}} + \psi_\text{BO} = c^{n0} \big(\{\vecR\}\big) \,\psi_\txe^0 \big(\{\vecr,\sigma\},\{\vecR\}\big) + \end{gather} + \end{formula} + + \begin{formula}{limitations} + \desc{Limitations}{}{} + \desc[german]{Limitationen}{}{} + \ttxt{ + \eng{ + \begin{itemize} + \item Nuclei velocities must be small and electron energy state differences large + \item Nuclei need spin for effects like spin-orbit coupling + \item Nonadiabitc effects in photochemistry, proteins + \end{itemize} + } + } + \end{formula} + \TODO{geometry optization?, lattice vibrations (harmionic approx, dynamical matrix)} + + + \Subsection[ + \eng{Molecular Dynamics} + \ger{Molekulardynamik} + ]{md} + \begin{ttext} + \eng{Statistical method} + + \end{ttext} + + \TODO{ab-initio MD, force-field MD} + diff --git a/src/comp/comp.tex b/src/comp/comp.tex new file mode 100644 index 0000000..d8416b6 --- /dev/null +++ b/src/comp/comp.tex @@ -0,0 +1,4 @@ +\Part[ + \eng{Computational Physics} + \ger{Computergestützte Physik} +]{comp} diff --git a/src/comp/elsth.tex b/src/comp/elsth.tex new file mode 100644 index 0000000..38748e4 --- /dev/null +++ b/src/comp/elsth.tex @@ -0,0 +1,183 @@ +\Section[ + \eng{Electronic structure theory} + % \ger{} +]{elst} + \begin{formula}{kinetic_energy} + \desc{Kinetic energy}{of species $i$}{$i$ = nucleons/electrons, $N$ number of particles, $m$ \qtyRef{mass}} + \desc[german]{Kinetische Energie}{von Spezies $i$}{$i$ = Nukleonen/Elektronen, $N$ Teilchenzahl, $m$ \qtyRef{mass}} + \eq{\hat{T}_i &= -\sum_{n=1}^{N_i} \frac{\hbar^2}{2 m_i} \vec{\nabla}^2_n} + \end{formula} + \begin{formula}{potential_energy} + \desc{Electrostatic potential}{between species $i$ and $j$}{$i,j$ = nucleons/electrons, $r$ particle position, $Z_i$ charge of species $i$, \ConstRef{charge}} + \desc[german]{Elektrostatisches Potential}{zwischen Spezies $i$ und $j$}{} + \eq{\hat{V}_{i \leftrightarrow j} &= -\sum_{k,l} \frac{Z_i Z_j e^2}{\abs{\vecr_k - \vecr_l}}} + \end{formula} + \begin{formula}{hamiltonian} + \desc{Electronic structure Hamiltonian}{}{$\hat{T}$ \fqEqRef{comp:elsth:kinetic_energy}, $\hat{V}$ \fqEqRef{comp:elsth:potential_energy}, $\txe$ \GT{electrons}, $\txn$ \GT{nucleons}} + \eq{\hat{H} &= \hat{T}_\txe + \hat{T}_\txn + V_{\txe \leftrightarrow \txe} + V_{\txn \leftrightarrow \txe} + V_{\txn \leftrightarrow \txn}} + \end{formula} + \begin{formula}{mean_field} + \desc{Mean field approximation}{Replaces 2-particle operator by 1-particle operator}{Example for Coulumb interaction between many electrons} + \desc[german]{Molekularfeldnäherung}{Ersetzt 2-Teilchen Operator durch 1-Teilchen Operator}{Beispiel für Coulumb Wechselwirkung zwischen Elektronen} + \eq{ + \frac{1}{2}\sum_{i\neq j} \frac{e^2}{\abs{\vec{r}_i - \vec{r}_j}} \approx \sum_{i} V_\text{eff}(\vec{r}_i) + } + \end{formula} + + +\Subsection[ + \eng{Tight-binding} + \ger{Modell der stark gebundenen Elektronen / Tight-binding} +]{tb} + \begin{formula}{assumptions} + \desc{Assumptions}{}{} + \desc[german]{Annahmen}{}{} + \ttxt{ + \eng{ + \begin{itemize} + \item Atomic wave functions are localized \Rightarrow Small overlap, interaction cutoff + \end{itemize} + } + } + \end{formula} + \begin{formula}{hamiltonian} + \desc{Tight-binding Hamiltonian}{in second quantized form}{$\hat{a}_i^\dagger$, $\hat{a}_i$ \GT{creation_annihilation_ops} create/destory an electron on site $i$, $\epsilon_i$ on-site energy, $t_{i,j}$ hopping amplitude, usually $\epsilon$ and $t$ are determined from experiments or other methods} + \desc[german]{Tight-binding Hamiltonian}{in zweiter Quantisierung}{$\hat{a}_i^\dagger$, $\hat{a}_i$ \GT{creation_annihilation_ops} erzeugen/vernichten ein Elektron auf Platz $i$, $\epsilon_i$ on-site Energie, $t_{i,j}$ hopping Amplitude, meist werden $\epsilon$ und $t$ aus experimentellen Daten oder anderen Methoden bestimmt} + \eq{\hat{H} = \sum_i \epsilon_i \hat{a}_i^\dagger \hat{a}_i - \sum_{i,j} t_{i,j} \left(\hat{a}_i^\dagger \hat{a}_j + \hat{a}_j^\dagger \hat{a}_i\right)} + \end{formula} + + + +\Subsection[ + \eng{Density functional theory (DFT)} + \ger{Dichtefunktionaltheorie (DFT)} +]{dft} + \Subsubsection[ + \eng{Hartree-Fock} + \ger{Hartree-Fock} + ]{hf} + \begin{formula}{description} + \desc{Description}{}{} + \desc[german]{Beschreibung}{}{} + \begin{ttext} + \eng{ + \begin{itemize} + \item \fqEqRef{comp:elst:mean_field} theory obeying the Pauli principle + \item Self-interaction free: Self interaction is cancelled out by the Fock-term + \end{itemize} + } + \end{ttext} + \end{formula} + \begin{formula}{equation} + \desc{Hartree-Fock equation}{}{ + $\varphi_\xi$ single particle wavefunction of $\xi$th orbital, + $\hat{T}$ kinetic electron energy, + $\hat{V}_{\text{en}}$ electron-nucleus attraction, + $\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential}, + } + \desc[german]{Hartree-Fock Gleichung}{}{ + $\varphi_\xi$ ein-Teilchen Wellenfunktion des $\xi$-ten Orbitals, + $\hat{T}$ kinetische Energie der Elektronen, + $\hat{V}_{\text{en}}$ Electron-Kern Anziehung, + $\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential} + } + \eq{ + \left(\hat{T} + \hat{V}_{\text{en}} + \hat{V}_{\text{HF}}^\xi\right)\varphi_\xi(x) = \epsilon_\xi \varphi_\xi(x) + } + \end{formula} + \begin{formula}{potential} + \desc{Hartree-Fock potential}{}{} + \desc[german]{Hartree Fock Potential}{}{} + \eq{ + V_{\text{HF}}^\xi(\vecr) = + \sum_{\vartheta} \int \d x' + \frac{e^2}{\abs{\vecr - \vecr'}} + \left( + \underbrace{\abs{\varphi_\xi(x')}^2}_{\text{Hartree-Term}} + - \underbrace{\frac{\varphi_{\vartheta}^*(x') \varphi_{\xi}(x') \varphi_{\vartheta}(x)}{\varphi_\xi(x)}}_{\text{Fock-Term}} + \right) + } + \end{formula} + \begin{formula}{scf} + \desc{Self-consistent field cycle}{}{} + % \desc[german]{}{}{} + \ttxt{ + \eng{ + \begin{enumerate} + \item Initial guess for $\psi$ + \item Solve SG for each particle + \item Make new guess for $\psi$ + \end{enumerate} + } + } + \end{formula} + + \Subsubsection[ + \eng{Hohenberg-Kohn Theorems} + \ger{Hohenberg-Kohn Theoreme} + ]{hk} + \begin{formula}{hk1} + \desc{Hohenberg-Kohn theorem (HK1)}{}{} + \desc[german]{Hohenberg-Kohn Theorem (HK1)}{}{} + \ttxt{ + \eng{For any system of interacting electrons, the ground state electron density $n(\vecr)$ determines $\hat{V}_\text{ext}$ uniquely up to a trivial constant. } + \ger{Die Elektronendichte des Grundzustandes $n(\vecr)$ bestimmt ein einzigartiges $\hat{V}_{\text{ext}}$ eines Systems aus interagierenden Elektronen bis auf eine Konstante.} + } + \end{formula} + \begin{formula}{hk2} + \desc{Hohenberg-Kohn theorem (HK2)}{}{} + \desc[german]{Hohenberg-Kohn Theorem (HK2)}{}{} + \ttxt{ + \eng{Given the energy functional $E[n(\vecr)]$, the ground state density and energy can be obtained variationally. The density that minimizes the total energy is the ecxact ground state density. } + \ger{Für ein Energiefunktional $E[n(\vecr)]$ kann die Grundzustandsdichte und Energie durch systematische Variation bestimmt werden. Die Dichte, welche die Gesamtenergie minimiert ist die exakte Grundzustandsichte. } + } + \end{formula} + + \Subsubsection[ + \eng{Kohn-Sham DFT} + \ger{Kohn-Sham DFT} + ]{ks} + \begin{formula}{map} + \desc{Kohn-Sham map}{}{} + \desc[german]{Kohn-Sham Map}{}{} + \ttxt{ + \eng{Maps fully interacting system of electrons to a system of non-interacting electrons with the same ground state density $n^\prime(\vecr) = n(\vecr)$} + } + \eq{n(\vecr) = \sum_{i=1}^N \abs{\phi_i(\vecr)}^2} + \end{formula} + \begin{formula}{functional} + \desc{Kohn-Sham functional}{}{$T_\text{KS}$ kinetic enery, $V_\text{ext}$ external potential, $E_\txH$ \hyperref[f:comp:elst:dft:hf:potential]{Hartree term}, $E_\text{XC}$ exchange correlation functional} + \desc[german]{Kohn-Sham Funktional}{}{} + \eq{E_\text{KS}[n(\vecr)] = T_\text{KS}[n(\vecr)] + V_\text{ext}[n(\vecr)] + E_\text{H}[n(\vecr)] + E_\text{XC}[n(\vecr)] } + \end{formula} + + \begin{formula}{equation} + \desc{Kohn-Sham equation}{Solving it uses up a large portion of supercomputer resources}{$\phi_i^\text{KS}$ KS orbitals} + \desc[german]{Kohn-Sham Gleichung}{Die Lösung der Gleichung macht einen großen Teil der Supercomputer Ressourcen aus}{} + \begin{multline} + \biggr\{ + -\frac{\hbar^2\nabla^2}{2m} + + v_\text{ext}(\vecr) + + e^2 \int\d^3 \vecr^\prime \frac{n(\vecr^\prime)}{\abs{\vecr-\vecr^\prime}} \\ + + \pdv{E_\txX[n(\vecr)]}{n(\vecr)} + + \pdv{E_\txC[n(\vecr)]}{n(\vecr)} + \biggr\} \phi_i^\text{KS}(\vecr) =\\ + = \epsilon_i^\text{KS} \phi_i^\text{KS}(\vecr) + \end{multline} + \end{formula} + \begin{formula}{scf} + \desc{Self-consistent field cycle for Kohn-Sham}{}{} + % \desc[german]{}{}{} + \ttxt{ + \itemsep=\parsep + \eng{ + \begin{enumerate} + \item Initial guess for $n(\vecr)$ + \item Calculate effective potential $V_\text{eff}$ + \item Solve \fqEqRef{comp:elst:dft:ks:equation} + \item Calculate density $n(\vecr)$ + \item Repeat 2-4 until self consistent + \end{enumerate} + } + } + \end{formula} diff --git a/src/comp/ml.tex b/src/comp/ml.tex new file mode 100644 index 0000000..c481ca4 --- /dev/null +++ b/src/comp/ml.tex @@ -0,0 +1,84 @@ +\Section[ + \eng{Machine-Learning} + \ger{Maschinelles Lernen} +]{ml} + \Subsection[ + \eng{Performance metrics} + \ger{Metriken zur Leistungsmessung} + ]{performance} + \eng[cp]{correct predictions} + \ger[cp]{richtige Vorhersagen} + \eng[fp]{false predictions} + \ger[fp]{falsche Vorhersagen} + + \eng[y]{ground truth} + \eng[yhat]{prediction} + \ger[y]{Wahrheit} + \ger[yhat]{Vorhersage} + + \begin{formula}{accuracy} + \desc{Accuracy}{}{} + \desc[german]{Genauigkeit}{}{} + \eq{a = \frac{\tgt{cp}}{\tgt{fp} + \tgt{cp}}} + \end{formula} + \TODO{is $n$ the nuber of predictions or the number of output features?} + \begin{formula}{mean_abs_error} + \desc{Mean absolute error (MAE)}{}{$y$ \gt{y}, $\hat{y}$ \gt{yhat}, $n$ ?} + \desc[german]{Mittlerer absoluter Fehler (MAE)}{}{} + \eq{\text{MAE} = \frac{1}{n} \sum_{i=1}^n \abs{y_i - \hat{y}_i}} + \end{formula} + \begin{formula}{root_mean_square_error} + \desc{Root mean squared error (RMSE)}{}{$y$ \gt{y}, $\hat{y}$ \gt{yhat}, $n$ ?} + \desc[german]{Standardfehler der Regression}{Quadratwurzel des mittleren quadratischen Fehlers (RSME)}{} + \eq{\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^n \left(y_i - \hat{y}_i\right)^2}} + \end{formula} + + \Subsection[ + \eng{Regression} + \ger{Regression} + ]{reg} + \Subsubsection[ + \eng{Linear Regression} + \ger{Lineare Regression} + ]{linear} + \begin{formula}{eq} + \desc{Linear regression}{Fits the data under the assumption of \hyperref[f:math:pt:distributions:cont:normal]{normally distributed errors}}{$\mat{x}\in\R^{N\times M}$ input data, $\mat{y}\in\R^{N\times L}$ output data, $\mat{b}$ bias, $\vec{W}$ weights, $N$ samples, $M$ features, $L$ output variables} + \desc[german]{Lineare Regression}{Fitted Daten unter der Annahme \hyperref[f:math:pt:distributions:cont:normal]{normalverteilter Fehler}}{} + \eq{\mat{y} = \mat{b} + \mat{x} \cdot \vec{W}} + \end{formula} + \begin{formula}{design_matrix} + \desc{Design matrix}{Stack column of ones to the feature vector\\Useful when $b$ is scalar}{$x_{ij}$ feature $j$ of sample $i$} + \desc[german]{Designmatrix Ansatz}{}{} + \eq{ + \mat{X} = \begin{pmatrix} 1 & x_{11} & \ldots & x_{1M} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N1} & \ldots & x_{NM} \end{pmatrix} + } + \end{formula} + \begin{formula}{scalar_bias} + \desc{Linear regression with scalar bias}{Using the design matrix, the scalar is absorbed into the weight vector}{$\mat{y}$ output data, $\mat{X}$ \fqEqRef{comp:ml:reg:design_matrix}, $\vec{W}$ weights} + \desc[german]{Lineare Regression mit skalarem Bias}{Durch die Designmatrix wird der Bias in den Gewichtsvektor absorbiert}{} + \eq{\mat{y} = \mat{X} \cdot \vec{W}} + \end{formula} + \begin{formula}{normal_equation} + \desc{Normal equation}{Solves \fqEqRef{comp:ml:reg:linear:scalar_bias}}{$\mat{y}$ output data, $\mat{X}$ \fqEqRef{comp:ml:reg:linear:design_matrix}, $\vec{W}$ weights} + \desc[german]{Normalengleichung}{Löst \fqEqRef{comp:ml:reg:linear:scalar_bias}}{} + \eq{\vec{W} = \left(\mat{X}^\T \mat{X}\right)^{-1} \mat{X}^T \mat{y}} + \end{formula} + + \Subsubsection[ + \eng{Ridge regression} + \ger{Ridge Regression} + ]{ridge} + \TODO{ridge reg, Kernel ridge reg, gaussian process reg} + % \Subsection[ + % \eng{Bayesian probability theory} + % % \ger{} + % ]{bayesian} + + + + \Subsection[ + \eng{Gradient descent} + \ger{Gradientenverfahren} + ]{gd} + \TODO{TODO} + diff --git a/src/comp/qmb.tex b/src/comp/qmb.tex new file mode 100644 index 0000000..bd6c3e4 --- /dev/null +++ b/src/comp/qmb.tex @@ -0,0 +1,17 @@ +\Section[ + \eng{Quantum many-body physics} + \ger{Quanten-Vielteilchenphysik} +]{qmb} +\TODO{TODO} + \Subsection[ + \eng{Importance sampling} + \ger{Importance sampling / Stichprobenentnahme nach Wichtigkeit} + ]{importance_sampling} + \TODO{Monte Carlo} + + \Subsection[ + \eng{Matrix product states} + \ger{Matrix Produktzustände} + ]{mps} + + diff --git a/src/computational.tex b/src/computational.tex deleted file mode 100644 index 40bea99..0000000 --- a/src/computational.tex +++ /dev/null @@ -1,148 +0,0 @@ -\Part[ - \eng{Computational Physics} - \ger{Computergestützte Physik} -]{cmp} -\Section[ - \eng{Quantum many-body physics} - \ger{Quanten-Vielteilchenphysik} -]{mb} -\TODO{TODO} - \Subsection[ - \eng{Importance sampling} - \ger{Importance sampling / Stichprobenentnahme nach Wichtigkeit} - ]{importance_sampling} - \TODO{Monte Carlo} - - \Subsection[ - \eng{Matrix product states} - \ger{Matrix Produktzustände} - ]{mps} - - - -\Section[ - \eng{Electronic structure theory} - % \ger{} -]{elsth} - \begin{formula}{hamiltonian} - \desc{Electronic structure Hamiltonian}{}{$\hat{T}$ kinetic energy, $\hat{V}$ electrostatic potential, $\txe$ electrons, $\txn$ nucleons} - % \desc[german]{}{}{} - \eq{ - \hat{H} &= \hat{T}_\txe + \hat{T}_\txn + V_{\e \leftrightarrow \e} + V_{\n \leftrightarrow \e} + V_{\n \leftrightarrow \n} \\ - \shortintertext{with} - \hat{T}_i &= -\sum_{n=1}^{N_i} \frac{\hbar^2}{2 m_i} \vec{\nabla}^2_n \\ - \hat{V}_{i \leftrightarrow j} &= -\sum_{k,l} \frac{Z_i Z_j \e^2}{\abs{\vecr_k - \vecr_l}} - } - \end{formula} - \begin{formula}{mean_field} - \desc{Mean field approximation}{Replaces 2-particle operator by 1-particle operator}{Example for Coulumb interaction between many electrons} - \desc[german]{Molekularfeldnäherung}{Ersetzt 2-Teilchen Operator durch 1-Teilchen Operator}{Beispiel für Coulumb Wechselwirkung zwischen Elektronen} - \eq{ - \frac{1}{2}\sum_{i\neq j} \frac{e^2}{\abs{\vec{r}_i - \vec{r}_j}} \approx \sum_{i} V_\text{eff}(\vec{r}_i) - } - \end{formula} - - -\Subsection[ - \eng{Tight-binding} - \ger{Tight-binding} -]{tb} - - -\Subsection[ - \eng{Density functional theory (DFT)} - \ger{Dichtefunktionaltheorie (DFT)} -]{dft} - \Subsubsection[ - \eng{Hartree-Fock} - \ger{Hartree-Fock} - ]{hf} - \begin{ttext} - \eng{ - \begin{itemize} - \item \fqEqRef{comp:misc:mean_field} theory - \item Self-interaction free: Self interaction is cancelled out by the Fock-term - \end{itemize} - } - \end{ttext} - \begin{formula}{equation} - \desc{Hartree-Fock equation}{}{ - $\varphi_\xi$ single particle wavefunction of $\xi$th orbital, - $\hat{T}$ kinetic electron energy, - $\hat{V}_{\text{en}}$ electron-nucleus attraction, - $\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential}, - } - \desc[german]{Hartree-Fock Gleichung}{}{ - $\varphi_\xi$ ein-Teilchen Wellenfunktion des $\xi$-ten Orbitals, - $\hat{T}$ kinetische Energie der Elektronen, - $\hat{V}_{\text{en}}$ Electron-Kern Anziehung, - $\hat{V}_{\text{HF}}$ \fqEqRef{comp:dft:hf:potential} - } - \eq{ - \left(\hat{T} + \hat{V}_{\text{en}} + \hat{V}_{\text{HF}}^\xi\right)\varphi_\xi(x) = \epsilon_\xi \varphi_\xi(x) - } - \end{formula} - \begin{formula}{potential} - \desc{Hartree-Fock potential}{}{} - \desc[german]{Hartree Fock Potential}{}{} - \eq{ - V_{\text{HF}}^\xi(\vecr) = - \sum_{\vartheta} \int \d x' - \frac{e^2}{\abs{\vecr - \vecr'}} - \left( - \underbrace{\abs{\varphi_\xi(x')}^2}_{\text{Hartree-Term}} - - \underbrace{\frac{\varphi_{\vartheta}^*(x') \varphi_{\xi}(x') \varphi_{\vartheta}(x)}{\varphi_\xi(x)}}_{\text{Fock-Term}} - \right) - } - \end{formula} - \begin{formula}{scf} - \desc{Self-consistend field cycle}{}{} - % \desc[german]{}{}{} - \ttxt{ - \eng{ - \begin{enumerate} - \item Initial guess for $\psi$ - \item Solve SG for each particle - \item Make new guess for $\psi$ - \end{enumerate} - } - } - \end{formula} - -\Section[ - \eng{Atomic dynamics} - % \ger{} -]{ad} - \Subsection[ - \eng{Kohn-Sham} - \ger{Kohn-Sham} - ]{ks} - \TODO{TODO} - - \Subsection[ - \eng{Born-Oppenheimer Approximation} - \ger{Born-Oppenheimer Näherung} - ]{bo} - \TODO{TODO, BO surface} - - \Subsection[ - \eng{Molecular Dynamics} - \ger{Molekulardynamik} - ]{md} - \begin{ttext} - \eng{Statistical method} - - \end{ttext} - - \TODO{ab-initio MD, force-field MD} - - - -\Section[ - \eng{Gradient descent} - \ger{Gradientenverfahren} -]{gd} - \TODO{TODO} - - - diff --git a/src/constants.tex b/src/constants.tex index fd03cf2..cce5235 100644 --- a/src/constants.tex +++ b/src/constants.tex @@ -44,3 +44,4 @@ \val{\NA\,e}{} } \end{formula} + diff --git a/src/ed/el.tex b/src/ed/el.tex index b915e7e..385ed3e 100644 --- a/src/ed/el.tex +++ b/src/ed/el.tex @@ -8,6 +8,15 @@ \desc[german]{Elektrisches Feld}{Umgibt geladene Teilchen}{} \quantity{\vec{\E}}{\volt\per\m=\kg\m\per\s^3\ampere}{v} \end{formula} + + \def\Epotential{\phi} + \begin{formula}{electric_scalar_potential} + \desc{Electric potential}{Work required to move a unit of charge between two points}{} + \desc[german]{Elektrisches Potential}{Benötigte Arbeit um eine Einheitsladung zwischen zwei Punkten zu bewegen}{} + \quantity{\Epotential}{\volt=\kg\m^2\per\s^3\ampere}{s} + \eq{\Epotential = -\int \vec{\E} \cdot\d\vecr} + \end{formula} + \begin{formula}{gauss_law} \desc{Gauss's law for electric fields}{Electric flux through a closed surface is proportional to the electric charge}{$S$ closed surface} \desc[german]{Gaußsches Gesetz für elektrische Felder}{Der magnetische Fluss durch eine geschlossene Fläche ist proportional zur elektrischen Ladung}{$S$ geschlossene Fläche} @@ -15,8 +24,8 @@ \end{formula} \begin{formula}{permittivity} - \desc{Permittivity}{Electric polarizability of a dielectric material}{} - \desc[german]{Permitivität}{Dielektrische Konstante\\Elektrische Polarisierbarkeit eines dielektrischen Materials}{} + \desc{Permittivity}{Dieletric function\\Electric polarizability of a dielectric material}{} + \desc[german]{Permitivität}{Dielektrische Konstante / Dielektrische Funktion\\Elektrische Polarisierbarkeit eines dielektrischen Materials}{} \quantity{\epsilon}{\ampere\s\per\volt\m=\farad\per\m=\coulomb\per\volt\m=C^2\per\newton\m^2=\ampere^2\s^4\per\kg\m^3}{} \end{formula} \begin{formula}{relative_permittivity} @@ -46,6 +55,27 @@ \begin{formula}{dielectric_polarization_density} \desc{Dielectric polarization density}{}{\ConstRef{vacuum_permittivity}, \QtyRef{electric_susceptibility}, \QtyRef{electric_field}} \desc[german]{Dielektrische Polarisationsdichte}{}{} + \quantity{\vec{P}}{\coulomb\per\m^2}{v} \eq{\vec{P} = \epsilon_0 \chi_\txe \vec{\E}} \end{formula} + \begin{formula}{electric_displacement_field} + \desc{Electric displacement field}{}{\ConstRef{vacuum_permittivity}, \QtyRef{electric_field}, \QtyRef{dielectric_polarization_density}} + \desc[german]{Elektrische Flussdichte / dielektrische Verschiebung}{}{} + \quantity{\vec{D}}{\coulomb\per\m^2=\ampere\s\per\m^2}{v} + \eq{\vec{D} = \epsilon_0 \vec{\E} + \vec{P}} + \end{formula} + + \begin{formula}{electric_flux} + \desc{Electric flux}{through area $\vec{A}$}{\QtyRef{electric_displacement_field}} + \desc[german]{Elektrischer Fluss}{durch die Fläche $\vec{A}$}{} + \eq{\Phi_\txE = \int_A \vec{D}\cdot \d \vec{A}} + \end{formula} + + \begin{formula}{power} + \desc{Electric power}{}{$U$ \qtyRef{electric_scalar_potential}, \QtyRef{current}} + \desc[german]{Elektrische Leistung}{}{} + \eq{P_\text{el} = U\,I} + \end{formula} + + diff --git a/src/ed/em.tex b/src/ed/em.tex index 74c29b0..829a2f3 100644 --- a/src/ed/em.tex +++ b/src/ed/em.tex @@ -30,6 +30,21 @@ \eq{\vec{S} = \vec{E} \times \vec{H}} \end{formula} + \begin{formula}{electric_field} + \desc{Electric field}{}{\QtyRef{electric_field}, \QtyRef{electric_scalar_potential}, \QtyRef{magnetic_vector_potential}} + \desc[german]{Elektrisches Feld}{}{} + \eq{\vec{\E} = -\Grad\Epotential - \pdv{\vec{A}}{t}} + \end{formula} + + \begin{formula}{hamiltonian} + \desc{Hamiltonian of a particle in an electromagnetic field}{In the \fqEqRef{ed:em:gauge:coulomb}}{\QtyRef{mass}, $\hat{p}$ \fqEqRef{qm:se:momentum_operator}, \QtyRef{charge}, \QtyRef{magnetic_vector_potential}, \ConstRef{speed_of_light}} + \desc[german]{Hamiltonian eines Teilchens im elektromagnetischen Feld}{In der \fqEqRef{ed:em:gauge:coulomb}}{} + \eq{ + \hat{H} = \frac{1}{2m} \left[\hat{p} \ \frac{e \vec{A}}{c}\right]^2 + } + \end{formula} + + \Subsection[ \eng{Maxwell-Equations} \ger{Maxwell-Gleichungen} @@ -55,6 +70,21 @@ \Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t} } \end{formula} + + + \Subsubsection[ + \eng{Gauges} + \ger{Eichungen} + ]{gauge} + \begin{formula}{coulomb} + \desc{Coulomb gauge}{}{\QtyRef{magnetic_vector_potential}} + \desc[german]{Coulomb-Eichung}{}{} + \eq{ + \Div \vec{A} = 0 + } + \end{formula} + + \TODO{Polarization} \Subsection[ @@ -79,4 +109,3 @@ } } \end{formula} - diff --git a/src/ed/mag.te b/src/ed/mag.te deleted file mode 100644 index a656ff0..0000000 --- a/src/ed/mag.te +++ /dev/null @@ -1,115 +0,0 @@ -\Section[ - \eng{Magnetic field} - \ger{Magnetfeld} -]{mag} - - \begin{formula}{magnetic_flux} - \desc{Magnetic flux}{}{$\vec{A}$ \GT{area}} - \desc[german]{Magnetischer Fluss}{}{} - \quantity{\PhiB}{\weber=\volt\per\s=\kg\m^2\per\s^2\A}{scalar} - \eq{\PhiB = \iint_A \vec{B}\cdot\d\vec{A}} - \end{formula} - - \begin{formula}{magnetic_flux_density} - \desc{Magnetic flux density}{Defined by \fqEqRef{ed:mag:lorentz}}{$\vec{H}$ \qtyRef{magnetic_field_intensity}, $\vec{M}$ \qtyRef{magnetization}, \ConstRef{magnetic_vacuum_permeability}} - \desc[german]{Magnetische Flussdichte}{Definiert über \fqEqRef{ed:mag:lorentz}}{} - \quantity{\vec{B}}{\tesla=\volt\s\per\m^2=\newton\per\ampere\m=\kg\per\ampere\s^2}{} - \eq{\vec{B} = \mu_0 (\vec{H}+\vec{M})} - \end{formula} - - \begin{formula}{magnetic_field_intensity} - \desc{Magnetic field intensity}{}{} - \desc[german]{Magnetische Feldstärke}{}{} - \quantity{\vec{H}}{\ampere\per\m}{vector} - \eq{ - \vec{H} \equiv \frac{1}{\mu_0}\vec{B} - \vec{M} - } - \end{formula} - - \begin{formula}{lorentz} - \desc{Lorentz force law}{Force on charged particle}{} - \desc[german]{Lorentzkraft}{Kraft auf geladenes Teilchen}{} - \eq{ - \vec{F} = q \vec{\E} + q \vec{v}\times\vec{B} - } - \end{formula} - - \begin{formula}{magnetic_permeability} - \desc{Magnetic permeability}{}{$B$ \qtyRef{magnetic_flux_density}, $H$ \qtyRef{magnetic_field_intensity}} - \desc[german]{Magnetisch Permeabilität}{}{} - \quantity{\mu}{\henry\per\m=\volt\s\per\ampere\m}{scalar} - \eq{\mu=\frac{B}{H}} - \end{formula} - \begin{formula}{magnetic_vacuum_permeability} - \desc{Magnetic vauum permeability}{}{} - \desc[german]{Magnetische Vakuumpermeabilität}{}{} - \constant{\mu_0}{exp}{ - \val{1.25663706127(20)}{\henry\per\m=\newton\per\ampere^2} - } - \end{formula} - \begin{formula}{relative_permeability} - \desc{Relative permeability}{}{} - \desc[german]{Realtive Permeabilität}{}{} - \eq{ - \mu_\txr = \frac{\mu}{\mu_0} - } - \end{formula} - - \begin{formula}{gauss_law} - \desc{Gauss's law for magnetism}{Magnetic flux through a closed surface is $0$ \Rightarrow there are no magnetic monopoles}{$S$ closed surface} - \desc[german]{Gaußsches Gesetz für Magnetismus}{Der magnetische Fluss durch eine geschlossene Fläche ist $0$ \Rightarrow es gibt keine magnetischen Monopole}{$S$ geschlossene Fläche} - \eq{\PhiB = \iint_S \vec{B}\cdot\d\vec{S} = 0} - \end{formula} - - \begin{formula}{magnetization} - \desc{Magnetization}{Vector field describing the density of magnetic dipoles}{} - \desc[german]{Magnetisierung}{Vektorfeld, welches die Dichte von magnetischen Dipolen beschreibt.