This commit is contained in:
matth@ultra 2024-11-16 16:25:57 +01:00
parent c7152affdc
commit 02c1d40bc9
15 changed files with 253 additions and 94 deletions

View File

@ -28,7 +28,7 @@
\end{formula} \end{formula}
\begin{formula}{wave_function} \begin{formula}{wave_function}
\desc{Wave function}{}{} \desc{Wave function}{}{$R_{nl}(r)$ \fqEqRef{qm:h:radial}, $Y_{lm}$ \fqEqRef{qm:spherical_harmonics}}
\desc[german]{Wellenfunktion}{}{} \desc[german]{Wellenfunktion}{}{}
\eq{\psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta,\phi)} \eq{\psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta,\phi)}
\end{formula} \end{formula}

View File

@ -1,55 +0,0 @@
\Part[
\eng{Analysis}
\ger{Analysis}
]{ana}
\Subsection[
\eng{Convolution}
\ger{Faltung / Konvolution}
]{conv}
\begin{ttext}
\eng{Convolution is \textbf{commutative}, \textbf{associative} and \textbf{distributive}.}
\ger{Die Faltung ist \textbf{kommutativ}, \textbf{assoziativ} und \textbf{distributiv}}
\end{ttext}
\begin{formula}{def}
\desc{Definition}{}{}
\desc[german]{Definition}{}{}
\eq{(f*g)(t) = f(t) * g(t) = int_{-\infty}^\infty f(\tau) g(t-\tau) \d \tau}
\end{formula}
\begin{formula}{notation}
\desc{Notation}{}{}
\desc[german]{Notation}{}{}
\eq{
f(t) * g(t-t_0) &= (f*g)(t-t_0) \\
f(t-t_0) * g(t-t_0) &= (f*g)(t-2t_0)
}
\end{formula}
\begin{formula}{commutativity}
\desc{Commutativity}{}{}
\desc[german]{Kommutativität}{}{}
\eq{f * g = g * f}
\end{formula}
\begin{formula}{associativity}
\desc{Associativity}{}{}
\desc[german]{Assoziativität]}{}{}
\eq{(f*g)*h = f*(g*h)}
\end{formula}
\begin{formula}{distributivity}
\desc{Distributivity}{}{}
\desc[german]{Distributivität}{}{}
\eq{f * (g + h) = f*g + f*h}
\end{formula}
\begin{formula}{complex_conjugate}
\desc{Complex conjugate}{}{}
\desc[german]{Komplexe konjugation}{}{}
\eq{(f*g)^* = f^* * g^*}
\end{formula}
\Subsection[
\eng{Fourier analysis}
\ger{Fourieranalyse}
]{fourier}