}{} - \quantity{\vec{M}}{\ampere\per\m}{vector} - \eq{\vec{M} = \odv{\vec{m}}{V} = \chi_\txm \cdot \vec{H}} - \end{formula} - - \begin{formula}{magnetic_moment} - \desc{Magnetic moment}{Strength and direction of a magnetic dipole}{} - \desc[german]{Magnetisches Moment}{Stärke und Richtung eines magnetischen Dipols}{} - \quantity{\vec{m}}{\ampere\m^2}{vector} - \end{formula} - - \begin{formula}{angular_torque} - \desc{Torque}{}{$m$ \qtyRef{magnetic_moment}} - \desc[german]{Drehmoment}{}{} - \eq{\vec{\tau} = \vec{m} \times \vec{B}} - \end{formula} - - \begin{formula}{magnetic_susceptibility} - \desc{Susceptibility}{}{$\mu_\txr$ \fqEqRef{ed:mag:relative_permeability}} - \desc[german]{Suszeptibilität}{}{} - \eq{\chi_\txm = \pdv{M}{B} = \mu_\txr - 1} - \end{formula} - - - - - \Subsection[ - \eng{Magnetic materials} - \ger{Magnetische Materialien} - ]{materials} - \begin{formula}{paramagnetism} - \desc{Paramagnetism}{Magnetic field strengthend in the material}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}} - \desc[german]{Paramagnetismus}{Magnetisches Feld wird im Material verstärkt}{} - \eq{\mu_\txr &> 1 \\ \chi_\txm &> 0} - \end{formula} - - \begin{formula}{diamagnetism} - \desc{Diamagnetism}{Magnetic field expelled from material}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}} - \desc[german]{Diamagnetismus}{Magnetisches Feld wird aus dem Material gedrängt}{} - \eq{0 < \mu_\txr < 1 \\ -1 < \chi_\txm < 0} - \end{formula} - - \begin{formula}{ferromagnetism} - \desc{Ferromagnetism}{Magnetic moments align to external magnetic field and stay aligned when the field is turned off (Remanescence)}{$\mu$ \fqEqRef{ed:mag:magnetic_permeability}, $\chi_\txm$ \fqEqRef{ed:mag:magnetic_susceptibility}} - \desc[german]{Ferromagnetismus}{Magnetische Momente werden am äußeren Feld ausgerichtet und behalten diese ausrichtung auch wenn das Feld abgeschaltet wird (Remanenz)}{} - \eq{ - \mu_\txr \gg 1 - } - \end{formula} - diff --git a/src/ed/mag.tex b/src/ed/mag.tex index a656ff0..56238c5 100644 --- a/src/ed/mag.tex +++ b/src/ed/mag.tex @@ -17,6 +17,13 @@ \eq{\vec{B} = \mu_0 (\vec{H}+\vec{M})} \end{formula} + \begin{formula}{magnetic_vector_potential} + \desc{Magnetic vector potential}{}{} + \desc[german]{Magnetisches Vektorpotential}{}{} + \quantity{\vec{A}}{\tesla\m=\volt\s\per\m=\kg\m\per\s^2\ampere}{ievs} + \eq{\Rot\vec{A}(\vecr) = \vec{B}(\vecr)} + \end{formula} + \begin{formula}{magnetic_field_intensity} \desc{Magnetic field intensity}{}{} \desc[german]{Magnetische Feldstärke}{}{} diff --git a/src/ed/optics.tex b/src/ed/optics.tex new file mode 100644 index 0000000..2a0bf24 --- /dev/null +++ b/src/ed/optics.tex @@ -0,0 +1,103 @@ +\Section[ + \eng{Optics} + \ger{Optik} +]{optics} + \begin{ttext} + \eng{Properties of light and its interactions with matter} + \ger{Ausbreitung von Licht und die Interaktion mit Materie} + \end{ttext} + \separateEntries + + \begin{formula}{refraction_index} + \eng[cm]{speed of light in the medium} + \ger[cm]{Lichtgeschwindigkeit im Medium} + \desc{Refraction index}{}{\QtyRef{relative_permittivity}, \QtyRef{relative_permeability}, \ConstRef{speed_of_light}, $c_\txM$ \gt{cm}} + \desc[german]{Brechungsindex}{}{} + \quantity{\complex{n}}{}{s} + \eq{ + \complex{n} = \nreal + i\ncomplex + } + \eq{ + n = \sqrt{\epsilon_\txr \mu_\txr} + } + \eq{ + n = \frac{c_0}{c_\txM} + } + \end{formula} + + \TODO{what does the complex part of the dielectric function represent?} + + \begin{formula}{refraction_index_real} + \desc{Real part of the refraction index}{}{} + \desc[german]{Reller Teil des Brechungsindex}{}{} + \quantity{\nreal}{}{s} + \end{formula} + \begin{formula}{refraction_index_complex} + \desc{Extinction coefficient}{Complex part of the refraction index}{\GT{sometimes} $\kappa$} + \desc[german]{Auslöschungskoeffizient}{Komplexer Teil des Brechungsindex}{} + \quantity{\ncomplex}{}{s} + \end{formula} + + \begin{formula}{reflectivity} + \desc{Reflectio}{}{\QtyRef{refraction_index}} + % \desc[german]{}{}{} + \eq{ + R = \abs{\frac{\complex{n}-1}{\complex{n}+1}} + } + \end{formula} + + \begin{formula}{snell} + \desc{Snell's law}{}{$\nreal_i$ \qtyRef{refraction_index_real}, $\theta_i$ incidence angle (normal to the surface)} + \desc[german]{Snelliussches Brechungsgesetz}{}{$n_i$ \qtyRef{refraction_index}, $\theta_i$ Einfallswinkel (normal zur Fläche)} + \eq{\nreal_1 \sin\theta_1 = \nreal_2\sin\theta_2} + \end{formula} + + \begin{formula}{group_velocity} + \desc{Group velocity}{Velocity with which the envelope of a wave propagates through space}{\QtyRef{angular_frequency}, \QtyRef{angular_wavenumber}} + \desc[german]{Gruppengeschwindigkeit}{Geschwindigkeit, mit sich die Einhülende einer Welle ausbreitet}{} + \eq{ + v_\txg \equiv \pdv{\omega}{k} + } + \end{formula} + \begin{formula}{phase_velocity} + \desc{Phase velocity}{Velocity with which a wave propagates through a medium}{\QtyRef{angular_frequency}, \QtyRef{angular_wavenumber}, \QtyRef{wavelength}, \QtyRef{time_period}} + \desc[german]{Phasengeschwindigkeit}{Geschwindigkeit, mit der sich eine Welle im Medium ausbreitet}{} + \eq{ + v_\txp = \frac{\omega}{k} = \frac{\lambda}{T} + } + \end{formula} + + \begin{formula}{absorption_coefficient} + \desc{Absorption coefficient}{Intensity reduction while traversing a medium, not necessarily by energy transfer to the medium}{\QtyRef{refraction_index_complex}, \ConstRef{speed_of_light}, \QtyRef{angular_frequency}} + \desc[german]{Absoprtionskoeffizient}{Intensitätsverringerung beim Druchgang eines Mediums, nicht zwingend durch Energieabgabe an Medium}{} + \quantity{\alpha}{\per\cm}{s} + \eq{ + \alpha &= 2\ncomplex \frac{\omega}{c} \\ + \alpha &= \frac{\omega}{nc} \epsilon^\prime \text{\TODO{For direct band gaps; from adv. sc: sheet 10 2b). Check which is correct}} + } + \end{formula} + + + \begin{formula}{intensity} + \desc{Electromagnetic radiation intensity}{Surface power density}{$S$ \fqEqRef{ed:poynting}} + \desc[german]{Elektromagnetische Strahlungsintensität}{Flächenleistungsdichte}{} + \quantity{I}{\watt\per\m^2=\k\per\s^3}{s} + \eq{I = \abs{\braket{S}_t}} + \end{formula} + + % \begin{formula}{lambert_beer_law} + % \desc{Beer-Lambert law}{Intensity in an absorbing medium}{$E_\lambda$ extinction, \QtyRef{absorption_coefficient}, \QtyRef{concentration}, $d$ Thickness of the medium} + % \desc[german]{Lambert-beersches Gesetz}{Intensität in einem absorbierenden Medium}{$E_\lambda$ Extinktion, \QtyRef{refraction_index_complex}, \QtyRef{concentration}, $d$ Dicke des Mediums} + % \eq{ + % E_\lambda = \log_{10} \frac{I_0}{I} = \kappa c d \\ + % } + % \end{formula} + \begin{formula}{lambert_beer_law} + \desc{Beer-Lambert law}{Intensity in an absorbing medium}{\QtyRef{intensity}, \QtyRef{absorption_coefficient}, $z$ penetration depth} + \desc[german]{Lambert-beersches Gesetz}{Intensität in einem absorbierenden Medium}{\QtyRef{intensity}, \QtyRef{absorption_coefficient}, $z$ Eindringtiefe} + \eq{ + I(z) = I_0 \e^{-\kappa z} + } + \end{formula} + + diff --git a/src/img/cm/sc_junction_metal_n_sc.tex b/src/img/cm/sc_junction_metal_n_sc.tex new file mode 100644 index 0000000..f84069c --- /dev/null +++ b/src/img/cm/sc_junction_metal_n_sc.tex @@ -0,0 +1,54 @@ +\begin{tikzpicture}[scale=0.9] + +\pgfmathsetmacro{\tkW}{8} % Total width +\pgfmathsetmacro{\tkH}{5} % Total height +% left +\pgfmathsetmacro{\tkLx}{0} % Start +\pgfmathsetmacro{\tkLW}{2} % Right width +\pgfmathsetmacro{\tkLyshift}{0.0} % y-shift +\pgfmathsetmacro{\tkLBendH}{0} % Band bending height +\pgfmathsetmacro{\tkLBendW}{0} % Band bending width +\pgfmathsetmacro{\tkLEV}{4.0+\tkLyshift}% Vacuum energy +\pgfmathsetmacro{\tkLEf}{1.5+\tkLyshift}% Fermi level energy +% right +\pgfmathsetmacro{\tkRx}{\tkLW} % Left start +\pgfmathsetmacro{\tkRW}{\tkW-\tkRx} % Left width +\pgfmathsetmacro{\tkRyshift}{-0.5} % y-shift +\pgfmathsetmacro{\tkRBendH}{0.5} % Band bending height +\pgfmathsetmacro{\tkRBendW}{\tkRW/4} % Band bending width +\pgfmathsetmacro{\tkREv}{0.7+\tkRyshift}% Valence band energy +\pgfmathsetmacro{\tkREc}{2.4+\tkRyshift}% Conduction band energy +\pgfmathsetmacro{\tkREV}{4.0+\tkRyshift}% Vacuum energy +\pgfmathsetmacro{\tkREf}{2.0+\tkRyshift}% Fermi level energy + +% materials +\draw[sc metal] (0,0) rectangle (\tkLW,\tkH); +\node at (\tkLW/2,\tkH-0.2) {\GT{metal}}; +\path[sc n type] (\tkRx,0) rectangle (\tkW,\tkH); +\node at (\tkRx+\tkRW/2,\tkH-0.2) {\GT{n-type}}; +\path[sc separate] (\tkLW,0) -- (\tkLW,\tkH); + +% axes +\draw[->] (0,0) -- (\tkW+0.2,0) node[anchor=north] {$x$}; +\draw[->] (0,0) -- (0,\tkH+0.2) node[anchor=east] {$E$}; + +% right bands +\path[sc occupied] (\tkRx, 0) -- \rightBandUp{}{\tkREv} -- (\tkW, 0) -- cycle; +\draw[sc band con] \rightBandUp{$\Econd$}{\tkREc}; +\draw[sc band val] \rightBandUp{$\Evalence$}{\tkREv}; +\draw[sc band vac] (0,\tkLEV) -- \rightBandUp{$\Evac$}{\tkREV}; +\draw[sc fermi level] \rightBand{$\Efermi$}{\tkREf}; +% left bands +\path[sc occupied] (0,0) rectangle (\tkLW,\tkLEf); +\draw[sc fermi level] \leftBand{$\Efermi$}{\tkLEf}; + +% work functions +\drawDArrow{\tkLW/2}{\tkLEf}{\tkLEV}{$e\Phi_\txM$} +\drawDArrow{\tkRx+\tkRW*3/4}{\tkREf}{\tkREV}{$e\Phi_\txS$} +\drawDArrow{\tkRx+\tkRW*2/4}{\tkREc}{\tkREV}{$e\chi$} +% barrier height +\drawDArrow{\tkRx+\tkRBendW}{\tkREc}{\tkREc+\tkRBendH}{$eU_\text{Bias}$} +\drawDArrow{\tkRx}{\tkREf}{\tkREc+\tkRBendH}{$e\Phi_\txB$} + +\end{tikzpicture} + diff --git a/src/img/cm/sc_junction_metal_n_sc_separate.tex b/src/img/cm/sc_junction_metal_n_sc_separate.tex new file mode 100644 index 0000000..6c51952 --- /dev/null +++ b/src/img/cm/sc_junction_metal_n_sc_separate.tex @@ -0,0 +1,49 @@ +\begin{tikzpicture}[scale=0.9] + +\pgfmathsetmacro{\tkW}{8} % Total width +\pgfmathsetmacro{\tkH}{5} % Total height +% left +\pgfmathsetmacro{\tkLx}{0} % Start +\pgfmathsetmacro{\tkLW}{2} % Right width +\pgfmathsetmacro{\tkLyshift}{0.0} % y-shift +\pgfmathsetmacro{\tkLBendH}{0} % Band bending height +\pgfmathsetmacro{\tkLBendW}{0} % Band bending width +\pgfmathsetmacro{\tkLEV}{4.0+\tkLyshift}% Vacuum energy +\pgfmathsetmacro{\tkLEf}{1.5+\tkLyshift}% Fermi level energy +% right +\pgfmathsetmacro{\tkRx}{4} % Left start +\pgfmathsetmacro{\tkRW}{\tkW-\tkRx} % Left width +\pgfmathsetmacro{\tkRyshift}{0} % y-shift +\pgfmathsetmacro{\tkRBendH}{0.5} % Band bending height +\pgfmathsetmacro{\tkRBendW}{\tkRW/4} % Band bending width +\pgfmathsetmacro{\tkREv}{0.7+\tkRyshift}% Valence band energy +\pgfmathsetmacro{\tkREc}{2.4+\tkRyshift}% Conduction band energy +\pgfmathsetmacro{\tkREV}{4.0+\tkRyshift}% Vacuum energy +\pgfmathsetmacro{\tkREf}{2.0+\tkRyshift}% Fermi level energy + +% materials +\draw[sc metal] (0,0) rectangle (\tkLW,\tkH); +\node at (\tkLW/2,\tkH-0.2) {\GT{metal}}; +\path[sc n type] (\tkRx,0) rectangle (\tkW,\tkH); +\node at (\tkRx+\tkRW/2,\tkH-0.2) {\GT{n-type}}; + +% axes +\draw[->] (0,0) -- (\tkW+0.2,0) node[anchor=north] {$x$}; +\draw[->] (0,0) -- (0,\tkH+0.2) node[anchor=east] {$E$}; + +% right bands +\path[sc occupied] (\tkRx, 0) -- \rightBand{}{\tkREv} -- (\tkW, 0) -- cycle; +\draw[sc band con] \rightBand{$\Econd$}{\tkREc}; +\draw[sc band val] \rightBand{$\Evalence$}{\tkREv}; +\draw[sc band vac] (0,\tkLEV) -- \rightBand{$\Evac$}{\tkREV}; +\draw[sc fermi level] \rightBand{$\Efermi$}{\tkREf}; +% left bands +\path[sc occupied] (0,0) rectangle (\tkLW,\tkLEf); +\draw[sc fermi level] \leftBand{$\Efermi$}{\tkLEf}; + +% work functions +\drawDArrow{\tkLW/2}{\tkLEf}{\tkLEV}{$e\Phi_\txM$} +\drawDArrow{\tkRx+\tkRW*2/3}{\tkREf}{\tkREV}{$e\Phi_\txS$} +\drawDArrow{\tkRx+\tkRW*1/3}{\tkREc}{\tkREV}{$e\chi$} + +\end{tikzpicture} diff --git a/src/img/cm/sc_junction_ohmic.tex b/src/img/cm/sc_junction_ohmic.tex new file mode 100644 index 0000000..85900be --- /dev/null +++ b/src/img/cm/sc_junction_ohmic.tex @@ -0,0 +1,51 @@ +\begin{tikzpicture}[scale=1] + +\pgfmathsetmacro{\tkW}{8} % Total width +\pgfmathsetmacro{\tkH}{5} % Total height +% left +\pgfmathsetmacro{\tkLx}{0} % Start +\pgfmathsetmacro{\tkLW}{2} % Right width +\pgfmathsetmacro{\tkLyshift}{-0.5} % y-shift +\pgfmathsetmacro{\tkLBendH}{0} % Band bending height +\pgfmathsetmacro{\tkLBendW}{0} % Band bending width +\pgfmathsetmacro{\tkLEV}{4.0+\tkLyshift}% Vacuum energy +\pgfmathsetmacro{\tkLEf}{2.5+\tkLyshift}% Fermi level energy +% right +\pgfmathsetmacro{\tkRx}{\tkLW} % Left start +\pgfmathsetmacro{\tkRW}{\tkW-\tkRx} % Left width +\pgfmathsetmacro{\tkRyshift}{0} % y-shift +\pgfmathsetmacro{\tkRBendH}{-0.5} % Band bending height +\pgfmathsetmacro{\tkRBendW}{\tkRW/4} % Band bending width +\pgfmathsetmacro{\tkREv}{0.7+\tkRyshift}% Valence band energy +\pgfmathsetmacro{\tkREc}{2.5+\tkRyshift}% Conduction band energy +\pgfmathsetmacro{\tkREV}{4.0+\tkRyshift}% Vacuum energy +\pgfmathsetmacro{\tkREf}{2.0+\tkRyshift}% Fermi level energy + +% materials +\draw[sc metal] (0,0) rectangle (\tkLW,\tkH); +\node at (\tkLW/2,\tkH-0.2) {\GT{metal}}; +\path[sc n type] (\tkRx,0) rectangle (\tkW,\tkH); +\node at (\tkRx+\tkRW/2,\tkH-0.2) {\GT{n-type}}; +\path[sc separate] (\tkRx,0) -- (\tkRx,\tkH); + +\drawAxes + +% right bands +\path[sc occupied] (\tkRx, 0) -- \rightBandAuto{}{\tkREv} -- (\tkW, 0) -- cycle; +\draw[sc band con] \rightBandAuto{$\Econd$}{\tkREc}; +\draw[sc band val] \rightBandAuto{$\Evalence$}{\tkREv}; +\draw[sc band vac] (0,\tkLEV) -- \rightBandAuto{$\Evac$}{\tkREV}; +\draw[sc fermi level] \rightBand{$\Efermi$}{\tkREf}; +% left bands +\path[sc occupied] (0,0) rectangle (\tkLW,\tkLEf); +\draw[sc fermi level] \leftBand{$\Efermi$}{\tkLEf}; + +% work functions +\drawDArrow{\tkLW/2}{\tkLEf}{\tkLEV}{$e\Phi_\txM$} +\drawDArrow{\tkRx+\tkRW*3/4}{\tkREf}{\tkREV}{$e\Phi_\txS$} +\drawDArrow{\tkRx+\tkRW*2/4}{\tkREc}{\tkREV}{$e\chi$} +% barrier