View File

@ -2,6 +2,7 @@
\eng{Condensed matter physics} \eng{Condensed matter physics}
\ger{Festkörperphysik} \ger{Festkörperphysik}
]{cm} ]{cm}
\TODO{Bonds, hybridized orbitals, tight binding}
\Section[ \Section[
\eng{Bravais lattice} \eng{Bravais lattice}
\ger{Bravais-Gitter} \ger{Bravais-Gitter}
@ -85,6 +86,17 @@
\end{adjustbox} \end{adjustbox}
\end{table} \end{table}
family of plane that are equivalent due to crystal symmetry
\begin{formula}{miller}
\desc{Miller index}{}{}
\desc[german]{Millersche Indizes}{}{}
\eq{
(hkl) & \text{\GT{plane}}\\
[hkl] & \text{\GT{direction}}\\
\{hkl\} & \text{\GT{millerFamily}}
}
\end{formula}
\Section[ \Section[
\eng{Reciprocal lattice} \eng{Reciprocal lattice}
@ -395,3 +407,50 @@
\centering \centering
\includegraphics[width=\textwidth]{img/cm_mbe_english.pdf} \includegraphics[width=\textwidth]{img/cm_mbe_english.pdf}
\end{minipage} \end{minipage}
\Section[
\eng{Superconductivity}
\ger{Supraleitung}
]{sc}
\begin{ttext}
\eng{
Materials for which the electric resistance jumps to 0 under a critical temperature.
\\\textbf{Type I}: Has a single critical magnetic field at which the superconuctor becomes a normal conductor.
\\\textbf{Type II}: Has two critical
}
\ger{Materialien, bei denen der elektrische Widerstand beim unterschreiten einer kritischen Temperatur auf 0 springt.}
\end{ttext}
\begin{formula}{meissner_effect}
\desc{Meißner-Ochsenfeld effect}{Perfect diamagnetism}{}
\desc[german]{Meißner-Ochsenfeld Effekt}{Perfekter Diamagnetismus}{}
\ttxt{
\eng{Blabla }
\ger{Blubb blubb }
}
\end{formula}
\Subsection[
\eng{London equation}
\ger{London-Gleichungen}
]{london}
\begin{formula}{first}
% \vec{j} = \frac{nq\hbar}{m}\Grad S - \frac{nq^2}{m}\vec{A}
\desc{First London Equation}{}{$\vec{j}$ current density, $n$, $m$, $q$ density, mass and charge of superconduticng particles}
\desc[german]{Erste London-Gleichung}{}{$\vec{j}$ Stromdichte, $n$, $m$, $q$ Dichte, Masse und Ladung der supraleitenden Teilchen}
\eq{
\partical_t \vec{j} = \frac{nq^2}{m}\vec{E}
}
\end{formula}
\begin{formula}{second}
\desc{Second London Equation}{}{$\vec{j}$ current density, $n$, $m$, $q$ density, mass and charge of superconduticng particles}
\desc[german]{Zweite London-Gleichung}{}{$\vec{j}$ Stromdichte, $n$, $m$, $q$ Dichte, Masse und Ladung der supraleitenden Teilchen}
\eq{
\Rot \vec{j} = -\frac{nq^2}{m} \vec{B}
}
\end{formula}
\begin{formula}{penetration_depth}
\desc{London penetration depth}{}{}
\desc[german]{London Eindringtiefe}{}{}
\eq{\lambda_\textrm{L} = \sqrt{\frac{m}{\mu_0 nq^2}}}
\end{formula}

View File

@ -32,6 +32,7 @@
\Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t} \Rot \vec{H} &= \vec{j} + \odv{\vec{D}}{t}
} }
\end{formula} \end{formula}
\TODO{Polarization, Magnetisation}
\Section[ \Section[
\eng{Fields} \eng{Fields}

15
src/main.tex Normal file → Executable file
View File

@ -145,13 +145,10 @@
\input{util/translations.tex} \input{util/translations.tex}
\input{linalg.tex} \input{maths/linalg.tex}
\input{maths/geometry.tex}
\input{geometry.tex} \input{maths/analysis.tex}
\input{maths/probability_theory.tex}
\input{analysis.tex}
\input{probability_theory.tex}
\input{mechanics.tex} \input{mechanics.tex}
@ -164,9 +161,9 @@
\input{condensed_matter.tex} \input{condensed_matter.tex}
% \input{topo.tex} \input{topo.tex}
% \input{quantum_computing.tex} \input{quantum_computing.tex}
% \input{many-body-simulations.tex} % \input{many-body-simulations.tex}