height +\drawDArrow{\tkRx+\tkRBendW}{\tkREc}{\tkREc-\tkRBendH}{$eU_\text{Bias}$} + +\end{tikzpicture} + diff --git a/src/img/cm/sc_junction_ohmic_separate.tex b/src/img/cm/sc_junction_ohmic_separate.tex new file mode 100644 index 0000000..c279fdd --- /dev/null +++ b/src/img/cm/sc_junction_ohmic_separate.tex @@ -0,0 +1,48 @@ +\begin{tikzpicture}[scale=1] + +\pgfmathsetmacro{\tkW}{8} % Total width +\pgfmathsetmacro{\tkH}{5} % Total height +% left +\pgfmathsetmacro{\tkLx}{0} % Start +\pgfmathsetmacro{\tkLW}{2} % Right width +\pgfmathsetmacro{\tkLyshift}{0.0} % y-shift +\pgfmathsetmacro{\tkLBendH}{0} % Band bending height +\pgfmathsetmacro{\tkLBendW}{0} % Band bending width +\pgfmathsetmacro{\tkLEV}{4.0+\tkLyshift}% Vacuum energy +\pgfmathsetmacro{\tkLEf}{2.5+\tkLyshift}% Fermi level energy +% right +\pgfmathsetmacro{\tkRx}{4} % Left start +\pgfmathsetmacro{\tkRW}{\tkW-\tkRx} % Left width +\pgfmathsetmacro{\tkRyshift}{0} % y-shift +\pgfmathsetmacro{\tkRBendH}{0.5} % Band bending height +\pgfmathsetmacro{\tkRBendW}{\tkRW/4} % Band bending width +\pgfmathsetmacro{\tkREv}{0.7+\tkRyshift}% Valence band energy +\pgfmathsetmacro{\tkREc}{2.5+\tkRyshift}% Conduction band energy +\pgfmathsetmacro{\tkREV}{4.0+\tkRyshift}% Vacuum energy +\pgfmathsetmacro{\tkREf}{2.0+\tkRyshift}% Fermi level energy + +% materials +\draw[sc metal] (0,0) rectangle (\tkLW,\tkH); +\node at (\tkLW/2,\tkH-0.2) {\GT{metal}}; +\path[sc n type] (\tkRx,0) rectangle (\tkW,\tkH); +\node at (\tkRx+\tkRW/2,\tkH-0.2) {\GT{n-type}}; + +\drawAxes + +% right bands +\path[sc occupied] (\tkRx, 0) -- \rightBand{}{\tkREv} -- (\tkW, 0) -- cycle; +\draw[sc band con] \rightBand{$\Econd$}{\tkREc}; +\draw[sc band val] \rightBand{$\Evalence$}{\tkREv}; +\draw[sc band vac] (0,\tkLEV) -- \rightBand{$\Evac$}{\tkREV}; +\draw[sc fermi level] \rightBand{$\Efermi$}{\tkREf}; +% left bands +\path[sc occupied] (0,0) rectangle (\tkLW,\tkLEf); +\draw[sc fermi level] \leftBand{$\Efermi$}{\tkLEf}; + +% work functions +\drawDArrow{\tkLW/2}{\tkLEf}{\tkLEV}{$e\Phi_\txM$} +\drawDArrow{\tkRx+\tkRW*2/3}{\tkREf}{\tkREV}{$e\Phi_\txS$} +\drawDArrow{\tkRx+\tkRW*1/3}{\tkREc}{\tkREV}{$e\chi$} + +\end{tikzpicture} + diff --git a/src/img/cm/sc_junction_pn.tex b/src/img/cm/sc_junction_pn.tex new file mode 100644 index 0000000..a38a180 --- /dev/null +++ b/src/img/cm/sc_junction_pn.tex @@ -0,0 +1,65 @@ +\newcommand\tikzPnJunction[7]{ +\begin{tikzpicture}[scale=1.0] + +\pgfmathsetmacro{\tkW}{8} % Total width +\pgfmathsetmacro{\tkH}{5} % Total height +% left +\pgfmathsetmacro{\tkLx}{0} % Start +\pgfmathsetmacro{\tkLW}{\tkW*#1} % Width +\pgfmathsetmacro{\tkLyshift}{#2} % y-shift +\pgfmathsetmacro{\tkLBendH}{#3} % Band bending height +\pgfmathsetmacro{\tkLBendW}{\tkLW/4} % Band bending width +\pgfmathsetmacro{\tkLEv}{0.7+\tkLyshift}% Valence band energy +\pgfmathsetmacro{\tkLEc}{2.3+\tkLyshift}% Conduction band energy +\pgfmathsetmacro{\tkLEV}{4.0+\tkLyshift}% Vacuum energy +\pgfmathsetmacro{\tkLEf}{1.1+\tkLyshift}% Fermi level energy +% right +\pgfmathsetmacro{\tkRx}{\tkW*(1-#4)} % Start +\pgfmathsetmacro{\tkRW}{\tkW*#4} % Width +\pgfmathsetmacro{\tkRyshift}{#5} % y-shift +\pgfmathsetmacro{\tkRBendH}{#6} % Band bending height +\pgfmathsetmacro{\tkRBendW}{\tkRW/4} % Band bending width +\pgfmathsetmacro{\tkREv}{0.7+\tkRyshift}% Valence band energy +\pgfmathsetmacro{\tkREc}{2.3+\tkRyshift}% Conduction band energy +\pgfmathsetmacro{\tkREV}{4.0+\tkRyshift}% Vacuum energy +\pgfmathsetmacro{\tkREf}{1.9+\tkRyshift}% Fermi level energy + +% materials +\draw[sc p type] (0,0) rectangle (\tkLW,\tkH); +\node at (\tkLW/2,\tkH-0.2) {\GT{p-type}}; +\path[sc separate] (\tkRx,0) -- (\tkRx,\tkH); +\path[sc n type] (\tkRx,0) rectangle (\tkW,\tkH); +\node at (\tkRx+\tkRW/2,\tkH-0.2) {\GT{n-type}}; +\path[sc separate] (\tkLW,0) -- (\tkLW,\tkH); + +\drawAxes + +% right bands +\path[sc occupied] (\tkRx, 0) -- \rightBandAuto{}{\tkREv} -- (\tkW, 0) -- cycle; +\draw[sc band con] \rightBandAuto{$\Econd$}{\tkREc}; +\draw[sc band val] \rightBandAuto{$\Evalence$}{\tkREv}; +\draw[sc band vac] \rightBandAuto{$\Evac$}{\tkREV}; +\draw[sc fermi level] \rightBand{$\Efermi$}{\tkREf}; +% left bands +\path[sc occupied] (\tkLx, 0) -- \leftBandAuto{}{\tkLEv} -- (\tkLW, 0) -- cycle; +\draw[sc band con] \leftBandAuto{$\Econd$}{\tkLEc}; +\draw[sc band val] \leftBandAuto{$\Evalence$}{\tkLEv}; +\draw[sc band vac] \leftBandAuto{$\Evac$}{\tkLEV}; +\draw[sc fermi level] \leftBand{$\Efermi$}{\tkLEf}; + +% work functions + +\drawDArrow{\tkRx+\tkRW*2/3}{\tkREf}{\tkREV}{$e\Phi_\txn$} +\drawDArrow{\tkRx+\tkRW*1/3}{\tkREc}{\tkREV}{$e\chi_\txn$} +\drawDArrow{\tkLx+\tkLW*2/3}{\tkLEf}{\tkLEV}{$e\Phi_\txp$} +\drawDArrow{\tkLx+\tkLW*1/3}{\tkLEc}{\tkLEV}{$e\chi_\txp$} +% barrier height +% \drawDArrow{\tkRx+\tkRBendW}{\tkREc}{\tkREc+\tkRBendH}{$eU_\text{Bias}$} +% \drawDArrow{\tkRx}{\tkREf}{\tkREc+\tkRBendH}{$e\Phi_\txB$} +#7 + +\end{tikzpicture} +} +% \tikzPnJunction{1/3}{0}{0}{1/3}{0}{0}{} +% \tikzPnJunction{1/2}{0.4}{-0.4}{1/2}{-0.4}{0.4}{} + diff --git a/src/main.tex b/src/main.tex index ca742b1..aa8bc53 100644 --- a/src/main.tex +++ b/src/main.tex @@ -22,6 +22,11 @@ \usepackage{subcaption} % subfigures \usepackage[hidelinks]{hyperref} % hyperrefs for \fqEqRef, \qtyRef, etc \usepackage[shortlabels]{enumitem} % easily change enum symbols to i), a. etc +\setlist{noitemsep} % no vertical space between items +\setlist[1]{labelindent=\parindent} % < Usually a good idea +\setlist[itemize]{leftmargin=*} +\setlist[enumerate]{labelsep=*, leftmargin=1.5pc} % horizontal indent of items + \usepackage{titlesec} % colored titles \usepackage{array} % more array options \newcolumntype{C}{>{$}c<{$}} % math-mode version of "c" column type @@ -30,10 +35,14 @@ \usepackage{translations} \input{util/translation.tex} \input{util/colorscheme.tex} +\input{util/colors.tex} % after colorscheme % GRAPHICS \usepackage{tikz} % drawings \usetikzlibrary{decorations.pathmorphing} +\usetikzlibrary{decorations.pathreplacing} % braces \usetikzlibrary{calc} +\usetikzlibrary{patterns} +\input{util/tikz_macros} % speed up compilation by externalizing figures % \usetikzlibrary{external} % \tikzexternalize[prefix=tikz_figures] @@ -78,9 +87,11 @@ -\newcommand{\TODO}[1]{{\color{bright_red}TODO:#1}} +\newcommand{\TODO}[1]{{\color{fg-red}TODO:#1}} \newcommand{\ts}{\textsuperscript} +\newcommand\printFqName{\expandafter\detokenize\expandafter{\fqname}} + % "automate" sectioning % start
, get heading from translation, set label % fqname is the fully qualified name: the keys of all previous sections joined with a ':' @@ -145,11 +156,13 @@ % 1: key/fully qualified name (without qty/eq/sec/const/el... prefix) % Equations/Formulas % +% \newrobustcmd{\fqEqRef}[1]{% \newrobustcmd{\fqEqRef}[1]{% % \edef\fqeqrefname{\GT{#1}} % \hyperref[eq:#1]{\fqeqrefname} \hyperref[f:#1]{\GT{#1}}% } + % Section % \newrobustcmd{\fqSecRef}[1]{% @@ -178,7 +191,7 @@ % Element from periodic table % \newrobustcmd{\elRef}[1]{% - \hyperref[el:#1]{{\color{dark0_hard}#1}}% + \hyperref[el:#1]{{\color{fg0}#1}}% } % \newrobustcmd{\ElRef}[1]{% @@ -197,12 +210,12 @@ % Write directlua command to aux and run it as well % This one expands the argument in the aux file: \newcommand\directLuaAuxExpand[1]{ - \immediate\write\luaauxfile{\noexpand\directlua{#1}} + \immediate\write\luaAuxFile{\noexpand\directlua{#1}} \directlua{#1} } % This one does not: \newcommand\directLuaAux[1]{ - \immediate\write\luaauxfile{\noexpand\directlua{\detokenize{#1}}} + \immediate\write\luaAuxFile{\noexpand\directlua{\detokenize{#1}}} \directlua{#1} } % read @@ -212,11 +225,20 @@ % \@latex@warning@no@line{"Lua aux not loaded!"} } \def\luaAuxLoaded{False} + % write -\newwrite\luaauxfile -\immediate\openout\luaauxfile=\jobname.lua.aux -\immediate\write\luaauxfile{\noexpand\def\noexpand\luaAuxLoaded{True}}% -\AtEndDocument{\immediate\closeout\luaauxfile} +\newwrite\luaAuxFile +\immediate\openout\luaAuxFile=\jobname.lua.aux +\immediate\write\luaAuxFile{\noexpand\def\noexpand\luaAuxLoaded{True}}% +\AtEndDocument{\immediate\closeout\luaAuxFile} + +% Create a text file with relevant labels for vim-completion +\newwrite\labelsFile +\immediate\openout\labelsFile=\jobname.labels.txt +\newcommand\storeLabel[1]{ + \immediate\write\labelsFile{#1}% +} +\AtEndDocument{\immediate\closeout\labelsFile} \input{circuit.tex} \input{util/macros.tex} @@ -262,7 +284,7 @@ \input{util/translations.tex} -% \InputOnly{math} +% \InputOnly{ch} \Input{math/math} \Input{math/linalg} @@ -277,10 +299,11 @@ \Input{ed/el} \Input{ed/mag} \Input{ed/em} +\Input{ed/optics} \Input{ed/misc} -\Input{quantum_mechanics} -\Input{atom} +\Input{qm/qm} +\Input{qm/atom} \Input{cm/cm} \Input{cm/crystal} @@ -290,29 +313,30 @@ \Input{cm/semiconductors} \Input{cm/misc} \Input{cm/techniques} +\Input{cm/topo} -\Input{topo} + +\Input{particle} \Input{quantum_computing} -\Input{computational} - -\Input{quantities} -\Input{constants} +\Input{comp/comp} +\Input{comp/qmb} +\Input{comp/elsth} +\Input{comp/ad} +\Input{comp/ml} \Input{ch/periodic_table} % only definitions \Input{ch/ch} - -% \newpage -% \Input{test} - \newpage \Part[ \eng{Appendix} \ger{Anhang} ]{appendix} -% \listofmyenv +\Input{quantities} +\Input{constants} + % \listofquantities \listoffigures \listoftables @@ -321,6 +345,8 @@ \ger{Liste der Elemente} ]{elements} \printAllElements +\newpage +\Input{test} % \bibliographystyle{plain} % \bibliography{ref} diff --git a/src/math/calculus.tex b/src/math/calculus.tex index 88ca21a..c89c70a 100644 --- a/src/math/calculus.tex +++ b/src/math/calculus.tex @@ -145,7 +145,7 @@ \begin{formula}{delta_of_function} \desc{Dirac-Delta of a function}{}{$g(x_0) = 0$} \desc[german]{Dirac-Delta einer Funktion}{}{} - \eq{\delta(f(x)) = \frac{\delta(x-x_0)}{\abs{g'(x_0)}}} + \eq{\delta(f(x)) = \frac{\delta(x-x_0)}{\abs{g^\prime(x_0)}}} \end{formula} \begin{formula}{geometric_series} @@ -179,6 +179,36 @@ } \end{formula} + \Subsection[ + \eng{Vector calculus} + \ger{Vektor Analysis} + ]{vec} + \begin{formula}{laplace} + \desc{Laplace operator}{}{} + \desc[german]{Laplace-Operator}{}{} + \eq{\laplace = \Grad^2 = \pdv[2]{}{x} + \pdv[2]{}{y} + \pdv[2]{}{z}} + \end{formula} + \Subsubsection[ + \eng{Spherical symmetry} + \ger{Kugelsymmetrie} + ]{sphere} + \begin{formula}{coordinates} + \desc{Spherical coordinates}{}{} + \desc[german]{Kugelkoordinaten}{}{} + \eq{ + x &= r \sin\phi,\cos\theta \\ + y &= r \cos\phi,\cos\theta \\ + z &= r \sin\theta + } + \end{formula} + + \begin{formula}{laplace} + \desc{Laplace operator}{}{} + \desc[german]{Laplace-Operator}{}{} + \eq{\Grad^2 = \laplace = \frac{1}{r^2} \pdv{}{r} \left(r^2 \pdv{}{r}\right)} + \end{formula} + + \Subsection[ \eng{Integrals} \ger{Integralrechnung} @@ -187,7 +217,7 @@ \desc{Partial integration}{}{} \desc[german]{Partielle integration}{}{} \eq{ - \int_a^b f'(x)\cdot g(x) \d x= \left[f(x)\cdot g(x)\right]_a^b - \int_a^b f(x)\cdot g'(x) \d x + \int_a^b f^\prime(x)\cdot g(x) \d x= \left[f(x)\cdot g(x)\right]_a^b - \int_a^b f(x)\cdot g^\prime(x) \d x } \end{formula} @@ -195,7 +225,7 @@ \desc{Integration by substitution}{}{} \desc[german]{Integration durch Substitution}{}{} \eq{ - \int_a^b f(g(x))\,g'(x) \d x = \int_{g(a)}^{g(b)} f(z) \d z + \int_a^b f(g(x))\,g^\prime(x) \d x = \int_{g(a)}^{g(b)} f(z) \d z } \end{formula} @@ -203,7 +233,7 @@ \desc{Gauss's theorem / Divergence theorem}{Divergence in a volume equals the flux through the surface}{$A = \partial V$} \desc[german]{Satz von Gauss}{Divergenz in einem Volumen ist gleich dem Fluss durch die Oberfläche}{} \eq{ - \iiint_V (\Div{\vec{F}}) \d V = \oiint_A \vec{F} \cdot \d\vec{A} + \iiint_V \Div{\vec{F}} \d V = \oiint_A \vec{F} \cdot \d\vec{A} } \end{formula} @@ -239,15 +269,6 @@ } \end{formula} - \begin{formula}{spherical-coordinates} - \desc{Spherical coordinates}{}{} - \desc[german]{Kugelkoordinaten}{}{} - \eq{ - x &= r \sin\phi,\cos\theta \\ - y &= r \cos\phi,\cos\theta \\ - z &= r \sin\theta - } - \end{formula} \begin{formula}{spheical-coordinates-int} \desc{Integration in spherical coordinates}{}{} \desc[german]{Integration in Kugelkoordinaten}{}{} @@ -260,6 +281,40 @@ \eq{\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \d\eta \frac{\eta^{(s-1)}}{\e^\eta + 1}} \end{formula} + \begin{formula}{gamma_function} + \desc{Gamma function}{}{} + \desc[german]{Gamma-Funktion}{}{} + \eq{ + \Gamma(n) &= (n-1)! \\ + \Gamma(z) &= \int_0^\infty t^{z-1} \e^{-t} \d t \\ + \Gamma(z+1) &= z\Gamma(z) + } + \end{formula} + \begin{formula}{upper_incomplete_gamma_function} + \desc{Upper