View File

@ -3,6 +3,7 @@
\ger{Analysis} \ger{Analysis}
]{cal} ]{cal}
\Subsection[ \Subsection[
\eng{Convolution} \eng{Convolution}
\ger{Faltung / Konvolution} \ger{Faltung / Konvolution}
@ -63,7 +64,7 @@
\end{formula} \end{formula}
\Eng[real]{real} \Eng[real]{real}
\Ger[real]{reellwertig} \Ger[real]{reellwertig}
\begin{formula}{coefficient} \begin{formula}{coefficient-complex}
\desc{Fourier coefficients}{Complex representation}{} \desc{Fourier coefficients}{Complex representation}{}
\desc[german]{Fourierkoeffizienten}{Komplexe Darstellung}{} \desc[german]{Fourierkoeffizienten}{Komplexe Darstellung}{}
\eq{ \eq{
@ -112,14 +113,69 @@
\end{enumerate} \end{enumerate}
\Subsection[
\eng{Misc}
\ger{Verschiedenes}
]{misc}
\begin{formula}{stirling-approx}
\desc{Stirling approximation}{}{}
\desc[german]{Stirlingformel}{}{}
\eq{\ln (N!) \approx N \ln(N) - N + \Order(\ln(N))}
\end{formula}
\begin{formula}{error-function}
\desc{Error function}{\erf: \C \to \C}{}
\desc[german]{Fehlerfunktion}{Error function: \erf: \C \to \C}{}
\eq{
\erf(x) &= \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \d t \\
\erfc(x) &= 1 - \erf(x)\\
&= \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \d t
}
\end{formula}
\Section[
\eng{Logarithm}
\ger{Logarithmus}
]{log}
\begin{formula}{identities}
\desc{Logarithm identities}{}{}
\desc[german]{Logarithmus Identitäten}{Logarithmus Rechenregeln}{}
\eq{
\log(xy) &= \log(x) + \log(y) \\
\log \left(\frac{x}{y}\right) &= \log(x) - \log(y) \\
\log \left(x^d\right) &= d\log(x) \\
\log \left(\sqrt[y]{x}\right) &= \frac{\log(x)}{y} \\
x^{\log(y)} &= y^{\log(x)}
}
\end{formula}
\Section[ \Section[
\eng{List of common integrals} \eng{List of common integrals}
\ger{Liste nützlicher Integrale} \ger{Liste nützlicher Integrale}
]{integrals} ]{integrals}
\begin{formula}{spherical-coordinates}
\desc{Spherical coordinates}{}{}
\desc[german]{Kugelkoordinaten}{}{}
\eq{
x &= r \sin\phi,\cos\theta \\
y &= r \cos\phi,\cos\theta \\
z &= r \sin\theta
}
\end{formula}
\begin{formula}{spheical-coordinates-int}
\desc{Integration in spherical coordinates}{}{}
\desc[german]{Integration in Kugelkoordinaten}{}{}
\eq{\iiint\d x \d y \d z= \int_0^{\infty} \!\! \int_0^{2\pi} \!\! \int_0^\pi \d r \d\phi\d\theta \, r^2\sin\theta}
\end{formula}
\begin{formula}{riemann_zeta} \begin{formula}{riemann_zeta}
\desc{Riemann Zeta Function}{}{} \desc{Riemann Zeta Function}{}{}
\desc[german]{Riemannsche Zeta-Funktion}{}{} \desc[german]{Riemannsche Zeta-Funktion}{}{}
\eq{\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \d\eta \frac{\eta^{(s-1)}}{\e^\eta + 1}} \eq{\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{(1-2^{(1-s)})\Gamma(s)} \int_0^\infty \d\eta \frac{\eta^{(s-1)}}{\e^\eta + 1}}
\end{formula} \end{formula}

View File

@ -4,21 +4,27 @@
]{pt} ]{pt}
\begin{formula}{mean} \begin{formula}{mean}
\desc{Mean}{}{} \desc{Mean}{Expectation value}{}
\desc[german]{Mittelwert}{}{} \desc[german]{Mittelwert}{Erwartungswert}{}
\eq{\braket{x} = \int w(x)\, x\, \d x} \eq{\braket{x} = \int w(x)\, x\, \d x}
\end{formula} \end{formula}
\begin{formula}{variance} \begin{formula}{variance}
\desc{Variance}{}{} \desc{Variance}{Square of the \fqEqRef{pt:std-deviation}}{}
\desc[german]{Varianz}{}{} \desc[german]{Varianz}{Quadrat der\fqEqRef{pt:std-deviation}}{}
\eq{\sigma^2 = (\Delta \hat{x})^2 = \braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}} \eq{\sigma^2 = (\Delta \hat{x})^2 = \Braket{\hat{x}^2} - \braket{\hat{x}}^2 = \braket{(x - \braket{x})^2}}
\end{formula} \end{formula}
\begin{formula}{std_deviation} \begin{formula}{covariance}
\desc{Covariance}{}{}
\desc[german]{Kovarianz}{}{}
\eq{\cov(x,y) = \sigma(x,y) = \sigma_{XY} = \Braket{(x-\braket{x})\,(y-\braket{y})}}
\end{formula}
\begin{formula}{std-deviation}
\desc{Standard deviation}{}{} \desc{Standard deviation}{}{}
\desc[german]{Standardabweichung}{}{} \desc[german]{Standardabweichung}{}{}
\eq{\sigma = \sqrt{(\Delta x)^2}} \eq{\sigma = \sqrt{\sigma^2} = \sqrt{(\Delta x)^2}}
\end{formula} \end{formula}
\begin{formula}{median} \begin{formula}{median}
@ -192,3 +198,38 @@
} }
\end{ttext} \end{ttext}
\Section[
\eng{Propagation of uncertainty / error}
\ger{Fehlerfortpflanzung}
]{error}
\begin{formula}{generalised}
\desc{Generalized error propagation}{}{$V$ \fqEqRef{pt:covariance} matrix, $J$ \fqEqRef{ana:jacobi-matrix}}
\desc[german]{Generalisiertes Fehlerfortpflanzungsgesetz}{$V$ \fqEqRef{pt:covariance} Matrix, $J$ \fqEqRef{ana:jacobi-matrix}}{}
\eq{V_y = J(x) \cdot V_x \cdot J^{\T} (x)}
\end{formula}
\begin{formula}{uncorrelated}
\desc{Propagation of uncorrelated errors}{Linear approximation}{}
\desc[german]{Fortpflanzung unabhängiger fehlerbehaftete Größen}{Lineare Näherung}{}
\eq{u_y = \sqrt{ \sum_{i} \left(\pdv{y}{x_i}\cdot u_i\right)^2}}
\end{formula}
\begin{formula}{weight}
\desc{Weight}{Variance is a possible choice for a weight}{$\sigma$ \fqEqRef{pt:variance}}
\desc[german]{Gewicht}{Varianz ist eine mögliche Wahl für ein Gewicht}{}
\eq{w_i = \frac{1}{\sigma_i^2}}
\end{formula}
\begin{formula}{weighted-mean}
\desc{Weighted mean}{}{$w_i$ \fqEqRef{pt:error:weight}}
\desc[german]{Gewichteter Mittelwert}{}{}
\eq{\overline{x} = \frac{\sum_{i} (x_i w_i)}{\sum_i w_i}}
\end{formula}
\begin{formula}{weighted-mean-error}
\desc{Variance of weighted mean}{}{$w_i$ \fqEqRef{pt:error:weight}}
\desc[german]{Varianz des gewichteten Mittelwertes}{}{}
\eq{\sigma^2_{\overline{x}} = \frac{1}{\sum_i w_i}}
\end{formula}

View File

@ -379,6 +379,12 @@
} }
\end{formula} \end{formula}
\begin{formula}{c_a_matrices}
\desc{Matrix forms}{}{}
\desc[german]{Matrix-Form}{}{}
\eq{\TODO{TODO}}
\end{formula}
\Subsubsection[ \Subsubsection[
\eng{Harmonischer Oszillator} \eng{Harmonischer Oszillator}
\ger{Harmonic Oscillator} \ger{Harmonic Oscillator}