incomplete gamma function}{}{} + \desc[german]{Unvollständige Gamma-Funktion der unteren Grenze}{}{} + \eq{\Gamma(s,x) = \int_x-^\infty t^{s-1}\e^{-t} \d t} + \end{formula} + \begin{formula}{lower_incomplete_gamma_function} + \desc{Lower incomplete gamma function}{}{} + \desc[german]{Unvollständige Gamma-Funktion der oberen Grenze}{}{} + \eq{\gamma(s,x) = \int_0^x t^{s-1}\e^{-t} \d t} + \end{formula} + + \begin{formula}{beta_function} + \desc{Beta function}{Complete beta function}{} + \desc[german]{Beta-Funktion}{}{} + \eq{ + \txB(z_1,z_2) &= \int_0^1 t^{z_1-1} (1-t)^{z_2-1} \d t \\ + \txB(z_1, z_2) &= \frac{\Gamma(z_1) \Gamma(z_2)}{\Gamma(z_1+z_2)} + } + \end{formula} + \begin{formula}{incomplete_beta_function} + \desc{Incomplete beta function}{Complete beta function}{} + \desc[german]{Unvollständige Beta-Funktion}{}{} + \eq{\txB(x; z_1,z_2) = \int_0^x t^{z_1-1} (1-t)^{z_2-1} \d t} + \end{formula} + \TODO{differential equation solutions} diff --git a/src/math/probability_theory.tex b/src/math/probability_theory.tex index bb17bb8..e48437c 100644 --- a/src/math/probability_theory.tex +++ b/src/math/probability_theory.tex @@ -9,6 +9,7 @@ \eq{\braket{x} = \int w(x)\, x\, \d x} \end{formula} + \begin{formula}{variance} \desc{Variance}{Square of the \fqEqRef{math:pt:std-deviation}}{} \desc[german]{Varianz}{Quadrat der\fqEqRef{math:pt:std-deviation}}{} @@ -47,35 +48,51 @@ \eq{F(x) = \int_{-\infty}^x f(t) \d t} \end{formula} + \begin{formula}{pmf} + \desc{Probability mass function}{Probability $p$ that \textbf{discrete} random variable $X$ has exact value $x$}{$P$ probability measure} + \desc[german]{Wahrscheinlichkeitsfunktion / Zählfunktion}{Wahrscheinlichkeit $p$ dass eine \textbf{diskrete} Zufallsvariable $X$ einen exakten Wert $x$ annimmt}{} + \eq{p_X(x) = P(X = x)} + \end{formula} + \begin{formula}{autocorrelation} \desc{Autocorrelation}{Correlation of $f$ to itself at an earlier point in time, $C$ is a covariance function}{} \desc[german]{Autokorrelation}{Korrelation vonn $f$ zu sich selbst zu einem früheren Zeitpunkt. $C$ ist auch die Kovarianzfunktion}{} \eq{C_A(\tau) = \lim_{T \to \infty} \frac{1}{2T}\int_{-T}^{T} f(t+\tau) f(t) \d t) = \braket{f(t+\tau)\cdot f(t)}} \end{formula} + \begin{formula}{binomial_coefficient} + \desc{Binomial coefficient}{Number of possibilitites of choosing $k$ objects out of $n$ objects\\}{} + \desc[german]{Binomialkoeffizient}{Anzahl der Möglichkeiten, $k$ aus $n$ zu wählen\\ "$n$ über $k$"}{} + \eq{\binom{n}{k} = \frac{n!}{k!(n-k)!}} + \end{formula} + \Subsection[ \eng{Distributions} \ger{Verteilungen} ]{distributions} \Subsubsection[ - \eng{Gauß/Normal distribution} - \ger{Gauß/Normal-Verteilung} - ]{normal} - \begin{minipage}{\distleftwidth} - \begin{figure}[H] - \centering - \includegraphics[width=\textwidth]{img/distribution_gauss.pdf} - \end{figure} - \end{minipage} - \begin{distribution} - \disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R} - \disteq{support}{x \in \R} - \disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)} - \disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]} - \disteq{mean}{\mu} - \disteq{median}{\mu} - \disteq{variance}{\sigma^2} - \end{distribution} + \eng{Continuous probability distributions} + \ger{Kontinuierliche Wahrscheinlichkeitsverteilungen} + ]{cont} + \begin{bigformula}{normal} + \desc{Gauß/Normal distribution}{}{} + \desc[german]{Gauß/Normal-Verteilung}{}{} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_gauss.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{\mu \in \R,\quad \sigma^2 \in \R} + \disteq{support}{x \in \R} + \disteq{pdf}{\frac{1}{\sqrt{2\pi\sigma^2}}\exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)} + \disteq{cdf}{\frac{1}{2}\left[1 + \erf \left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]} + \disteq{mean}{\mu} + \disteq{median}{\mu} + \disteq{variance}{\sigma^2} + \end{distribution} + \end{bigformula} \begin{formula}{standard_normal_distribution} \desc{Density function of the standard normal distribution}{$\mu = 0$, $\sigma = 1$}{} @@ -83,98 +100,138 @@ \eq{\varphi(x) = \frac{1}{\sqrt{2\pi}} \e^{-\frac{1}{2}x^2}} \end{formula} - \Subsubsection[ - \eng{Cauchys / Lorentz distribution} - \ger{Cauchy / Lorentz-Verteilung} - ]{cauchy} - \begin{minipage}{\distleftwidth} - \begin{figure}[H] - \centering - \includegraphics[width=\textwidth]{img/distribution_cauchy.pdf} - \end{figure} - \end{minipage} - \begin{distribution} - \disteq{parameters}{x_0 \in \R,\quad \gamma \in \R} - \disteq{support}{x \in \R} - \disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}} - \disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}} - \disteq{mean}{\text{\GT{undefined}}} - \disteq{median}{x_0} - \disteq{variance}{\text{\GT{undefined}}} - \end{distribution} - \noindent - \begin{ttext} - \eng{Also known as \textbf{Cauchy-Lorentz distribution}, \textbf{Lorentz(ian) function}, \textbf{Breit-Wigner distribution}.} - \ger{Auch bekannt als \textbf{Cauchy-Lorentz Verteilung}, \textbf{Lorentz Funktion}, \textbf{Breit-Wigner Verteilung}.} - \end{ttext} + \begin{bigformula}{cauchy} + \desc{Cauchys / Lorentz distribution}{Also known as Cauchy-Lorentz distribution, Lorentz(ian) function, Breit-Wigner distribution.}{} + \desc[german]{Cauchy / Lorentz-Verteilung}{Auch bekannt als Cauchy-Lorentz Verteilung, Lorentz Funktion, Breit-Wigner Verteilung.}{} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_cauchy.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{x_0 \in \R,\quad \gamma \in \R} + \disteq{support}{x \in \R} + \disteq{pdf}{\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}} + \disteq{cdf}{\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right) + \frac{1}{2}} + \disteq{mean}{\text{\GT{undefined}}} + \disteq{median}{x_0} + \disteq{variance}{\text{\GT{undefined}}} + \end{distribution} + \end{bigformula} + + \begin{bigformula}{maxwell-boltzmann} + \desc{Maxwell-Boltzmann distribution}{}{} + \desc[german]{Maxwell-Boltzmann Verteilung}{}{} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_maxwell-boltzmann.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{a > 0} + \disteq{support}{x \in (0, \infty)} + \disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)} + \disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)} + \disteq{mean}{2a \frac{2}{\pi}} + \disteq{median}{} + \disteq{variance}{\frac{a^2(3\pi-8)}{\pi}} + \end{distribution} + \end{bigformula} + + + \begin{bigformula}{gamma} + \desc{Gamma Distribution}{with $\lambda$ parameter}{$\Gamma$ \fqEqRef{math:cal:integral:list:gamma}, $\gamma$ \fqEqRef{math:cal:integral:list:lower_incomplete_gamma_function}} + \desc[german]{Gamma Verteilung}{mit $\lambda$ Parameter}{} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_gamma.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{\alpha > 0, \lambda > 0} + \disteq{support}{x\in(0,1)} + \disteq{pdf}{\frac{\lambda^\alpha}{\Gamma(\alpha) x^{\alpha-1} \e^{-\lambda x}}} + \disteq{cdf}{\frac{1}{\Gamma(\alpha) \gamma(\alpha, \lambda x)}} + \disteq{mean}{\frac{\alpha}{\lambda}} + \disteq{variance}{\frac{\alpha}{\lambda^2}} + \end{distribution} + \end{bigformula} + + \begin{bigformula}{beta} + \desc{Beta Distribution}{}{$\txB$ \fqEqRef{math:cal:integral:list:beta_function} / \fqEqRef{math:cal:integral:list:incomplete_beta_function}} + \desc[german]{Beta Verteilung}{}{} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_beta.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{\alpha \in \R, \beta \in \R} + \disteq{support}{x\in[0,1]} + \disteq{pdf}{\frac{x^{\alpha-1} (1-x)^{\beta-1}}{\txB(\alpha,\beta)}} + \disteq{cdf}{\frac{\txB(x;\alpha,\beta)}{\txB(\alpha,\beta)}} + \disteq{mean}{\frac{\alpha}{\alpha+\beta}} + % \disteq{median}{\frac{}{}} % pretty complicated, probably not needed + \disteq{variance}{\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}} + \end{distribution} + \end{bigformula} \Subsubsection[ - \eng{Binomial distribution} - \ger{Binomialverteilung} - ]{binomial} - \begin{ttext} - \eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \hyperref[sec:pb:distributions:poisson]{poisson distribution}} - \ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \hyperref[sec:pb:distributions:poisson]{Poissonverteilung}} - \end{ttext}\\ - \begin{minipage}{\distleftwidth} - \begin{figure}[H] - \centering - \includegraphics[width=\textwidth]{img/distribution_binomial.pdf} - \end{figure} - \end{minipage} - \begin{distribution} - \disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p} - \disteq{support}{k \in \{0,\,1,\,\dots,\,n\}} - \disteq{pmf}{\binom{n}{k} p^k q^{n-k}} - % \disteq{cdf}{\text{regularized incomplete beta function}} - \disteq{mean}{np} - \disteq{median}{\floor{np} \text{ or } \ceil{np}} - \disteq{variance}{npq = np(1-p)} - \end{distribution} - \Subsubsection[ - \eng{Poisson distribution} - \ger{Poissonverteilung} - ]{poisson} - \begin{minipage}{\distleftwidth} - \begin{figure}[H] - \centering - \includegraphics[width=\textwidth]{img/distribution_poisson.pdf} - \end{figure} - \end{minipage} - \begin{distribution} - \disteq{parameters}{\lambda \in (0,\infty)} - \disteq{support}{k \in \N} - \disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}} - \disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}} - \disteq{mean}{\lambda} - \disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}} - \disteq{variance}{\lambda} - \end{distribution} - + \eng{Discrete probability distributions} + \ger{Diskrete Wahrscheinlichkeitsverteilungen} + ]{discrete} + \begin{bigformula}{binomial} + \desc{Binomial distribution}{}{} + \desc[german]{Binomialverteilung}{}{} + \begin{ttext} + \eng{For the number of trials going to infinity ($n\to\infty$), the binomial distribution converges to the \hyperref[sec:pb:distributions:poisson]{poisson distribution}} + \ger{Geht die Zahl der Versuche gegen unendlich ($n\to\infty$), konvergiert die Binomualverteilung gegen die \hyperref[sec:pb:distributions:poisson]{Poissonverteilung}} + \end{ttext}\\ + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_binomial.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{n \in \Z, \quad p \in [0,1],\quad q = 1 - p} + \disteq{support}{k \in \{0,\,1,\,\dots,\,n\}} + \disteq{pmf}{\binom{n}{k} p^k q^{n-k}} + % \disteq{cdf}{\text{regularized incomplete beta function}} + \disteq{mean}{np} + \disteq{median}{\floor{np} \text{ or } \ceil{np}} + \disteq{variance}{npq = np(1-p)} + \end{distribution} + \end{bigformula} - \Subsubsection[ - \eng{Maxwell-Boltzmann distribution} - \ger{Maxwell-Boltzmann Verteilung} - ]{maxwell-boltzmann} - \begin{minipage}{\distleftwidth} - \begin{figure}[H] - \centering - \includegraphics[width=\textwidth]{img/distribution_maxwell-boltzmann.pdf} - \end{figure} - \end{minipage} - \begin{distribution} - \disteq{parameters}{a > 0} - \disteq{support}{x \in (0, \infty)} - \disteq{pdf}{\sqrt{\frac{2}{\pi}} \frac{x^2}{a^3} \exp\left(-\frac{x^2}{2a^2}\right)} - \disteq{cdf}{\erf \left(\frac{x}{\sqrt{2} a}\right) - \sqrt{\frac{2}{\pi}} \frac{x}{a} \exp\left({\frac{-x^2}{2a^2}}\right)} - \disteq{mean}{2a \frac{2}{\pi}} - \disteq{median}{} - \disteq{variance}{\frac{a^2(3\pi-8)}{\pi}} - \end{distribution} + \begin{bigformula}{poisson} + \desc{Poisson distribution}{}{} + \desc[german]{Poissonverteilung}{}{} + \begin{minipage}{\distleftwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/distribution_poisson.pdf} + \end{figure} + \end{minipage} + \begin{distribution} + \disteq{parameters}{\lambda \in (0,\infty)} + \disteq{support}{k \in \N} + \disteq{pmf}{\frac{\lambda^k \e^{-\lambda}}{k!}} + \disteq{cdf}{\e^{-\lambda} \sum_{j=0}^{\floor{k}} \frac{\lambda^j}{j!}} + \disteq{mean}{\lambda} + \disteq{median}{\approx\floor*{\lambda + \frac{1}{3} - \frac{1}{50\lambda}}} + \disteq{variance}{\lambda} + \end{distribution} + \end{bigformula} + % TEMPLATE % \begin{distribution}{maxwell-boltzmann} % \distdesc{Maxwell-Boltzmann distribution}{} % \distdesc[german]{Maxwell-Boltzmann Verteilung}{} @@ -238,4 +295,51 @@ \eq{\sigma^2_{\overline{x}} = \frac{1}{\sum_i w_i}} \end{formula} + \Subsection[ + \eng{Maximum likelihood estimation} + \ger{Maximum likelihood Methode} + ]{mle} + \begin{formula}{likelihood} + \desc{Likelihood function}{Likelihood of observing $x$ when parameter is $\theta$\\in general not normalized!}{$\rho$ \fqEqRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ depending on parameter $\theta$, $\Theta$ parameter space} + \desc[german]{Likelihood Funktion}{"Plausibilität" $x$ zu messen, wenn der Parameter $\theta$ ist\\nicht normalisiert!