View File

@ -20,10 +20,18 @@ The `<partname>:...:<lowest section name>` will be defined as `fqname` (fully qu
- figure: `fig` - figure: `fig`
- parts, (sub)sections: `sec` - parts, (sub)sections: `sec`
### Reference functions
Functions that create a hyperlink (and use the translation of the target element as link name):
- `\fqSecRef{}`
- `\fqEqRef{}`
## Multilanguage ## Multilanguage
All text should be defined as a translation (`translations` package, see `util/translation.tex`) and then used using the `gt` or `GT` macros. All text should be defined as a translation (`translations` package, see `util/translation.tex`) and then used using the `gt` or `GT` macros.
The english translation of any key must be defined, because it will also be used as fallback. The english translation of any key must be defined, because it will also be used as fallback.
Lower case macros are relative to the current `fqname`, while upper case macros are absolute.
Never make a macro that would have to be changed if a new language was added, eg dont do Never make a macro that would have to be changed if a new language was added, eg dont do
```tex ```tex
% 1: key, 2: english version, 3: german version % 1: key, 2: english version, 3: german version

View File

@ -332,7 +332,7 @@
\desc[german]{Entropiedichte}{}{$s = \frac{S}{N}$} \desc[german]{Entropiedichte}{}{$s = \frac{S}{N}$}
\eq{ \eq{
\lim_{T\to 0} s(T) &= 0 \\ \lim_{T\to 0} s(T) &= 0 \\
\shortintertext{\GT{and_therefore_also}} \\ \shortintertext{\GT{and_therefore_also}}
\lim_{T\to 0} c_V &= 0 \lim_{T\to 0} c_V &= 0
} }
\end{formula} \end{formula}
@ -376,21 +376,21 @@
\desc[german]{Innere Energie}{}{} \desc[german]{Innere Energie}{}{}
\eq{\d U(S,V,N) = T\d S -p\d V + \mu\d N} \eq{\d U(S,V,N) = T\d S -p\d V + \mu\d N}
\end{formula} \end{formula}
\begin{formula}{free_energy}
\desc{Free energy / Helmholtz energy }{}{}
\desc[german]{Freie Energie / Helmholtz Energie}{}{}
\eq{\d F(T,V,N) = -S\d T -p\d V + \mu\d N}
\end{formula}
\begin{formula}{enthalpy} \begin{formula}{enthalpy}
\desc{Enthalpy}{}{} \desc{Enthalpy}{}{}
\desc[german]{Enthalpie}{}{} \desc[german]{Enthalpie}{}{}
\eq{\d H(S,p,N) = T\d S +V\d p + \mu\d N} \eq{\d H(S,p,N) = T\d S +V\d p + \mu\d N}
\end{formula} \end{formula}
\begin{formula}{gibbs_energy} \begin{formula}{gibbs_energy}
\desc{Gibbs energy}{}{} \desc{Free enthalpy / Gibbs energy}{}{}
\desc[german]{Gibbsche Energie}{}{} \desc[german]{Freie Entahlpie / Gibbs-Energie}{}{}
\eq{\d G(T,p,N) = -S\d T + V\d p + \mu\d N} \eq{\d G(T,p,N) = -S\d T + V\d p + \mu\d N}
\end{formula} \end{formula}
\begin{formula}{free_energy}
\desc{Free energy / Helmholtz energy }{}{}
\desc[german]{Freie Energie / Helmholtz Energie}{}{}
\eq{\d F(T,V,N) = -S\d T -p\d V + \mu\d N}
\end{formula}
\begin{formula}{grand_canon_pot} \begin{formula}{grand_canon_pot}
\desc{Grand canonical potential}{}{} \desc{Grand canonical potential}{}{}
\desc[german]{Großkanonisches Potential}{}{} \desc[german]{Großkanonisches Potential}{}{}
@ -398,6 +398,27 @@
\end{formula} \end{formula}
\TODO{Maxwell Relationen, TD Quadrat} \TODO{Maxwell Relationen, TD Quadrat}
\begin{formula}{td-square}
\desc{Thermodynamic squre}{}{}
\desc[german]{Themodynamisches Quadrat}{Guggenheim Quadrat}{}
\content{
\begin{tikzpicture}
\draw[thick] (0,0) grid (3,3);
\node at (0.5, 2.5) {$-S$};
\node at (1.5, 2.5) {\color{blue}$U$};
\node at (2.5, 2.5) {$V$};
\node at (0.5, 1.5) {\color{blue}$H$};
\node at (2.5, 1.5) {\color{blue}$F$};
\node at (0.5, 0.5) {$-p$};
\node at (1.5, 0.5) {\color{blue}$G$};
\node at (2.5, 0.5) {$T$};
\end{tikzpicture}
\begin{ttext}
\eng{The corners opposite from the potential are the coefficients and each coefficients differential is opposite to it.}
\ger{Die Ecken gegenüber des Potentials sind die Koeffizienten, das Differential eines Koeffizienten ist in der Ecke gegenüber.}
\end{ttext}
}
\end{formula}
\Section[ \Section[
\eng{Ideal gas} \eng{Ideal gas}
@ -537,8 +558,8 @@
\end{formula} \end{formula}
\begin{formula}{lennard_jones} \begin{formula}{lennard_jones}
\desc{Lennard-Jones potential}{Potential between two molecules. Attractive for $r > \sigma$, repulsive for $r < \sigma$}{} \desc{Lennard-Jones potential}{Potential between two molecules. Attractive for $r > \sigma$, repulsive for $r < \sigma$.\\ In condensed matter: Attraction due to Landau Dispersion \TODO{verify} and repulsion due to Pauli exclusion principle.}{}
\desc[german]{Lennard-Jones-Potential}{Potential zwischen zwei Molekülen. Attraktiv für $r > \sigma$, repulsiv für $r < \sigma$}{} \desc[german]{Lennard-Jones-Potential}{Potential zwischen zwei Molekülen. Attraktiv für $r > \sigma$, repulsiv für $r < \sigma$.\\ In Festkörpern: Anziehung durch Landau Dispesion und Abstoßung durch Pauli-Prinzip.}{}
\figeq{img/potential_lennard_jones.pdf}{V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6}\right]} \figeq{img/potential_lennard_jones.pdf}{V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6}\right]}
\end{formula} \end{formula}
@ -658,7 +679,7 @@
\eng{Bosons} \eng{Bosons}
\ger{Bosonen} \ger{Bosonen}
]{bos} ]{bos}
\begin{formula}{partition_sum} \begin{formula}{partition-sum}
\desc{Partition sum}{}{$p \in\N_0$} \desc{Partition sum}{}{$p \in\N_0$}
\desc[german]{Zustandssumme}{}{$p \in\N_0$} \desc[german]{Zustandssumme}{}{$p \in\N_0$}
\eq{Z_\text{g} = \prod_{p} \frac{1}{1-\e^{-\beta(\epsilon_p - \mu)}}} \eq{Z_\text{g} = \prod_{p} \frac{1}{1-\e^{-\beta(\epsilon_p - \mu)}}}

0
src/svgs/convertToPdf.sh Executable file → Normal file
View File

View File

@ -15,6 +15,13 @@
\def\descwidth{0.3\textwidth} \def\descwidth{0.3\textwidth}
\def\eqwidth{0.6\textwidth} \def\eqwidth{0.6\textwidth}
%
% FORMULA ENVIRONMENT
% The following commands are meant to be used with the formula environment
%
% Name in black and below description in gray
% [1]: minipage width % [1]: minipage width