}{$\rho$ \fqEqRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ hängt ab von Parameter $\theta$, $\Theta$ Parameterraum} + \eq{L:\Theta \rightarrow [0,1], \quad \theta \mapsto \rho(x|\theta)} + \end{formula} + \begin{formula}{likelihood_independant} + \desc{Likelihood function}{for independent and identically distributed random variables}{$x_i$ $n$ random variables, $\rho$ \fqEqRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ depending on parameter $\theta$} + \desc[german]{Likelihood function}{für unabhängig und identisch verteilte Zufallsvariablen}{$x_i$ $n$ Zufallsvariablen$\rho$ \fqEqRef{math:pt:pdf} $x\mapsto \rho(x|\theta)$ hängt ab von Parameter $\theta$} + \eq{L(\theta) = \prod_{i=1}^n f(x_i;\theta)} + \end{formula} + \begin{formula}{maximum_likelihood_estimate} + \desc{Maximum likelihood estimate (MLE)}{Paramater for which outcome is most likely}{$L$ \fqEqRef{pt:mle:likelihood}, $\theta$ parameter of a \fqEqRef{math:pt:pdf}} + \desc[german]{Maximum likelihood-Schätzung (MLE)}{Paramater, für den das Ergebnis am Wahrscheinlichsten ist}{$L$ \fqEqRef{math:pt:mle:likelihood}, $\theta$ Parameter einer \fqEqRef{math:pt:pdf}} + \eq{\theta_\text{ML} &= \argmax_\theta L(\theta)\\ &= \argmax_\theta \log \big(L(\theta)\big)} + \end{formula} + + \Subsection[ + \eng{Bayesian probability theory} + \ger{Bayessche Wahrscheinlichkeitstheorie} + ]{bayesian} + \begin{formula}{prior} + \desc{Prior distribution}{Expected distribution before conducting the experiment}{$\theta$ parameter} + \desc[german]{Prior Verteilung}{}{} + \eq{p(\theta)} + \end{formula} + + \begin{formula}{evidence} + \desc{Evidence}{}{$p(\mathcal{D}|\theta)$ \fqEqRef{math:pt:mle:likelihood}, $p(\theta)$ \fqEqRef{math:pt:bayesian:prior}, $\mathcal{D}$ data set} + % \desc[german]{}{}{} + \eq{p(\mathcal{D}) = \int\d\theta \,p(\mathcal{D}|\theta)\,p(\theta)} + \end{formula} + + \begin{formula}{theorem} + \desc{Bayes' theorem}{}{$p(\theta|\mathcal{D})$ posterior distribution, $p(\mathcal{D}|\theta)$ \fqEqRef{math:pt:mle:likelihood}, $p(\theta)$ \fqEqRef{math:pt:bayesian:prior}, $p(\mathcal{D})$ \fqEqRef{math:pt:bayesian:evidence}, $\mathcal{D}$ data set} + \desc[german]{Satz von Bayes}{}{} + \eq{p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)\,p(\theta)}{p(\mathcal{D})}} + \end{formula} + + \begin{formula}{map} + \desc{Maximum a posterior estimation (MAP)}{}{} + % \desc[german]{}{}{} + \eq{\theta_\text{MAP} = \argmax_\theta p(\theta|\mathcal{D}) = \argmax_\theta p(\mathcal{D}|\theta)\,p(\theta)} + \end{formula} diff --git a/src/mechanics.tex b/src/mechanics.tex index c805f05..0bbc319 100644 --- a/src/mechanics.tex +++ b/src/mechanics.tex @@ -3,6 +3,34 @@ \ger{Mechanik} ]{mech} +\Section[ + \eng{Newton} + \ger{Newton} +]{newton} + \begin{formula}{newton_laws} + \desc{Newton's laws}{}{} + \desc[german]{Newtonsche Gesetze}{}{} + \ttxt{ + \eng{ + \begin{enumerate} + \item A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force + \item $$\vec{F} = m \cdot \vec{a}$$ + \item If two bodies exert forces on each other, these force have the same magnitude but opposite directions + $$\vec{F}_{\txA\rightarrow\txB} = -\vec{F}_{\txB\rightarrow\txA}$$ + \end{enumerate} + + } + \ger{ + \begin{enumerate} + \item Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit + \item $$\vec{F} = m \cdot \vec{a}$$ + \item Eine Kraft von Körper A auf Körper B geht immer mit einer gleich große, aber entgegen gerichteten Kraft von Körper B auf Körper A einher: + $$\vec{F}_{\txA\rightarrow\txB} = -\vec{F}_{\txB\rightarrow\txA}$$ + \end{enumerate} + } + } + \end{formula} + \Section[ \eng{Misc} \ger{Verschiedenes} diff --git a/src/particle.tex b/src/particle.tex new file mode 100644 index 0000000..67e3607 --- /dev/null +++ b/src/particle.tex @@ -0,0 +1,101 @@ +\Part[ + \eng{Particle physics} + \ger{Teilchenphysik} +]{particle} + + \begin{formula}{electron_mass} + \desc{Electron mass}{}{} + \desc[german]{Elektronenmasse}{}{} + \constant{m_\txe}{exp}{ + \val{9.1093837139(28) \xE{-31}}{\kg} + } + \end{formula} + +\tikzset{% + label/.style = { black, midway, align=center }, + toplabel/.style = { label, above=.5em, anchor=south }, + leftlabel/.style = { midway, left=.5em, anchor=east }, + bottomlabel/.style = { label, below=.5em, anchor=north }, + force/.style = { rotate=-90,scale=0.4 }, + round/.style = { rounded corners=2mm }, + legend/.style = { anchor=east }, + nosep/.style = { inner sep=0pt }, + generation/.style = { anchor=base }, + brace/.style = { decoration={brace,mirror},decorate } +} + +% [1]: color +% 2: symbol +% 3: name +% 4: mass +% 5: spin +% 6: charge +% 7: colors +\newcommand\drawParticle[7][white]{% + \begin{tikzpicture}[x=2.2cm, y=2.2cm] + % \path[fill=#1,blur shadow={shadow blur steps=5}] (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle; + % \path[fill=#1,stroke=black,blur shadow={shadow blur steps=5},rounded corners] (0,0) rectangle (1,1); + \path[fill=#1!20!bg0,draw=#1,thick] (0.02,0.02) rectangle (0.98,0.98); + \node at(0.92, 0.50) [nosep,anchor=east]{\Large #2}; + % \node at(0.95, 0.15) [nosep,anchor=south east]{\footnotesize #3}; + \node at(0.05, 0.15) [nosep,anchor=south west]{\footnotesize #3}; + % \ifstrempty{#2}{}{\node at(0) [nosep,anchor=west,scale=1.5] {#2};} + % \ifstrempty{#3}{}{\node at(0.1,-0.85) [nosep,anchor=west,scale=0.3] {#3};} + \ifstrempty{#4}{}{\node at(0.05,0.85) [nosep,anchor=west] {\footnotesize #4};} + \ifstrempty{#5}{}{\node at(0.05,0.70) [nosep,anchor=west] {\footnotesize #5};} + \ifstrempty{#6}{}{\node at(0.05,0.55) [nosep,anchor=west] {\footnotesize #6};} + % \ifstrempty{#7}{}{\node at(0.05,0.40) [nosep,anchor=west] {\footnotesize #7};} + \end{tikzpicture} +} +\def\colorLepton{bg-aqua} +\def\colorQuarks{bg-purple} +\def\colorGauBos{bg-red} +\def\colorScaBos{bg-yellow} +\eng[quarks]{Quarks} +\ger[quarks]{Quarks} +\eng[leptons]{Leptons} +\ger[leptons]{Leptonen} +\eng[fermions]{Fermions} +\ger[fermions]{Fermionen} +\eng[bosons]{Bosons} +\ger[bosons]{Bosonen} + +\begin{tikzpicture}[x=2.2cm, y=2.2cm] + \node at(0, 0) {\drawParticle[\colorQuarks]{$u$} {up} {$2.3$ MeV}{1/2}{$2/3$}{R/G/B}}; + \node at(0,-1) {\drawParticle[\colorQuarks]{$d$} {down} {$4.8$ MeV}{1/2}{$-1/3$}{R/G/B}}; + \node at(0,-2) {\drawParticle[\colorLepton]{$e$} {electron} {$511$ keV}{1/2}{$-1$}{}}; + \node at(0,-3) {\drawParticle[\colorLepton]{$\nu_e$} {$e$ neutrino} {$<2.2$ eV}{1/2}{0}{}}; + \node at(1, 0) {\drawParticle[\colorQuarks]{$c$} {charm} {$1.275$ GeV}{1/2}{$2/3$}{R/G/B}}; + \node at(1,-1) {\drawParticle[\colorQuarks]{$s$} {strange} {$95$ MeV}{1/2}{$-1/3$}{R/G/B}}; + \node at(1,-2) {\drawParticle[\colorLepton]{$\mu$} {muon} {$105.7$ MeV}{1/2}{$-1$}{}}; + \node at(1,-3) {\drawParticle[\colorLepton]{$\nu_\mu$} {$\mu$ neutrino}{$<170$ keV}{1/2}{0}{}}; + \node at(2, 0) {\drawParticle[\colorQuarks]{$t$} {top} {$173.2$ GeV}{1/2}{$2/3$}{R/G/B}}; + \node at(2,-1) {\drawParticle[\colorQuarks]{$b$} {bottom} {$4.18$ GeV}{1/2}{$-1/3$}{R/G/B}}; + \node at(2,-2) {\drawParticle[\colorLepton]{$\tau$} {tau} {$1.777$ GeV}{1/2}{$-1$}{}}; + \node at(2,-3) {\drawParticle[\colorLepton]{$\nu_\tau$} {$\tau$ neutrino} {$<15.5$ MeV}{1/2}{0}{}}; + \node at(3, 0) {\drawParticle[\colorGauBos]{$g$} {gluon} {0}{1}{0}{color}}; + \node at(3,-1) {\drawParticle[\colorGauBos]{$\gamma$} {photon} {0}{1}{0}{}}; + \node at(3,-2) {\drawParticle[\colorGauBos]{$Z$} {} {$91.2$ GeV}{1}{0}{}}; + \node at(3,-3) {\drawParticle[\colorGauBos]{$W_\pm$} {} {$80.4$ GeV}{1}{$\pm1$}{}}; + \node at(4,0) {\drawParticle[\colorScaBos]{$H$} {Higgs} {$125.1$ GeV}{0}{0}{}}; + + \draw [->] (-0.7, 0.35) node [legend] {\qtyRef{mass}} -- (-0.5, 0.35); + \draw [->] (-0.7, 0.20) node [legend] {\qtyRef{spin}} -- (-0.5, 0.20); + \draw [->] (-0.7, 0.05) node [legend] {\qtyRef{charge}} -- (-0.5, 0.05); + \draw [->] (-0.7,-0.10) node [legend] {\qtyRef{colors}} -- (-0.5,-0.10); + + \draw [brace,draw=\colorQuarks] (-0.55, 0.5) -- (-0.55,-1.5) node[leftlabel,color=\colorQuarks] {\gt{quarks}}; + \draw [brace,draw=\colorLepton] (-0.55,-1.5) -- (-0.55,-3.5) node[leftlabel,color=\colorLepton] {\gt{leptons}}; + \draw [brace] (-0.5,-3.55) -- ( 2.5,-3.55) node[bottomlabel] {\gt{fermions}}; + \draw [brace] ( 2.5,-3.55) -- ( 4.5,-3.55) node[bottomlabel] {\gt{bosons}}; + + + \draw [brace] (0.5,0.55) -- (-0.5,0.55) node[toplabel] {\small standard matter}; + \draw [brace] (2.5,0.55) -- ( 0.5,0.55) node[toplabel] {\small unstable matter}; + \draw [brace] (4.5,0.55) -- ( 2.5,0.55) node[toplabel] {\small force carriers}; + + \node at (0,0.85) [generation] {\small I}; + \node at (1,0.85) [generation] {\small II}; + \node at (2,0.85) [generation] {\small III}; + \node at (1,1.05) [generation] {\small generation}; +\end{tikzpicture} diff --git a/src/atom.tex b/src/qm/atom.tex similarity index 85% rename from src/atom.tex rename to src/qm/atom.tex index e4616a2..88bf496 100644 --- a/src/atom.tex +++ b/src/qm/atom.tex @@ -49,10 +49,36 @@ \eq{E_n &= \frac{Z^2\mu e^4}{n^2(4\pi\epsilon_0)^2 2\hbar^2} = -E_\textrm{H}\frac{Z^2}{n^2}} \end{formula} + \begin{formula}{rydberg_constant_heavy} + \desc{Rydberg constant}{for heavy atoms}{\ConstRef{electron_mass}, \ConstRef{elementary_charge}, \QtyRef{vacuum_permittivity}, \ConstRef{planck}, \ConstRef{vacuum_speed_of_light}} + \desc[german]{Rydberg-Konstante}{für schwere Atome}{} + \constant{R_\infty}{exp}{ + \val{10973731.568157(12)}{\per\m} + } + \eq{ + R_\infty = \frac{m_e e^4}{8\epsilon_0^2 h^3 c} + } + \end{formula} + + \begin{formula}{rydberg_constant_corrected} + \desc{Rydberg constant}{corrected for nucleus mass $M$}{\QtyRef{rydberg_constant_heavy}, $\mu = \left(\frac{1}{m_\txe} + \frac{1}{M}\right)^{-1}$ \GT{reduced_mass}, \ConstRef{electron_mass}} + \desc[german]{Rydberg Konstante}{korrigiert für Kernmasse $M$}{} + \eq{R_\txM = \frac{\mu}{m_\txe} R_\infty} + \end{formula} + \begin{formula}{rydberg_energy} - \desc{Rydberg energy}{}{} - \desc[german]{Rydberg-Energy}{}{} - \eq{E_\textrm{H} = h\,c\,R_\textrm{H} = \frac{\mu e^4}{(4\pi\epsilon_0)^2 2\hbar^2}} + \desc{Rydberg energy}{Energy unit}{\ConstRef{rydberg_constant_heavy}, \ConstRef{planck}, \ConstRef{vacuum_speed_of_light}} + \desc[german]{Rydberg-Energy}{Energie Einheit}{} + \eq{1\,\text{Ry} = hc\,R_\infty} + \end{formula} + + \begin{formula}{bohr_radius} + \desc{Bohr radius}{}{\ConstRef{vacuum_permittivity}, \ConstRef{electron_mass}} + \desc[german]{Bohrscher Radius}{}{} + \constant{a_0}{exp}{ + \val{5.29177210544(82) \xE{-11}}{\m} + } + \eq{a_0 = \frac{4\pi \epsilon_0 \hbar^2}{e^2 m_\txe}} \end{formula} diff --git a/src/quantum_mechanics.tex b/src/qm/qm.tex similarity index 98% rename from src/quantum_mechanics.tex rename to src/qm/qm.tex index 005730d..5fc8b38 100644 --- a/src/quantum_mechanics.tex +++ b/src/qm/qm.tex @@ -80,11 +80,12 @@ \begin{formula}{pauli_matrices} \desc{Pauli matrices}{}{} \desc[german]{Pauli Matrizen}{}{} - \eqAlignedAt{2}{ + \newFormulaEntry + \begin{alignat}{2} \sigma_x &= \sigmaxmatrix &&= \sigmaxbraket \label{eq:pauli_x} \\ \sigma_y &= \sigmaymatrix &&= \sigmaybraket \label{eq:pauli_y} \\ \sigma_z &= \sigmazmatrix &&= \sigmazbraket \label{eq:pauli_z} - } + \end{alignat} \end{formula} % $\sigma_x$ NOT % $\sigma_y$ PHASE @@ -177,7 +178,7 @@ \Section[ \eng{Schrödinger equation} \ger{Schrödingergleichung} - ]{schroedinger_equation} + ]{se} \begin{formula}{energy_operator} \desc{Energy operator}{}{} \desc[german]{Energieoperator}{}{} @@ -338,7 +339,7 @@ \desc{2. order energy shift}{}{} \desc[german]{Energieverschiebung 2. Ordnung}{}{} % \eq{E_n^{(1)} = \Braket{\psi_n^{(0)}|\hat{H_1}|\psi_n^{(0)}}} - \eq{E_n^{(2)} = \sum_{k\neq n}\frac{\abs*{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}^2}{E_n^{(0)} - E_k^{(0)}}} + \eq{E_n^{(2)} = \sum_{k\neq n}\frac{\abs{\Braket{\psi_k^{(0)}|\hat{H_1}|\psi_n^{(0)}}}^2}{E_n^{(0)} - E_k^{(0)}}} \end{formula} % \begin{formula}{qm:pertubation:} % \desc{1. order states}{}{} @@ -347,16 +348,16 @@ % \end{formula} \begin{formula}{golden_rule} - \desc{Fermi\'s golden rule}{Transition rate from initial state $\ket{i}$ under a pertubation $H^1$ to final state $\ket{f}$}{} + \desc{Fermi's golden rule}{Transition rate from initial state $\ket{i}$ under a pertubation $H^1$ to final state $\ket{f}$}{} \desc[german]{Fermis goldene Regel}{Übergangsrate des initial Zustandes $\ket{i}$ unter einer Störung $H^1$ zum Endzustand $\ket{f}$}{} - \eq{\Gamma_{i\to f} = \frac{2\pi}{\hbar} \abs*{\braket{f | H^1 | i}}^2\,\rho(E_f)} + \eq{\Gamma_{i\to f} = \frac{2\pi}{\hbar} \abs{\braket{f | H^1 | i}}^2\,\rho(E_f)} \end{formula} \Section[ \eng{Harmonic oscillator} \ger{Harmonischer Oszillator} - ]{qm_hosc} + ]{hosc} \begin{formula}{hamiltonian} \desc{Hamiltonian}{}{} \desc[german]{Hamiltonian}{}{} diff --git a/src/quantities.tex b/src/quantities.tex index d8fcdc4..c2766f4 100644 --- a/src/quantities.tex +++ b/src/quantities.tex @@ -18,7 +18,7 @@ \quantity{t}{\second}{} \end{formula} - \begin{formula}{Length} + \begin{formula}{length} \desc{Length}{}{} \desc[german]{Länge}{}{} \quantity{l}{\m}{e} @@ -58,7 +58,6 @@ \eng{Mechanics} \ger{Mechanik} ]{mech} - \begin{formula}{force} \desc{Force}{}{} \desc[german]{Kraft}{}{} @@ -107,13 +106,42 @@ \desc[german]{Ladung}{}{} \quantity{q}{\coulomb=\ampere\s}{} \end{formula} + \begin{formula}{charge_number} + \desc{Charge number}{}{} + \desc[german]{ladungszahl}{Anzahl der Elementarladungen}{} + \quantity{Z}{}{} + \end{formula} \begin{formula}{charge_density} \desc{Charge density}{}{} \desc[german]{Ladungsdichte}{}{} \quantity{\rho}{\coulomb\per\m^3}{s} \end{formula} + \begin{formula}{frequency} + \desc{Frequency}{}{} + \desc[german]{Frequenz}{}{} + \quantity{f}{\hertz=\per\s}{s} + \end{formula} + \begin{formula}{angular_frequency} + \desc{Angular frequency}{}{\QtyRef{time_period}, \QtyRef{frequency}} + \desc[german]{Winkelgeschwindigkeit}{}{} + \quantity{\omega}{\radian\per\s}{s} + \eq{\omega = \frac{2\pi/T}{2\pi f}} + \end{formula} + + \begin{formula}{time_period} + \desc{Time period}{}{\QtyRef{frequency}} + \desc[german]{Periodendauer}{}{} + \quantity{T}{\s}{s} + \eq{T = \frac{1}{f}} + \end{formula} + \Subsection[ \eng{Others} \ger{Sonstige} ]{other} + \begin{formula}{area} + \desc{Area}{}{} + \desc[german]{Fläche}{}{} + \quantity{A}{m^2}{v} + \end{formula} diff --git a/src/quantum_computing.tex b/src/quantum_computing.tex index b39fefc..61804c9 100644 --- a/src/quantum_computing.tex +++ b/src/quantum_computing.tex @@ -24,12 +24,12 @@ \begin{formula}{gates} \desc{}{}{} \desc[german]{}{}{} - \eqAlignedAt{2}{ + \begin{alignat}{2} & \text{\gt{bitflip}:} & \hat{X} &= \sigma_x = \sigmaxmatrix \\ & \text{\gt{bitphaseflip}:} & \hat{Y} &= \sigma_y = \sigmaymatrix \\ & \text{\gt{phaseflip}:} & \hat{Z} &= \sigma_z = \sigmazmatrix \\ & \text{\gt{hadamard}:} & \hat{H} &= \frac{1}{\sqrt{2}}(\hat{X}-\hat{Z}) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} - } + \end{alignat} \end{formula} % \begin{itemize} % \item \gt{bitflip}: $\hat{X} = \sigma_x = \sigmaxmatrix$ diff --git a/src/statistical_mechanics.tex b/src/statistical_mechanics.tex index 6faa81e..b4b0f5f 100644 --- a/src/statistical_mechanics.tex +++ b/src/statistical_mechanics.tex @@ -111,27 +111,32 @@ \ger{Irreversible Gasexpansion (Gay-Lussac-Versuch)} ]{gay} - \begin{minipage}{0.6\textwidth} - \vfill - \begin{ttext} - \eng{ - A classical gas in a system with volume $V_1$ is separated from another system with volume $V_2$. - In the Gay-Lussac experiment, the separation is removed and the gas flows into $V_2$. - } - \ger{ - Ein klassisches Gas in einem System mit Volumen $V_1$ ist getrennt von einem zweiten System mit Volumen $V_2$. - Beim Gay-Lussac Versuch wird die Trennwand entfern und das Gas fließt in das Volumen $V_2$. - } - \end{ttext} - \vfill - \end{minipage} - \hfill - \begin{minipage}{0.3\textwidth} - \begin{figure}[H] - \centering - \includegraphics[width=\textwidth]{img/td_gay_lussac.pdf} - \end{figure} - \end{minipage} + \begin{bigformula}{experiment} + \desc{Gay-Lussac experiment}{}{} + \desc[german]{Gay-Lussac-Versuch}{}{} + \begin{minipage}{0.6\textwidth} + \vfill + \begin{ttext} + \eng{ + A classical gas in a system with volume $V_1$ is separated from another system with volume $V_2$. + In the Gay-Lussac experiment, the separation is removed and the gas flows into $V_2$. + } + \ger{ + Ein klassisches Gas in einem System mit Volumen $V_1$ ist getrennt von einem zweiten System mit Volumen $V_2$. + Beim Gay-Lussac Versuch wird die Trennwand entfern und das Gas fließt in das Volumen $V_2$. + } + \end{ttext} + \vfill + \end{minipage} + \hfill + \begin{minipage}{0.3\textwidth} + \begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{img/td_gay_lussac.pdf} + \end{figure} + \end{minipage} + \end{bigformula} + \begin{formula}{entropy} \desc{Entropy change}{}{} diff --git a/src/svgs/convertToPdf.sh b/src/svgs/convertToPdf.sh old mode 100755 new mode 100644 diff --git a/src/test.tex b/src/test.tex index 97337fe..ac1058e 100644 --- a/src/test.tex +++ b/src/test.tex @@ -30,6 +30,17 @@ Is german? = \IfTranslation{german}{\ttest:name}{yes}{no} \\ Is defined? = \IfTranslationExists{\ttest:name}{yes}{no} \\ Is defined? = \expandafter\IfTranslationExists\expandafter{\ttest:name}{yes}{no} +\paragraph{Testing relative translations} +\begingroup + \edef\prevFqname{\fqname} + \edef\fqname{\prevFqname:test} + \eng{English, relative} + \ger{Deutsch, relativ} +\endgroup +\dt[testkey]{english}{Testkey} +{\textbackslash}gt\{test\}: \gt{test}\\ +{\textbackslash}gt\{test\}: \gt{testkey} + % \DT[qty:test]{english}{HAHA} \paragraph{Testing hyperrefs} diff --git a/src/util/colors.tex b/src/util/colors.tex new file mode 100644 index 0000000..3021e39 --- /dev/null +++ b/src/util/colors.tex @@ -0,0 +1,37 @@ + +% \redefinecolor{black}{HTML}{fg0} +% Dark mode +\pagecolor{bg0} +\color{fg0} + +% \pagecolor{dark0_hard} +% \color{light0_hard} + +% section headings in bright colors, \titleformat from titlesec package +\titleformat{\section} + {\color{fg-purple}\normalfont\Large\bfseries} + {\color{fg-purple}\thesection}{1em}{} + +\titleformat{\subsection} + {\color{fg-blue}\normalfont\large\bfseries} + {\color{fg-blue}\thesubsection}{1em}{} + +\titleformat{\subsubsection} + {\color{fg-aqua}\normalfont\normalsize\bfseries} + {\color{fg-aqua}\thesubsubsection}{1em}{} + +\titleformat{\paragraph} + {\color{fg-green}\normalfont\normalsize\bfseries} + {\color{fg-green}\theparagraph}{1em}{} + +\titleformat{\subparagraph} + {\color{fg-purple}\normalfont\normalsize\bfseries} + {\color{fg-purple}\thesubparagraph}{1em}{} + +\hypersetup{ + colorlinks=true, + linkcolor=fg-purple, + citecolor=fg-green, + filecolor=fg-blue, + urlcolor=fg-orange +} diff --git a/src/util/colorscheme.tex b/src/util/colorscheme.tex index f1f9bc0..67baf99 100644 --- a/src/util/colorscheme.tex +++ b/src/util/colorscheme.tex @@ -1,72 +1,28 @@ -% Gruvbox colors -\definecolor{dark0_hard}{HTML}{1d2021} -\definecolor{dark0}{HTML}{282828} -\definecolor{dark0_soft}{HTML}{32302f} -\definecolor{dark1}{HTML}{3c3836} -\definecolor{dark2}{HTML}{504945} -\definecolor{dark3}{HTML}{665c54} -\definecolor{dark4}{HTML}{7c6f64} -\definecolor{medium}{HTML}{928374} -\definecolor{light0_hard}{HTML}{f9f5d7} -\definecolor{light0}{HTML}{fbf1c7} -\definecolor{light0_soft}{HTML}{f2e5bc} -\definecolor{light1}{HTML}{ebdbb2} -\definecolor{light2}{HTML}{d5c4a1} -\definecolor{light3}{HTML}{bdae93} -\definecolor{light4}{HTML}{a89984} -\definecolor{bright_red}{HTML}{fb4934} -\definecolor{bright_green}{HTML}{b8bb26} -\definecolor{bright_yellow}{HTML}{fabd2f} -\definecolor{bright_blue}{HTML}{83a598} -\definecolor{bright_purple}{HTML}{d3869b} -\definecolor{bright_aqua}{HTML}{8ec07c} -\definecolor{bright_orange}{HTML}{fe8019} -\definecolor{neutral_red}{HTML}{cc241d} -\definecolor{neutral_green}{HTML}{98971a} -\definecolor{neutral_yellow}{HTML}{d79921} -\definecolor{neutral_blue}{HTML}{458588} -\definecolor{neutral_purple}{HTML}{b16286} -\definecolor{neutral_aqua}{HTML}{689d6a} -\definecolor{neutral_orange}{HTML}{d65d0e} -\definecolor{faded_red}{HTML}{9d0006} -\definecolor{faded_green}{HTML}{79740e} -\definecolor{faded_yellow}{HTML}{b57614} -\definecolor{faded_blue}{HTML}{076678} -\definecolor{faded_purple}{HTML}{8f3f71} -\definecolor{faded_aqua}{HTML}{427b58} -\definecolor{faded_orange}{HTML}{af3a03} - -% Dark mode -% \pagecolor{light0_hard} -% \color{dark0_hard} -% \pagecolor{dark0_hard} -% \color{light0_hard} - -% section headings in bright colors, \titleformat from titlesec package -\titleformat{\section} - {\color{neutral_purple}\normalfont\Large\bfseries} - {\color{neutral_purple}\thesection}{1em}{} - -\titleformat{\subsection} - {\color{neutral_blue}\normalfont\large\bfseries} - {\color{neutral_blue}\thesubsection}{1em}{} - -\titleformat{\subsubsection} - {\color{neutral_aqua}\normalfont\normalsize\bfseries} - {\color{neutral_aqua}\thesubsubsection}{1em}{} - -\titleformat{\paragraph} - {\color{neutral_green}\normalfont\normalsize\bfseries} - {\color{neutral_green}\theparagraph}{1em}{} - -\titleformat{\subparagraph} - {\color{neutral_purple}\normalfont\normalsize\bfseries} - {\color{neutral_purple}\thesubparagraph}{1em}{} - -\hypersetup{ - colorlinks=true, - linkcolor=neutral_purple, - citecolor=neutral_green, - filecolor=neutral_blue, - urlcolor=neutral_orange -} +% This file was generated by scripts/formulasheet.py +% Do not edit it directly, changes will be overwritten +\definecolor{fg0}{HTML}{f9f5d7} +\definecolor{bg0}{HTML}{1d2021} +\definecolor{fg1}{HTML}{ebdbb2} +\definecolor{fg2}{HTML}{d5c4a1} +\definecolor{fg3}{HTML}{bdae93} +\definecolor{fg4}{HTML}{a89984} +\definecolor{bg1}{HTML}{3c3836} +\definecolor{bg2}{HTML}{504945} +\definecolor{bg3}{HTML}{665c54} +\definecolor{bg4}{HTML}{7c6f64} +\definecolor{fg-red}{HTML}{fb4934} +\definecolor{fg-orange}{HTML}{f38019} +\definecolor{fg-yellow}{HTML}{fabd2f} +\definecolor{fg-green}{HTML}{b8bb26} +\definecolor{fg-aqua}{HTML}{8ec07c} +\definecolor{fg-blue}{HTML}{83a598} +\definecolor{fg-purple}{HTML}{d3869b} +\definecolor{fg-gray}{HTML}{a89984} +\definecolor{bg-red}{HTML}{cc241d} +\definecolor{bg-orange}{HTML}{d65d0e} +\definecolor{bg-yellow}{HTML}{d79921} +\definecolor{bg-green}{HTML}{98971a} +\definecolor{bg-aqua}{HTML}{689d6a} +\definecolor{bg-blue}{HTML}{458588} +\definecolor{bg-purple}{HTML}{b16286} +\definecolor{bg-gray}{HTML}{928374} diff --git a/src/util/environments.tex b/src/util/environments.tex index 6ce3ce0..93e1316 100644 --- a/src/util/environments.tex +++ b/src/util/environments.tex @@ -15,6 +15,12 @@ \def\descwidth{0.3\textwidth} \def\eqwidth{0.6\textwidth} +\newcommand\separateEntries{ + \vspace{0.5\baselineskip} + \textcolor{fg3}{\hrule} + \vspace{0.5\baselineskip} +} + % % FORMULA ENVIRONMENT @@ -32,7 +38,7 @@ \GT{#2} }{\detokenize{#2}} \IfTranslationExists{#3}{ - \\ {\color{dark1} \GT{#3}} + \\ {\color{fg1} \GT{#3}} }{} \end{minipage} } @@ -51,7 +57,7 @@ \smartnewline \noindent \begingroup - \color{dark1} + \color{fg1} \GT{\ContentFqName} % \edef\temp{\GT{#1_defs}} % \expandafter\StrSubstitute\expandafter{\temp}{:}{\\} @@ -90,7 +96,7 @@ \newcommand{\eq}[1]{ \newFormulaEntry \begin{align} - \label{eq:\fqname:#1} + % \label{eq:\fqname:#1} ##1 \end{align} } @@ -175,17 +181,79 @@ \begingroup \label{f:\fqname:#1} + \storeLabel{\fqname:#1} \par\noindent\ignorespaces % \textcolor{gray}{\hrule} - \vspace{0.5\baselineskip} + % \vspace{0.5\baselineskip} \NameWithDescription[\descwidth]{\fqname:#1}{\fqname:#1_desc} \hfill \begin{ContentBoxWithExplanation}{\fqname:#1_defs} }{ \end{ContentBoxWithExplanation} \endgroup - \textcolor{dark3}{\hrule} - \vspace{0.5\baselineskip} + \separateEntries + % \textcolor{fg3}{\hrule} + % \vspace{0.5\baselineskip} + \ignorespacesafterend +} + + +% BIG FORMULA +\newenvironment{bigformula}[1]{ + % [1]: language + % 2: name + % 3: description + % 4: definitions/links + \newcommand{\desc}[4][english]{ + % language, name, description, definitions + \ifblank{##2}{}{\dt[#1]{##1}{##2}} + \ifblank{##3}{}{\dt[#1_desc]{##1}{##3}} + \ifblank{##4}{}{\dt[#1_defs]{##1}{##4}} + } + \directlua{n_formulaEntries = 0} + \newcommand{\newFormulaEntry}{ + \directlua{ + if n_formulaEntries > 0 then + tex.print("\\vspace{0.3\\baselineskip}\\hrule\\vspace{0.3\\baselineskip}") + end + n_formulaEntries = n_formulaEntries + 1 + } + % \par\noindent\ignorespaces + } + % 1: equation for align environment + + \edef\tmpFormulaName{#1} + \par\noindent + \begin{minipage}{\textwidth} % using a minipage to now allow line breaks within the bigformula + \label{f:\fqname:#1} + \par\noindent\ignorespaces + % \textcolor{gray}{\hrule} + % \vspace{0.5\baselineskip} + \IfTranslationExists{\fqname:#1}{% + \raggedright + \GT{\fqname:#1} + }{\detokenize{#1}} + \IfTranslationExists{\fqname:#1_desc}{ + : {\color{fg1} \GT{\fqname:#1_desc}} + }{} + \hfill + \par +}{ + \edef\tmpContentDefs{\fqname:\tmpFormulaName_defs} + \IfTranslationExists{\tmpContentDefs}{% + \smartnewline + \noindent + \begingroup + \color{fg1} + \GT{\tmpContentDefs} + % \edef\temp{\GT{#1_defs}} + % \expandafter\StrSubstitute\expandafter{\temp}{:}{\\} + \endgroup + }{} + \end{minipage} + \separateEntries + % \textcolor{fg3}{\hrule} + % \vspace{0.5\baselineskip} \ignorespacesafterend } % @@ -308,7 +376,8 @@ pmf = "f:math:pt:pmf", cdf = "f:math:pt:cdf", mean = "f:math:pt:mean", - variance = "f:math:pt:variance" + variance = "f:math:pt:variance", + median = "f:math:pt:median", } if cases["\luaescapestring{##1}"] \string~= nil then tex.sprint("\\hyperref["..cases["\luaescapestring{##1}"].."]{\\GT{##1}}") @@ -341,6 +410,7 @@ \edef\tmpMinipagetableWidth{#1} \edef\tmpMinipagetableName{#2} \directlua{ + table_name = "\luaescapestring{#2}" entries = {} } @@ -357,6 +427,8 @@ } }{ % \hfill + % reset the fqname + \edef\fqname{\tmpFqname} \begin{minipage}{\tmpMinipagetableWidth} \begingroup \setlength{\tabcolsep}{0.9em} % horizontal @@ -365,12 +437,11 @@ \hline \directlua{ for _, k in ipairs(entries) do - tex.print("\\GT{" .. k .. "} & \\gt{\tmpMinipagetableName:" .. k .. "}\\\\") + tex.print("\\GT{" .. k .. "} & \\gt{"..table_name..":"..k .."}\\\\") end } \hline \end{tabularx} \endgroup \end{minipage} - % reset the fqname } diff --git a/src/util/macros.tex b/src/util/macros.tex index dc0450e..2a9cb20 100644 --- a/src/util/macros.tex +++ b/src/util/macros.tex @@ -1,28 +1,67 @@ \newcommand\smartnewline[1]{\ifhmode\\\fi} % newline only if there in horizontal mode -\def\gooditem{\item[{$\color{neutral_red}\bullet$}]} -\def\baditem{\item[{$\color{neutral_green}\bullet$}]} +\def\gooditem{\item[{$\color{fg-red}\bullet$}]} +\def\baditem{\item[{$\color{fg-green}\bullet$}]} + +% Functions with (optional) paranthesis +% 1: The function (like \exp, \sin etc.) +% 2: The argument (optional) +% If an argument is provided, it is wrapped in paranthesis. +\newcommand\CmdWithParenthesis[2]{ + \ifstrequal{#2}{\relax}{ + #1 + }{ + #1\left(#2\right) + } +} +\newcommand\CmdInParenthesis[2]{ + \ifstrequal{#2}{\relax}{ + #1 + }{ + \left(#1 #2\right) + } +} % COMMON SYMBOLS WITH SUPER/SUBSCRIPTS, VECTOR ARROWS ETC. % \def\laplace{\Delta} % Laplace operator \def\laplace{\bigtriangleup} % Laplace operator -\def\Grad{\vec{\nabla}} -\def\Div{\vec{\nabla} \cdot} -\def\Rot{\vec{\nabla} \times} +% symbols +\def\Grad{\vec{\nabla}} +\def\Div {\vec{\nabla} \cdot} +\def\Rot {\vec{\nabla} \times} +% symbols with parens +\newcommand\GradS[1][\relax]{\CmdInParenthesis{\Grad}{#1}} +\newcommand\DivS [1][\relax]{\CmdInParenthesis{\Div} {#1}} +\newcommand\RotS [1][\relax]{\CmdInParenthesis{\Rot} {#1}} +% text with parens +\newcommand\GradT[1][\relax]{\CmdWithParenthesis{\text{grad}\,}{#1}} +\newcommand\DivT[1][\relax] {\CmdWithParenthesis{\text{div}\,} {#1}} +\newcommand\RotT[1][\relax] {\CmdWithParenthesis{\text{rot}\,} {#1}} \def\vecr{\vec{r}} +\def\vecR{\vec{R}} +\def\veck{\vec{k}} \def\vecx{\vec{x}} -\def\kB{k_\text{B}} % boltzmann -\def\NA{N_\text{A}} % avogadro -\def\EFermi{E_\text{F}} -\def\Evalence{E_\text{v}} -\def\Econd{E_\text{c}} -\def\Egap{E_\text{gap}} -\def\masse{m_\textrm{e}} -\def\Four{\mathcal{F}} % Fourier transform +\def\kB{k_\text{B}} % boltzmann +\def\NA{N_\text{A}} % avogadro +\def\EFermi{E_\text{F}} % fermi energy +\def\Efermi{E_\text{F}} % fermi energy +\def\Evalence{E_\text{v}} % val vand energy +\def\Econd{E_\text{c}} % cond. band nergy +\def\Egap{E_\text{gap}} % band gap energy +\def\Evac{E_\text{vac}} % vacuum energy +\def\masse{m_\text{e}} % electron mass +\def\Four{\mathcal{F}} % Fourier transform \def\Lebesgue{\mathcal{L}} % Lebesgue -\def\O{\mathcal{O}} -\def\PhiB{\Phi_\text{B}} -\def\PhiE{\Phi_\text{E}} +\def\O{\mathcal{O}} % order +\def\PhiB{\Phi_\text{B}} % mag. flux +\def\PhiE{\Phi_\text{E}} % electric flux +\def\nreal{n^{\prime}} % refraction real part +\def\ncomplex{n^{\prime\prime}} % refraction index complex part +\def\I{i} % complex unit +\def\crit{\text{crit}} % crit (for subscripts) +\def\muecp{\overline{\mu}} % electrochemical potential +\def\pH{\text{pH}} % pH +\def\rfactor{\text{rf}} % rf roughness_factor % SYMBOLS @@ -87,8 +126,6 @@ \def\txx{\text{x}} \def\txy{\text{y}} \def\txz{\text{z}} -% complex, may be changed later to idot or upright... -\def\I{i} % SPACES \def\sdots{\,\dots\,} @@ -104,16 +141,18 @@ \newcommand{\explOverEq}[2][=]{% \overset{\substack{\mathrlap{\text{\hspace{-1em}#2}}\\\downarrow}}{#1}} \newcommand{\eqnote}[1]{ - \text{\color{dark2}#1} + \text{\color{fg2}#1} } % DELIMITERS -\DeclarePairedDelimiter{\abs}{\lvert}{\rvert} -\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor} -\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} +% not using DeclarePairedDelmiter to always get scaling +\newcommand{\abs}[1]{\left\lvert #1 \right\rvert} +\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} +\newcommand{\ceil}[1]{\left\lceil#1\right\rceil} % OPERATORS +% * places subset under the word instead of next to it \DeclareMathOperator{\e}{e} \def\T{\text{T}} % transposed \DeclareMathOperator{\sgn}{sgn} @@ -122,6 +161,12 @@ \DeclareMathOperator{\erf}{erf} \DeclareMathOperator{\erfc}{erfc} \DeclareMathOperator{\cov}{cov} + +\DeclareMathOperator*{\argmin}{arg\,min} +\DeclareMathOperator*{\argmax}{arg\,max} +% \DeclareMathOperator{\div}{div} +% \DeclareMathOperator{\grad}{grad} +% \DeclareMathOperator{\rot}{rot} % \DeclareMathOperator{\arcsin}{arcsin} % \DeclareMathOperator{\arccos}{arccos} % \DeclareMathOperator{\arctan}{arctan} @@ -135,22 +180,22 @@ \renewcommand*\d{\mathop{}\!\mathrm{d}} % times 10^{x} \newcommand\xE[1]{\cdot 10^{#1}} -% functions with paranthesis -\newcommand\CmdWithParenthesis[2]{ - #1\left(#2\right) -} \newcommand\Exp[1]{\CmdWithParenthesis{\exp}{#1}} \newcommand\Sin[1]{\CmdWithParenthesis{\sin}{#1}} \newcommand\Cos[1]{\CmdWithParenthesis{\cos}{#1}} +\newcommand\Ln[1]{\CmdWithParenthesis{\ln}{#1}} +\newcommand\Log[1]{\CmdWithParenthesis{\log}{#1}} \newcommand\Order[1]{\CmdWithParenthesis{\mathcal{O}}{#1}} -% VECTOR AND MATRIX +% VECTOR, MATRIX and TENSOR % use vecA to force an arrow \NewCommandCopy{\vecA}{\vec} % extra {} assure they can b directly used after _ %% arrow/underline \newcommand\mat[1]{{\ensuremath{\underline{#1}}}} \renewcommand\vec[1]{{\ensuremath{\vecA{#1}}}} +\newcommand\ten[1]{{\ensuremath{[#1]}}} +\newcommand\complex[1]{{\ensuremath{\tilde{#1}}}} %% bold % \newcommand\mat[1]{{\ensuremath{\bm{#1}}}} % \renewcommand\vec[1]{{\ensuremath{\bm{#1}}}} diff --git a/src/util/periodic_table.tex b/src/util/periodic_table.tex index a41f667..af3fa21 100644 --- a/src/util/periodic_table.tex +++ b/src/util/periodic_table.tex @@ -76,7 +76,7 @@ } \end{ContentBoxWithExplanation} \endgroup - \textcolor{dark3}{\hrule} + \textcolor{fg3}{\hrule} \vspace{0.5\baselineskip} \ignorespacesafterend } @@ -93,22 +93,22 @@ % PERIODIC TABLE \directlua{ category2color = { - metal = "neutral_blue", - metalloid = "bright_orange", - transitionmetal = "bright_blue", - lanthanoide = "neutral_orange", - alkalimetal = "bright_red", - alkalineearthmetal = "bright_purple", - nonmetal = "bright_aqua", - halogen = "bright_yellow", - noblegas = "neutral_purple" + metal = "bg-blue!50!bg0", + metalloid = "fg-orange!50!bg0", + transitionmetal = "fg-blue!50!bg0", + lanthanoide = "bg-orange!50!bg0", + alkalimetal = "fg-red!50!bg0", + alkalineearthmetal = "fg-purple!50!bg0", + nonmetal = "fg-aqua!50!bg0", + halogen = "fg-yellow!50!bg0", + noblegas = "bg-purple!50!bg0" } } \directlua{ function getColor(cat) local color = category2color[cat] if color == nil then - return "light3" + return "bg3" else return color end @@ -138,7 +138,7 @@ end end } - \draw[ultra thick,faded_purple] (4,-6) -- (4,-11); + \draw[ultra thick,fg-purple] (4,-6) -- (4,-11); % color legend for categories \directlua{ local x0 = 4 diff --git a/src/util/tikz_macros.tex b/src/util/tikz_macros.tex new file mode 100644 index 0000000..11df2d3 --- /dev/null +++ b/src/util/tikz_macros.tex @@ -0,0 +1,105 @@ + +\tikzset{ + % bands + sc band con/.style={ draw=fg0, thick}, + sc band val/.style={ draw=fg0, thick}, + sc band vac/.style={ draw=fg1, thick}, + sc band/.style={ draw=fg0, thick}, + sc fermi level/.style={draw=fg-aqua,dashed,thick}, + % electron filled + sc occupied/.style={ + pattern=north east lines, + pattern color=fg-aqua, + draw=none + }, + % materials + sc p type/.style={ draw=none,fill=bg-yellow!20}, + sc n type/.style={ draw=none,fill=bg-blue!20}, + sc metal/.style={ draw=none,fill=bg-purple!20}, + sc oxide/.style={ draw=none,fill=bg-green!20}, + sc separate/.style={ draw=fg0,dotted}, +} + +\newcommand\drawDArrow[4]{ + \draw[<->] (#1,#2) -- (#1,#3) node[midway,right] () {#4}; +} +% Band bending down at L-R interface: BendH must be negative +% need two functions for different out= angles, or use if else on the sign of BendH +\newcommand\leftBandAuto[2]{ + \directlua{ + if \tkLBendH == 0 then + tex.print([[(\tkLx,#2) \ifblank{#1}{}{node[anchor=east] \detokenize{{#1}}} -- (\tkLW,#2) ]]) + else + if \tkLBendH > 0 then + angle = 180+45 + else + angle = 180-45 + end + tex.sprint([[(\tkLx,#2) \ifblank{#1}{}{node[anchor=east] \detokenize{{#1}}} + -- (\tkLW-\tkLBendW,#2) to[out=0,in=]], angle, [[](\tkLW,#2+\tkLBendH)]]) + end + } + % % \ifthenelse{\equal{\tkLBendH}{0}}% + % % {% + % \ifthenelse{\tkLBendH > 0}% + % {\pgfmathsetmacro{\angle}{-45}}% + % {\pgfmathsetmacro{\angle}{45}}% + % % } +} +\newcommand\rightBandAuto[2]{ + \directlua{ + if \tkRBendH == 0 then + %-- tex.print([[\rightBand{#1}{#2}]]) + tex.print([[(\tkRx,#2) -- (\tkW,#2)]]) %-- \ifblank{#1}{}{node[anchor=west] \{#1\}}]]) + else + if \tkRBendH > 0 then + angle = -45 + else + angle = 45 + end + tex.sprint([[(\tkRx,#2+\tkRBendH) to[out=]], angle, [[,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2) ]]) + %-- \ifblank{#1}{}{node[anchor=west] \{#1\}} ]]) + end + if "\luaescapestring{#1}" \string~= "" then + tex.print([[node[anchor=west] \detokenize{{#1}} ]]) + end + } + % \ifthenelse{\equal{\tkRBendH}{0}}% + % {\rightBand{#1}{#2}} + % {% + % \ifthenelse{\tkRBendH > 0}% + % {\pgfmathsetmacro{\angle}{-45}}% + % {\pgfmathsetmacro{\angle}{45}}% + % (\tkRx,#2+\tkRBendH) to[out=45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2) + % \ifblank{#1}{}{node[anchor=west]{#1}} + % } +} +\newcommand\leftBandDown[2]{ + (\tkRx,#2+\tkRBendH) to[out=45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2) + \ifblank{#1}{}{node[anchor=west]{#1}} +} +\newcommand\rightBandDown[2]{ + (\tkRx,#2+\tkRBendH) to[out=45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2) + \ifblank{#1}{}{node[anchor=west]{#1}} +} +% Band bending down at L-R interface: BendH must be positive +\newcommand\leftBandUp[2]{ + (\tkLx,#2) \ifblank{#1}{}{node[anchor=east]{#1}} + -- (\tkLW-\tkLBendW,#2) to[out=0,in=180+45] (\tkLW,#2+\tkLBendH) +} +\newcommand\rightBandUp[2]{ + (\tkRx,#2+\tkRBendH) to[out=-45,in=180] (\tkRx+\tkRBendW,#2) -- (\tkW,#2) + \ifblank{#1}{}{node[anchor=west]{#1}} +} +% Straight band +\newcommand\leftBand[2]{ + (\tkLx,#2) \ifblank{#1}{}{node[anchor=east]{#1}} -- (\tkLW,#2) +} +\newcommand\rightBand[2]{ + (\tkRx,#2) -- (\tkW,#2) \ifblank{#1}{}{node[anchor=west]{#1}} +} + +\newcommand\drawAxes{ + \draw[->] (0,0) -- (\tkW+0.2,0) node[anchor=north] {$x$}; + \draw[->] (0,0) -- (0,\tkH+0.2) node[anchor=east] {$E$}; +} diff --git a/src/util/translation.tex b/src/util/translation.tex index 28c0cb7..6a57059 100644 --- a/src/util/translation.tex +++ b/src/util/translation.tex @@ -26,11 +26,18 @@ % \expandafter\IfTranslationExists\expandafter{\fqname:#1} } -\newcommand{\gt}[1]{% - \iftranslation{#1}{% +\newrobustcmd{\robustGt}[1]{% + \IfTranslationExists{\fqname:#1}{% \expandafter\GetTranslation\expandafter{\fqname:#1}% }{% - \detokenize{\fqname}:\detokenize{#1}% + \printFqName:\detokenize{#1}% + }% +} +\newcommand{\gt}[1]{% + \IfTranslationExists{\fqname:#1}{% + \expandafter\GetTranslation\expandafter{\fqname:#1}% + }{% + \printFqName:\detokenize{#1}% }% } \newrobustcmd{\GT}[1]{%\expandafter\GetTranslation\expandafter{#1}} @@ -40,6 +47,9 @@ \detokenize{#1}% }% } +% text variants for use in math mode +\newcommand{\tgt}[1]{\text{\gt{#1}}} +\newcommand{\tGT}[1]{\text{\GT{#1}}} % Define a translation and also make the fallback if it is the english translation % 1: lang, 2: key, 3: translation diff --git a/src/util/translations.tex b/src/util/translations.tex index 4571df4..ed2e682 100644 --- a/src/util/translations.tex +++ b/src/util/translations.tex @@ -25,6 +25,16 @@ \Eng[diamond]{Diamond} \Ger[diamond]{Diamant} +\Eng[metal]{Metal} +\Ger[metal]{Metall} + +\Eng[semiconductor]{Semiconductor} +\Ger[semiconductor]{Halbleiter} + + +\Eng[creation_annihilation_ops]{Creation / Annihilation operators} +\Ger[creation_annihilation_ops]{Erzeugungs / Vernichtungs-Operatoren} + % FORMATING \Eng[list_of_quantitites]{List of quantitites} \Ger[list_of_quantitites]{Liste von Größen} @@ -32,6 +42,9 @@ \Eng[other]{Others} \Ger[other]{Sonstige} +\Eng[sometimes]{sometimes} +\Ger[sometimes]{manchmal} + \Eng[see_also]{See also} \Ger[see_also]{Siehe auch}