% 2: fqname of name % 2: fqname of name
% 3: fqname of a translation that holds the explanation % 3: fqname of a translation that holds the explanation
@ -133,32 +140,54 @@
} }
% 1: key
\newenvironment{formula}[1]{ \newenvironment{formula}[1]{
% key % [1]: language
% 2: name
% 3: description
% 4: definitions/links
\newcommand{\desc}[4][english]{ \newcommand{\desc}[4][english]{
% language, name, description, definitions % language, name, description, definitions
\dt[#1]{##1}{##2} \dt[#1]{##1}{##2}
\ifblank{##3}{}{\dt[#1_desc]{##1}{##3}} \ifblank{##3}{}{\dt[#1_desc]{##1}{##3}}
\ifblank{##4}{}{\dt[#1_defs]{##1}{##4}} \ifblank{##4}{}{\dt[#1_defs]{##1}{##4}}
} }
% 1: equation for align environment
\newcommand{\eq}[1]{ \newcommand{\eq}[1]{
\insertEquation{#1}{##1} \insertEquation{#1}{##1}
} }
% 1: equation for alignat environment
\newcommand{\eqAlignedAt}[2]{ \newcommand{\eqAlignedAt}[2]{
\insertAlignedAt{#1}{##1}{##2} \insertAlignedAt{#1}{##1}{##2}
} }
% 1: equation for flalign environment
\newcommand{\eqFLAlign}[1]{ \newcommand{\eqFLAlign}[1]{
\insertFLAlign{#1}{##1} \insertFLAlign{#1}{##1}
} }
% 1: file path
% 2: equation
\newcommand{\figeq}[2]{ \newcommand{\figeq}[2]{
\insertEquationWithFigure{#1}{##1}{##2} \insertEquationWithFigure{#1}{##1}{##2}
} }
% 1: any content
\newcommand{\content}[1]{ \newcommand{\content}[1]{
\NameLeftContentRight{#1}{##1} \NameLeftContentRight{#1}{##1}
} }
% 1: content for the ttext environment
\newcommand{\ttxt}[1]{
\NameLeftContentRight{#1}{
\begin{ttext}[#1:desc]
##1
\end{ttext}
}
}
}{\ignorespacesafterend} }{\ignorespacesafterend}
%
% QUANTITY
%
\newenvironment{quantity}[5]{ \newenvironment{quantity}[5]{
% key, symbol, si unit, si base units, comment (key to translation) % key, symbol, si unit, si base units, comment (key to translation)
\newcommand{\desc}[3][english]{ \newcommand{\desc}[3][english]{
@ -166,15 +195,6 @@
\DT[qty:#1]{}{##1}{##2} \DT[qty:#1]{}{##1}{##2}
\ifblank{##3}{}{\DT[qty:#1_desc]{##1}{##3}} \ifblank{##3}{}{\DT[qty:#1_desc]{##1}{##3}}
} }
\newcommand{\eq}[1]{
\insertEquation{#1}{##1}
}
\newcommand{\eqAlignedAt}[2]{
\insertAlignedAt{#1}{##1}{##2}
}
\newcommand{\eqFLAlign}[1]{
\insertFLAlign{#1}{##1}
}
\edef\qtyname{#1} \edef\qtyname{#1}
\edef\qtysign{#2} \edef\qtysign{#2}
@ -190,6 +210,9 @@
%
% DISTRIBUTION
%
\def\distrightwidth{0.45\textwidth} \def\distrightwidth{0.45\textwidth}
\def\distleftwidth{0.45\textwidth} \def\distleftwidth{0.45\textwidth}

View File

@ -37,6 +37,8 @@
\DeclareMathOperator{\tr}{tr} \DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\const}{const} \DeclareMathOperator{\const}{const}
\DeclareMathOperator{\erf}{erf} \DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\erfc}{erfc}
\DeclareMathOperator{\cov}{cov}
% diff, for integrals and stuff % diff, for integrals and stuff
% \DeclareMathOperator{\dd}{d} % \DeclareMathOperator{\dd}{d}
\renewcommand*\d{\mathop{}\!\mathrm{d}} \renewcommand*\d{\mathop{}\!\mathrm{d}}